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Abstract

We study the spatio-temporal spread of SARS-CoV-2 in Santiago de Chile using anonymized mo-
bile phone data from 1.4 million users, 22% of the whole population in the area, characterizing the
effects of non-pharmaceutical interventions (NPIs) on the epidemic dynamics. We integrate these
data into a mechanistic epidemic model calibrated on surveillance data. As of August 1st 2020,
we estimate a detection rate of 102 cases per 1,000 infections (90% CI: [95 - 112 per 1,000]). We
show that the introduction of a full lockdown on May 15th, 2020, while causing a modest additional
decrease in mobility and contacts with respect to previous NPIs, was decisive in bringing the epi-
demic under control, highlighting the importance of a timely governmental response to COVID-19
outbreaks. We find that the impact of NPIs on individuals’ mobility correlates with the Human De-
velopment Index of comunas in the city. Indeed, more developed and wealthier areas became more
isolated after government interventions and experienced a significantly lower burden of the pandemic.
The heterogeneity of COVID-19 impact raises important issues in the implementation of NPIs and
highlights the challenges that communities affected by systemic health and social inequalities face
adapting their behaviors during an epidemic.

Introduction

As of September 1st, 2020, Chile has reported more than 400, 000 cases and 590 SARS-CoV-2 deaths per
million, becoming one of the worst COVID-19 epidemic globally [1]. Officially, the first SARS-CoV-2 case
in Chile was detected on March 3rd, 2020 [2]. Although other cases were rapidly confirmed all over the
country, the urban area of the capital city, Santiago Metropolitan Region, quickly became the epicenter
of the national epidemic. Indeed, as of September 1st, 2020, about 70% of the total cases in the nation
have been reported in the comunas (i.e., municipalities) of Santiago, making it one of the largest urban
COVID-19 outbreak in the world. The first set of non-pharmaceutical interventions (NPIs) were put in
place in mid-March, when schools were closed, public gatherings were banned, and passengers traveling
from high-risk countries were mandated to self-isolate for 14 days. However, the adopted measures were
not able to contain the contagion: after a sharp increase in cases, a full lockdown was instituted to the
whole Metropolitan Region on May 15th [3].

In this work, we model the spatial and temporal spread of SARS-CoV-2 in 37 comunas of the urban
area of Santiago which comprises 6.4 million individuals. We aim to provide a data-driven characteriza-
tion of the unfolding of the COVID-19 epidemic and an estimation of the impact of NPIs on its spreading.
Research on similar geographical scales has been conducted, for example, for Boston [4], Wanzhou [5],
New York City [6] and London [7]. While COVID-19 is clearly a global issue, the measures adopted
to mitigate and/or suppress the spread of SARS-CoV-2 have been quite heterogeneous across countries
and often across sub-regions within the same country [8–10]. Hence, modeling specific contexts and spa-
tial scales is key to identify separate effects of NPIs, their practical impact when revoked, and possibly
reintroduced over an extended period of time. We study the reduction of mobility and contacts inferred
from mobile devices as input for a spatially and age structured epidemic model. In fact, mobile devices
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data can be used to evaluate, in near real-time, the effects of interventions and self-initiated behavioral
changes on the mobility of people and to inform large scale epidemic models [11–15]. Here, we use
anonymised data provided by a major mobile phone operator in South America (Telefónica Movistar),
with a market share of 24.61% as of March 2020.

To characterize the changes of mobility and physical contacts during the outbreak, we used anonymised
data from 1.4 million mobile devices (about 22% of the total population in the comunas under consid-
eration). We find consistent downward trends coinciding with the NPIs issued by local and national
authorities. We estimate that the first set of NPIs issued on 16/03 led to a reduction of about 48% in
the number of travels between comunas. An additional 17% reduction is observed with the introduction
of the full lockdown on 15/05.

We develop a stochastic mechanistic epidemic model integrating mobility, physical contacts, and
census data. The model suggests that the full lockdown, while causing a modest additional decrease in
mobility and physical contacts with respect to the NPIs already in place, was decisive in bringing the
epidemic under control. This relatively small additional decrease in mobility and contacts was enough
to push the effective reproductive number below the critical value of 1, a clear example of the threshold
effects characterizing epidemic dynamics on structured mobility networks [16]. We estimate that the full
lockdown prevented an additional 34.7% (95% CI: [27.2%, 44.1%]) increase in the total number of deaths.
Additionally, we estimate the critical impact of the timing of the full lockdown through counterfactual
scenarios: an additional week of delay would have corresponded to an 18.1% (95% CI: [6.0%, 34.0%])
more intense incidence peak according to our estimates.

