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Abstract  34 

CONTEXT 35 

Conservation Agriculture (CA) usage, particularly in Southern Africa, has remained low with 36 

lower yield, higher weed pressure and lower soil quality cited as reasons for ‘disadoption’. 37 

OBJECTIVE 38 

 Using a detailed case study of 50 farmers in two villages in Cabo Delgado (Northern 39 

Mozambique), this study seeks to test the hypothesis that farmers’ perceptions of CA are 40 

associated with distinctly different ‘mental models’ and if these “ways of thinking” overlap 41 

with farmers’ identified/self-identified groupings (e.g. CA users, ‘disadopters’ and 42 

conventional tillage users). Secondly, we examine whether these different mental models 43 

(perceptions) are associated with actual differences in on-farm measurements. Finally, we 44 

explore the hypothesis that ‘systems thinking’ (i.e., understanding nonlinear causal 45 

relationships and internal feedback loops that drive a complex system) and CA usage are 46 

positively associated.  47 

METHODS 48 

Fuzzy Cognitive Mapping (FCM) was used to elicit representations of farmers’ mental models. 49 

To explore the association between farmers’ mental models of CA/conventional practices and 50 

on-farm measurements we evaluated cowpea aboveground biomass, yield, weed cover, and soil 51 

quality parameters from the farmer’s main plot. We drew on network analysis to measure 52 

structural metrics of cognitive maps that provide important information about a person’s mental 53 

model (perceptions) of causal interdependencies of farming dynamics. 54 

RESULTS AND CONCLUSIONS 55 

 We find evidence of two data-driven distinct clusters of farmers’ mental models that are in 56 

relative alignment with farmers’ identified/self-identified groupings. Cluster 1 mainly consists 57 

of conventional users and cluster 2 mainly consists of CA users/disadopters. While no 58 

significant differences in socio-demographic variables were observed, clusters of mental 59 

models were associated with key differences in on-farm measurements. Importantly, cluster 1, 60 

who tended to be conventional users, had lower yields, lower soil cover, significantly lower 61 

carbon stock and higher weed coverage than cluster 2. Soil quality indicators were higher in 62 

cluster 2 as were farmers’ overall revenue per hectare. Moreover, cluster 2 had significantly 63 
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higher degrees of ‘systems thinking’ (measured through complex network analysis of graphical 64 

mental models) than cluster 1 which had higher forms of linear thinking. We argue that higher 65 

forms of experiential learning and practice of CA relate to higher degrees of systems thinking 66 

and stronger positive perceptions of CA, even among the CA ‘disadopters’.  67 

SIGNIFICANCE  68 

Our findings highlight the importance of systems thinking abilities and the need to consider 69 

detailed biophysical, socio-economic and mental modelling variables rather than simple binary 70 

measurements which may have led to erroneous conclusions on CA and thus has implications 71 

for how CA is understood and promoted in future. 72 

 73 

Keywords: Conservation Agriculture; Decision-making; Mental models; Cropping 74 

systems   75 

 76 

1. Introduction  77 

1.1 Background and objectives 78 

Conservation Agriculture (CA) has been promoted as a method that contributes to the 79 

sustainable intensification of smallholder farming in Africa (Pretty et al., 2011). CA is now 80 

practiced worldwide across all continents, diverse agro-ecosystems and varied farm sizes 81 

(Friedrich et al., 2012). CA is defined by three principles, namely: (i) no or minimum 82 

mechanical soil disturbance through no-till seeding; (ii) the maintenance of soil mulch cover 83 

with crop biomass, stubbles and cover crops; (iii) cropping system diversification through 84 

rotations and/or associations involving annuals and perennials, including legume crops (FAO, 85 

2016).   86 

In Sub-Saharan Africa (SSA), conventional tillage practice is still pervasive and usually 87 

conducted through hand-hoe or animal traction. This has resulted in widespread soil erosion 88 

and loss of soil organic matter which is further exacerbated by the practices of crop residue 89 

removal and stubble burning (Rockström et al., 2009). Despite many positive experiences 90 

across the region (e.g. Thierfelder et al., 2015; Thierfelder et al., 2016; Kassam et al., 2017), 91 

recent research (e.g. Giller et al., 2009; Giller et al., 2015; Brown et al., 2018) has suggested 92 

that CA practice in SSA (particularly in Southern Africa) remains low. Key areas of contention 93 
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have surrounded yields, weeds, soil quality and labour. Studies have shown, for instance, that 94 

CA practice may contribute to a decrease in yields (particularly in the short-run) compared to 95 

those obtained under conventional tillage based agriculture, which can severely impede usage 96 

(Giller et al., 2009; Thierfelder and Wall, 2010). Giller (2009 and 2012) have also suggested 97 

that resource-poor farmers particularly in SSA, where there exists a strong crop-livestock 98 

interaction, are likely to face important trade-off decisions given that crop biomass is often fed 99 

to livestock. The challenges associated with higher weed pressure and an increase in labour 100 

requirements are also frequently cited as significant barriers to CA practice (Baudron et al., 101 

2012; Chauhan et al., 2012; Chinseu et al., 2018). This is further compounded by arguments 102 

which have centred around the need to include agricultural inputs such as herbicides and 103 

fertilisers in the production process in order for CA to be successful (e.g. to reduce weeds and 104 

increase crop productivity) (Rusinamhodzi et al., 2011; Thierfelder et al., 2013). In addition, 105 

its agro-ecological suitability (e.g. whether suitable for drier rather wetter regions) has been an 106 

area of contention (Giller et al., 2009; Pittlekow et al., 2015).  More recently, authors have 107 

questioned the role CA has in carbon sequestration due to inadequate soil sampling of soil 108 

organic carbon stock which has likely caused significant overestimates of its potential in 109 

climate change mitigation (e.g. Powlson et al., 2016). Rather research has suggested that the 110 

diversification potential of CA should be explored further and the benefits to near soil surface 111 

physical conditions as opposed to its climate change mitigation potential should be given more 112 

attention (Powlson et al., 2016).  113 

In contrast, Baudron et al. (2015) have argued that a ‘niche’ exists where CA fits and this is 114 

likely to increase with time, particularly in Southern and Eastern Africa, given the predicted 115 

variation in changing climate.  This is characterised by areas where the energy establishment 116 

such as labour costs are high; where yield is severely limited primarily by a lack of water 117 

availability; and where severe erosion problems exist (Baudron et al., 2015). Across Southern 118 

Africa, in recent years there has been an increase in donor and government interest in funding 119 

CA programmes. Sumberg et al. (2013) have been critical though of the blanket policy 120 

prescriptions taken by some development agencies, as it can lack contextualisation and 121 

consideration of alternate pathways.   122 

Thus, recent research on CA and sustainable agriculture practices have also highlighted the 123 

need to consider more data to better judge the level of ‘adoption’ (including detailed 124 

biophysical and farmer characteristics) to track changes over time (Pannell and Claasen, 2020); 125 

the inclusion of farm-level data as opposed to on-station trials to better understand on-farm 126 
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realities including opportunity costs (e.g. Pannell et al., 2014); the use of additional indicators 127 

with respect to tillage implements and farm practices (Findlater et al., 2019) and consideration 128 

of environmental threats/productivity of the soil (Knowler and Bradshaw, 2007). Dessart et al. 129 

(2019) have further highlighted the importance of considering behavioural factors (e.g. 130 

openness to new experiences, risk seeking and social pressure from  key social referents) that 131 

affect the ‘adoption’ of sustainable agriculture practices as have Lalani et al. (2016). Similarly, 132 

Weersink and Fulton (2020) highlight ‘adoption’ cannot be understood in binary form 133 

