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A B S T R A C T   

Malawi is an earthquake-prone country that lies within the East African Rift. A large proportion of its population 
lives in non-engineered single-storey constructions made of clay bricks and low-strength mortar. Walls are 
typically single-skin and often lack adequate wall-to-wall connections, leaving them vulnerable to seismic ac
tions. This work reports a comprehensive study on the seismic fragility of unreinforced masonry buildings of the 
Malawi housing stock. The probability of exceeding different levels of in-plane/out-of-plane damage is estimated 
by considering the aleatory and epistemic uncertainties of the problem. Inter-building and intra-building vari
ability are accounted for by adopting material test results and building survey data collected in Malawi. The in- 
plane capacity of building walls is calculated through a finite element model that considers the orthotropic 
properties of masonry. The out-of-plane capacity is computed using an analytical solution, developed for walls in 
one way bending. In addition, record-to-record variability is considered. The new country-specific fragility 
models result more conservative that global estimates, which reflects the high vulnerability of Malawian ma
sonry buildings. These fragilities can be integrated into catastrophe modelling platforms for earthquake risk 
assessment in Malawi and in the wider East African region.   

1. Introduction 

Malawi has one of the highest rates of population growth in the 
world. According to the United Nations [1], the total population will 
increase from 18.6 million in 2019 to 38.1 million by 2050. This trend 
will inevitably result in increased exposure to natural disasters, such as 
earthquakes and floods [2–4]. Additionally, owing to the unregulated 
and inadequately planned nature of urban growth in Malawi, informal 
settlements, typical of rural areas, will be expanded at the outskirts of 
major cities, such as Lilongwe and Blantyre [5]. Residential buildings 
are characterised by poor engineering and construction quality, and are 
therefore highly vulnerable to natural hazards [6]. The location of 
Malawi, spanning over the southern branch of the active East Africa Rift, 
makes the country susceptible to Mw7.0 (or even greater) earthquakes 
[7]. Moderate seismic hazard, high vulnerability, and increasing expo
sure are attracting the attention of international agencies towards the 

implementation of Disaster Risk Reduction (DRR) actions in Malawi [8]. 
The urgency of developing risk-informed DRR policies comes with the 

need for tailored risk assessment models for the region. Only a few studies 
are currently available on the topic. In 2016, Goda et al. [7] presented a 
first-generation probabilistic seismic risk model for Malawi. The model was 
developed as a combination of recent findings in seismic hazard [9] and 
global models for exposure/vulnerability [10,11]. Regarding structural 
vulnerability, the study emphasised that the adoption of global empirical 
models [10,11] may lead to potential bias and significant variation in the 
prediction of collapse rates. Moreover, the classification of the Malawian 
building stock through global building classes can be rather subjective and 
consequently uncertain and questionable [12]. More recently, the Global 
Earthquake Model (GEM) Foundation has released a new set of models for 
seismic risk assessment, including a global fragility/vulnerability database 
[13], a global hazard model [14], and an exposure database for different 
geographical regions, including East Africa [15]. According to GEM 
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estimates, the average annual loss of the residential building stock of 
Malawi is USD 10.3 million, roughly 0.025% of the total asset replacement 
cost. This estimate can be further improved by reducing the uncertainties 
around the current hazard data and by incorporating country-specific 
vulnerability models. 

Consulting with the technical-scientific literature, it is clear that 
Malawi, when compared with other seismic-prone nations, lacks country- 
specific vulnerability/fragility models for earthquake risk assessment. 
Only recently, Novelli et al. [16] have proposed a first set of analytical 
fragilities for non-engineered constructions in Malawi. The work (i) pre
sents the geometry of 646 façades of 327 houses, classified by structural 
features and potential failure modes and (ii) derives fragility curves by 
adopting the FaMIVE (Failure Mechanism Identification and Vulnerability 
Evaluation) mechanical approach [17]. Building on this previous research, 
the objective of this work is to enrich the current portfolio of fragility curves 
for the country focusing on informal, non-engineered, unreinforced ma
sonry (URM) residential buildings (Fig. 1). In particular, by referring to the 
classification of Kloukinas et al. [12], URMs with the following character
istics are considered (“UFB*” in [12]): (i) fired bricks in cement mortar 
assemblage, (ii) absence of timber/concrete lintels, (iii) light metal roof (no 
diaphragm action), (iv) rectangular plan shape, and (v) single storey. 