Despite being regarded as a high-income country, Chile and its capital city show concerning social
and economic inequalities [17]. Unfortunately this makes Santiago a natural experiment to investigate
the link between socio-economic disparities and the burden of the pandemic. We explore this important
dimension finding that changes in mobility patterns strongly correlate with the economic and development
indicators of comunas. Furthermore, the model links these observations with an heterogeneous burden
of COVID-19 across comunas which is also observed in the epidemiological data reported by the national
surveillance. More precisely, our results suggest higher attack and death rates in disadvantaged areas.
Due to challenges faced in reducing their mobility and contacts, communities exhibiting systemic social
disparities are affected in a differential way by government-mandated NPIs and disease’s burden. This
observation raises the key issue of health disparities in the management of emerging infectious diseases
such as COVID-19.

Results

We evaluate the effects of NPIs policies, government-mandated mobility limitations by integrating mobile
phone data and an epidemic model. We identify three phases of the epidemic management in Santiago:
i) before 16/03 (business as usual, baseline) ii) between 16/03 and 15/05 (first set of NPIs), and iii) after
15/05 (full lockdown). For convenience, we will refer to the period 16/03-15/05 as the partial lockdown
and to the period after 15/05 as the full lockdown.
It is important to notice how the timeline of interventions is fairly complex. It includes night curfews,
dynamic quarantine, and lockdowns restricted to a few comunas across the region studied here and in
other parts of Chile [2]. However, as we see below, the data suggest that those measures did not have
a significant impact on people’s behaviors, thus for simplicity we consider the two main sets of NPIs
only. We characterize the three phases outlined above in terms of a) mobility among comunas, and b)
contacts reduction between individuals. Mobility describes the (varying) rates at which people travel
among different comunas, while contacts reduction parameters estimate to what extent physical contacts
varied in time in each comuna (more details in the Materials and Methods section).

Effects of NPIs and Social Inequalities

In Fig. 1A we provide an overview of mobility in Santiago during the period of study. As a proxy for
general mobility, we consider the number of devices visiting a comuna that is different from their home
one (see Material and Methods section). We observe a sharp drop following the first set of interventions
on 16/03. Afterwards, mobility remains fairly constant until the introduction of the full lockdown on
15/05, when we observe an additional 17% decrease. As we will show below, this intervention represented
an important tipping point of the epidemic in Santiago.
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More in detail, we represent changes in mobility flows across comunas in Fig. 1B. The partial lockdown
causes an average drop of about 48%, while, with the introduction of the full lockdown, mobility across
comunas drops by 65% with respect to the baseline. For each comuna we also consider the mean
percentage decrease in mobility after 16/03 and compare it with the Human Development Index (HDI),
a coefficient that measures key aspects of human development, such as life expectancy, education, and
per capita income [18] (see the Methods section for more details on HDI calculation). In Fig. 1C, we
observe that a greater decrease in mobility is generally associated with a higher HDI (Pearson correlation
coefficient ρ = −0.80, p < 0.001). The same trend is observed in the absolute change of mobility (see
Supplementary Figure 5) suggesting that wealthier and more developed comunas became more isolated
after the interventions. This result is in line with previous studies that showed how changes in mobility
patterns following government-issued interventions, and the extent to which people can afford social
distancing, vary across different socio-demographic groups [15, 19–22].

In Fig. 1D, we represent contacts reduction parameters. Across the board, contacts drop by 36%
with the first set of NPIs policies and by an additional 11% with the lockdown. Since all points are below
the diagonal, we conclude that, with the introduction of the full lockdown, contacts decrease further in
all comunas. Also, the decrease is consistent with the existing reductions after the partial lockdown. In-
deed rpartialj and rfullj show a high significant correlation (Kendall rank correlation coefficient τ = 0.79,
p < 0.001).

The Spread of COVID-19 in Santiago

We use the mobility data to develop and to inform a stochastic mechanistic metapopulation epidemic
model (see Materials and Methods for details) and simulate the spread of COVID-19 in the comunas of
Santiago. The model is calibrated on official surveillance data and takes as initial seeding the realistic
projections of active cases on March 1st, 2020 in the Metropolitan area of Santiago from Ref. [14].

