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Abstract

®

CrossMark

Motivated by an important application of dendritic crystals in the form of an elliptical
paraboloid, which widely spread in nature (ice crystals), we develop here the selection theory
of their stable growth mode. This theory enables us to separately define the tip velocity of
dendrites and their tip diameter as functions of the melt undercooling. This, in turn, makes it
possible to judge the microstructure of the material obtained as a result of the crystallization
process. So, in the first instance, the steady-state analytical solution that describes the growth
of such dendrites in undercooled one-component liquids is found. Then a system of equations
consisting of the selection criterion and the undercooling balance that describes a stable
growth mode of elliptical dendrites is formulated and analyzed. Three parametric solutions of
this system are deduced in an explicit form. Our calculations based on these solutions
demonstrate that the theoretical predictions are in good agreement with experimental data for

ice dendrites growing at small undercoolings in pure water.
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1. Introduction

It is well-known that the processes of phase transformation
from the metastable and nonequilibrium states underlie the
preparation of many materials with specific physicochemical
properties. As this takes place, the growth features of den-
dritic structures evolving in undercooled liquids determine the
emerging microstructure of materials obtained in solidifica-
tion processes [1-6]. For a theoretical description of the stable
growth mode of dendritic crystals, the theory of microscopic

* Author to whom any correspondence should be addressed.

1361-648X/21/365402+7$33.00

solvability was originally developed for pure (one-component)
melts [7-9], which makes it possible to select the relationship
between the growth velocity of a dendrite tip, its radius of cur-
vature, and melt undercooling. This theory is based on two
nonlinear equations—the selection criterion and the under-
cooling balance. Using these algebraic equations, it is possible
to independently determine the velocity and radius of curva-
ture of the dendritic tip depending on the system undercooling
(the driving force of dendritic growth). Then this theory was
extended to binary melts [10, 11], dendritic growth under con-
ditions of convective fluid flow [12—17], and also to processes
of local nonequilibrium (rapid) crystallization [18-20].
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Figure 1. 3D phase-field simulation of non-axisymmetric ice
dendrite growth [21, 22]. From left to right: stellar dendrite with
secondary branching, stellar dendrite, fern-like dendrite, and
12-arms star. Reproduced from [22]. CC BY 4.0.

Aside from [21,22] (see figure 1), the vast majority of theo-
retical and numerical studies using solvability theory are based
on the assumption of axisymmetric dendrite tip (for instance
[23]). However, experimental data show that dendritic crys-
tals often represent non-axisymmetric structures, i.e. their tip
shapes may have different curvature radii in the basal and
perpendicular planes (ice crystals represent a good example
of such non-axisymmetric dendrites) [24—28]. These experi-
mental observations have yet never been ensured by a theory
that allows selecting a stable growth mode for such crystals.
The present work is devoted to the selection theory of non-
axisymmetric dendritic crystals growing with various crys-
talline symmetries in the basal and perpendicular planes. Our
approach is based on the analysis of two-dimensional crys-
tal growth, taking into account the fact that the dendritic tip
in these planes evolves with the same velocity. The devel-
oped theory is tested against experimental data that confirm
our theoretical conclusions.

2. Analytical theory

Let us consider the stationary growth of dendrite in the form of
an elliptical paraboloid from an undercooled one-component
melt (see figure 2). For the sake of simplicity, we neglect
the melt flow that could be induced by the temperature and
pressure gradients. The elliptical paraboloid is defined by two
forming parabolas in perpendicular planes with diameters pg
and p,. Here we mean the growth of ice crystals having six-
fold symmetry in the basal plane and two-fold symmetry in the
perpendicular plane. Keeping this in mind we use subscripts 6
and 2. Noteworthy, the present theory can be generalized to the
growth of a three-dimensional dendritic crystal with another
crystalline symmetry (for instance, 6 and 3). Next, assuming
that the dendritic interface is isothermal, we describe the tem-
perature field in the melt by a single coordinate that specifies
the isothermal surfaces and represents an elliptical paraboloid
[29].
In this case, the interface equation in dimensionless coordi-
nates x, y, z takes the form
2 2
X . y
w—b w+b

=w— 2z, (1)

where the length scale is a 2D1/V, Dr is the thermal diffu-
sivity, V is a constant growth rate, w is an isothermal level set
variable and b = (ps — p,)Dr/V is a dimensionless parameter
of ellipticity.

Figure 2. A sketch of tip region of a dendritic crystal in the form of
an elliptical paraboloid.