(adopt/non-adopt) and involves multiple stages which need to be considered in sequence and 134 

include economic and non-economic factors. Furthermore, Levy et al. (2018) has also shown 135 

that the level of ‘systems thinking’ (i.e. network metrics that measure the degree of complexity, 136 

non-linearity, cyclic interdependence and feedback representation) may play a role in 137 

understanding decision-making with regards to sustainable agriculture.  138 

Building on Lalani et al. (2016) and previous work on mental models and CA (e.g. Halbrendt 139 

et al., 2016; Levy et al. 2018), this study tests a hypothesis related to whether farmers’ 140 

perceptions of CA are associated with distinctly different ‘mental models’ and whether these 141 

‘ways of thinking’ are associated with farmers’ identified/self-identified groupings a priori. 142 

Secondly, we examine whether these mental model groupings (distinct clusters of system 143 

perceptions) are associated with actual on-farm measurements. Finally, we explore the 144 

hypothesis that ‘systems thinking’ and CA usage are positively associated—that is, mental 145 

models generated by farmers with a higher level of experiential learning and practice of CA 146 

demonstrate higher degrees of systems thinking and stronger positive perceptions of CA, while 147 

mental models of farmers who practice conventional tillage more frequently show evidence of 148 

linear thinking.  149 

In the next section, we describe the role of mental models in environmental decision-making 150 

and previous applications. and the study background. In section 2 we outline the case study 151 

background and our empirical framework. Results are presented in section 3, followed by 152 

discussion (section 4) and concluding section (section 5).  153 

1.1.1 Mental models  154 

To understand individual farmers’ perceptions, we focus on their ‘mental models’ as they relate 155 

to CA. The notion of mental models, which was first introduced by Craik (1943), has been 156 

widely used as a construct to understand how individuals and groups understand the world and 157 

make decisions within it (see review by Jones et al. 2011). These internal models are often 158 
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elicited and represented through concept or cognitive mapping. A cognitive map can be thought 159 

of as a graphical map that reflects mental processing, which is comprised of collected 160 

information and a series of cognitive abstractions by which individuals filter, code, store, refine 161 

and recall information about physical phenomena and experiences into an external 162 

representation (Vanwindekens et al., 2013; Vuillot et al. 2016; Levy et al., 2018). Therefore, 163 

understanding variation in farmer mental models, and indeed in some cases how consistent 164 

these perceptions align with measurements of external “reality”, is considered to shed light on 165 

human decision-making and subsequent behavioural intentions and behaviours (Halbrendt et 166 

al., 2014)  167 

 168 

 169 

Figure 1. Map of Mozambique showing the studied province (Cabo Delgado, in red) and 170 

district (Pemba-Metuge, in black).  171 

2. Methods  172 
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 173 

2.1 Case study area  174 

Cabo Delgado is the northernmost province of Mozambique and is situated on the 175 

Mozambiquan coastal plain approximate latitudes and longitudes -12.3335° S, and longitude 176 

39.3206° E, respectively (Fig. 1).  Its climate is sub-humid, moist Savanna, characterized by a 177 

long dry season spanning May to November and a rainy season commencing December and 178 

extending into April.  Within greater Mozambique there exist ten different agro-ecological 179 

regions each grouped into three different agroecological categories based in large part on mean 180 

annual rainfall and degrees of evapotranspiration.  A detailed explanation of the agroecological 181 

zones in Mozambique and covering Cabo Delgado province can be found in INIA (1994), Silici 182 

et al. (2015) and Salvador et al. (2014). The district under study, Pemba-Metuge, falls 183 

predominantly under the R8 classification (See Salvador et al., 2014), typified by 184 

comparatively low rainfall less than 1000mm per annum and have high evapotranspiration but 185 

the rainfall distribution is often variable with many intense dry spells and frequent heavy 186 

downpours. The predominant soil type is Alfisols (Maria and Yost, 2006), which are red clay 187 

soils notably deficient in nitrogen and phosphorous (Soil Survey Staff, 2010).  Poverty is a 188 

major concern in Cabo Delgado. Indicators throughout Mozambique generally place Cabo 189 

Delgado among the poorest of provinces in Mozambique (Fox et al., 2005). In addition, there 190 

is a heavy reliance on agriculture though livestock numbers are very low; infrastructure 191 

including roads are of poor quality which significantly impede market access.   192 

2.1.1. Conservation Agriculture in Cabo Delgado  193 

A number of actors have participated in the promotion of CA in Cabo Delgado including a host 194 

of Non-governmental organisations (NGOs) including WWF and Umokazi. State actors (e.g. 195 

Ministry of Agriculture) have also supported its promotion as CA has formed part of the 196 

government’s strategic agriculture reform (Lalani et al., 2017b). The institutional presence of 197 

the Aga Khan Foundation Coastal Rural Support Programme (AKF-CRSP) has also 198 

spearheaded promotion throughout the province (including the district under study) through 199 

the establishment of farmer field schools, within each of the districts.  As of 2014, there were 200 

266 farmer field schools in Cabo Delgado that focus on CA leading to a combined membership 201 

of 5000 members (Lalani et al., 2017b). The end of project funding in 2015, however, halted 202 

the CA project and farmer field school establishment in the district of Metuge (personal 203 

communication, Jose Dambiro, 2018). Locally adapted/context specific manual systems (e.g. 204 
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micro-pits/shallow holes similar to basins promoted elsewhere in SSA but do not require tillage 205 

each year) as well as direct seeding with use of a hand-hoe have been promoted.  206 

 207 

2.2. Farm and field selection 208 

In October 2017, discussions were held with farmers/key informants in two villages in Pemba-209 

Metuge district (Nangua and Tatara) regarding their use/non-use of CA and perceptions of 210 

wealth in their respective villages. The district/villages were chosen due to their ease of access 211 

by road from Pemba (main city). Five groups of farmers were identified based on their self-212 

identification and in consultation with key informants, familiar with CA practices, from the 213 

two villages: (i) early users of CA (1- 3 years); (ii) experienced users of CA (4 years or more); 214 

(iii) those that had stopped using CA; (iv) conventional tillage (i.e. with use of a hand-hoe) 215 

with mulch and; (v) those practicing conventional tillage (i.e. use of hand hoe) with no mulch. 216 

Key informants from both villages drew up a list of farmers/groupings (including farmers of a 217 

similar wealth strata e.g. size of the land). It was agreed that due to time constraints and 218 

resources 50 farmers (5 from each group) i.e. 25 per village would be interviewed/followed 219 

during the season. Farmers from each of the groupings were selected (from the list of farmers) 220 

and asked if they would like to participate in the study. Informed consent was gathered through 221 

explanation of a consent form in the local language. If a farmer did not want to participate in 222 

the study another farmer was contacted until the desired number was reached. 50 farmers from 223 

2 villages (31 Males and 19 Females) were interviewed/followed in total i.e. 25 from each 224 

village (5 per group per village). 225 

For each farmer, their main machamba (plot) cultivated with cowpea was chosen for field 226 

assessment during the 2017/2018 season as this was the crop that all 50 farmers shared in 227 

common and cultivated. All farmers cultivated a mixture of at least three crops e.g. maize, 228 

cassava, pigeonpea, sesame or peanuts/lablab. Some farmers were using micro-pits (shallow 229 

holes) with similar depths-the majority were CA farmers or those that had stopped using CA, 230 

i.e. CA left group (Appendix Table A2 and Table A3). In addition, only one farmer used 231 

compost. None of the farmers applied manure, fertiliser, pesticides or herbicides.  232 

 233 

2.2.1 Field measurements  234 
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To explore the association between farmers’ mental model predictions of outcomes of 235 

CA/conventional practices and on-farm measurements of those impacts, we evaluated cowpea 236 

aboveground biomass and yield, weed cover, and soil quality parameters from the farmer’s 237 

main plot.  238 

Aboveground biomass of cowpea and weed cover were evaluated in April 2018 in four 1 m x1 239 

m quadrats. In each quadrat, cowpea biomass was cut at ground level and weighed as fresh 240 

biomass. It was then left to dry for 5 days on the farmer’s main plot and weighed again to 241 

determine dry biomass. After removal of cowpea biomass, weed cover was determined in each 242 

quadrat using Canopeo (Patrignani and Ochsner, 2015). Total soil cover, green cover and the 243 

amount of coverage of cover plant dead residues was also assessed visually in each quadrat.244 