We use an Approximate Bayesian Computation (ABC) approach [23, 24] (see details in the Materials
and Methods section) to find the posterior distribution of the reproductive number in Santiago (median
R0=2.66, 95% CI: [2.58, 2.72]), which is in line with previous findings that identify the value of R0 of
SARS-CoV-2 to be in the range between 2 and 3 in different countries [25–27]. In Fig. 2A we report
the number of weekly deaths projected by the model together with official figures (used for calibration).
The two time series show a good agreement with a high correlation (ρ = 0.99, p < 0.001) and a median
absolute percentage error of 12%. Interestingly, the agreement between data and model starts to deviate
in the last two data points (end of July early August). We can speculate that, at least in part, this might
be due to a lockdown fatigue. In fact, while the official restrictions were relaxed later (mid of August),
a decrease in compliance, linked to the reduction of cases/deaths, could have taken place earlier. The
period is outside our current data coverage. Hence, we leave testing such hypothesis to future work.

As of August 1st, 2020, the median projected fraction of infected individuals in the area under study
is 38.7% (95% CI: [35.1%, 41.6%]). This estimate is about tenfold the official reported figures. We are
not aware of publicly available seroprevalence studies that we can use as a comparison and validation.
For this reason, we can only consider qualitative evidence hinting that the Chilean outbreak has affected
a significant fraction of the population. For example, the share of positive COVID-19 tests peaked at
59.10% on June 18th, and in the Santiago Metropolitan Region the occupation of ICU beds reached almost
saturation level (95%) in May. Also, a recent epidemiological study aimed at characterizing the first wave
in Chile showed significant under-reporting of symptomatic cases (around 50%) based on estimates of the
Case Fatality Rate [2]. Another recent modeling study focused on the COVID-19 outbreak in Santiago
estimates a number of infected individuals 5 to 10 times larger than the official figures [28]. Finally,
previous seroprevalence studies conducted, for example, in the United States [29], Spain [30], Italy [31],
Brazil [32], and Iran [33], showed that the actual number of COVID-19 infections is several times (factors
vary from 4 to 20) those reported by the official surveillance. As a sensitivity check, we repeated the
calibration considering the upper limit of the 95% credible interval for the Infection Fatality Rate from
Ref. [34]. This leads to a projected median prevalence of 28.3% (95% CI: [23.5%, 32.3%]) but to a
sensibly worse fit of the data (ρ = 0.82, median percentage error of 49%).

Projected cases present a significant correlation with official numbers as can be observed in Fig. 2B
(ρ = 0.84, p < 0.001). Besides, we compare the dates when 200 infections have been reached in different
comunas according to our model and official surveillance, finding a significant correlation (Kendall rank
correlation coefficient τ = 0.61, p < 0.001). Similar results are found considering instead the dates when
50, 100, and 500 cases have been reached (see Supplementary Figure 6). Interestingly, the same dates
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Figure 1: Mobility and contacts changes in Santiago. A) Overview of mobility changes, we consider
the number of devices visiting a comuna different from their home one as a proxy for general mobility (grey
areas represent weekends). Changes are expressed as percentages with respect to 26/02. B) Percentage
changes in mobility rates (with respect to mobility before 16/03). On the left drop in mobility after the
partial lockdown, on the right after the full lockdown. Color and dots size are scaled according to the
magnitude of the change. C) Average percentage mobility decreases after 16/03 versus HDI of different
comunas. We display the regression line, 95% CI, and the Pearson correlation coefficient ρ. Dots size is
proportional to the population of the comuna. D) Scatter plot of contacts reduction parameters during

