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ARTICLE

Multidrug resistant Escherichia coli from fresh produce sold by 
street vendors in South African informal settlements
Tintswalo Baloyi*, Stacey Duvenage *, Erika Du Plessis , Germán Villamizar-Rodríguez
and Lise Korsten

Department of Science and Innovation-National Research Foundation Centre of Excellence in Food Security, 
Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa

ABSTRACT
The aim of this study was to assess the prevalence of commensal and 
pathogenic Escherichia coli on informally sold fresh produce in South 
Africa, who harbour and express antimicrobial resistance genes and there
fore pose indirect risks to public health. The majority (85.71%) of E. coli 
isolates from spinach, apples, carrots, cabbage and tomatoes, were multi
drug resistant (MDR). Resistance to Aminoglycoside (94.81%), 
Cephalosporin (93.51%), Penicillin (93.51%) and Chloramphenicol 
(87.01%) antibiotic classes were most prevalent. Antibiotic resistance 
genes detected included blaTEM (89.29%), tetA (82.14%), tetB (53.57%), 
tetL (46.43%), sulI (41.07%), sulII (51.79%), aadA1a (58.93%) and strAB 
(51.79%). A single isolate was found to harbour eae virulence factor. 
Moreover, E. coli isolates were grouped into the intra-intestinal infectious 
phylogenetic group E (28.57%), the rare group C (26.79%), the generalist 
group B1 (21.43%) and the human commensal group A (16.07%). Presence 
of MDR E. coli represents a transmission route and significant human 
health risk.
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Introduction

Globally, there has been a general shift towards consumption of fresh raw food specifically fruit and 
vegetables. In South Africa, a recent study revealed that 97% of South Africans eat apples, 98% 
carrots and tomatoes, 91% spinach and 89% cabbage, either raw or cooked (WRC Project No K5/ 
2706/4, Deliverable 5, 2018). Fresh produce is often locally traded through informal supply chains 
which includes street-vending green grocers (Du Plessis et al. 2017), which are unregulated with no 
formal registered operating certificate or food safety training. The risk to the consumer thus 
increases due to a lack of knowledge in proper handling – storage and poor personal hygienic 
conditions. Contamination can occur due to poor personal hygiene of food handlers as well as poor 
facility sanitation and limited space that can lead to cross contamination of fresh fruit and 
vegetables (Khalil et al. 2015). In fact, 82% of consumers in South Africa were not confident 
about the safety of fresh produce originating from these vendors (Du Rand and Coundouris 
2017). Globally, the increase in fresh produce consumption has been linked to an escalation in 
the number of foodborne pathogen associated outbreaks (Callejón et al. 2015). Additionally, the 
presence of commensal and pathogenic bacteria who harbour and express antimicrobial resistant 
genes pose direct and indirect public health risks, respectively (Verraes et al. 2013).
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Escherichia coli are mostly commensal (Waturangi et al. 2019). However, some strains contain 
and express virulence genes that allow them to cause disease, including Enterohemorrhagic E. coli 
(EHEC), Enterotoxigenic E. coli (ETEC), Enteropathogenic E. coli (EPEC), Enteroaggregative E. coli 
(EAgg), Enteroinvasive E. coli (EIEC) and diffusely adherent E. coli (DAEC) (Nataro and Kaper 
1998; Waturangi et al. 2019). Shiga toxin producing E. coli are the most common strains implicated 
in foodborne outbreaks (Carstens et al. 2019). Additionally, non-O157 STEC cause more than 
112,000 cases of foodborne disease annually in the United States of America (USA) (Scallan et al. 
2011). Moreover, ETEC is responsible for more than 18,000 cases of foodborne infection annually 
in the USA and other diarrheagenic E. coli are responsible for a further 12,000 cases (Scallan et al. 
2011). Disease outbreaks linked to the consumption of E. coli contaminated cabbage, spinach, 
apples and tomatoes have been reported in the USA [Centres for Disease Control and Prevention 
(CDC) 2020]. Two of largest E. coli outbreaks recorded thus far both occurred in 2011, one involved 
the consumption of romaine lettuce contaminated with EHEC E. coli O157:H7 in the USA, where 
58 people died (CDC 2011); the second involved the consumption of sprouts contaminated with 
enteroaggregative hemorrhagic E. coli O104:H4 in Germany in 2011, where more than 53 people 
died (Robert Koch Institute 2011).

