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College of Engineering

Mathematics and Physical Sciences
University of Exeter

Exeter, UK
m.j.gonzalez-romo@exeter.ac.uk

M’hammed Sahnoun
LINEACT/CESI

Research Department
Saint-Etienne-du-Rouvray, France

msahnoun@cesi.fr

Belgacem Bettayeb
LINEACT/CESI

Research Department
Lille, France

bbettayeb@cesi.fr

Naihui He
College of Engineering

Mathematics and Physical Sciences
University of Exeter

Exeter, UK
n.he@exeter.ac.uk

James Gao
Faculty of Engineering and Science

University of Greenwich
Chatham, UK

J.Gao@greenwich.ac.uk

Abstract—The execution of material handling tasks using
autonomous guided vehicles (AGVs) has proven a real success
during the last decade. Nevertheless, the installation of AGVs
is costly as it needs to modify the workshop’s configuration
by defining dedicated movement zones. Recently, more flexible
and collaborative mobile robots known as autonomous intelligent
robots (AIV) can be used in manufacturing systems. This new
generation of intelligent mobile robots does not need specific
zones and can interact with unexpected or mobile obstacles
such as human operators. This paper focuses on AIV fleet
size definition in a variable and unexpected environment with
humans while keeping AIV assigned transportation tasks on
time. A simulation that model the complexity of the AIV travel
time estimation under the mentioned circumstances and the
improvement brought by IoT, Big Data and sensors by using
them as the real-time data source is developed.

Index Terms—Industry 4.0, Industry 5.0, Fleet management
optimization, Simulation, Human operator behavior, Scheduling

I. INTRODUCTION

The term Industry 5.0 refers to people working alongside
robots and smart machines. It’s about robots helping humans
work better and faster by leveraging advanced technologies
like the Internet of Things (IoT) and big data. It adds a
personal human touch to the Industry 4.0 pillars of automation
and efficiency. Industry 5.0 aims at centering the human into
highly digitized industrial organizations. It creates a human-
centered environment where painful and non-added value tasks
are automated. Humans are then working alongside robots and
smart machines [1].

—
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A material handling system is an essential component in
any production system, especially in flexible manufacturing
systems FMS. Designing and managing automation compo-
nents in material handling systems play an important role to
improve the whole manufacturing system. Relevant issues in
the designing and management of facilities using automated
guided vehicles AGVs as material handle units are classified
in the areas of guide-path design, estimation of the required
number of vehicles, vehicle scheduling, idle-vehicle position-
ing, vehicle-battery management and vehicle with conflict-free
routing [2].

When humans in a production environment share transporta-
tion paths with mobile robots, the material handling system are
affected. This problem is more to happen in FMS or legacy
manufacturing systems that might be considering upgrading
into a flexible approximation to the current and future market
demand. Therefore, the idea is to analyze human density traffic
on shared paths to find the optimal number of AGVs work-
ing under these circumstances. Another reason to include a
relationship between the number of AGVs and human density
traffic is that AGVs are costly factory assets; they need to be
used in both functional and safety best operative capacities,
especially if working alongside humans. Also, considering hu-
man density traffic in material handling systems gives a more
realistic approximation to develop, implement, upgrade, and
model productions systems in the current and next-generation
industry. Finally, this problem is not yet documented as more
of the traffic conflict studied issues only see the traffic due to
factories’ layouts path configuration and other mobile robots
as a traffic source.

Current advances in technologies provide simulation plat-
forms that model or implement industrial schemes as a first aid
to analyse industrial problems quickly. Thus, to calculate the



optimal number of AGVs in a handling system under human
density traffic condition, an initial analysis using the Netlogo
simulation software platform with the Netlogo’s System Dy-
namics Library is completed. The Netlogo is a programmable
modelling environment well suited for modelling complex
system and operations; it based on agent-based modelling
(ABM) philosophy providing tools to design digital factories
with detailed models to implement production and storage
facilities and manage material workflows.

In this work, a relationship between the estimated number
of optimal AGVs and conflict-free routing problem incorpo-
rating human density traffic to fulfil the production plan is
investigated.

II. LITERATURE REVIEW

Estimating the optimal number of AGVs is a complex task
related to two main problems; the integrated scheduling of
machines and AGVs problem and the conflict-free vehicle rout-
ing problem (CFRP) [3], [4]. The first problem, the integrated
scheduling of machines and material transport; performance
with the number of AGVs is estimated using measured pa-
rameters such as vehicle travel time, vehicle utilisation, queue
length, and material handling cost. Most of the integrating
scheduling of machines and vehicles research has the main
objective to process all tasks on time with a sufficient number
of vehicles while minimising the makespan [5].