partial (rpartialj ) and full (rfullj ) lockdown. We display the Kendall rank correlation coefficient τ . Dots
size is proportional to the distance from the diagonal (bigger dots indicate comunas where contacts
decreased more after the full lockdown).
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estimated through modeling are much earlier, hinting that many of the infections in the initial phase
of the spreading went unreported. In Fig. 2C we show the attack rates versus the HDI of different
comunas. We find a strong correlation between attack rates computed on officially reported cases and
HDI (ρ = −0.74, p < 0.001), providing evidence that wealthier comunas experienced significantly smaller
outbreaks. In addition, the very same picture emerges from our modelling results. Indeed, simulated
attack rates present a high significant correlation with HDI (ρ = −0.69, p < 0.001). Finally, in Fig.
2D we show the number of deaths per 1, 000 versus the HDI of different comunas. We find a significant
correlation between HDI and both simulated (ρ = −0.50, p < 0.002) and officially reported (ρ = −0.40,
p < 0.02) deaths, hinting that wealthier comunas experienced also a smaller burden in terms of casualties.
We note that the correlations obtained in this case are lower than those found previously for the attack
rates. This may be due to the interplay between diverse age distributions and age-dependent mortality
rates. Indeed comunas with higher HDI have a higher mean age and the infection fatality rate for
COVID-19 is significantly higher in older age brackets.
In Section 2 of the Supplementary Information, we compare our modeling approach and results with three
simpler models. The first neglects the mobility between comunas. In other words, we attempt to fit the
evolution of deaths in the region by considering each comuna as a separate population. Interestingly, this
approach leads to a median absolute percentage error of 38% which implies a worse performance than
the main model discussed above (12%). This result highlights the importance of capturing the coupling
between areas and accounting for spatio-temporal heterogeneities in spreading patterns which are shaped,
among other factors [35], by mobility. The second and third consider the entire metropolitan area as
a single, age-structured, population. Similar approaches have been proposed to model the spreading
of SARS-CoV-2 and the impact of NPIs in cities [7], regions [15], and countries [36]. The difference
between these two models lays on the data we used to capture the effects of NPIs on contact matrices.
In one, we use estimates measured from the mobile phone data. In the other instead, we use the Google
Mobility Reports [37] and the Oxford COVID-19 Government Response Tracker [38, 39] (see Section 2
of the Supplementary Information for details). Both models lead to inferior performance, with a median
absolute percentage error of 18% and 43%, respectively.
Overall, out of these three simpler models, the second is the closest to the performance of our main
modeling approach described above. However, by construction, it does not provide any information
about the heterogeneous spread and impact of the virus across comunas.

Counterfactual Scenarios

To assess the impact of heterogeneous responses to the spreading we run a hypothetical scenario in which
mobility and contacts decrease uniformly across comunas, starting on 16/03. More in detail, we apply to
all comunas the average reduction in mobility and contacts observed for the 4th quartile of HDI (i.e., 25%
comunas with higher HDI). See Section 3 of the Supplementary Information for more details. According
to our simulations, this leads to a significant decrease of cases and deaths: -83.8% (95% CI: [-77.6%,
-88.6%]) fewer cases and -70.5% (95% CI: [-55.0%, -80.9%]) fewer deaths as of May 15th, the date when
the full lockdown was enforced. Interestingly, the uniform reduction we are imposing implies a relatively
modest additional decrease to mobility and contacts with respect to the ones estimated through mobile
phone data. In this hypothetical scenario, with the partial lockdown mobility rates drop by 55% and
contacts by 49% (versus respectively the 48% and the 36% estimated in our main analysis). Although
such homogeneous reduction across comunas is a theoretical exercise that does not consider complex
socio-economic constraints, that go from the collective need to keep key supply chains active to the
individual imperative to feed their own family, it crystallizes the dramatic effects of inequality on disease
spreading on the one side, and it shows the positive benefits of equal, early, and strong responses on the
other.

We also use the model to investigate counterfactual scenarios aimed at estimating the impact of NPIs
on the spread of COVID-19 in Santiago. As a first counterfactual scenario, we simulated the epidemic
in the absence of a full lockdown. From Fig. 3A we observe that this leads on average to a 21.6% (95%
CI: [7.5%, 41.3%]) more intense incidence peak and 34.7% (95% CI: [27.2%, 44.1%]) more deaths. To
estimate the impact of the timing of the full lockdown, we run simulations where we anticipate or delay
it up to four weeks. According to results in Fig. 3B, an earlier lockdown implies a less intense incidence
peak (from around -20% to -35%). It is interesting to note, however, that a delay of 1-2 weeks has a
very similar effect of no intervention at all in terms of incidence peak intensity. More specifically, one
week delay causes a 18.1% (95% CI: [6.0%, 34.0%]) while two weeks delay cause a 21.6% (95% CI: [7.4%,
41.1%]) more intense incidence peak. The timing of the full lockdown also has a significant effect on the
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Figure 2: SARS-CoV-2 spreading in Santiago. A) We represent the simulated (median and 95%
CI) and reported weekly deaths used for model calibration. B) Left, scatter plot of reported versus
simulated cases as of 2020/08/01. Right, scatter plot of days (since 2020/01/01) needed to reach 200
infections in each comuna as reported by official surveillance and as projected by our model. C) Scatter
plot of HDI versus attack rate as of 2020/08/01 in different comunas as projected by our model (left)
and as reported by official surveillance (right). Size of dots are scaled according to the mobility drops
after 16/03 (bigger bullets indicate bigger decreases in mobility). D) Scatter plot of HDI versus deaths
per 1, 000 as of 2020/08/01 in different comunas as projected by our model (left) and as reported by
official surveillance (right). Size of dots are scaled according to mobility drops after 16/03. In panels b,c,
and d we show regression lines, 95% CI, and Pearson correlation coefficient ρ or Kendall rank correlation
coefficient τ .