In order to derive fragility curves representative of actual URM resi
dential buildings in the country, the analysis is carried out by considering 
the database reported by Novelli et al. [16], that includes information of 
houses located in different areas of the country, as shown in Fig. 2a. The 
dataset contains the geometric data of the surveyed houses that defines 
the inter-building variability of the construction class. Fig. 2b-c shows 
histograms of the façades’ heights and thicknesses, indicating that the 
geometrical characteristics of the façades are highly variable. Addition
ally, a set of experimental tests on local masonry [19,20] is used to 
characterise the mechanical properties in a statistical manner. 

The methodology adopted to derive seismic fragilities consists of two 
parts: (i) an In–Plane (IP) damage assessment is carried out by analysing 
each façade with a nonlinear orthotropic Finite Element (FE) model that 
accounts for the regularity (stretcher bond) of the masonry assemblage; (ii) 
an Out-Of-Plane (OOP) damage assessment is executed on each façade 
through an analytical closed-form procedure developed by Giordano et al. 
[21]. Both assessments start with the estimation of the nonlinear static 
capacity curve (pushover) of the façade. Subsequently, the amplitude of the 
seismic Intensity Measure (IM) that triggers a specific Damage State (DS) is 
calculated by adopting two procedures from the literature: SPO2IDA (Static 
Pushover to Incremental Dynamic Analysis) by Vamvatsikos and Cornell 
[22] and a CSM-based procedure (Capacity Spectrum Method [23]) pro
posed by Lagomarsino [24] and adapted by Giordano et al. [25]. The final 
fragility curves are calculated by combining the assessments from the two 
methods on each façade in a consistent probabilistic manner. Section 2 
presents the fragility assessment methodology of this study. Section 3 

discusses the experimental response of typical Malawian masonry and 
presents a probabilistic model to be used for fragility derivation. Lastly, 
Section 4 discusses the fragility results with reference to existing studies 
from the literature and underlines the relevance of this work towards the 
implementation of country-specific seismic risk assessment analyses for 
Malawi. 

2. Fragility assessment methodology 

Malawian non-engineered URM buildings are characterised by several 
structural weaknesses that affect their seismic behaviour [16]. Conse
quently, the fragility assessment procedure should reflect these deficiencies 
by introducing suitable considerations in the analyses [25]. Given the lack 
of adequate wall-to-wall/wall-to-roof connections and the absence of box- 
behaviour due to flexibility of the roof [8], this study considers two main 
assumptions: (i) the building’s fragility is governed by the fragility of its 
constituting façades (e.g. [25–27]), and (ii) the IP and OOP damage 
assessment of URM façades can be decoupled (e.g. [28,29]). The fragility 
methodology is schematically depicted in Fig. 3 and described in the 
following list.  

a) Stochastic generation of typological buildings (Fig. 3a) 

The first step of the methodology consists of generating an ensemble of 
buildings that reasonably represents the UFB* housing stock in Malawi. 646 
façade geometries are extracted from the 327 buildings of the database in 
Fig. 2 (normally one façade for the short direction of the building and one 
façade for the perpendicular long direction) [16]. This represents the 
geometrical aleatory variability. For each façade, a set of URM material 
properties is assigned in a probabilistic manner. In particular, façades that 
belong to the same building are characterised by different mechanical pa
rameters to take into account the variability of construction quality within 
the same construction [12]. The probabilistic distributions from which the 
random properties are extracted are based on experimental tests of local 
URM materials [19], as discussed in Section 3. This reflects the material 
aleatory variability.  

b) IP and OOP capacity of façades (Fig. 3b) 

The damage assessment of each façade is carried out by considering the 
IP and OOP nonlinear static (pushover) responses. The IP capacity is esti
mated with an FE analysis of the façade carried out in OpenSees [30] 
through STKO (Scientific ToolKit for OpenSees) [31]. To account for the 
non-symmetric response of irregular façades, the IP pushover is estimated for 
both positive and negative directions of the seismic forces. The OOP ca
pacity is quantified with an analytical mechanics-based closed-form pro
cedure developed by Giordano et al. [21]. The numerical-IP and analytical- 

Fig. 1. (a) Typical single storey Malawian brick-in-cement masonry building, (b) typical roof made of light timber truss supporting corrugated metallic corrugated 
sheet light-weight roof. Pictures source: Novelli et al., World Housing Encyclopedia, Report #205 [18]. 
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OOP capacity curves are then represented by bilinear/multi-linear models 
according to De Luca et al. [32]. Details of the IP/OOP capacity estimations 
are reported in Sections 2.1 and 2.2.  

c) Fragility curves of façades (Fig. 3c) 

For each façade’s pushover diagram, a set of DS fragilities is generated by 

adopting two methodologies: SPO2IDA [22] (described in Section 2.3.1) 
and CSM [23–25] (reported in Section 2.3.2). According to these tech
niques, the DSs are defined in terms of specific displacement thresholds on 
the pushover curve [13,33] (details in Section 2.3.3). The exceedance 
probability of a generic DS# is a function of a seismic IM. The IM selected for 
this study is the Peak Ground Acceleration (PGA). The adoption of the two 
assessment techniques (SPO2IDA/CSM) for each damage mode (IP/OOP) is 

(a) 

Fig. 2. (a) Geographical representation of the database of the surveyed buildings, (b) histogram of façade heights (average 2.82 m, coefficient of variation 18%), (c) 
histogram of façade thicknesses (average 183 mm, coefficient of variation 27%). 