Note that in the case of stationary growth, the dendritic
shape is fixed, and the ratio k of its tip diameters is constant,
ie.
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2.1. Selection criterion

The selection criterion allows us to obtain the dendritic growth
velocity and tip diameters in two planes of the hexagonal-
packed crystal lattice, having the six-fold symmetry in its basal
plane and two-fold symmetry in the perpendicular vertical
plane. In the 2D and axisymmetric 3D cases, this criterion
has been found both analytically and numerically [7, 11]. For
the nonaxisymmetric 3D problem, the axisymmetric solution
can be used as an approximation in the vicinity of dendritic
tip [30]. Thus, to find three parameters, namely the growth
velocity V and two dendrite tip diameters p, (n = 2, 6), we
use two solvability criteria in the two perpendicular planes of
the dendrite (basal, where n = 6 and vertical, where n = 2).
Therefore, let us write out the general form of 2D selection
criterion for a single-component system without convection as
[11-14, 18-20]

2doDr oA 3)
2 - 2°
4 (1 + alnafir/znAi/npg")

*
n

a

where d is the capillary length constant, oy, is the solvability
constant, oy, is the anisotropy parameter (stiffness), n is the
order of symmetry (it indicates a concrete crystalline plane),
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Pgn = (p,V)/(2Dr) is the symmetry-dependent Péclet number
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(see, for more details, references [13, 26, 31]). It is significant
to note that the selection criterion (3) connects the averaged
tip diameter p = ps — b = p, + b and the tip velocity (the rhs
also depends on these unknowns through Py,).

2.2. Undercooling balance

The second relation between the growth velocity and tip radii
can be retrieved from the undercooling balance represent-
ing the driving force of crystal growth. The total undercool-
ing AT =Ty, — T at the dendrite tip consists in several
contributions

AT = ATy + ATx, @)

where T, is the melting temperature of a planar front, 7' is
the temperature far from the growing dendrite, and A7 stands
for the thermal undercooling, which reads as (see appendix)

T exp(—y)dy
ATy = Tq exp(Pr)y/ P2 — bz/ ——

Here Tq = Q/c, represents the adiabatic temperature, Q
is the latent heat of solidification, ¢, is the specific healt,
Pr = (pg + p,)V/(4Dr) is the Péclet number based on the
averaged tip diameter p = (ps + p,)/2. The curvature con-
tribution ATy stands for the undercooling induced by the
Gibbs—Thomson effect, which can be written in the form of

srzn (e L) e

Note that the total undercooling balance (4) connects
p=ps—b=p,+b,Vand AT.

Using the stability criterion in two perpendicular planes
with a different order of symmetry together with the under-
cooling balance allows us to have a closed system of three
equations with three unknowns (two radii pg and p, of forming
parabolas and constant growth velocity V).

2.83. Exact analytical solutions

Let us find now the exact analytical solutions of the nonlin-
ear set of three governing equations (3) and (4) in a para-
metric form. Note that equation (3) represents two selection
criteria for the larger (p4) and smaller (p,) dendritic tip diam-
eters (pg > p,). To do this, we first equate the growth rate V
expressed in terms of pg and p, (see criterion (3)) to each other
and obtain V(p,) and p4(p,). Finally, substituting them into the
undercooling balance (4), we get the first analytical solution

1
PP = oS (Ve — e V)

Papy — 2x2 — \/(1,/)2/)2 —2x2)° — 4\3pe

V(p2) = ,
2x3p2
AT(py) = Tq [CXP(PT(Pz))\/ ps(p2)p2
o0
exp(—y)dy
X
VY2 = (ps(p2) — p2)? /4
Pr(p2)
1 1
ps(p2) P2
_ alna%nAﬁ/"
= ""opr
b, = M (7)
T 2dyDr

where  Pr(py) = (ps(p2) + p2)V(py)/(4D1), parameter n
equals to 6 or 2, and p, plays the role of a decision variable
(free parameter that can be tunned). Expressions (7) represent
the first parametric solution.

The second solution can be found in another parametric
space where pg plays the role of a decision variable. For
that purpose, we should replace p, with ps and vice versa in
expressions (7).

Now choosing V as a decision variable, we come to the third
parametric solution of the form

W)= XiV'V + Vi
Pr VV (6 —2V)°

AT(V) =Tq {GXP(PT(V))\/ ps(V)p2(V)

=2,6,

[o9]
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where Pr(V) = (pg(V) + po(V))V/(4Dr), x,, and 1, are given
by expressions (7).

3. Experimental tests

Letus compare the present theory (expressions (8)) with exper-
imental data [24, 25] on the growth of ice crystals (physical
parameters are given in table 1). Figures 3-5 illustrate the
dendritic tip velocity V and its tip radii in the basal (larger
radius pg) and perpendicular to it (smaller radius p,) planes.
As is easily seen, the tip velocity monotonously increases
and tip radii monotonously decrease when increasing the melt
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Table 1. Material and design parameters for dendritic growth.