number of deaths. According to our estimates in Fig. 3B, just one week of delay implies a 7.7% (95%
CI: [1.3%, 13.7%]) increase in mortality.

6



-4 -3 -2 -1 +1 +2 +3 +4
weeks

40

20

0

20

40

60

In
cid

en
ce

 p
ea

k 
ch

an
ge

 (%
)

-4 -3 -2 -1 +1 +2 +3 +4
weeks

20
10
0

10
20
30

De
at

hs
 ch

an
ge

 (%
)

Timing of Full Lockdown

id
k

h
(

)
h

h
(

)

0

20

40

In
cid

en
ce

 p
ea

k 
ch

an
ge

 (%
)

30

40

De
at

hs
 ch

an
ge

 (%
)

No Full Lockdown
no full lockdown baseline

no full lockdown baseline

1

2

3

R
t

Partial Lockdown Full Lockdown

Effective Reproductive Number

Rt simulated (95% CI)

Rt<1

16 Mar 26 Mar 05 Apr 15 Apr 25 Apr 05 May 15 May 25 May 04 Jun 14 Jun 24 Jun
1

3

5

7

R
t

Rt reported (95% CI)

a b

c

Figure 3: Impact of non-pharmaceutical interventions on COVID-19 spreading. A) Model
estimates of percentage increases in deaths and incidence peak intensity without the implementation
of the full lockdown (based on n = 5, 000 stochastic realizations). B) Model estimates of percentage
changes in deaths and in incidence peak intensity moving the date of the full lockdown of −4/+ 4 weeks
(based on n = 5, 000 stochastic realizations). In both panels, the centre of the boxes indicates the
median, the bounds indicate the interquartile range (IQR) (i.e., the range between first quartile, Q1,
and third quartile, Q3), and the whiskers indicate the minimum and the maximum defined respectively
as Q1 − 1.5IQR and Q3 + 1.5IQR. C) Effective Reproductive Number Rt estimated on simulated
and officially reported cases. The two time series show a high positive Pearson correlation coefficient
(ρ = 0.78, p < 0.001). The shaded red area indicates Rt < 1.

Effective Reproduction Number

In Fig. 3C we show the evolution of the effective reproduction number Rt estimated using the method
from Ref. [40] on the simulated and the official reported incidence. In the simulated Rt time series we
observe the two discontinuities after the implementation of government-issued NPIs. However, we note
that the partial lockdown had the sole effect of slowing down the epidemic. Indeed, after March 16th
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the estimated Rt is still greater than 1. After the full lockdown, instead, Rt was pushed below 1 making
the containment possible. This is visible both in the simulated and the reported time series. This result
underlines the importance of the full lockdown that, despite causing a relatively small effect on mobility,
had a decisive role in bringing the outbreak under control. It is worth stressing this result. The full
lockdown constituted a key tipping point for the evolution of the epidemic pushing the reproductive
number below its critical threshold. A similar finding has been recently reported for the evolution
of the pandemic in Germany [41]. Indeed, also in that context, only the subsequent compounding of
interventions was able to bring the reproductive number below one thus curbing the spreading the virus.

Discussion

The analysis presented here shows that the effects of NPIs issued by the government strongly correlate
with a measure of human development, such as the HDI. In particular, comunas with higher HDI were
able to reduce more significantly their mobility. This, in turn, is reflected in both data and modeling
estimates by a lower burden of COVID-19 (i.e., cases, deaths) in the comunas characterized by a higher
HDI. The combination of these results raises policy-making concerns. Indeed, while lockdowns are
unquestionably effective in mitigating the epidemic activity, they may as well augment social and health
inequalities, penalizing more vulnerable communities. Other studies have found that mobility restrictions
unequally affected different regions of France [15], Italy [20], United States [19], Colombia, Mexico, and
Indonesia [21] with a higher income being associated to a larger capacity to afford social distancing.
Furthermore, observations in the United States [19, 22, 42, 43], Singapore [44] and the UK [45, 46] show
that socio-economic inequalities are linked to worst health outcomes during the current pandemic.