N. Giordano et al.                                                                                                                                                                                                                              



Structures 32 (2021) 2266–2278

2269

a fundamental step to characterise the epistemic uncertainty that each 
technique brings. As a result, every façade is defined by four sets of DS 
fragilities: (1) IP-SPO2IDA, (2) IP–CSM, (3) OOP-SPO2IDA and (4) OOP- 
CSM. It should be noted that for a given assessment technique, each 
façade is characterised by two sets of IP fragilities that correspond to 
pushover curves with positive and negative horizontal loads.  

d) Fragility curves of buildings & building class (Fig. 3d) 

The fragility sets of the façades are subsequently combined to obtain 
DS fragilities of each building. For a given damage mode (IP/OOP), DS#, 
and assessment technique (SPO2IDA/CSM), a building’s DS# fragility 
corresponds to the maximum envelope of the DS# fragilities of its 

Fig. 3. Seismic fragility assessment methodology.  
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constituting façades (i.e. maximum probability of damage). Subse
quently, the DS# fragility of the building class is calculated by averaging 
the fragility curves of all the buildings for each PGA. With the four sets of 
fragility curves listed in point (c) above, two final additional sets (IP and 
OOP) can be derived to account for the epistemic uncertainty of the 
assessment technique. For a given damage mode and a given PGA, the 
fragility curves of buildings derived with SPO2IDA and CSM are aver
aged to obtain a final fragility estimate (mean curve). 

2.1. In-plane capacity 

The IP capacity of a URM building can be estimated with a variety of 
methods that range from simplified analytical procedures to computa
tionally expensive numerical techniques. Among the numerical ap
proaches, many studies model buildings as FE equivalent frames, where 
the URM walls are discretised into a system of nonlinear piers, nonlinear 
spandrels, and rigid nodes [34,35]. The equivalent frame represents a 
reasonable simplification to assess the IP response of URMs and, owing 
to its low computational cost, can be used to perform probabilistic an
alyses (e.g. [36–38]). However, several studies have pointed out that the 
assumptions related to the frame discretisation are questionable [39], 
which increases the uncertainty of the assessment results [40]. An 
alternative to the equivalent frame is the Nonlinear Continuum FE (NC- 
FE) approach. It is usually implemented in two ways: by modelling 
masonry units and mortar joints with different constitutive models 
(micro-modelling), or by representing masonry as a single material with 
homogenised mechanical properties (macro-modelling) [41]. With this 
latter method, the different failure modes of masonry, such as cracking/ 
crushing of units/joints and sliding of units are smeared out in a 

continuum [42,43]. Macro-modelling is generally preferred to the 
former since it requires less computational effort. There are various past 
studies on the experimental validation of NC-FE models (e.g. 
[42,44–46]), including results that are applied to historical URM 
buildings (e.g. [47–50]). In contrast, fragility assessment studies on 
URM building typologies based on NC-FE analyses are lacking in the 
literature. Two main reasons are the need for comprehensive informa
tion on URM mechanical parameters of the investigated structural ty
pology (which are not usually available) and the computational cost of 
NC-FE models in performing a large number of seismic fragility analyses. 

With the aims of executing NC-FE analyses and reducing the sim
plifications associated with IP modelling, the above-mentioned short
comings are addressed in this work. The computational cost of NC-FE is 
reduced by using an implicit (at structure level) – explicit (at material 
level) nonlinear solver available in STKO [31,51] and implemented in 
OpenSees [30]. Additionally, taking advantage of available experi
mental results of Malawian masonry (Section 3), the URM orthotropic 
constitutive model is characterised in a probabilistic way. Specifically, 
each façade is discretised with quadrilateral plane-stress elements. 
Orthotropic material properties are assigned to the tension–compression 
plastic-damage model developed by Pelà et al. [43] and implemented in 
STKO [31,51]. Once the FEM model is built, nonlinear static pushover 
analysis is carried out by considering an inverse-triangular force distri
bution, as suggested by international codes [52]. 