The surveillance of antimicrobial resistant bacteria and their genetic determinants has become 
more common within food research (Ben Said et al. 2016). Escherichia coli has increasingly been 
reported as a reservoir of antimicrobial resistance genes, many of which were acquired through 
horizontal gene transfer (Poirel et al. 2018). Both pathogenic and commensal E. coli can be 
a reservoir of antibiotic resistance genes (Du Plessis et al. 2017; Poirel et al. 2018). The presence 
of virulence and resistance genes increases the pathogenicity of microorganism and therefore the 
severity of the infection (El-Baky et al. 2020). Escherichia coli, both pathogenic and generic, and 
multidrug resistant (MDR) microorganisms can be present on fresh produce (Jongman and 
Korsten 2016; Du Plessis et al. 2017; Kilonzo-Nthenge et al. 2018) and readily acquired through 
food and water (Collignon 2009). Emergence of multidrug resistant E. coli can be considered 
a public health concern (Sa´enz et al. 2004). Often, the presence of foodborne pathogens and 
multidrug resistant bacteria on fresh produce is due to contamination during production – post
harvest practices (Lynch et al. 2006) or, at the point of sale. Given the scale of consumption of fresh 
produce, it is imperative to establish a baseline of E. coli occurrence and prevalence in the informal 
sector. In order to determine the ecological niche, disease causing ability and tracking of E. coli 
Clermont et al. (2013) developed a phylogenetic typing method which groups E. coli into eight 
phylogenetic groups (A, B1, B2, C, D, E, F and E. coli cryptic clade I). Group A strains include 
mainly commensal E. coli, whilst most virulent extraintestinal strains belong to group B2 and 
D (Johnson and Stell 2002). Additionally, group B1 is dominated by plant associated E. coli and 
groups A and B2 contain many animal associated strains. Group C is closely related to Group B1 
(Escobar-Páramo et al. 2004). Group E has been found to be associated with human and animal 
sources, for example, E. coli O157:H7 is grouped in this phylogenetic group (Clermont et al. 2011).

As such, this scoping study was performed primarily to determine the prevalence of antimicro
bial resistant E. coli on fresh produce (cabbage, spinach, tomato, apple and carrots) sold at street 
vendors in the informal settlements of Gauteng Province and to secondarily, characterize virulence 
and phylogenetic grouping of these isolates.

Materials and methods

Site selection, description, sampling strategy and processing

This study was carried out in Gauteng Province, South Africa between March 2016 and June 2017. 
The street vendors (SVs) were selected based on the informal nature of the vendor, which typically 
had semi-permanent wooden structures (with or without cloth coverings) in open-air markets 
where fresh produce were sold. Moreover, fresh produce were displayed either directly on wooden 
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planks supported by crates or cardboard boxes, or were kept in reused plastic plates or in plastic 
bags. In total, 250 fresh produce samples were collected from a total of 10 informal SVs, from two of 
the largest informal settlements in Gauteng Province [Tshwane (TSV) and Ekurhuleni (ESV)]. Five 
samples of five different vegetable types (apples, carrots, tomatoes, spinach and cabbage) were 
collected from each of the 10 informal SVs. Samples at each SV were collected based on what was 
available and on display that day. All fresh produce were transported and stored cooled. Samples 
were analysed within 24 h at the Food Safety Laboratories as part of the University of Pretoria’s 
diagnostic platform which operates on ISO 17,025 management principles.

Samples of 150 g (apple, carrots or tomato) were added to buffered peptone water (BPW) (3 M, 
Johannesburg, South Africa) in a 1:1 weight: volume ratio (Xu et al. 2015). A 1:5 weight: volume 
ratio was used for 50 g spinach and cabbage (Xu et al. 2015). The samples were macerated for 5 min 
at 230 rpm in a Stomacher® 400 Circulator (Seward Ltd., London, UK).

Microbiological analysis

In order to enumerate the population of E. coli, a tenfold dilution series of each macerated sample 
was prepared using 0.1% BPW. Suspensions were plated onto Petrifilm E. coli/coliform count plates 
(3 M) and incubated for 48 h at 37°C, according to manufacturer’s instructions. Single colonies were 
counted, recorded and converted to log10 cfug−1.

For the detection of E. coli, the macerated sample was incubated at 37○C for 24 h and was 
subsequently manually streaked onto Eosin methylene blue media (Merck, Johannesburg). 
Presumptive colonies based on morphology were isolated and identified using Matrix Assisted 
Laser Desorption Ionisation- Time of Flight (MALDI), in conjunction with the Bruker MALDI 
Biotyper software and default database (Bruker, Johannesburg) (Standing et al. 2013).