Our data-driven analysis also shows that the timeliness of NPIs is just one variable influencing the
outcome of the mitigation effort. The case of Santiago is emblematic. NPIs were introduced early
respect to other countries. Only two days after the first 50 confirmed cases. For comparison, Denmark
introduced measures after five, Austria after nine, Italy and Germany after fifteen days of reaching that
threshold [47]. These measures were followed by a considerable reduction in mobility and contacts, but
cases soared anyway in the metropolitan area. According to our analysis, the first set of NPIs significantly
slowed down transmissions but not enough to stop the epidemic. It was only after the introduction of
the second additional lockdown that the Santiago outbreak was brought under control. This indicates
that earlier implementation of more stringent NPIs may be beneficial in quickly mitigating the outbreak
without extending for a long time policies that potentially might unequally affect communities. Similar
results have been reported in the context of China [48], New Zealand [49], and the USA [8, 50].

The present work comes with limitations. First, we focused only on the epidemic evolution within
the Santiago Metropolitan Area and we overlooked both national and international importations after
March 1st, 2020. While it is reasonable to assume that after this date the epidemic was largely sustained
by the internal spreading (especially considering the various restrictions on international and national
mobility), we acknowledge this as a possible limitation. Second, compared to other approaches [4, 51, 52],
we considered a relatively simple disease dynamics. However, as shown in Section 2 of the Supplementary
Information, our results are robust respect to the compartmental structure adopted. Third, our mobility
measures also have limitations. Indeed, we considered the overall reduction in mobility and contacts.
However, not all mobility translates equally in terms of transmission risk. Some types of locations such
as for example restaurants and hotels have been linked to higher chances of infection than others [22].
We acknowledge that our mobile phone users’ sample was not selected to be representative of the whole
population. However, Telefónica Movistar data well represent the different socio-demographic groups
of Santiago [53]. Lastly, mobile phone data streams are dependent on the distribution of antennas.
Nonetheless, this issue is, at least partially, solved by the geographical level of aggregation we use here
which is that of the comunas. In fact, for all 342 comunas of continental Chile, the Pearson correlation
coefficient of census data and “home location” inferred from mobile phone data is 0.97 (more details in
Section 5 of the Supplementary Information).

Overall, our study characterizes the unfolding of SARS-CoV-2 in one of the largest metropolitan
areas in South America; a region that so far has received far less attention than others. It quantifies the
unequal effects across communities of behavioral changes introduced by governmental measures as well
as individual (re)actions and provides evidence that even small delays in the implementation of NPIs
can have a significant impact on the unfolding of the epidemic.
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Methods

Measuring Mobility and Contacts

In this work, we use phone data in the form of eXtended Detail Records (XDR). This stream records
every interaction (e.g., packet request) between devices and antennas. An entry in our dataset can be
formalized as a tuple 〈d, t, a〉 indicating a packet request to antenna a made by device d at time t. We
approximate the position of d with that of the antenna, which has a fixed latitude and longitude. We also
assign a home antenna to each device by finding the most active antenna during night hours. Finally,
we assign antennas to correspondent comunas according to their position. The dataset includes data for
the period 2020/02/27 − 2020/06/01 for 1.4 million devices which correspond to the 22% of the total
population in the area considered. To preserve the privacy of device owners, we analyze and display only
anonymous and aggregated results. Furthermore, no other information about the users (i.e., gender, age
etc..) was used nor available.

As specified in the previous sections, by considering the governmental response and observing varia-
tions in the overall mobility, we identify three phases of non-pharmaceutical interventions and characterize
them in terms of mobility and contacts reduction. Mobility is measured considering the fraction of de-
vices traveling between comunas. Formally, for each day t we build a mobility rate matrix σ(t) ∈ RN×N

whose element σij(t) is the fraction of devices living in comuna i that visited j on day t. It is important
to mention how we do not have information about Points of Interest (POI). Hence, the data captures all
types of mobility such as commuting for work, grocery runs, and/or recreational activities. We average
these daily rates during the three phases to obtain three distinct matrices describing mobility i) before
any restrictions, ii) during the partial lockdown, and iii) during the full lockdown.