  245 

Cowpea dry yield was determined manually at harvest time, in June 2018, in four 1 m x1 m 246 

quadrats. Soil samples were taken for each field before harvest, in May 2018. For each field, 247 

five cores were taken and mixed to obtain a unique composite sample, at two different depths, 248 

0-20 cm and 20-40 cm. Soil samples were analysed at the ARC-Institute for Soil, Climate and 249 

Water in Pretoria, South Africa. Composite samples were analysed for texture, pH (water), 250 

organic carbon (loss on ignition), total nitrogen (Kjeldhal method), available phosphorus (Bray 251 

method) and available potassium (ammonium acetate extraction). 252 

Bulk density was determined for each field taking five undisturbed cores at two different 253 

depths. The cylinders had a diameter of 7 cm and height of 5 cm. The cores were taken in the 254 

middle of the two studied layers (i.e. between 7.5 and 12.5 cm for the 0-20 cm layer, and 255 

between 27.5 and 32.5 cm for the 20-40 cm layer). The soil contained in each cylinder was 256 

then dried at 105°C and weighed. Bulk density was obtained by dividing the dry weight by the 257 

volume of the cylinder. The median of the five cores was used to represent the field. Carbon 258 

stock for the topsoil layer was computed using the minimum equivalent soil mass approach 259 

(Lee et al., 2009). Intergroup differences between carbon stock and carbon concentration were 260 

also tested with ANCOVAs, using clay content as a covariate. 261 

 262 

2.3. Measuring agricultural beliefs and belief based predictions  263 

This study uses Fuzzy Cognitive Mapping (FCM) to elicit representations of farmers’ mental 264 

models of the perceived causal relationships between environmental conditions (e.g. soil 265 

moisture and soil fertility), agricultural outcomes (e.g. crop yield, weed coverage, crop 266 
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income), farmers’ decisions (e.g. crop selection) and agricultural practices (e.g. conservation 267 

agriculture/conventional practices). For more details about FCM methodology see Ozesmi and 268 

Ozesmi (2004). FCMs are semi-quantitative forms of concept maps which allow for the mental 269 

model representations of system structure (i.e., description of how system components are 270 

interconnected) and system function (i.e., prediction of how changes in system components 271 

impact system outcomes) (Gray et al., 2015; Giabbanelli et al. 2017; Aminpour et al. 2020). 272 

FCMs represent causal relationships among factors (i.e., system components) using weighted 273 

directed graphs, where each causal link is assigned a normalized numeric weigh (e.g. between 274 

-1 to +1) or qualitative weight (e.g., low, medium, or high) that show the strength of the causal 275 

relationship (Wei et al., 2008). In addition, FCMs use aspects of fuzzy logic, neural networks, 276 

semantic networks, and nonlinear dynamic systems (Glykas, 2010) to predict system changes. 277 

These FCMs can be collected either in the form of having someone draw out their models 278 

graphically (e.g. through in-person or online interviews where individuals, with the help of 279 

facilitators, build their own maps like the process described in Cholewicki et al. 2019) or can 280 

be constructed through responses to surveys (Halbrendt et al., 2014).  281 

2.4. Data collection 282 

2.4.1. Survey and mental models elicitation   283 

In May, 2018 a series of focus group interviews were conducted with farmers from the two 284 

villages in Metuge District, Cabo Delgado to ascertain an understanding of agricultural 285 

practices in these villages. The result of these focus group interviews was a list of 20 286 

standardised concepts which represented key environmental factors (e.g. soil moisture and soil 287 

nutrients), agricultural outcomes (e.g. crop yield, weed coverage, crop income), farmers’ 288 

choices (e.g. crop selection) and agricultural practices relevant to CA or conventional tillage. 289 

With the aid of an experienced field facilitator/enumerator, these list of concepts were then 290 

translated into the local dialect and a hypothetical concept map was created, such that potential 291 

causal relationships between concepts were hypothesised as + (positive influence) – (negative 292 

influence) or undecided (no influence) (Fig. 2). Using a formal household survey, which was 293 

administered in June 2018, we asked farmers to customize the hypothetical concept map based 294 

on their own perceptions of causal relationships. That is, the survey asked farmers to adjust the 295 

strength of relationships using a Likert scale. For example, survey participants were asked if 296 

improved yield influenced soil quality and to what degree using a scale from strongly negative 297 

(-1) to strongly positive (+1). These individual survey responses formed individually 298 
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customised FCMs representing each individual farmer’s mental model.  The individual FCMs 299 

were then translated into an adjacency matrix (a mathematical representation of a directed 300 

graph) to be analysed computationally. In addition to the mental model related questions the 301 

household survey also gathered data on household demographics, farm practices, off-farm 302 

income, farm budget and wellbeing indicators. Furthermore, we conducted post-survey 303 

informal discussions (i.e., unstructured interviews) with all of the farmers surveyed to 304 

triangulate information from the household survey.  305 

 306 

Figure 2. A hypothetical “social” cognitive map (see Ozesmi and Ozesmi 2004) created with 307 

Mental Modeler online tool (www.mentalmodeler.org). The arrows linking boxes show 308 

potential causal relationships between concepts that are hypothesised as + (blue links) – 309 

(orange links) or undecided (question mark). Each Individual farmer customised this map 310 

through survey responses to reflect their own understanding.    311 

2.5 Data analysis 312 

2.5.1. Farm-budget analysis  313 

The study used gross margin (GM) analysis to compare farmers net returns among farmer 314 

practice groups.  Farmers’ net returns (𝑁𝑅) are calculated by yield per hectare multiplied by 315 

price (𝑦 × 𝑝) for all crops in the specific mix less full labour costs (hired and family labour 316 

http://www.mentalmodeler.org/
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costed based on the local price of labour for a typical day/hour) per hectare (𝑙) and opportunity 317 

cost of mulch (𝑚) per hectare (i.e. if applicable).  318 

                                        𝑁𝑅 = (𝑦 × 𝑝) − (𝑙 + 𝑚)                                                      (1)  319 

The cost of mulch is based a crop grain to residue ratio using a 1:1 grain to residue ratio for 320 

maize and sesame and 1:1.35 for legumes (see Lalani et al., 2017; Pannell et al., 2014) i.e. 321 

cowpea and cassava is used to calculate the opportunity cost of mulch as feed.1 These are 322 

presented in the local currency i.e. Mozambique Meticais (MZN).  323 

2.5.1.1 Comparing means between groups/clusters  324 

Independent samples t-tests were used to compare the means of field measurements and socio-325 

economic variables/the main socio-demographic variables; including land-related variables, 326 

soil characteristics, and cropping management practices between farmers. 327 

2.5.2. Mental model clustering to understand variation in “ways of thinking” 328 

We drew on network analysis to measure structural metrics of cognitive maps that provide 329 

important information about a person’s mental model (perceptions) of causal 330 

interdependencies. The network analysis metrics we used included number of connections (i.e., 331 

number of nonzero links between nodes) in each FCM, sum of the absolute value of the link 332 

strengths, centrality of five key concepts of CA (i.e., use of micro pits, mulch, cover crops, 333 

minimum soil disturbance, and tillage), total number of concepts (i.e. nodes in a graph), 334 

network density (i.e., number of nonzero links proportion to the number of all possible links), 335 

number of drivers (i.e. nodes with zero in-degree), receivers (i.e. nodes with zero out-degree), 336 

ordinary concepts (i.e. nodes with nonzero in-degree and out-degree), MacDonald hierarchy 337 

index (MacDonald 1983), and complexity score (ratio of receivers to drivers). For more details 338 

see Ozesmi & Ozesmi (2004; Table 1). We subjected these 14 metrics to a principle component 339 

analysis (PCA) to reduce the dimensions. A hierarchical clustering was then performed using 340 