2.1.1. Example of IP capacity of URM façade 
An example of the procedure to identify the IP capacity is provided in 

Fig. 4. The selected façade is 2.4 m high, 3.6 m long, and 140 mm thick 
and is composed of two parts of different horizontal stiffness: a squat 

Fig. 4. IP numerical response of a representative façade where the contour plots show the material tensile damage (d + ). (a) damage pattern at maximum horizontal 
capacity, (b) damage pattern at 61% post-peak capacity, (c) damage pattern at 39% post-peak capacity, (d) force-displacement diagram. 
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perforated wall (right side of the door) and a slender pier (left side of the 
door). The two portions are linked through a spandrel. The dimensions 
of the door and the window are 0.8 m × 1.8 m and 0.4 m × 0.7 m, 
respectively. The masonry mechanical properties are the median values 
of the distributions reported in Section 3.3. The mesh size of the quad
rilateral elements is 100 mm × 100 mm. Fig. 4a-b-c show the damage 
patterns of the façade computed at different displacement levels for 
loading to the left, while Fig. 4d reports the force–displacement response 
of the façade. Fig. 4a corresponds to the maximum horizontal capacity 
(11.3 kN): cracks appear at the corners of the window and the bottom- 
right of the spandrel. Fig. 4b corresponds to a post-peak horizontal ca
pacity equal to 61% of the maximum. A rocking mechanism of the top- 
left side of the perforated wall is activated. Subsequently, Fig. 4c shows 
an additional rocking mechanism of the left pier and consequent rota
tion of the spandrel. The corresponding horizontal capacity has 
decreased to 39% of the maximum capacity. These results highlight the 
complexity of the IP response of URM façades, especially in the absence 
of floor/roof constraints that prevent relative displacements of the top 
nodes. With such constraints, experimental quasi-static tests on URM 
façades have shown a very stable force–displacement response (e.g. 
[53,54]). 

2.2. Out-of-plane capacity 

The OOP capacity of the façades is quantified by adopting the 
analytical closed-form mechanical model developed by Giordano et al. 
[21] for the fragility assessment of traditional URM buildings in Nepal 
[25]. The method adopts three main assumptions: (i) as validated 
experimentally [55–59], the OOP capacity of a vertically spanning URM 
wall is governed by rocking; (ii) for the case of the cantilever configu
ration (i.e. with no constraint at the top of the wall), the wall is modelled 
as a rigid body connected to the ground with a nonlinear hinge; and (iii) 
the nonlinear response of the hinge is defined through the 
moment–curvature diagram of the base (critical) cross-section [60]. 

Utilizing the experimental data on OOP tests of Malawian URM that 
provide the tensile capacity of bed-joint interfaces, the cantilever model 
developed in [21] is improved by taking into account the tensile 
contribution of mortar joints in the initial-elastic phase. Fig. 5 depicts an 
example of an OOP pushover curve with reference to the façade of Sec
tion 2.1. The structure behaves in a linear elastic manner until the 

maximum tensile strength of the base bed-joint is achieved (cracking). 
After the exceedance of the tensile strength, the façade behaves ac
cording to the nonlinear OOP response described by Giordano et al. 
[21]. 

2.3. Estimation of façade’s fragility for a given DS# 

As illustrated in Fig. 3c, for a given façade, the estimation of DS 
fragilities is carried out with SPO2IDA [22] and CSM [25]. In Sections 
2.3.1. and 2.3.2, these approaches are described. As previously 
mentioned, the IM selected in this work is the PGA, since it is a 
reasonable measure for low-rise masonry buildings (e.g. [25,61,62]) and 
this information is available from national seismic hazard maps (e.g. 
[7,9]). In line with previous studies (e.g. [25,37,38]), DSs are defined as 
displacement thresholds on the pushover curve of the building. Section 
2.3.3 reports the definition of DS limits with reference to IP and OOP 
responses. 

2.3.1. SPO2IDA assessment 
The first step of the SPO2IDA assessment is to convert the force

–displacement pushover curve into a spectral-acceleration (Sa) versus 
spectral-displacement (Sd) capacity curve through the single degree of 
freedom (SDOF) equivalence (e.g. Eurocode 8 [52]). Subsequently, a 
simplified multi-linear model of the capacity curve is calculated ac
cording to De Luca et al. [32]. The multi-linear curve is then converted 
into a set of equivalent Incremental Dynamic Analysis (IDA) curves by 
adopting SPO2IDA [22]. Three curves, representing the 16th, 50th, and 
84th percentiles of equivalent IDAs, are quantified to reflect the record- 
to-record variability. Given a DS# displacement threshold on the multi- 
linear capacity curve, the corresponding damage fragility is estimated 
by considering a lognormal distribution model. The median value Sa,50% 
corresponds to the 50th percentile estimate of the IDA. The dispersion is 
defined as β = 0.5 × ln (Sa,84%/Sa,16%). The resulting fragility is 
expressed in spectral–acceleration for the equivalent vibration period of 
the SDOF, Teq. This period is directly calculated from the multilinear 
model. For instance, it has an IP average value of 0.065 s (CoV = 0.36) 
over the database of façades. To increase the practical usability of the 
fragility curves, the spectral-acceleration values are converted to PGA 
through a scaling relationship based on the Ground Motion Prediction 
Equation (GMPE) by Boore et al. [63]. This GMPE is suitable for shallow 