The data we use does not provide direct information about physical contacts between users. Having
the privacy of the users in mind, and considering the various non-trivial assumptions one would need to
make, we do not attempt to estimate/infer such contacts. Instead, we focus on a metric that allows us
to capture the variation before and after the various interventions. As we describe below, the epidemic
model considers a homogeneous mixing approximation within each subpopulation (i.e., comuna) hence
the only important variable is an estimate of contacts reduction rather than the actual contacts. To this
end, contacts reduction is estimated by looking at the variation in the number of users co-located in the
same antenna. Each antenna a in comuna j has a resident population Naj

. On day t, the total number
of visitors from the same comuna is vaj

(t). Assuming homogeneous mixing, the maximum number of
contacts in antenna a is caj (t) =

(
Naj + vaj (t)

)
×
(
Naj + vaj (t)− 1

)
/2 ∼ (Naj + vaj (t))2/2. Then, we

assume the reduction of contact during the partial and full lockdown to be equal to:

rpartialaj
=

avg
16/03<t<15/05

[caj
(t)]

avg
t<16/03

[caj (t)]
rfullaj

=

avg
t>15/05

[caj (t)]

avg
t<16/03

[caj (t)]
(1)

In other words, the reduction of contacts during the partial and full lockdown is considered as the
variation of the maximum number of contacts before and after each intervention. Finally, we aggregate
at the level of comunas taking the median of these quantities over all antennas located in the same
comuna.

Modeling the Spread of SARS-CoV-2 in Santiago

The model used in this work to simulate the spread of SARS-CoV-2 is largely inspired by the Global
Epidemic and Mobility Model (GLEAM) [54–56]. In this section, we present the conceptual framework
but a full mathematical description is provided in Section 4 of the Supplementary Information.

The comunas of Santiago are represented as distinct subpopulations forming a metapopulation net-
work. Inside each one, we divide individuals into K = 16 five-year age brackets respecting the de-
mographic of different comunas [57] and we use the country-specific contact matrix from Ref. [58] to
define the rates at which different age groups mix with each other. Individuals are also divided into
compartments according to their health status. We consider a SLIR (Susceptible, Latent, Infectious,
Removed) compartmentalization setup. A similar approach has been used in several modeling studies in
the context of COVID-19 [14, 59, 60]. Interacting with Infectious, Susceptibles move to the Latent stage
in which they are not infectious yet. Only after the latent period, Latent become Infectious. Lastly,
Infectious transit to the Removed compartment at a rate inversely proportional to the infectious period.
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In Section 2 of the Supplementary Information we repeat the analyses for another compartmentalization
that includes pre-symptomatic and asymptomatic transmission. The findings are not impacted by a
different compartmental setup. Furthermore, the simpler SLIR scheme leads to a closer reproduction of
the observed deaths.

Individuals can get the infection interacting with infected in their home and in other connected
metapopulations. To model this aspect, we consider the mobility network previously introduced to
describe an effective coupling (i.e., the strength of connection) between comunas. Technically, we use
a time-scale separation technique and approximation [55, 61] to define a “force of infection” λkj that
expresses the infection rate for individuals in age group k residing in comuna j:

λkj =
λkjj

1 + σj/τ
+
∑
i

λkjiσji/τ

1 + σj/τ
, (2)

τ defines the time scale of mobility and σj =
∑

i 6=j σji is the total mobility rate of population j.
The first term in Eq. 2 represents the contribution from active infections in comuna j, and the sum
instead describes the effective contribution from cases in other connected comunas i. As mentioned
above, the data we use captures all types of movements across comunas. Hence, the coupling between
subpopulations accounts for mobility linked to work (i.e., commuting), grocery, and other activities. In
our formulation, we assume that such movements take place over a time-scale that is much smaller than
the disease time-scale and the temporal resolution of the epidemic data. This assumption is supported by
the data. In fact, as shown in Supplementary Figure 12, the average duration of trips outside the home
comuna is 4.5 hours and 85% of them take place within 8 hours. Although users may travel outside of
their comuna for more than 8 hours, the probability of a trip to last more than one day is less than 3%.
The time-scale separation approach allows us to integrate the faster dynamics - that is, the mobility - and
consider their contribution to the spreading processes without simulating individual mobility patterns
and thus considerably simplifying the computational costs of the model. It is important to notice how
such time-separation approximation is exact only in the case τ−1 → 0. However, it holds as long as the
faster time-scale is shorter than the transition rates of the disease [61]. As mentioned in details below,
for COVID-19 these are of the order of several days. We set the value of τ−1 = 1/3 day to account also
for commuting patterns. In Section 4 of the Supplementary Information we provide the full derivation
and more details.