Ward’s minimum variance method on the Euclidian distances between points on the reduced 341 

dimensions of resultant principle components (see Appendix Table A2 and Fig. A1). 342 

2.5.3. Scenario analysis using FCMs to understand simulated “farmer decision-making”  343 

 
1 We consider cassava under legume for the purpose of valuing the leaf residues. ‘Green’ in the case of cowpea 

refers to cassava foilage that are usually harvested mid- season before seed is harvested. 
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Importantly, FCMs can be used artificially to run “what-if” scenarios (Kosko 1986, Ozesmi 344 

and Ozesmi 2004). That is, FCM computation can show the relative changes in the state of 345 

system’s components given a particular input or combination of inputs (i.e. a forced 346 

manipulation in the state of the system, also known as system “activation”): when one 347 

component is activated (i.e. send signal), it triggers a cascade of changes to other system 348 

components based on how they are structurally connected. This process continues in several 349 

iterations until the initial signal has passed through the entire FCM and all components reach 350 

a steady state. By comparing the system state at the beginning and end of the process, we can 351 

assess the direction and strength of impact that changing a particular component (or 352 

combination of components) has on all other component. Such FCM simulations provide the 353 

toolset for a dynamic analysis of mental models and has been used by many researchers to 354 

represent belief-based predictions (e.g. Cholewicki et al., 2019; Halbrendt et al., 2014; Steir et 355 

al., 2017). For more information about the scenario analysis and equations (see Ozesmi and 356 

Ozesmi, 2004; Aminpour et al., 2020a and Aminpour et al., 2020b). 357 

In this study we use FCM adjacency matrices and Python codes for computational FCM 358 

analyses developed by Aminpour (2018) (https://github.com/payamaminpour/PyFCM) to 359 

implement decision-making scenario analysis. We run two scenarios using matrix calculation 360 

to determine farmers’ perceptions of changes to the model under specified conditions: in the 361 

first scenario (S1), practicing tillage was artificially increased to a value of 1 to show the 362 

predicted impacts on the other model components. In the second scenario (S2), several 363 

conservation agriculture practices were collectively aggregated (including decreased use of 364 

practicing tillage; increased use of minimum soil disturbance; increased use of mulch; 365 

increased use of cover crops; and increased use of micro pits) to simulate the practice of 3 366 

principles of CA. 367 

In FCMs, there are nodes (i.e., representing system concepts) and links between them (i.e., 368 

representing how concepts are related through causal connections). These graphical maps 369 

therefore represent a person’s mental model which is his/her internal understanding about how 370 

things are connected through cause-and-effect relationships subjectively articulated by  these 371 

persons through logical chains of reasoning and therefore help him/her understand/perceive 372 

something (e.g., how CA practices would influence crop production). We therefore, by 373 

collecting these FCMs, were able to measures farmers' perceptions of how the system works 374 

(i.e., how things are interconnected and influence each other), and by conducting FCM dynamic 375 

https://github.com/payamaminpour/PyFCM
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analysis (scenario analysis) we were able to measure how a person would perceive, for 376 

example, the impact of CA practice on yield or soil fertility. 377 

 378 

2.5.4. Measuring degrees of systems thinking using network analysis 379 

Systems thinking is an important skillset that helps us understand and manage complex systems 380 

(Senge and Sterman, 1992). The ability to define components and understand the dynamics of 381 

a system in a systematic way can improve farmers’ engagement with sustainability issues 382 

which are always complex with intertwined social, environmental, and economic aspects 383 

(Aminpour et al., 2020b). Farmers with higher systems thinking might be presumed to better 384 

understand the complex dynamics of a CA system, and thus they are more likely to better 385 

predict a system's behaviour identify intervention points  (Meadows, 2008), and evaluate the 386 

trade-offs between different decisions made within the system. In addition, systems thinking is 387 

thought to enable farmers to develop habits of mind that allows for reasoning about possible 388 

system outcomes and suggest actions with optimum trade-offs between ecosystem and human 389 

well-being (Gray et al., 2019). Lack of systems thinking, conversely, is associated with an 390 

inability to understand certain dimensions of complexity of the system (Senge and Sterman, 391 

1992). 392 

Levy et al. (2018) has shown that degree of ‘systems thinking’ can be measured using network 393 

analysis of mental modes that represent perceived causal structures between system 394 

components. As such, network metrics that measure the degree of complexity, non-linearity, 395 

non-hierarchical causation, cyclic (closed loop) interdependence and feedback representation 396 

may exemplify higher levels of systems thinking. We used four overarching network metrics 397 

to measure systems/linear thinking:  398 

i. Complexity index: The ratio of the number of receiver nodes to the number of driver 399 

nodes can be used to compare cognitive maps in terms of their complexity. Larger 400 

number of receiver variables indicate that “the cognitive map considers many outcomes 401 

and implications that are a result of the system” while a large number of driver variables 402 

indicates multiple causes and more frequent top down influences (Ozesmi and Ozesmi, 403 

2004).  404 

ii. Simple cycles ratio: The ratio of number of simple cycles in a graph to the number of 405 

connections can be used to measure the average number of times a connection appears 406 
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in a simple cycle of any length. It demonstrates the prevalence of feedback loops and 407 

thus higher simple cycles ratio indicates higher systems thinking (Levy et al. 2018). 408 

iii. MacDonald hierarchy index: This hierarchy index, conceptualized by MacDonald 409 

(1983), measures the extent to which limited number of outcomes are derived by 410 

multiple causal origins. It is in fact a “measure of variance of out-degree” and is 411 

negatively correlated with complexity score (Levy et. 2018). 412 

iv. Flow hierarchy index: This hierarchy index is defined as the fraction of edges not 413 

participating in cycles in a directed graph (Luo et al. 2011). Flow and MacDonald 414 

hierarchy indices are both proxy measurements of top–down structure in cognitive 415 

maps conceptualized by Krackhardt (1994), showing the degree to which a cognitive 416 

map involves in leaner-thinking. Thus, lower value of these hierarchy scores indicates 417 

higher systems thinking. 418 

 419 

3. Results  420 

We split the results into 4 sections. First, we explore whether hierarchical clustering of farmers’ 421 

mental models using their network metrics emerges into distinct clusters of cognitive maps, 422 

and then compare the composition of each cluster to examine the degree to which clusters 423 

match self-identified groupings (mentioned in section 2.2). Second, we compare farmers’ 424 

beliefs and perceptions across clusters of mental models represented by their predictions of 425 

scenario outcomes under S1 and S2. Third, we examine whether on-farm measurements 426 

demonstrate important differences across clusters of mental models. Finally, we use complex 427 

networks and systems theory to compare degrees of systems thinking (i.e., prevalence of 428 

network metrics that measure the degree of complexity, non-linearity, cyclic interdependence, 429 

and feedback representation) across clusters of mental models.  430 

3.1 Clustering 431 

Fig. 3 shows the results of the mental model clustering. As shown by the dendrograms, 50 432 

farmers’ mental models were significantly classified into two distinct clusters through 433 

hierarchical clustering based on two principle components explaining about 75% of variance 434 

in FCM structural metrics (see Appendix Fig. A1).2  Analysis of the composition of clusters 435 

 
2 We first tried to understand if these mental models, regardless of who created them, demonstrate any emergent 

clusters, only based on their structural characteristics (i.e. only based on how someone articulates a network of 

causal relationships between concepts to develop an internal perception of the problem/system). Two clusters 
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based on farmers’ self-identification revealed that cluster 1 was mainly (about 60%) composed 436 

of Conv farmers (those who practice conventional agriculture3 i.e. practices more akin to 437 

conventional tillage ). On the contrary, the majority of farmers (about 75%) who constituted 438 

cluster 2 were Cons farmers (those who practice/have practiced CA).  These findings suggested 439 

that there may be a meaningful association between practicing CA and the structure of farmers’ 440 

mental models such that farmers who received CA trainings or based on their experiences 441 