Phenotypic antimicrobial susceptibility screening

Antimicrobial susceptibility testing was done on each of the isolates by culturing in 9 ml brain heart 
infusion broth (Merck) followed by incubation for 24 h at 37°C; subsequently, suspensions were 
plated onto Mueller-Hinton agar plates (Merck) according to the Kirby–Bauer disc-diffusion 
method as outlined in Clinical and Laboratory Standards Institute (CLSI) guidelines (CLSI, 
2018). Antibiotics tested were determined based on three categories of important antimicrobials 
for human medicine, as categorized by the World Health Organisation Advisory Group on 
Integrated Surveillence of Antimicrobial Resistance (2018). This looked at ‘critically important’ 
(ampicillin-10 µg, amoxicillin-10 µg, nalidixic acid-30 µg, streptomycin-10 µg, cefotaxime-30 µg, 
ciprofloxacin-5µg, gentamicin-10 µg), ‘highly important’ (tetracycline-30 µg and chloramphenicol- 
30 µg, cephalothin-30 µg and cotrimoxazole-25 µg) and ‘important’ (nitrofurantoin-300 µg) anti
microbials for human medicines. Inhibition zone diameters were measured and compared to 
breakpoints in the CLSI guidelines (Clinical and Laboratory Standards Institute 2018) with 
a modification that classified intermediate resistance as susceptible (Ta et al. 2014). Strains resistant 
to three or more antimicrobial classes were defined as MDR. In addition, the multiple-antimicrobial 
-resistance indices (MARI) were calculated based on Krumperman (1983). Escherichia coli 
ATCC25922 was included as a negative control.

Virulence and antibiotic gene screening and phylogenetic grouping of the Escherichia coli 
isolates

Isolates (n = 56) were screened for 1) the presence antibiotic resistance genes (45 genes selected 
based on phenotypic antimicrobial resistance profiles), 2) presence diarrheagenic E. coli virulence 
genes stx1, stx2, eae (EHEC), lt, st (ETEC), plasmid portion pCVD4321AA probe (Eagg), ial and 
ipaH (EIEC), with an internal amplification control (mdh) and 3) phylogenetic groups were 
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assigned to E. coli isolates using the Clermont E. coli phylo-typing method (Clermont et al. 2013). 
All primers and thermocycling conditions are outlined in Table 1 and Table 2, respectively. 
Additionally, Escherichia coli ATCC25922 was included as a negative control and type cultures 
used for positive controls are outlined in Table 1, with molecular grade water used as a no template 
control.

Genomic DNA was extracted using the Zymo Quick-gDNA Mini-Prep kit (Inqaba Biotech, 
Pretoria, South Africa) and DNA quantification was performed using the Qubit Broad Range 
dsDNA kit and a Qubit 2.0 fluorometer (Life Technologies, Johannesburg). PCR mixtures were 
prepared to a final volume of 40 µL, using 1x DreamTaq PCR Master Mix (Life Technologies), 
10–100 µg of DNA, and 0,4 µM of primer concentration (Table 1), with PCR cycling conditions as 
outlined in Table 2. All reactions were performed on a Bio-Rad T100 thermal cycler (Bio-Rad, 
Johannesburg) and the products were visualised in 1,5% agarose gel stained with Roti®-Safe (Carl 
Roth GmbH & Co, Germany) using a Bio-Rad GelDoc XR in conjunction with the Image LabTM 
software (BioRad). Positive amplicons were sequenced in the forward and reverse direction for 
confirmation of identity by. Inqaba Biotechnical Industries (Pty) Ltd. all sequences were editing and 
aligned using Chromas 2.6.6 software (Technelysium). To confirm the specificity of the PCR 
products, sequences were aligned against the GenBank database (Benson et al. 2005) using the 
Blastn alignment tool (Altschul et al. 1990). The gyrA and parC required a deeper analysis to detect 
changes in the amino-acid chain of the DNA gyrase and Topoisomerase IV enzymes encoded by 
those genes. Following PCR and sequencing, as outlined previously, sequences were translated and 
then aligned with the corresponding tool included in the BioEdit Sequence Alignment Editor 7.2.6 
(Hall 1999).

Data analysis

The statistics were done using SAS for the enumeration of quality indicators and prevalence of 
foodborne pathogens was using SAS 1999 version 9.4 statistical software. The data was analysed 
using analysis of variance. The Shapiro–Wilk test was performed to test for deviations from 
normality. Student’s protected t LSD (least significant difference) values were calculated at a 5% 
significance level to compare means of significant source effects.