Government interventions are implemented by changing the mobility network on 16/03 (partial lock-
down) and again on 15/05 (full lockdown) to reflect the corresponding variations in the coupling between

comunas. Similarly, on these dates, we multiply the age contact matrix of each comuna by rpartialj and

rfullj , respectively. We do not explicitly account for school closure since its effect is already included into
the changes inferred from mobile devices data.

The model is fully stochastic and transitions among compartments are simulated through chain
binomial processes [62–64]. More in detail, on a given time step the number of individuals transiting from
compartment Xk

j to compartment Y k
j is extracted from a binomial distribution: PrBin(Xk

j , pXk
j→Y k

j
).

In the main text we present results for a latent period of 4 days and an infectious period of 2.5 days,
which imply a generation time TG = 6.5 days, in line with current estimates [65, 66]. In Section 1 of the
Supplementary Information we show a sensitivity analysis to these choices which do not substantially
impact the findings. We simulate deaths considering the estimates of the Infection Fatality Rate from
Ref. [34] and a delay ∆ after the transition to the Removed compartment. This delay is included
to account for the time span between isolation of acute cases (i.e., hospitalization), death and official
reporting, which can be more than two weeks [67].

Initial seeding is done using the projections of active cases on March 1st, 2020 in the Metropolitan
area of Santiago from Ref. [14] and assigning infections to different comunas proportionally to the
population distribution. The calibration is performed on weekly deaths using an Approximate Bayesian
Computation (ABC) Rejection method [23, 24]. At each step of the ABC algorithm, a set of parameters
θ is sampled from a prior distribution and an instance of the model is generated using these parameters.
Then, an output quantity E′ of the model is compared to the corresponding real quantity E using a
distance measure s(E′, E). If this distance is greater (smaller) than a predefined tolerance ε, then the
sampled set of parameters is discarded (retained). After a sufficient number of iterations, the distribution
of accepted sets will approximate the posterior distribution of parameters P (θ,E) given the evidence
E from the data. In this work, we set a flat uniform prior on the parameters the basic reproduction
number R0 ∈ [2, 4] (in steps of 0.02) and on the delay in deaths ∆ ∈ [14, 21] days (in steps of 1
day). We perform calibration using the median absolute percentage error as a distance metric with a
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tolerance of 20% on weekly deaths (in the Supplementary Information we present a sensitivity analysis
on this tolerance). We run 140, 000 iterations which correspond to about 200 stochastic realizations for
each possible parameters set. We use the official data issued by the Department of Statistics of the
Chilean Minister of Health [68]. We consider both COVID-19 “confirmed” and “suspected” deaths to
perform the calibration. In Supplementary Figure 1 we support this decision showing that considering
only confirmed COVID-19 deaths we still obtain a significant anomaly in mortality. Nonetheless, we
also repeat the calibration only on “confirmed” deaths showing that the posterior distribution of R0 is
smaller but not significantly different. Model projections are produced sampling parameter sets directly
from the posterior distribution and generating an ensemble of trajectories. In this work we generate
model estimates sampling 5, 000 sets on which we compute median and confidence intervals.

Measuring Socioeconomic Differences

We measure socioeconomic differences using the Human Development Index (HDI). The HDI is a co-
efficient that measures the level of achievement of key aspects of human development (including life
expectancy, education, and per capita income) in the population considered [18]. It is released regularly
for different countries by the United Nations in the Human Development Report [69]. In Chile, the
last official calculation of the HDI at the level of comunas was done in 2000 [70]. However, to rely on
more updated estimates, we computed the HDI using census data for the period 2013-2015, following the
guidelines provided in Ref. [18]. These estimates have been previously used to study the socioeconomic
determinants of mobility in Santiago [71]. The code used for the calculation of HDI can be found at [72].
In Supplementary Figure 4 we repeat the analyses for other socio-economic indicators. In particular, we
consider separately the components of the HDI, namely the Life Expectancy Index (LEI), the Education
Index (EI), and the Income Index. The general pattern presented in the main text holds also for the
other indicators considered.
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