(independent of the fact that they may no longer believe they are  practicing CA) developed in 442 

their minds distinct mental models that are structurally distinguishable from those who  did not 443 

claim to practice CA ‘officially’ (i.e. conventional tillage users).     444 

 445 

Figure 3. Farmers’ mental model clustering. The dendrograms in the left side show how 50 446 

farmers’ mental models are classified into distinct clusters through hierarchical clustering using 447 

Ward’s minimum variance method on the Euclidian distances between mental models. The pie 448 

 
emerged, however, which suggested that clusters differ mainly due to the practice of CA or conventional 

agriculture (self-identification). 
3 Conventional agriculture and conventional tillage are used interchangeably  
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charts in the right side show the composition of clusters based on farmers’ self-identification. 449 

Cons stands for conservation and Conv stands for conventional agriculture.    450 

3.2. Scenarios analysis 451 

Fig. 4 shows the results of scenario analysis under two artificial scenarios: (S1) decreased use 452 

of tillage and (S2) increased use of all 3 principles of CA. The boxplots in Fig. 4A show the 453 

distribution of predicted changes by clusters.4 These results indicated that farmers in cluster 2, 454 

as opposed to cluster 1, had stronger positive perceptions of CA (e.g., they predicted stronger 455 

improvement of yield, soil moisture, soil nutrients, and reduced weed coverage). Yet, farmers 456 

of cluster 2 had stronger negative perceptions of some of the socio-economic outcomes of CA 457 

than farmers in cluster 1 (e.g. related to labour and household income). 458 

We have also created the average map (i.e. group FCM) of each self-identified group to 459 

compare the overall predictions across those groups (Fig. 4B) which could provide one 460 

explanation for this. For example, negative perceptions of socio-economic outcomes are 461 

considered a contributor to CA ‘disadoption’. Interestingly, however, all farmers in the CA left 462 

group (i.e. ‘disadopters’) cited a lack of adequate information/ training and support in close 463 

proximity as the main reason behind ‘stopping’ CA though a few farmers in informal 464 

discussions also mentioned the lack of money to hire additional labour as another reason. 465 

Similarly, farmers from the conventional tillage groups also cited the lack of access to 466 

information (assistance and training) as the primary reason for not using CA. Importantly, the 467 

main differences between conventional tillage and CA users regarding their overall group 468 

perceptions were reflected in their predictions of CA principles impacts on soil moisture, soil 469 

nutrient, and yield (e.g. on average, conventional tillage users predicted a decrease in yield and 470 

soil nutrients, while CA users and CA ‘disadopters’ predicted an increase in yield and soil 471 

nutrients as result of increased practice of CA principles).    472 

 473 

 
4 The figures only depict key changes for the relevant scenario. Where effects are negligible/small these are not 

shown.   
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 474 

Figure 4. Predition of changes using scenario analysis. Box plots in A show the distribution 475 

of predicted changes by different clusters of mental models (cluster 1 and 2). Bar charts in B 476 

show the predicted changes by the average map of each group (i.e., an aggregated mental 477 

model where the weight of causal links are average values) based on self-identification 478 

grouping (convetional, conventinal mulch, CA experienced, CA early, and CA left). 479 

 480 

 481 

3.3 Field (on-farm) measurements  482 

Field measurements revealed no significant differences between clusters 1 and 2 for the main 483 

socio-demographic, land-related variables, soil characteristics, and cropping management 484 

practices (independent samples t-tests were used to compare the means). For example, similar 485 

means of age, education levels, soil type, and numbers of leguminous trees planted were 486 

observed (see Appnedix Table A2 for the full results).The statistically non-significant 487 

differences of these characteristics (i.e. covariates) across clusters increased the reliablity of 488 
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clustering results—that is, clusters of farmers emerged because of their distinct  mental model 489 

structures mainly driven by farmers’ agricultural practices . 490 

In addition, we measured on-farm agricultural outcomes and compared them across two 491 

clusters (Fig. 5A). Although on-farm measurements for cluster 2 revealed higher yield, higher 492 

soil cover, and lower weed cover than cluster 1, none of these differences were statisticaly 493 

significant. Cowpea yield showed huge variability across individuals, with an average of 1.9 494 

t/ha over all fields, ranging from 1.0 t/ha to 2.5 t/ha. Mean weed cover was 57%, ranging from 495 

8% to 49%. Similarly, no significant differences between clusters were observed for socio-496 

economic outcomes; however, these observations suggested that farmers of cluster 2 497 

experienced slightly lower net-benefits and higher labour usage, but better food consumption 498 

scores (Fig. 5A). In general, these trends are in high aligment with farmers perceptions (e.g. 499 

See Fig 4, farmers in cluster two percieved the practice of CA would improve household food 500 

security but percieved that it requires more labour).    501 

Similarly, no statistically significant differences between clusters were observed for soil 502 

properties (e.g. bulk density, soil moisture at sampling, total nitrogen, available phosphorus 503 

and potassium) at 0-20 cm. Yet, mean values for these properties for cluster 2 demonstrated 504 

slightly higher soil moisture, total nitrogen, and potassium than cluster 1, while these 505 

observations revealed slightly lower phosphorus and bulk density from cluster 2 compared to 506 

cluster 1. Importantly, however, carbon stock in the first layer (48 t/ha on average for 1790 t/ha 507 

soil mass for the whole sample) was significantly different across clusters where the mean was 508 

higher in cluster 2 compared to cluster 1(Fig. 5B)  509 



20 
 

 510 

Figure 5. On-farm measurements/other indicators. Net benefit per_ha = net returns/ha in 511 

Mozambique Meticais (MZN), Total Labour (hrs/ha)= Total person hours per hectare, Food 512 

Consumption Score (FCS) represents households' dietary diversity and nutrient intake based 513 

on the frequency food items from the different food groups are consumed by the household 514 

over the past 7-days, Moisture_0_20 (%)= Soil moisture (%) (0-20 cm), K_0-20 = available 515 

potassium (0-20 cm), P_0-20 = available phosphorus (0-20 cm), TN_0-20 = total nitrogen (0-516 

20 cm), Mean BD_0-20 = Bulk density (0-20 cm), Stock C_0-20 = carbon stock (minimum 517 

equivalent soil mass basis, 0-20 cm). Tests of significance of mean differences between the 518 

two clusters were tested using independent samples t-tests. The number of asterisks stands for 519 

the level of significance for p-value < 0.01, 0.05, and 0.001 respectively. 520 



21 
 

3.4. Network analysis of systems vs linear thinking 521 

Fig. 6 shows the differences between clusters of network metrics for systems thinking and 522 

linear thinking. Comparing the distribution of these network metrics across clusters revealed 523 

that farmers’ mental models in cluster 2 demonstrated significantly higher degrees of systems 524 

thinking measured by complexity score and simple cycles ratio than farmers’ mental models in 525 

cluster 1 (Fig. 6A). On the contrary, mental models in cluster 2 had significantly lower degrees 526 

of linear thinking than cluster 1, measured by MacDonald and flow hierarchy indices (Fig. 6B).  527 

These results suggest that a higher level of experiential learning and practice of CA leads to 528 

higher degrees of systems thinking, even among the CA disadopters.  529 

 530 

Figure 6. (A) Network metrics of systems thinking including the Complexity index and 531 

Simple cycles ratio.   (B) Network metrics of linear thinking including McDonald hierarchy 532 

and Flow hierarchy indices (see section 2.4.4). Tests of significance of mean differences 533 

between two clusters were tested using independent samples t-tests. The number of asterisks 534 

stands for the level of significance for p-value < 0.01, 0.05, and 0.001 respectively.  535 
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4. Discussion  536 