Results

Mean E. coli counts on spinach purchased from TSV (1.13 ± 0.36 log cfug−1) were significantly 
higher than those from ESV (0.15 ± 0.11 log cfug−1) (Supplementary Table S1). Spinach purchased 
from two TSV were found to be contaminated with E. coli (60% TSV 2 and 100% TSV 4), ranging 
from 2.3 to 5.24 log cfug−1 (Supplementary Table S1). Only one ESV had spinach samples (40%) 
contaminated with E. coli with a range from 0.00 to 2.10 log cfug−1 (Supplementary Table S1). Mean 
E. coli counts from carrot samples from Ekurhuleni and Tshwane did not differ significantly 
(Supplementary Table S1), with only one ESV demonstrating E. coli contamination on 100% of 
samples and two TSV’s having E. coli contamination on 20% of carrot samples. These E. coli counts 
ranged from 0.89 to 2.37 log cfug−1 (Supplementary Table S1). It was not possible to enumerate 
E. coli from cabbage and apple samples from Tshwane or Ekurhuleni (Supplementary Table S1). In 
total, 56 E. coli isolates were used for antimicrobial resistance testing, virulence testing and 
phylogenetic grouping. Escherichia coli was detected from 24.8% of all samples, with 17.6% from 
ESV and 32% from TSV.

Overall, E. coli isolates retrieved in this study demonstrated high levels of antimicrobial resis
tance, with 85.71% of all E. coli isolates demonstrated MDR (n = 48) and 82.00% exhibited a MARI 
value of more than 0.2 (Krumperman 1983). Escherichia coli retrieved demonstrated resistance to 
tetracycline (80.36%, n = 45), amoxicillin (73.21%, n = 41), ampicillin (71.43%, n = 40), trimetho
prim-sulfamethoxazole (66.07%, n = 37), cephalothin (64.29%, n = 36), nalidixic acid and 
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ciprofloxacin (57.14%, n = 32), chloramphenicol (50%, n = 28) to, streptomycin (46.43%, n = 26) to, 
nitrofurantoin (41.07%, n = 23) and gentamicin (10.71%, n = 6) (Figure 1, Table 3). Therefore, 
multidrug resistant E. coli was detected from 12.8% of samples, with 11.2% from ESV and 14.4% 
from TSV (Figure 1).

The frequency of the detected antimicrobial resistance genes are shown in Figure 1, Table 4. The 
following β-lactamase encoding genes were detected from the 56 isolates: blaTEM (89.29%; n = 50), 
blaCTX-M Gp1 (8.93%; n = 5), blaCTX-M Gp9 (5.36%; n = 3) and blaSHV (1.79%; n = 1). The following 
tetracycline encoding genes were detected: tetA (82.14%; n = 46), tetB (53.57%; n = 30), tetL 
(46.43%; n = 26), tetK (12.50%; n = 7), tetD (3.57%; n = 2), tetE (3.57%; n = 2), tetM (3.57%; 
n = 2) and tetS (3.57%; n = 2). Gene conferring resistance to aminoglycosides were detected with 
aadA1a and strAB present in 58.93% (n = 3) and 51.79% (n = 29) of isolates, respectively (Figure 1; 
Table 4). Genes sulI and sulII conferring resistance to Sulfonamides were detected from 41.07% 
(n = 23) and 51.79% (n = 29) of isolates, respectively (Table 4, Table 5). No AmpC β-lactamase, 
ampC, Fluoroquinolones (qnrD and qnrS) and Phenicol (catI, catII and catIII) resistance encoding 
genes tested for were detected from the 56 isolates. Comparative analysis of the gyrA and parC 
encoding sequences of the isolates with reference sequences (APC52470.1-GyrA/M58408), showed 
that three isolates from ESV’s spinach (Figure 1) had substitutions in both enzyme encoding genes: 
Ser83 and Asp87 (Ser83→Leu/Asp87→Asn) in gyrA; and Ser80 (Ser80→Ile) in parC. Moreover, 11 
isolates from Tshwane had substitutions in Ser83 and Asp87 in gyrA (Ser83→Leu/Asp87→Asn), 
while 12 isolated had substitutions in Ser80 to Ile in parC, and two in Ser80 to Thr in parC (Figure 
1). Only six isolates from Tshwane have shown substitutions in both enzymes (Figure 1).