Parameter Teraoka et al [24] Yoshizaki et al [25]
Capillary constant (dy, m) 2.8 x 10710 2.8 x 10710
Thermal diffusivity (Dr, m? s™1) 1.34 x 1077 1.17 x 1077
Melting temperature (7', K) 273.15 276.90
Hypercooling (T, K) 79.67 81.56
Stiffnesses (avgp2/vao6) 1.5/0.25 1.5/0.20
Solvability constants (og2/0o6) 230/0.0018 245/0.0021
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Figure 3. Theory versus experiments carried out by Teraoka et al [24] for the dendrite tip velocity V and its larger tip diameter pq as

functions of the melt undercooling AT.
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Figure 4. Theory versus experiments carried out by Yoshizaki et al [25] for the dendrite tip velocity V and its larger tip diameter pg as

functions of the melt undercooling AT.

undercooling AT. The theory and experimental data are
in good agreement in the range of small and moderate
undercooling.

The smaller dendrite tip diameter p, was not directly mea-
sured but calculated following the results by Furukawa and
Shimada [25, 32] as the direct p, data could not be obtained
in the ISS (International Space Station) experiments. So, their

semi-empirical law takes the form

P2 —0.58
—— =425-A s 9
2y )

where A = AT/Tq is the dimensionless undercooling. An
important point is that this formula is a generalization of exper-
imental data. The smaller tip diameter p, calculated on the
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Figure 5. Theory versus data carried out by Yoshizaki et al [25] for the smaller dendrite tip diameter p, as a function of the melt

undercooling AT.

basis of our theory (expressions (8)) as a function of the melt
undercooling is compared with experimental data (expression
(9)) in figure 5. A slight deviation of the curves is explained
by the fact that the attitude of the dendrite could not be easily
controlled in experiments [25].

4. Conclusion

In summary, the theory of stable three-dimensional dendritic
growth in the form of an elliptical paraboloid is developed on
the basis of undercooling balance condition and two stability
criteria written out in two perpendicular dendritic planes (the
basal plane described by the larger tip diameter pg and perpen-
dicular to it plane described by the smaller tip diameter p,).
This theory leads to three non-linear algebraic equations deter-
mining three growth parameters—the dendrite tip velocity V
and its tip diameters pg and p, as functions of the melt under-
cooling. The solution of these equations governing the stable
growth mode is analytically found and tested against experi-
mental data for ice crystals. We demonstrate that predictions
of our theory agree well with experimental data in the range
of small undercoolings. The theory is applicable for dendrites
with non-axisymmetric morphology such as ice crystals with
tip shapes of elliptical paraboloids.
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Appendix. Boundary integrals for elliptical dendrites

Let us introduce how to derive the Horvay and Cahn solution
describing the elliptical paraboloid from the boundary inte-
gral method. Horvay and Cahn [29] obtained the shape of an
isothermal dendrite having an elliptical cross section. In this
case the surface of the dendrite in dimensionless coordinates
has the form (1). The dimensionless undercooling as a function
of Pt can be written as [33]
)-x

d (1 n 84();, ) (10)

A—;K—BV 3
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where (in dimensionless variables)

7 dr T IC (x1,t—7T)
T _ 2
’c—/(zm)w //dxl [1+ !

0

1
X exp {_; [l = 1P + ()

—{(xl,t—7)+7')2]}. (11)

Here A = (Ty, — T~)/Tq is the dimensionless undercool-
ing, 3 is the kinetic coefficient, variables x, x; and ¢ are mea-
sured in units of p/Pr, and variables # and 7 are measured
in units of p/(PrV). Further, the substitution of interfacial
function ¢ = z from (1) leads to

1
xexp{—; (x—x1)+0-—n)
x—xr -y ? 5
+(2(w—b)+2(w+b)+7> -

Replacing two integration variables 7 and y, by w; and z;
respectively as

(- x)

, Y=y =&—=xDz (13)

2(.4)1

we can obtain

exp(—wi(1 + z7))dz;

><7ex —w Catx a@y -zl —x)
P1 "\ 2w—n 2w+ b)

(14)

Integrating the right-hand side of equation (14) over x; and
71 yields

(w—i—b)(l—i—w—“}b)—wl)

1/_w1\/1+:%1b

x erfc <\/(w+b) <1 + “ >> dw. (15)
w—>b

Where it has been taken into account the following [34]

€ex
7= vars [ 2
0

> 22
/exp( uu)du_i

ey (16)

erfe(Bp) exp(8° 1)
0

Replacing the variable w; by u = , /1 4 —*;, we obtain

Il =2vVw? — b exp(w — b)J(w), (17)
where
> 2
Jw) = / exp (2bu?) erf:z(ixl/(w + D)) du. (18)

1

Next, applying the method of differentiation and integration

J(w) and considering that

by exp(—pu)du s
o P L —1), 19
1
we arrive at
P — T exp(=nd
exp(—1)dr
Ig = wz — b2 eXp(UJ) / ﬁ (20)
w

Keeping in mind that at the interface w = Pt we obtain

[ exp(—y)dy
ATy = I[Tq = To\/ P — exp(PT)/ =
/v2 — b2

For b = 0, the cross-section is circular and one can obtain
the Ivantsov’s solution [13, 35].
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