4.1 Farmers’ perceptions  537 

The results have demonstrated that the 50 farmers’ mental models were significantly polarised 538 

into two distinct clusters which indicate a meaningful association between farmers’ self-539 

identification and the structure of farmers’ mental models. For example, there are distinctly 540 

different models in cluster 2, consisting of those with more experience of using CA, compared 541 

to cluster 1: cluster 2, as opposed to cluster 1 (Fig. 1), had stronger positive perceptions of CA 542 

(e.g., they perceived higher yield, improved soil moisture/soil nutrients, and reduced weed 543 

coverage as a result of CA) (See Fig. 4). These results support previous findings about the 544 

relationship between farmers’ CA perceptions, practice, and experiences. For example, 545 

Hoffman et al. (2014) identified that winegrape grower mental models of sustainability were 546 

strongly related to the adoption of sustainable agriculture practices and farmers’ participation 547 

in extension programmes. Lalani et al. (2016) also found that farmers with a high intention to 548 

use CA had a higher perceived behavioural control and were motivated by key cognitive drivers 549 

such as higher yield, lower weeds, and higher soil quality. In addition, those that participated 550 

in a Farmer Field School (FFS) had stronger positive perceptions and found CA easier to use. 551 

Wuepper et al. (2019) also showed that farmers in Ghana with a significantly higher perceived 552 

self-efficacy were more likely to practice mulching and perceived the costs associated with the 553 

practice to be lower. 554 

Interestingly, however, farmers in cluster 2 had stronger negative perceptions of some of the 555 

socio-economic outcomes of CA than farmers in cluster 1 (e.g. they predicted stronger 556 

increases in labour) (see Fig. 4). Increased labour requirements have been identified as a major 557 

contributor to CA ‘disadoption’ (e.g. Chinseu et al., 2018). However, all farmers in the CA left 558 

group (i.e. ‘disadopters’) mostly cited a lack of adequate information/ training and support as 559 

the main reason for ‘disadoption whilst a lack of labour was also mentioned as a contributing 560 

factor. Whilst causes of non-usage of CA are multi-dimensional (e.g. economic, social, 561 

institutional) it has been argued that there are likely to be proximate causes such as 562 

disenchantment with advisory services and technical support (Chinseu et al., 2019). Other 563 

authors have also suggested that where the learning process is hampered or benefits may not 564 

materialise/be apparent ‘non-adoption’ or ‘disadoption’ can occur. (Kassam 2014; Weersink 565 

and Fulton, (2020)). Furthermore, Lalani et al. (2016) found for farmers in the same district 566 

under study that the perceived increase in labour and a lack of knowledge/skills were key 567 
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cognitive barriers for those with a lower intention to practice CA whilst reduction in labour 568 

was considered a cognitive driver among those with high intention to CA. This being said, it 569 

should be noted that perceptions can be biased or partial. For example, Waldman et al. (2019) 570 

showed that cognitive bias can occur as farmers’ perceptions of earlier rainfall onset and the 571 

physically derived onset did not match. Though, on the whole, farmers in this context are 572 

positive about CA practices which also point to the need for appropriate ‘framing of costs and 573 

benefits’ (Dessart et al., 2019).  574 

4.2 On-farm measurements and socio-economic outcomes  575 

The measurements, for the most part, in this study align with the perceptions of farmers (Fig. 576 

5). For example, farmers in cluster 2 (mainly consists of CA users) had stronger positive 577 

perceptions of CA than cluster 1 (mainly consists of conventional users) and most of the on-578 

farm measurements/other indicators highlighted this (even if not significant) such as higher 579 

yield, lower weeds, improved soil quality etc. (See Fig. 4 and 5).  Thus, if people in one cluster 580 

perceived a stronger positive influence on yield as a result of CA practice, we also measured 581 

higher actual yield from their plots (Fig 4 and 5). Moreover, conventional users also had 582 

stronger positive perceptions of the practice of tillage (data not shown).   583 

Though, caution should be raised regarding equating correlation with causation. For example, 584 

there are likely to be several omitted variable bias such as the quality of the field and/or self-585 

selection bias. Other techniques have been used to account for this such as randomised control 586 

trials (RCTs) and spatial regression continuity design. For example, Wuepper et al. (2020) 587 

employ a spatial regression discontinuity design to examine erosion rates with the emphasis on 588 

comparing observations that are close to each other (similar) and controlling for all ‘spatially 589 

continuously distributed confounders’.  590 

Notwithstanding this, field measurements revealed no significant differences between the two 591 

clusters of farmers (clusters 1 and 2) for the main socio-demographics, land-related variables, 592 

soil characteristics, and cropping management practices (see Table A2). For example, similar 593 

means of age, education levels, soil type, and numbers of leguminous trees planted were 594 

observed between groups (covariates). Thus, taken together, there are some meaningful 595 

deductions that can be made for some of the outcomes. As mentioned, farmers in cluster 2 had 596 

stronger positive perceptions of CA (e.g., higher yield, improved soil moisture/soil nutrients, 597 

and reduced weed coverage). This was also reflected in on-farm measurements e.g. higher 598 

cowpea yield, lower weed coverage, higher soil moisture/soil nutrients (Fig 5and 5b). Cluster 599 
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2 also had overall higher gross revenues (cluster 1 total revenue = 30796.50 MZN and Cluster 600 

2 total revenue = 35996.30 MZN) though the inclusion of the opportunity cost of mulch and 601 

labour resulted in lower returns compared to cluster 1 (mainly conventional farmers). Previous 602 

research in the same district (based a larger sample size/randomly selected) found benefits to 603 

labour/net returns for CA farmers (with the opportunity cost of mulch and labour accounted 604 

for) relative to conventional farmers but these were dependent on crop-mix (Lalani et al., 2017). 605 

With respect to soil properties it is also important to note that mean values for cluster 2 606 

demonstrated slightly higher soil moisture, total nitrogen, potassium and lower bulk density 607 

than cluster 1, though these were not significantly different (Fig. 5B). Similarly, higher soil 608 

cover, yield and significantly higher carbon stock (in the topsoil) for cluster 2 compared to 609 

cluster 1 were observed. This supports the notion that under CA systems where the amounts of 610 

biomass production are higher (retained as surface mulch), and yield is not negatively 611 

impacted, this can also lead to higher amounts of SOC (particularly in the topsoil) compared 612 

to conventional plots (Thierfelder  et al., 2012; Page et al., 2020; Kassam et al., 2014). In 613 

addition, the association of higher soil cover and lower bulk density among cluster 2 is 614 

supported by previous research which also found under a no-till system that increased residue 615 

retention reduced bulk density (e.g. Shaver et al., 2002; Thierfelder et al., 2012). Furthermore, 616 

these results are in line with direct seeded CA systems (similar to those used in this region) that 617 

have shown to provide yield benefits over time due in large part to better planting arrangements, 618 

increased soil quality over time, improved soil moisture conditions for crop 619 

growth/development and less soil disturbance (Thierfelder and Wall, 2010 and 2012). The 620 

results also point to the benefits of the simultaneous application of all three principles of CA. 621 

For example, Pittelkow et al. (2015) highlight yield benefits are realised when all three 622 

principles of CA are combined. Whilst there has been some debate regarding the role CA has 623 

in carbon sequestration, mainly because of overestimation caused by inadequate sampling and 624 

a lack of understanding of what practices/processes are involved in climate change mitigation;  625 

SOC increasesdue to crop diversification will more than likely contribute to ‘genuine 626 

mitigation’ (Powlson et al., 2016). Thierfelder et al. (2017) has also argued that the climate 627 

change mitigation potential of CA in Southern Africa will largely depend on factors such as 628 

the duration of practice, the amount of crop residue retention and the specific cropping system.  629 