Out of the 56 E. coli isolates screened, only one retrieved from tomato purchased from ESV was 
positive for eae virulence factor; no other virulence genes were detected. The main phylogenetic 
groups identified were E (28.57%, n = 16), C (26.79%, n = 15) and B1 (21.43%; n = 12), with 16.07% 

Table 3. PCR cycling conditions for screening of Escherichia coli antimicrobial resistance genes, virulence genes and 
phylogenetic grouping.

Initial denaturation Cycles Final Extension

Antibiotic Resistance Genes testing, with positive control
94°C for 2 min 35x 94°C for 30 sec 72°C for 5 min

Tm according to primer pair (Table 1) for 30 sec
72°C for 60 sec

Antibiotic Resistance Genes testing, without positive control
94°C for 2 min 10x 94°C for 30 sec 72°C for 5 min

Tm+6°C for 30 sec
60 sec at 72°C

10x 30 sec at 94°C
Tm+4°C for 30 sec

60 sec at 72°C
10x 30 sec at 94°C

Tm+2°C for 30 sec
60 sec at 72°C

5x 30 sec at 94°C
Tm for 30 sec
60 sec at 72°C

Tm according to primer pair (Table 1)
Diarrheagenic Escherichia coli virulence genes
94°C for 2 min 35x 94°C for 2 min 72°C for 5 min

Tm according to primer pair (Table 1) for 30 sec
72°C for 2 min

Phylogenetic grouping of Escherichia coli
95°C for 4 min 30x 94°C for 5s 72°C for 5 min

Tm according to primer pair (Table 1) for 30 sec
72°C for 2 min
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Figure 1. Antimicrobial resistance profiles and antimicrobial genetic determinants present in Escherichia coli isolated from fresh 
produce sold in informal vendors in South Africa. Red blocks represent an isolate is resistant to the specified antibiotic, a yellow 
block indicates intermediate resistance to the specified antibiotic and a green block represents susceptibility to the specified 
antibiotic. A black block represents the presence of the antimicrobial resistance genes screened for and a white block indicates 
the absence of the gene.
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of isolates belonging to phylogenetic group A and 7.14% of isolates not grouped into a phylogenetic 
group and classified as unknown (Figure 1).

Table 5. Prevalence of antimicrobial resistance genes in Escherichia coli isolated from fresh produce.

Antimicrobial resistance gene tested Number of isolates positive for the gene Percentage of isolates containing the gene

blaTEM 50 89.29%
tetA 46 82.14%
aadA1a 33 58.93%
tetB 30 53.57%
strAB 29 51.79%
sulII 29 51.79%
tetL 26 46.43%
sulI 23 41.07%
parC 16 28.57%
gyrA 14 25.00%
tetK 7 12.50%
blaCTX-M Gp1 5 8.93%
blaCTX-M Gp9 3 5.36%
tetD 2 3.57%
tetE 2 3.57%
tetM 2 3.57%
tetS 2 3.57%
blaSHV 1 1.79%

blaOXA, blaCTX-M Gp2, blaCTX-M Gp8-25, VEB, PER, GES, blaZ, ACC, FOX, MOX, DHA, CIT, EBC, ampC, tetC, tetO, tetP, tetQ, tetX, aac(6ʹ)-Ib, 
qnrD, qnrS, catI, catII and catIII were not detected in the 56 isolates.

Table 4. Antibiotic resistance profiles of Escherichia coli associated with fresh produce sampled.