Fig. 5. Simulated OOP response of a representative façade. The star represents the cracking limit for tensile failure of the base bed-joint.  
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crustal earthquakes in active tectonic regions and it is based on global 
data. The conversion from Sa(Teq) to PGA is carried out with Equation 
(1): 

PGA = Sa
(
Teq

) P̂GAGMPE

̂Sa
(
Teq

)

GMPE

(1)  

where P̂GAGMPE and ̂Sa
(
Teq

)

GMPE are the average PGA and Sa(Teq), 
respectively, from the GMPE, considering the case of normal faulting, 
top 30 m average shear wave velocity of 300 m/s [64], distance interval 
of 1 km to 30 km and magnitude interval of 5 Mw to 8 Mw [7,9]. Fig. 6a 
shows the described procedure for a generic DS#. 

2.3.2. CSM assessment 
The CSM assessment is carried out in reference to Giordano et al. 

[25]. In analogy with SPO2IDA, the force–displacement pushover curve 
is firstly mapped into the Sa – Sd plane. Subsequently, for the sole IP 
capacity curve, a simplified bilinear model is calculated using the pro
cedure presented by De Luca et al. [32]. Given a DS# displacement on 
the capacity curve, the following analysis steps are carried out to derive 
the corresponding fragility curve:  

- 934 smoothed Sa – Sd spectral shapes [65] from the SIMBAD 
(Selected Input Motions for displacement-Based Assessment and 
Design) database [66] are scaled to intersect the pushover curve at 
the DS# displacement, by using the CSM [21,23,24]. This results in a 
set of 934 PGAs.  

- The 934 PGAs are sorted by their absolute scale factor, ASF = max 
{SF; 1/SF}, where the scale factor, SF, is the ratio between the scaled 
PGA (estimated with the CSM) and the PGA of the recorded ground 
motion [25]. Subsequently, the first (lowest ASF) 100 PGAs are 
selected. As discussed by Giordano et al. [25], this selection pro
cedure preserves record-to-record variability while removing PGA 
values with excessively high scale factors [67].  

- Lastly, the cumulative distribution of the 100 PGAs is fitted with a 
lognormal model to derive the DS# fragility. 

Fig. 6b depicts the CSM assessment for a given façade and DS#. 

2.3.3. Definition of DSs 
DSs are defined as displacement thresholds on the capacity curve. 

For the IP curve, the indications by Martins and Silva [13] are adopted: 

- Sd,DS1 (slight damage) corresponds to 75% of the yielding displace
ment Sd,y of the bilinear/multi-linear model;  

- Sd,DS2 (moderate damage) is defined as 0.5 × Sd,y + 0.33 × Sd,u, where 
Sd,u is the ultimate displacement of the multi-linear/bilinear model. 
Sd,u is defined on the numerical capacity curve as the displacement at 
80% post-peak capacity;  

- Sd,DS3 (severe damage) corresponds to 0.25 × Sd,y + 0.67 × Sd,u;  
- Sd,DS4 (near collapse) is equal to Sd,u. 

OOP DSs are defined according to previous studies [13,25,33]:  

- Sd,DS1 (slight damage) corresponds to the displacement at cracking (Sd, 

y), which is highlighted with a star in Fig. 5.  
- Sd,DS2 (moderate damage) is defined as 0.5 × Sd,y + 0.33 × Sd,u [13];  
- Sd,DS3 (severe damage) corresponds to 25% of the overturning 

displacement (i.e. displacement at null force) [25,33];  
- Sd,DS4 (near collapse) is equal to Sd,u and corresponds to 40% of the 

overturning displacement [25,33]. 