Our results also point to continued use of CA as a potential contributor to climate change 630 

mitigation and adaptation. The role of extreme weather events should also be considered as a 631 

potential driver of CA use. Ding et al. (2009) has shown, in the case of no-till, how farmers 632 
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increased their use of the practice following extremely dry conditions, over several seasons, 633 

though reduced their use in extremely wet years. Knowler and Bradshaw (2007) also showed 634 

in a comprehensive review of CA studies how ‘awareness of environmental threats’ positively 635 

influenced CA use. The importance of locally adapted systems that take into consideration 636 

various agro-ecologies has also been noted. For example, Thierfelder et al. (2016) found in 637 

Mozambique and Malawi that direct seeded CA treatments led to higher yields in areas of 638 

higher rainfall and basins performed well only in dry environments compared to conventional 639 

practice. Ward et al. (2018) also showed that practicing mulching and intercropping/rotation 640 

had a ‘multiplier effect’ on usage of zero tillage among conventional tillage users in Malawi. 641 

This may explain the positive perception among conventional tillage users (with mulch) 642 

regarding reduced tillage in this study (Fig. 4). Engler et al. (2019) has pointed to the need to 643 

consider the ‘plasticity of adoption’ which is incremental by nature as continuous change and 644 

adaptation relevant to the particular context occurs. The authors highlight how a farmer’s 645 

attitude regarding zero-tillage, for instance, can become more positive over time as more 646 

information is garnered and by learning over time/through relevant experiences. 647 

4.3 Linear thinking and systems thinking  648 

The network metrics for systems thinking and linear thinking showed higher degrees of 649 

complex reasoning patterns such as appreciation of feedback loops and understanding the non-650 

linear interrelationships between multiple aspects of the system among farmers in cluster 2,  651 

while farmers in cluster 1 showed evidence of more linear, hierarchical thinking (Fig 6 a and 652 

6b).  This suggests that higher forms of experiential learning and practice of CA leads to higher 653 

degrees of systems thinking, even among the CA ‘disadopters’. This is also supported by 654 

previous research which suggests that CA is complex to practice and requires continuous 655 

adaptation based on experiential learning (e.g. Derpsch, 2008).Gray (2018) has noted the need 656 

to understand what types of experiences, interventions or training may lead to more complex 657 

reasoning patterns and thus higher degrees of systems thinking, which in turn leads to more 658 

accurate perceptions of the complex human-environment interactions and may improve the 659 

adaptation process and leverage sustainability.  660 

We argue, therefore, that ‘systems thinking’ and the ability to perceive complex causal 661 

interrelationships is an important factor contributing to CA usage. However, informational 662 

challenges/perceived self-efficacy and barriers to active experiential learning need to be 663 

addressed through a host of methods (e.g. Wellard et al., 2014;Leeuwis 2004;Hoff and Walsh, 664 
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2018) so farmers do not feel isolated/excluded and thereby able to contribute to enhancing 665 

innovation processes. Notwithstanding this, Levy et al. (2018) also suggest that development 666 

of systems thinking can provide other benefits including stimulating social learning as it 667 

encourages receptiveness to new ideas and to a variety of causal pathways which can also be 668 

used to encourage collective problem-solving. Singer et al. (2017) showed that through 669 

participatory engagement and modelling with stakeholders how more complex cognitive maps 670 

developed regarding water quality issues and how communities were then able to better 671 

structure ideas regarding recovery and communicate with those responsible. More broadly, 672 

enhanced systems thinking ability could further strengthen community engagement (e.g. 673 

addressing sustainability problems at different scales) with respect to socio-ecological 674 

decision-making/other ‘wicked problems’ in similar settings (e.g. Gray et al., 2019). Policy 675 

options to encourage this and improve knowledge exchange, in general, could form part of 676 

locally constructed innovation systems that support the development of mutually reinforcing 677 

stakeholders (e.g. Lalani et al., 2017b) that account for farmers’ knowledge and integrate 678 

experiential and social learning which thereby forge new relationships, trust and collective 679 

action (e.g. Tafesse et al., 2020; Kerenecker et al. 2021). 680 

4.4 Summary and limitations   681 

Our purpose here is to merely highlight the potential link between the degree of systems 682 

thinking, use of various CA practices and the possible association with field 683 

measurements/socio-economic outcomes.  We presuppose that the significantly higher level of 684 

systems thinking found for farmers in cluster 2 is associated with a higher level of experiential 685 

learning as the clusters differ with respect to farmers’ ‘self-identified’ experience with CA and 686 

some of the outcomes point to benefits in this regard (for those in cluster 2 in particular).5 687 

However, most of the differences are non-significant and longitudinal data/ econometric 688 

approaches would provide a more robust understanding of the relationship between cluster 689 

groups and outcomes.   690 

 
5 To further test the robustness of our findings and validate the findings, we ran a power analysis. We have two 

clusters (N1=22, and N2 =28) and the sum of sample size is 50. For this sample size (50 subjects) and for the 

significance level of (p<=0.05), the power analysis for an independent-sample t-test would tell us that the 

statistical power will be larger than 0.8 for all of the features for which we reported statistically significantly 

different means across two clusters (in particular, the Systems Thinking and Linear Thinking metrics in Fig 

6). The desired power level is typically 80%, which means that there is a >80% probability we will not commit a 

type II error. Generally, a power of .80 (80 percent) or higher is considered acceptable for a study/ parametric 

test. 
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 691 

 692 

5. Conclusions  693 

Our study advances the use of a mental modelling approach to leveraging sustainable 694 

agriculture and inform policies and management strategies regarding CA practices. Our results 695 

demonstrated that there is a link between farmers’ perception of CA/non-CA, and the structure 696 

of their mental models. In addition, we showed that the elicitation of mental models of local 697 

farmers could be implemented by a certain cognitive mapping technique which was simply 698 

embedded in a survey. Our study, therefore, provides local communities, researchers, and 699 

policy makers with new forms of information about how CA users/non-users perceive the 700 

system differently, how these distinct perceptions are internally represented by farmers mental 701 

models, and how these internal representations can be elicited to inform decision-making, 702 

facilitate communication, and approach ‘disadoption’ or ‘non-usage’. For example, in reality, 703 

the on-farm application of CA practices is often ‘messy’ and ‘fluid’ as farmers experiment and 704 

make adaptations (Hermans, 2020) We also examined whether these distinct mental models 705 

(i.e., clusters of perceptions) are associated with actual differences in on-farm measurements. 706 

We provided empirical evidence for the potential link between farmers’ perceptions and their 707 

real-world on-farm measurements such as yield, weed cover, soil nutrients and soil moisture, 708 

etc.  Finally, we expand upon previous research by investigating the link between the degree 709 

of ‘systems thinking’ and the structure of farmers’ mental models. By combining a semi-710 

quantitative cognitive mapping technique and complex network analysis we were able to 711 

measure the complexity of causal relationships in a mental model, thereby providing a practical 712 

tool for measuring the degree of systems thinking. We showed that systems thinking—as 713 

measured by quantitative network metrics such as complexity index, frequency of feedback 714 

loops, and the lower degrees of linear hierarchical causalities—is a critical component of 715 

‘successful’ CA usage, and that non-usage of CA is associated with a lack of systems thinking 716 

and  a stronger negative perception of the potential benefits of CA. Despite our assumption 717 

about the impact of active experiential learning, support and access to information/assistance 718 

and educational opportunities on the development of systems thinking, future research is 719 

needed to investigate what important factors and innovative strategies may foster farmers’ 720 

systems thinking ability (e,g. Gray et al. 2019; Levey et al. 2018)  and to what extent these 721 

abilities correspond to ‘successful’ CA ‘adoption’ and adaptation. More importantly our 722 



28 
 

findings demonstrate that simple binary measurements/reductionist views on CA do not 723 

capture the nuanced nature of CA usage and underscores the importance of considering a 724 

detailed combination of biophysical, socio-economic and mental modelling related variables 725 

in order to better understand farmers’ decision making, learning processes and use of practices.  726 