On the other hand, one of the most reported used technique
is the Djakarta algorithm combined with a time window to
solve the CFRP. Thus the problem is divided into two stages:
scheduling and routing. According to [6], if the problem is
divided into two parts, the minimal number of AGVs can
be determined by the development of a job-task heuristic
assignment module for AGVs; the heuristic methodology
takes into consideration all available AGVs and dispatches
the necessary ones so that transportation order is performed
given a maximum order fulfilment time in a specific time-
window [7]. The initial and consecutive number of AGVs is
calculated for each job routing as the round integer number to
the nearest integer above the current value of the ratio between
the total time spent by an AGV to perform all job tasks
(order fulfilment) and the time spent by each job task. The
job scheduling task (AGV assignment task) is implemented
by the heuristic of the shortest job first (SJF) or the Tabu
search meta-heuristic algorithm. Both algorithms are later
compared without a straightforward winning. A downside in
this approximation is that the routing part calculates all the
routes, which minimise the cost and number of maneuvers
to be executed by the AGVs without considering collisions
and dead-lock between mobile robots. Thus, it is only valid
for pre-planning stages where a particular task and relocating
activities are generally known in advance as in the static case
[8].

Analytical methods to find the optimal number of AGVs
are studied in [9]. Researchers concluded that the analytical
methods under analysis lead to underestimate or overestimate

the numbers of AGVs making the analytical methods suitable
for an initial estimation of the number of AGVs.

Statistical analysis using regression analysis to determine
the vehicle requirements in an automated material handling
system is presented in [10]. In this analysis, the number of
required vehicles is based on the most statistical influencing
parameters for a given production facility such as the number
of production machines, total vehicle routing distance, job
shop’s layout number of intersection and number of nodes,
maximum machine utilisation, total loaded and empty vehicle
travel distance and layout complexity. Overall results showed
that the developed model obtains reliable predictions on the
number of AGVs required in a production facility.

Less research integrates AGVs tasks assignments and AGVs
routing for estimation of the optimal number of AGVs. In [11],
an approach to solving the integrated scheduling problems
considering the optimal number of AGVs with a conflict-free
routing in an FMS production environment is presented. To
find the optimal number of AGVs, with the shortest trans-
portation time, a path planning problem, and a conflict-free
routing problem (CFRP) simultaneously, researchers propose
a genetic algorithm combined with the Dijkstra algorithm that
is based on a time window.

Modelling and Simulation using a stochastic method to
find the optimal number of AGVs with vehicle position-
ing, dispatching, routing and charging is presented in [12].
Researchers proposed a two-stage simulation optimisation
mechanism where simulation models with different charging
system are constructed using FlexSim simulation software.
By applying a global metamodel-based optimisation such as
response surface methodology (RSM), the obtained responses
on the AGV utilisation and throughput are optimised. Sahnoun
et al [13] proposed a simulation based approach to define
optimal AGV fleet size where mobile robots reduce their speed
in traffic jam. Another methodology to analyse, implement and
simulate complex systems is the ABM. ABM methodology
can model the system’s components-interactions as a dynamic
system of interacting agents [14], [15]. According to [16], an
agent is an encapsulated computer system situated in some
environment, capable of flexible, autonomous action in that
environment to meet its design objectives. More simulations
tools and methodologies on scheduling algorithms and routing
problems while optimizing the number of AGVs are described
in [5].

III. PROBLEM DESCRIPTION

This paper tackles the problem of determining the optimal
number of AIVs in an open environment where humans and
robots share the same traffic space, with the objective of
minimizing the total tardiness of transportation tasks. Intel-
ligent mobile robots have several possible paths to transport
and reach a given destination; path selection is usually based
on a priority rule of shortest transportation time, i.e., the
path requiring minimum transportation time will be given the
highest priority. Assumptions in the simulation model are: first,
an intelligent robot travels at a constant speed and it stops for



5 seconds when meeting a human. This time is assumed to be
sufficient for human to clear the way for the mobile robot. A
similar time-assumption is made when an unexpected obstacle
appears in the robot’s embedded map. An intelligent mobile
robot can avoid any detected obstacle but needs 5 seconds to
find a local alternative path. Secondly, the density of human
traffic in mobile robots path is varied. The variation in human
traffic density is because the number of people occupying the
displacement area of mobile robots is dynamically changed
from a moment to another during a working day. There are
two main periods of human traffic concentrations; the first one
is at the beginning of the day and at its end, where the density
of people present in corridors is high. The second period of
human traffic concentration is at lunchtime. Periods of high-
human density traffic due to humans is shown in Figure 1.
The x-axis represents scheduled working hours, and the y-axis
the number of human traffic detected by sensors at corridors.
Third, the complexity to calculate the number of the necessary

Fig. 1: Distribution of human-traffic density due to human
operators in mobile robots traffic space

mobile robots to satisfy the daily transportation tasks does
not only depend on the daily production demand but also
the number of persons present in robots’ movement areas.
As the number of people is stochastic, dynamic scheduling,
in this context, is the most promising approach to allocate
task allowing mobile robots to choose the best path and the
best moment to execute a transportation task. IoT, sensors
and data analysis play an important role in increasing the
efficiency of the decision made per each robot. Another aspect
of the complexity concerns the decision levels. Three decision
types must be taken in order to manage collaborative robots.
Figure 2 shows the different levels of decisions that affect
the correct functioning of robots. The travel time of each
mobile robot is affected by the number of persons present
in its path and its ability to avoid these dynamic obstacles.
This situation is depending on the tasks allocated to the robot,
which are defined through advanced scheduling included in the
operational level decision-making process. The performance of
the whole system depends on the number of robots deployed

in the production system. This number is defined in the
tactical level decision-making process. The high interaction
between these three levels makes the complex definition of
fleet size. We will proceed with simulation in order to define
the optimal number of used robots in different situations of
human interaction.