3. Probabilistic distributions of material properties 

3.1. Experimental data of local materials 

An extensive experimental programme was carried out in Malawi to 
characterise the mechanical properties of local masonry materials 
[19,20]. In this work, four sets of experimental tests are used to define 
the probabilistic material model of URM: 

• Vertical compression tests on masonry prisms were carried out ac
cording to EN 1052-1 [68]. The prisms were each composed of five 
bricks having a nominal size of 200 mm × 90 mm × 50 mm. A total of 
twenty-four tests are considered in this study: (i) six tests charac
terised by a cement-to-sand ratio of 1:4 (the recommended value 
according to MS791-1 [69]) and realised in favourable (F) con
struction conditions (with clean and dampened bricks); (ii) six tests 

Fig. 6. (a) SPO2IDA assessment, (b) CSM assessment. ‘CC’ indicates the capacity curve of the façade.  
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with a cement-to-sand ratio of 1:4 and realised in unfavourable (U) 
conditions (bricks laid in a dry state and in the presence of dust); (iii) 
six tests characterised by a cement-to-sand ratio of 1:6 (minimum 
value indicated by the Safer House Construction Guidelines [70]) 
and realised in favourable conditions; and (iv) six tests with a 
cement-to-sand ratio of 1:6 and constructed in unfavourable condi
tions. The mechanical properties that can be obtained from the 
vertical compression tests are: the elastic modulus in the vertical 
direction (i.e. perpendicular to the bed-joints) (Ev), the compressive 
strength at the elastic limit in the vertical direction (fc0), the ultimate 
compressive strength in the vertical direction (fcp), and the corre
sponding strain in the vertical direction (εp). Fig. 7a-b shows the 
stress–strain results of the 1:4 and 1:6 tests, respectively. It is 
observed that the material behaviour varies significantly in strength, 
stiffness, and strain capacity, which can only be reflected by using an 
advanced numerical modelling technique (Section 2.1). In addition, 
the construction conditions (F/U) do not consistently affect the 
stress–strain results for either 1:4 or 1:6 cement-to-sand ratios.  

• Diagonal compression tests on masonry panels were carried out by using 
the in-situ testing procedure presented by Brignola et al. [71]. The 
dimension of the masonry panels was approximately 1060 mm ×
1060 mm with a thickness of 90 mm (one-brick thick). A total of 
twelve experimental results are considered: (i) six texts characterised 
by a cement-to-sand ratio of 1:4 and favourable construction con
ditions; and (ii) six tests characterised by a cement-to-sand ratio of 
1:6 and unfavourable construction conditions. The masonry prop
erties extracted from the diagonal compression tests are the shear 
modulus (G) and the equivalent shear strength (τ0). Fig. 8a-b shows 
the stress–strain results of the 1:4 and 1:6 tests, respectively. As ex
pected, the 1:4 panels (Fig. 8a) are considerably stronger than the 1:6 
panels, but, at the same time, more brittle. 

• Compression tests on bricks were carried out according to the Mala
wian standard MS6 [72] to quantify their strength (fb). In total, 54 
test results are considered. The sample exhibits a quite low median 
value (4.32 MPa) and high dispersion (coefficient of variation ≈
0.40) with respect to typical international benchmark values (e.g. 

Fig. 8. Diagonal compression tests on masonry panels. Cement-to-sand ratio: (a) 1:4, (b) 1:6.  

Fig. 7. Vertical compression tests on masonry prisms. Cement-to-sand ratio: (a) 1:4, (b) 1:6.  
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[73]), which is a consequence of the non-industrial production 
process of Malawian bricks.  

• OOP four point bending tests on masonry panels (bending parallel to the 
bed-joints) were carried out according to EN 1052–2 [74]. The 
dimension of the URM specimens was 760 mm × 420 mm with 
thickness of 90 mm. A total of nine tests are considered where four of 
them are characterised by a 1:4 cement-to-sand ratio and favourable 
construction conditions, while five of them had a 1:6 cement-to-sand 
ratio and unfavourable construction conditions. In terms of me
chanical parameters, the OOP bending tests provide the tensile 
strength of the mortar bed-joints (ft,bj). 

3.2. Numerical modelling of experimental tests 

The experimental results reported in Section 3.1 are used as a 
benchmark for the calibration of the IP numerical analyses (Section 2.1). 
As previously discussed, given the periodic bond (stretcher bond) of 
typical Malawian brick masonry, the orthotropic material model by Pelà 
et al. [43] (OrthotropicMaterial in STKO [31]) is adopted. In addition to 
the mechanical parameters obtained from the tests (Section 3.1), addi
tional parameters have to be defined for the orthotropic model. There
fore, the following assumptions are considered:  

- The elastic modulus in the horizontal direction (parallel to the bed- 
joints), Eh, is quantified according to the formula that Mojsilovic 
[75] calibrated with 130 experimental compression tests on URM 
walls: 

Eh = 3.5(1+ ν)G − Ev (2)  

were G can be assumed as 35% of Ev as in Wilding et al. [76]. Equation 
(2) is also consistent with the results of recent experimental in
vestigations on URM panels tested in two orthogonal directions [77];  

- The Poisson’s ratio ν is assumed equal to 0.15 according to global 
data on masonry mechanical properties [78];  

- The compressive strength of masonry in the horizontal direction is 
conservatively assumed as half of the value in the vertical direction to 
account for the weakness of head joints in low-quality masonry [8]. 