Multidrug resistant Escherichia coli profiles No. Isolates % with same profiles

CTX30C-KF30C-C30C-GM10C-S10C-NI300C-TS25C-NA30C-A10C-AP10C-CIP5C-T30C 1 2.17%
CTX30C-C30C-GM10C-S10C-TS25C-NA30C-A10C-AP10C-CIP5C-T30C 1 2.17%
KF30C-C30C-S10C-NI300C-TS25C-NA30C-A10C-AP10C-CIP5C-T30C 3 6.52%
C30C-S10C-NI300C-TS25C-NA30C-A10C-AP10C-CIP5C-T30C 1 2.17%
CTX30C-KF30C-NI300C-TS25 C-NA30C-A10C-AP10C-CIP5C-T30C 1 2.17%
CTX30C-KF30C-S10C-TS25 C-NA30C-A10C-AP10C-CIP5C-T30C 1 2.17%
KF30C-C30C-NI300C-TS25 C-NA30C-A10C-AP10C-CIP5C-T30C 9 19.57%
KF30C-C30C-S10C-TS25 C-NA30C-A10C-AP10C-CIP5C-T30C 2 4.35%
C30C-NI300C-TS25 C-NA30C-A10C-AP10C-CIP5C-T30C 1 2.17%
C30C-S10C-TS25 C-NA30C-A10C-AP10C-CIP5C-T30C 2 4.35%
C30C-NI300C-TS25 C-NA30C-A10C-AP10C-CIP5C-T30C 1 2.17%
KF30C-C30C-GM10C-S10C-TS25 C-A10C-AP10C-T30C 1 2.17%
KF30C-C30C-TS25 C-NA30C-A10C-AP10C-CIP5C-T30C 3 6.52%
KF30C-S10C-TS25 C-NA30C-A10C-AP10C-CIP5C-T30C 1 2.17%
C30C-TS25 C-NA30C-A10C-AP10C-CIP5C-T30C 1 2.17%
CTX30C-KF30C-C30C-GM10C-A10C-AP10C-T30C 1 2.17%
CTX30C-KF30C-NI300C-TS25 C-NA30C-CIP5C-T30C 1 2.17%
KF30C-C30C-S10C-TS25 C-A10C-AP10C-T30C 1 2.17%
CTX30C-KF30C-TS25 C-A10C-AP10C-CIP5C 1 2.17%
CTX30C-KF30C-S10C-A10C-T30C 1 2.17%
CTX30C-KF30C-TS25 C-A10C-AP10C 1 2.17%
CTX30C-KF30C-TS25 C-A10C-AP10C-T30C 1 2.17%
GM10C-S10C-NA30C-A10C-AP10C-T30C 1 2.17%
KF30C-S10C-NI300C-A10C-AP10C 1 2.17%
S10C-TS25 C-NA30C-CIP5C-T30C 1 2.17%
KF30C-A10C-AP10C-T30C 1 2.17%
KF30C-S10C-NI300C-T30C 1 2.17%
KF30C-S10C-NI300C-T30C 1 2.17%
S10C-NA30C-CIP5C-T30C 1 2.17%
KF30C-NI300C-T30C 1 2.17%
KF30C-S10C-T30C 1 2.17%
S10C-TS25 C-T30C 1 2.17%
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Discussion

Street vendors in the informal settlements are confronted with lack of infrastructure such as potable 
water, ablution, storage and cooling facilities, that can impact on the microbiological safety of fresh 
produce (Marutlulle 2017; Du Plessis et al. 2017). Moreover, due to the unregulated system in 
informal street vending, implementation of food safety standards can be challenging. Food, 
including fresh produce, for human consumption contaminated with multidrug resistant bacteria 
is a cause for concern in public health (Soufi et al. 2009; Thanner et al. 2016). This is the first study 
investigating the diarrheagenic virulence and antimicrobial resistance genes of multidrug resistant 
E. coli from fresh produce within the South African informal retail sector. In this study a high 
proportion of the commensal E. coli found in fresh produce purchased from street vendors from the 
informal sector were MDR. In contrast, Du Plessis et al. (2017) found that 37.93% E. coli isolates 
from informal street vendors from cabbage and spinach were MDR and Corzo-Ariyama et al. 
(2019) found that only 20% of E. coli isolates from tomatoes in the supply chain were found to be 
MDR. Globally the resistance of fresh produce and environmental organisms is unknown and this 
information is required for further risk assessment, therefore it is essential to determine the role that 
fresh produce plays in the dissemination of MDR organisms within vulnerable and poor commu
nities (Richter et al. 2020).

In this study, 80.36% of isolates were resistant to the Tetracyline class of antibiotics with 92.86% 
of isolates containing at least one tet gene. Tetracycline is not used for the treatment of E. coli, 
however the presence of tet genes and resistance to tetracycline has epidemiological importance 
(Badi et al. 2020). In contrast, a study on the antimicrobial resistance of E. coli isolated from cabbage 
and spinach, found that only 6.67% of isolates were resistant to the Tetracyline class (Du Plessis 
et al. 2017). Similarly, only 2.7% of E. coli isolated from fresh produce (spinach, tomatoes, carrots, 
cucumber, radish and cantaloupe) from India were found to be resistant to the Tetracycline class of 
antibiotics, which is in contrast to this current study (Verma et al. 2018). However, Corzo-Ariyama 
et al. 2019 found that 76.67% of E. coli isolates from tomatoes were resistant to tetracycline which 
was in agreement with what this study has shown. Badi et al. (2020) found high levels of E. coli 
(65%) to harbour tet genes detected for, although lower than the current study.