Fig. 2: Different decisions in smart mobile robot management

IV. METHODOLOGY

In order to define the optimal number of mobile robots,
it is essential to consider deadlocks and traffic jam caused
by other mobile robots or by human presence on the path of
the mobile robot. We propose to evaluate the choice of fleet
size by simulation following a greedy approach. A multi-agent
simulation model is proposed to define the behaviour of each
component of the system. As shown in figure 3, the model is
composed of five agents as following:

• Humans: this agent represents all the human workers in
a workshop. They follow a stochastic behaviour based
on the global observation of their presence in corridors
as shown in Figure 1. The probability of human traffic
density in corridors can be adjusted as a simulation
parameter.

• Robots: they represent autonomous and smart entities
agents able to transport products from one stock location
to another. Each mobile robot can make local decisions,
such as avoiding an obstacle, charging its battery etc.

• Supervisor: modelled agent responsible for defining the
sequence and scheduling of operations and tasks and
supervising the communication between different pro-
duction system elements. It can be understood as a
Manufacturing Execution System (MES).

• Workshops: this agent can be one of the production
workshops (different departments), production cells, pro-
duction workstations.

• IoT/BMS: these agents include all the sensors installed
in the building and connected to the building information
systems and the IoT devices present in the production
system, such as connected operator interfaces, connected
stock and machines.

• Corridors: they constitute agents to implement ways link-
ing workshops, which are the common resource between
robots and humans.

Agents are interacting as shown in Figure 3. Link (1) rep-
resents the interaction between robots and humans, where



each mobile robot has to stops for 5 seconds when it crosses
a human. The interaction (2) represents the movement of
the mobile robot in corridors. The same kind of interaction,
represented by link (5), exists between Human agents and
corridors. This represents the use of the same resource by
robots and humans for displacement. The interaction between
the IoT/BMS can be direct through the link (3) and indirect
through the supervision system (links (9) and (4)). Therefore
link (4) allows the supervision system to transmit an order
to a mobile robot and collect data. Link (6) represents data
collection about human operators behaviour and their interac-
tion with the environment. Link (7) defines the physical links
between workshops using corridors. The role and presence
of operators in the workshop are represented by the link
(8). The link (9) ensures the transmission of collected data
to the supervision system, and, finally, the interaction (10)
represents the communication of the stat and configuration of
each workshop.
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Fig. 3: Multi-agent model

V. SIMULATION EXPERIMENTS

The multi-agent-based simulation model detailed in the pre-
vious section is developed using NetLogo Software, a discrete-
event simulation programming tool. The interface is in 2D
and contains the map of the workshop, which includes human
operators and mobile manipulators agents in movement. The
simulator allows modifying the number of used robots and
the rate of persons present in corridors. This rate can be fixed
or variable following the probability of presence defined in
Figure 1. The simulation model is presented in the figure 4
where it is possible to observe human operators present in
corridors at the same time as robots.

This simulation aims to measure the effect of operators pres-
ence on the transportation time of mobile robots and to define
the robot fleet size with consideration of this dynamic trans-
portation time. Two main scenarios are designed and executed.
The first one executes a given production planning without any
operator present in corridors. This scenario is considered the
reference situation representing the lower bound of the optimal
solution in fleet size. Other scenarios will consider different

Fig. 4: Multi-agent based simulator

rates of human presence in corridors. Even the transportation
displacement strategy has a natural effect on performance
indicators of the production system; we will assume that it will
not get any effect on our experimentation study because the
same strategy is adopted for all scenarios. Experimentation on
a real system has shown that transportation time increases with
the probability of meeting a human in corridors, which means
that we need more mobile robots to satisfy the same demand
with a higher probability of human presence in corridors. On
the other hand, many mobile robots will create more traffic
jam, which slows down the execution of transportation tasks.

VI. CONCLUSIONS

This paper explores the problem of defining transportation
robots fleet size in a collaborative workshop environment,
where humans and robots share the same working space.
The literature and real experimentation reported by industrial
practitioners demonstrated a significant correlation between
the transportation time and the number of humans present
in the shared working space. However, as the correlation is
not accurately quantified, defining the appropriate fleet size
for mobile robots is not trivial. This problem concerns not
only manufacturing systems in Industry 4.0 but also related
to manufacturing systems in the new era of industry 5.0.
Therefore, this paper proposes a simulation-based approach to
get an accurate estimation of this robot fleet size. The structure
of the simulator is explained with a presentation of the first
version of the simulation environment. The experimentation
strategy based on the use of this simulator is also detailed.
Subsequent work will expose the results of simulation for
scenarios with different product demands. A transportation
strategy will be developed based on the estimation of number
of operators in each space zone of the production system and
each time zone of the working day.
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