Fig. 9a shows a comparison between the results of a vertical 
compression test and a numerical simulation (test 1:4(F)-1). It is observed 
that the numerical model can accurately reproduce the experimental 
response of the prism. The average absolute error between experimental 
and numerical curves is 2.9%. The modelling of the full set of the tests 
provides an average absolute error between 2.4% and 9.7% (mean value: 
5.6%). Fig. 9b shows a comparison between the results of a diagonal 
compression test and a numerical simulation (test 1:6(U)-6). In this case, 
the numerical model is less accurate in reproducing the experimental 
behaviour of the panel. This is the consequence of larger uncertainties in 
the modelling of diagonal compression tests with respect to vertical 
compression tests [71,79]. The experimental versus numerical compari
son on test 1:6(U)-6 is characterised by an average absolute error of 9.0%. 
Additionally, looking at the full set of the tests, the average absolute error 
is between 4.6% and 17.3% (mean value: 10.3%). 

3.3. Probabilistic models for masonry material properties 

The mechanical properties extracted from the tests are used to define 
the URM material model in a probabilistic way. Each material property 
is represented by a lognormal distribution whose parameters (median 
and lognormal standard deviation) are reported in Table 1. Additional 
parameters required for conducting the IP numerical analyses are taken 
from the literature. Particularly, the fracture energy in compression (Gc) 
and in tension (Gt) are described with uniform probability distributions. 
The upper and lower limits of these distributions are taken from da Porto 
et al. [79]: Gc = 5.0 N/mm to 20.0 N/mm and Gt = 0.018 N/mm to 0.05 
N/mm. It is worth mentioning that these intervals are consistent with 
the fracture energy values adopted for the numerical vs. experimental 
comparisons described in Section 3.2. Fig. 10a shows the probabilistic 
distributions of the main strength parameters, fc0, fcp, τ0, and ft,bj, while 
Fig. 10b shows the distributions of the stiffness parameters Ev, Eh, and G. 

Fig. 9. Experimental versus numerical comparisons: (a) vertical compression test 1:4(F)-1, (b) diagonal compression test 1:6(U)-6.  
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4. Discussion of the seismic fragility results 

Fig. 11 shows an example of the derivation of DS# fragility for the 
UFB* building class. In particular, it refers to the IP damage mode, 
SPO2IDA assessment technique, and DS4. The grey lines represent the 
fragility curves of the portfolio of buildings where each curve is the 
maximum envelope of the façades’ fragilities of a building. The solid red 
line represents the mean fragility at conditional PGA. The black lines (solid 
and dash-dotted) represent the mean +/– standard deviation fragilities to 
illustrate the dispersion around the mean result. Lastly, the red dash- 
dotted line indicates the lognormal approximation of the mean fragility. 
For a given probability of exceedance, the dispersion around the mean 
estimate can be quantified with the formula reported in Section 2.3.1., β =
0.5 × ln (PGA84%/PGA16%). For instance, at P(D ≥ DS4|PGA) = 0.5 
(median value of the fragility curve), the dispersion β is equal to 0.55. This 
value indicates that the sources of inter-/intra-building variability intro
duced in the model adequately reflect the typical confidence interval of 

fragility curves of portfolio of buildings (e.g. [80]). 
The full set of mean fragility estimates is shown in Fig. 12, while the 

corresponding lognormal parameters (median η and lognormal standard 
deviation β) are summarised in Table 2. Fig. 12a-b shows the IP damage 
fragilities assessed with SPO2IDA and CSM, respectively. Fig. 12c-d in
cludes the corresponding OOP fragility curves. Lastly, Fig. 12e-f depicts the 
average SPO2IDA-CSM fragility estimates. In addition, fragility curves for 
brick masonry buildings developed by GEM [13] and relevant to Malawi are 
plotted along with the IP estimates. 

The key findings of the study are summarised as follow: 
The IP fragility estimates (Fig. 12a-b-e) are characterised by a close 

similarity between the DS3 and DS4 curves. This can be explained by 
looking at the IP force–displacement response of the façades (example in 
Fig. 4d). In most cases, the post-peak response presents a rapid decay in 
horizontal capacity. Consequently, the DS4 displacement (defined at 80% 
post-peak capacity) is close to the displacement at peak horizontal ca
pacity. In other words, the similarity between DS3 and DS4 is the result of 
the brittle IP response of the façades, as discussed in Section 2.1.1. 