Resistance to the Sulfonamide and Penicillin classes were seen in 73.21% of isolates whilst 
resistance to the Cephalosporin class was seen in 67.86% of isolates, with genes conferring resistance 
to sulfonamides tested being detected from 51.79%, ampC β-Lactamase genes detected from 
92.86%. Extended spectrum β-Lactamases and β-Lactamases genes were found in none of isolates, 
a finding that was also seen by Badi et al. (2020). In contrast, only 2.7% of E. coli isolated from fresh 
produce in India were resistant to Sulfonamides, with 6.8% resistant to the Penicillin class and 
between 0 and 2.7% resistant to the Cephalosporin class (Verma et al. 2018). Du Plessis et al. (2017) 
found that 40% of E. coli isolates from leafy greens were resistant to the Sulfonamide class and 
13.33% of E. coli isolates to the Penicillin class. Whilst higher levels of resistance (76.4%) to the 
Penicillin class were observed for E. coli isolated from fresh produce (lettuce, spinach, carrots, 
parsley, cilantro and tomatoes) from small-acreage farms in Tennessee (Kilonzo-Nthenge et al. 
2018). A similar observation of 66.67% of resistance to ampicillin was seen on isolates from 
tomatoes within the supply chain (Corzo-Ariyama et al. 2019).

A low percentage of E. coli isolates (4.1%) from fresh produce in India had resistance towards the 
Phenicol class of antibiotics (Verma et al. 2018), whereas in the current study, half the E. coli isolates 
(50%) demonstrated resistance to Phenicol. Similarly, Kilonzo-Nthenge et al. (2018) found 38.2% of 
the E. coli isolated from fresh produce in Tennessee showed resistance to the Phenicol class. 
Escherichia coli resistance towards Aminoglycosides (48.21%) in this study was more than that 
reported by Verma et al. (2018), but less than that found by Du Plessis et al. (2017). Similar levels of 
resistance (33.33%) to Aminoglycosides were observed from tomatoes from Northern Mexico 
(Corzo-Ariyama et al. 2019). In the current study, resistance to gentamycin (10.71%) was lower 
than that of streptomycin (46.43%). A similar pattern was seen by Kilonzo-Nthenge et al. (2018) 
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where no E. coli isolates demonstrated resistance to gentamycin and 34.5% of isolates demonstrated 
resistance to streptomycin.

Escherichia coli isolates from tomatoes (36.67%) in Northern Mexico were found to be resistant 
to nalidixic acid (Corzo-Ariyama et al. 2019), in contrast, only between 0 and 2.7% of E. coli isolated 
from fresh produce in India were resistant to the Synthetic Quinolone class (Verma et al. 2018). In 
this study, just over half (57.14%) of isolates were resistant to the Synthetic Quinolone class, with 
mutations in the gyrA and parC genes detected in 42.86% of isolates. Mutations in gyrA and parC 
genes, encoding the DNA gyrase and topoisomerase IV enzymes, have been described as one of the 
genetic bases in the resistance to quinolone family of antibiotics (Drlica and Zhao 1997). Due to the 
DNA gyrase, Gram negative bacteria are more susceptible to the action of Quinolones. Changes in 
the amino acid sequence of the DNA gyrase in these bacteria is related to the resistance to 
Quinolones. Also, mutations on parC can further increment the level of resistance against those 
antibiotics (Jacoby 2005).

Therefore, resistance of the E. coli isolates in this study to all classes tested were far higher than 
those reported in other similar studies (Du Plessis et al. 2017; Verma et al. 2018) and similar to some 
(Kilonzo-Nthenge et al. 2018; Corzo-Ariyama HA, García-Heredia A, Heredia N, García S, León J, 
Jaykus LA, Solís-Soto L. 2019. Phylogroups, pathotypes, biofilm formation and antimicrobial 
resistance of Escherichia coli isolates in farms and packing facilities of tomato, jalapeño pepper 
and cantaloupe from Northern Mexico. Int J Food Microbiol [Internet]. 290(August 2018). The 
presence of these antimicrobial resistant commensal and environmental E. coli strains is considered 
a high-risk (Krumperman 1983) due to the potential that these organisms have to transmit 
antimicrobial resistance conferring genes to other environmental and human gut bacteria 
(Marshall et al. 2009). Therefore, the spread of antimicrobial resistant bacteria from plants to 
humans via the food chain as well as the potential spread of antimicrobial resistant genes requires 
a holistic ‘One-Health’ approach in order to control and mitigate the risk of exposure (Jans et al. 
2018).