  727 

 728 
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 1085 

Appendix A  1086 

 1087 

 1088 

Figure A1.  14 structural metrics of fuzzy cognitive maps (FCM) were subjected to a 1089 

principle component analysis (PCA) to reduce the dimensions. We used PCA with orthogonal 1090 

rotation (varimax). The Kaiser–Meyer–Olkin measure verified the sampling adequacy for the 1091 

analysis, KMO = 0.8 which is well above the acceptable limit of 0.5. An initial analysis was 1092 

run to obtain eigenvalues for each component in the data. Two components had eigenvalues 1093 

over Kaiser’s criterion of 1 and in combination explained more than 75% of the variance in 1094 

FCM structural metrics. The table in the right side of this figure shows the factor loadings 1095 

after rotation. Different colours in the scatter plot shows different clusters of mental models 1096 

emerged as a result of a hierarchical clustering using Ward’s minimum variance method on 1097 

the Euclidian distances between mental models.  1098 

 1099 

 1100 

 1101 

Table A1 The structural metrics of fuzzy cognitive maps, their definitions, and their  1102 



47 
 

Mean and Standard Deviation in the sample of 50 farmers. 1103 

 1104 

 1105 

 1106 

 1107 

 1108 

FCM Metric Details Mean (Std) 

N_nodes Number of concepts used 28.72 (1.429) 

N_edges Number of connections used 95.74 (4.11) 

N_Drivers Number of Driver variables 6.28 (0.73) 

N_Receivers Number of Receiver variables 6.96 (1.484) 

N_Ordinary Number of Ordinary variables 15.48 (1.297) 

Sum_strength Sum of connection strength 48.13 (2.691) 

Density 

Number of connections 

divided by total possible 

connections 

0.1 (0.004) 

Complexity 
Number Receivers divided by 

number of Drivers 
1.11 (0.216) 

FCM_hierarchy 
The McDonald Hierarchy 

index 
0.15 (0.031) 

Cent_CoverCrops 

Centrality of concept 

“Increased use of Cover 

Crops” 

0.56 (0.018) 

Cent_MicroPit 
Centrality of concept 

“Increased use of Micro Pit” 
0.48 (0.004) 

Cent_MinSoilDist 
Centrality of concept 

“Minimum Soil Disturbance” 
0.53 (0.05) 

Cent_Mulch 
Centrality of concept 

“Increased used of Mulch” 
0.5 (0.00) 

Cent_Tillage 
Centrality of concept 

“Practicing Tillage” 
0.5 (0.00) 
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 1109 

 1110 

Table A2 The results of independent samples t-tests to evaluate the differences between the 1111 

cluster of farmers for the main socio-demographics, land-related variables, soil 1112 

characteristics, and cropping management practices.  1113 

 1114 
 1115 

 

 

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. 

(2-

tailed

) 

Mean 

Differen

ce 

Std. 

Error 

Differen

ce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Sex_HH_head Equal variances 

assumed 

2.553 .117 .952 48 .346 .133 .140 -.148 .414 

Equal variances 

not assumed 
  

.944 43.668 .350 .133 .141 -.151 .417 

AgeofHHhead Equal variances 

assumed 

3.565 .065 -.506 45 .615 -1.563 3.087 -7.780 4.654 

Equal variances 

not assumed 
  

-.481 32.507 .633 -1.563 3.246 -8.171 5.045 

Maritulstatus Equal variances 

assumed 

.000 .998 .105 45 .917 .033 .318 -.607 .673 

Equal variances 

not assumed 
  

.104 39.057 .918 .033 .322 -.618 .684 

highestlevelofed

ucation 

Equal variances 

assumed 

1.900 .175 -

1.545 

46 .129 -.936 .606 -2.155 .283 

Equal variances 

not assumed 
  

-

1.681 

44.452 .100 -.936 .557 -2.057 .186 

total number of 

plots 

(machamba) 

Equal variances 

assumed 

.058 .811 .325 48 .746 .058 .180 -.303 .420 

Equal variances 

not assumed 
  

.325 45.203 .746 .058 .180 -.303 .420 



49 
 

size of total land 

(hectares) 

Equal variances 

assumed 

.013 .910 -

1.367 

48 .178 -.2256 .1651 -.5576 .1063 

Equal variances 

not assumed 
  

-

1.388 

47.285 .172 -.2256 .1626 -.5528 .1015 

plot1_distancefr

omhome 

Equal variances 

assumed 

.089 .767 -.445 45 .658 -.105 .235 -.578 .369 

Equal variances 

not assumed 
  

-.447 41.597 .657 -.105 .234 -.577 .368 

leguminous_tre

es 

Equal variances 

assumed 

1.187 .282 -

1.189 

46 .241 -.357 .300 -.962 .248 

Equal variances 

not assumed 
  

-

1.275 

45.634 .209 -.357 .280 -.921 .207 

soil_erosion_pe

rception 

Equal variances 

assumed 

.487 .490 -.184 32 .855 -.035 .191 -.424 .353 

Equal variances 

not assumed 
  

-.189 31.945 .852 -.035 .186 -.414 .344 

plot1_compostq

uantity 

Equal variances 

assumed 

3.062 .087 -.843 46 .404 -1.786 2.119 -6.052 2.480 

Equal variances 

not assumed 
  

-

1.000 

27.000 .326 -1.786 1.786 -5.450 1.878 

plant_in_lines Equal variances 

assumed 

.250 .620 .250 44 .804 .016 .062 -.110 .141 

Equal variances 

not assumed 
  

.242 34.401 .810 .016 .064 -.115 .146 

soil_type Equal variances 

assumed 

6.294 .016 -

1.188 

46 .241 -.100 .084 -.269 .069 

Equal variances 

not assumed 
  

-

1.000 

19.000 .330 -.100 .100 -.309 .109 

slope_type Equal variances 

assumed 

.060 .808 .083 46 .934 .014 .172 -.332 .361 

Equal variances 

not assumed 
  

.082 39.839 .935 .014 .174 -.337 .365 

Micro_pits Equal variances 

assumed 

2.716 .106 .788 44 .435 .115 .146 -.179 .410 

Equal variances 

not assumed 
  

.801 38.422 .428 .115 .144 -.176 .406 
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B1.1_frequency

_meetings 

Equal variances 

assumed 

3.387 .074 -.876 37 .386 -.045 .052 -.151 .060 

Equal variances 

not assumed 
  

-

1.000 

21.000 .329 -.045 .045 -.140 .049 

B3_livestock Equal variances 

assumed 

8.944 .004 1.766 46 .084 .250 .142 -.035 .535 

Equal variances 

not assumed 
  

1.808 44.076 .077 .250 .138 -.029 .529 

 1116 
Table A3 Socio-demographic variables experience with CA and cropping/management 1117 

practices of farmers by type.  1118 

Type of Farmer Mean 

age of 

farmer 

Mean 

years of 

experience 

using CA 

Mean level 

of 

education 

(grades of 

education 

completed) 

Mean 

total land 

size 

(hectares) 

Number of 

leguminous 

trees  

Using 

micro-pit 

in 

2017/2018 

season (N) 

Mean 

depth 

of 

micro-

pit 

(cm)* 

CA early 41 

(2.5) 

1 5  

(1.1) 

1.6  

(0.23) 

3 5 16  

(1) 

CA experienced 53 

(2.7) 

4.4  

(0.6) 

3  

(0.74) 

2.1  

(0.13) 

5 8 18.75 

(1.8) 

CA left  53 

(3.2) 

 4  

(0.41) 

1.3  

(0.15) 

5 2 15 

Conventional mulch  43 

(2.9) 

 4  

(0.59) 

1.2  

(0.13) 

3 1 15 

Conventional 47.5  3.1  

(0.5) 

1.2  

(0.14) 

5   

Std error in parenthesis * only some farmers were able to estimate depth. Blank i.e. no 1119 

farmers answered or std error zero.  Age and education rounded to the nearest whole number 1120 

for ease of interpretation.  1121 
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