The OOP fragility curves (Fig. 12c-d-f) present lower median PGA 
values with respect to IP estimates. This is an expected result given the 
well-known vulnerability of non–engineered URMs against OOP loads 
[8,25]. Therefore, UFB* buildings are more likely to experience partial 
OOP failures of walls rather than widespread IP damage. 

The comparison between CSM and SPO2IDA provides interesting in
sights on the epistemic uncertainty of seismic assessment methods. Looking 
at the IP damage mode, the CSM results are more conservative than 
SPO2IDA, in agreement with previous research findings [81]. In particular, 
median values of DS fragilities are approximately 20% lower for CSM with 
respect to SPO2IDA. Both techniques provide reasonable fragility results, 
therefore, to account for the epistemic uncertainty with regard to the 
seismic performance assessment, the mean IP fragilities (Fig. 12e) should be 
considered. In contrast, when looking at the OOP damage mode, the CSM η 
values are consistently higher than the corresponding SPO2IDA estimates 

Fig. 10. Lognormal probability density functions (PDF) for (a) strength parameters, (b) stiffness parameters.  
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Fig. 11. Example of UFB* class fragility derivation (IP/SPO2IDA/DS4).  

Table 1 
Probabilistic parameters of material properties extracted from the experimental tests.  

Parameter Description Unit Distribution Typology Median Lognormal Standard Deviation 

Ev masonry elastic modulus(vertical) MPa Lognormal 581.6  0.52 
Eh masonry elastic modulus(horizontal) MPa Lognormal 237.7  0.52 
G masonry shear modulus MPa Lognormal 203.5  0.52 
fb brick compressive strength MPa Lognormal 4.32  0.42 
fc0 masonry compressive strength at elastic limit MPa Lognormal 0.53  0.35 
fcp masonry ultimate compressive strength MPa Lognormal 1.27  0.28 
εp masonry ultimate compressive strain – Lognormal 0.0055  0.51 
τ0 shear strength MPa Lognormal 0.16  0.43 
ft,bj Tensile strength of bed-joints MPa Lognormal 0.034  0.45  
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(about two times higher). More generally, the OOP-SPO2IDA fragilities 
seem too conservative with respect to experimental evidence [56] and 
previous research works on OOP fragility of URMs [25,28,29]. Meanwhile 

the CSM fragilities are in line with the literature and should be selected to 
characterise the OOP vulnerability of the UFB* category. 

Lastly, the comparison between the IP fragilities of this study and the 

Fig. 12. Mean fragility curves for different damage mechanisms and assessment techniques: (a) IP-SPO2IDA, (b) IP-CSM, (c) OOP-SPO2IDA, (d) OOP-CSM, (e) IP- 
mean, (f) OOP-mean. 
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ones of GEM (Martins and Silva [13]) displays a satisfactory match on 
the median values and a very good fitting of the dispersions β. In 
particular, the GEM fragilities provide larger median estimates with 
respect to the results of this work since: (i) they have been derived with 
nonlinear time history analysis on equivalent SDOFs (a less conservative 
technique with respect to nonlinear static analysis/simplified IDA), and 
(ii) the nonlinear response of the equivalent SDOF is quantified by 
assuming a global response of the URM building. 

5. Conclusions 

The fragility model presented in this paper refers to typical URM 
brick-in-cement houses in Malawi. The work merges research findings 
on structural materials and in-field data on building geometries. This 
allows the estimation of new country-specific fragility curves, currently 
not available in the technical-scientific literature. The procedure adop
ted to derive fragility curves provides estimates for in-plane and out-of- 
plane damage potential. The epistemic uncertainty around seismic 
assessment methods is also addressed by using two established ap
proaches, the CSM and SPO2IDA. The key finding of the study is that 
non-engineered Malawian houses are highly vulnerable to out-of-plane 
damage, something that could be prevented by improving construc
tion details such as wall-to-wall and wall-to-roof connections. If out-of- 
plane action is controlled, masonry walls are more likely to sustain in- 
plane damage first. In general, the fragility of Malawian URMs ap
pears larger than the estimate provided by global models. In risk ana
lyses, it is suggested to adopt IP-mean fragility sets (Fig. 12e) for 
buildings with good construction details and OOP-CSM fragilities 
(Fig. 12d) for low-quality buildings. In conclusion, the new fragility 
curves represent a consistent advancement towards the implementation 
of earthquake risk modelling studies in the context of Malawi and in the 
wider East African region. 
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