However, with the lack of effective policies and regulation, as well as sector specific food 
safety standards, it is difficult to evaluate how safe the fresh produce really is and what the 
actual level of risk to the consumer is. In this study, spinach had the highest level of E. coli 
(44%), followed by carrots (22%), apples (22%), tomatoes (16%) and finally cabbage (8% ESV; 
32% TSV). In contrast Verma et al. (2018) found that only 3.5% of spinach samples purchased 
in India were contaminated with E. coli. However, 16.3% of spinach samples from small-scale 
farms in Tennessee, USA had E. coli (Kilonzo-Nthenge et al. 2018). In the current study, 22% 
of the carrots and apples and 16% of the tomatoes were contaminated with E. coli, which was 
higher than the 2.3% of carrots and 1.5% of tomatoes reported in India (Verma et al. 2018). 
However, similar to our study, 60% of carrots from Tennessee and 4.9% of tomatoes were 
contaminated with E. coli (Kilonzo-Nthenge et al. 2018). In contrast to the current study, 
Kilonzo-Nthenge et al. (2018) found that apples were free of E. coli contamination. Du Plessis 
et al. (2017) found that only 3.33% of cabbage samples from informal vendors and 6.66% of 
cabbages sold in formal retailers had detectable E. coli. In this study, 8% of cabbages 
purchased from ESV and 32% from TSV were contaminated with E. coli. Moreover, E. coli 
levels from spinach were the highest throughout the study with levels ranging from 0 to 5.3 
log10cfug-1 and an average of 0.15 log10cfug-1 (ESV) and 1.10 log10cfug-1 (TSV). These 
levels were similar to those reported from spinach by Kilonzo-Nthenge et al. (2018). These 
significantly higher values were then followed by E. coli levels on carrots which were 
contaminated with 0.47 log10cfug-1 (ESV) and 0.39 log10cfug-1 (TSV), which was similar 
to those found by Kilonzo-Nthenge et al. (2018). Average E. coli concentration on tomatoes 
[of 0.16 log10cfug-1 (TSV)] were significantly lower than spinach in this study and were 
enumerated from only 20% of the samples, while Kilonzo-Nthenge et al. (2018) reported 
a higher average of 0.7 log10cfug-1.
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The diversity of phylogenetic groups in this study were higher than reported by Du Plessis 
et al. (2017) who found that E. coli isolated from spinach and cabbage sold at retailers and 
informal vendors in South Africa belonged mainly to phylogenetic group A (86%), followed by 
group E (7%). Similar results were seen from tomatoes, jalapeño peppers and cantaloupe 
where the majority of E. coli isolates from fresh produce belonged to phylogenetic group 
A (Corzo-Ariyama et al. 2019). In this study, a total of 28.57% of E. coli retrieved from apples, 
cabbage, carrots, spinach and tomatoes, were phylogenetically grouped into group E, which 
has predominantly been associated with intra-intestinal infections (Clermont et al. 2011). 
A further 26.79% of E. coli isolates in this study were grouped into the phylogenetic group 
C, which is far rarer and has previously been shown to demonstrate the potential for gut 
colonization, transmission and virulence (Moissenet et al. 2010). Interestingly, Du Plessis et al. 
(2017) found that 3% of E. coli isolates from informal vendors in South Africa were retrieved 
from cabbage and spinach samples were grouped into this rare phylogenetic group. Therefore 
these two phylogenetic groups are present in all fresh produce types from informal vendors in 
South Africa. Phylogenetic group B1 which previously been shown to be predominantly 
associated with plants (Méric et al. 2013) and herbivorous animals (Carlos et al. 2010) were 
associated with apples, spinach, cabbage and tomatoes, but not carrots. These ‘generalist’ and 
commensals (Bingen et al. 2009) were found to have the ability to persist in the environment 
(Walk et al. 2007) and were found to contain less virulence factors than groups B2 and 
D (Johnson and Stell 2002). On the other hand, Pupo et al. (1997) found that phylogenetic 
group B1 could be associated with intra-intestinal pathogens. Corzo-Ariyama et al. 2019 found 
that 16.7% of isolates from jalapeño peppers and 40% of isolates from cantaloupe during 
distribution belonged to phylogenetic group B1.
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