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Abstract
Over the past three decades, highly increased whitefly (Bemisia tabaci) populations have been observed on the staple food 
crop cassava in eastern Africa and associated with ensuing viral disease pandemics and food insecurity. Increased whitefly 
numbers have also been observed in other key agricultural crops and weeds. Factors behind the population surges on different 
crops and their interrelationships are unclear, although in cassava they have been associated with specific populations within 
the Bemisia tabaci species complex known to infest cassava crops in Africa. This study carried out an in-depth survey to 
understand the distribution of B. tabaci populations infesting crops and uncultivated plant hosts in Uganda, a centre of origin 
for this pest complex. Whitefly samples were collected from 59 identified plant species and 25 unidentified weeds in a coun-
trywide survey. Identities of 870 individual adult whiteflies were determined through mitochondrial cytochrome oxidase 1 
sequences (651 bp) in the 3′ barcode region used for B. tabaci systematics. Sixteen B. tabaci and five related whitefly putative 
species were identified based on > 4.0% nucleotide divergence, of which three are proposed as novel B. tabaci putative spe-
cies and four as novel closely related whitefly species. The most prevalent whiteflies were classified as B. tabaci MED-ASL 
(30.5% of samples), sub-Saharan Africa 1 (SSA1, 22.7%) and Bemisia Uganda1 (12.1%). These species were also indicated 
to be the most polyphagous occurring on 33, 40 and 25 identified plant species, respectively. Multiple (≥ 3) whitefly species 
occurred on specific crops (bean, eggplant, pumpkin and tomato) and weeds (Sida acuta and Ocimum gratissimum). These 
plants may have increased potential to act as reservoirs for mixed infections of whitefly-vectored viruses. Management of 
whitefly pest populations in eastern Africa will require an integration of approaches that consider their degree of polyphagy 
and a climate that enables the continuous presence of crop and uncultivated plant hosts.

Keywords  Whitefly · Bemisia tabaci · MtCO1 · Genetic diversity · Host range · East Africa

Key message

•	 Partial mtCO1 sequences of 870 whiteflies from > 59 
plant species across Uganda, a country known as a centre 
of diversity for this pest complex, indicated 16 Bemisia 
tabaci (three of which are novel species) and five closely 
related species (four of which were novel).

•	 MED-ASL, SSA1 and B. Uganda1 whiteflies were the 
most abundant, widely distributed and polyphagous. 
Control measures targeting these populations will be 
challenging with the need to consider the wide range of 
uncultivated plants that may act as refuges.
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Introduction

Production of food, vegetable and cash crops in Uganda 
over the last two decades has been constrained dramati-
cally by pests and diseases (Nabbumba and Bahiigwa 2003; 
PARM 2017; Echodu et al. 2019). Whiteflies belonging to 
the genus Bemisia are among the most important pests 
(Okonya and Kroschel 2016; Gayi et al. 2017; Mbeyagala 
et al. 2017; Kalyebi et al. 2018). Bemisia tabaci species 
cause direct feeding damage on plants through extraction 
of large quantities of phloem sap leading to the excretion 
of honeydew which serves as a medium for sooty mould 
growth reducing photosynthesis and marketable produce 
(Byrne and Bellows 1991). Collectively, B. tabaci spe-
cies can vector several hundred viruses, the vast majority 
(> 320 species) belonging to the genus Begomovirus, and 
other economically important whitefly-transmitted viruses 
belonging to the genera Ipomovirus, Carlavirus, Crini-
virus, Torradovirus and Polerovirus (https​://ictv.globa​
l/repor​t; Polston et al. 2014; Zerbini et al. 2017; Ghosh 
et al. 2019). Begomoviruses have for several decades been 
considered the major group of emerging plant pathogens 
globally (Varma and Malathi 2003; Seal et al. 2006a, b; 
García-Arenal and Zerbini 2019). Begomovirus disease 
outbreaks are commonly associated with increased white-
fly abundance that can elevate exchange of viruses within 
the crop as well as with neighbouring uncultivated plants 
(García-Arenal and Zerbini 2019).

In sub-Saharan Africa, specifically Uganda, dramati-
cally increased whitefly population densities (> 200 white-
fly adults for the top five leaves) (Sseruwagi et al. 2004) 
were first reported on the staple food crop cassava in 1990 
in association with the severe cassava mosaic disease 
(CMD) pandemic that has caused devastation since this 
time (Otim-Nape et al. 2000; Colvin et al. 2004). Recom-
bination and reassortments among genome components 
of begomoviruses causing cassava mosaic, as well as in 
association with disease outbreaks in other exotic crops, 
are well documented for the African continent as well 
as in the neighbouring south-west Indian Ocean Islands 
(Seal et al. 2006a; Lefeuvre et al. 2007; Rey et al. 2012; 
Rey and Vanderschuren 2017). Cassava is native to South 
America (Leone 1977; Olsen and Schaal 2001) and its 
introduction to West and East Africa is considered to have 
occurred via the Indian Ocean islands in the eighteenth 
century (Guthrie 1987). Both cassava whitefly vector 
populations driving the African cassava mosaic pandemic 
and the causal viruses are, however, not present in South 
America and are considered indigenous to eastern Africa 
(Ndunguru et al. 2005; Rey et al. 2012; Boykin et al. 2013; 
Mugerwa et al. 2018). A handful of uncultivated plant spe-
cies in Uganda have been discovered as hosts colonised 

by cassava B. tabaci, but with many of these weeds also 
non-indigenous to Africa, the native plant host ranges of 
the African cassava whitefly populations remain elusive 
(Sseruwagi et al. 2005, 2006).

A number of suggestions have been made as to the causes 
of the dramatic cassava whitefly population increases over 
the past few decades, which have included (a) the presence 
of highly fecund invasive B. tabaci species on cassava (Legg 
et al. 2002, 2014b; Sseruwagi et al. 2005; Boykin et al. 2018) 
and (b) an increase in the cultivation of virus-resistant but 
whitefly-susceptible cassava varieties in Uganda that were 
reported to attract high populations of whitefly (Omongo 
et al. 2004, 2012). It is apparent that there are many factors 
contributing to the increased whitefly abundance and that 
singling out any with higher impact is complex (Macfadyen 
et al. 2018, 2020). There are many knowledge gaps that still 
need to be addressed and one of these is to what extent other 
crops and uncultivated plants contribute to the population 
dynamics of the abundant whitefly populations on cassava.

Members of the B. tabaci cryptic species complex pos-
sess distinct biological traits not only in their abundance 
and invasiveness, but also in their resistance to insecticides, 
host colonisation range, inducement of phytotoxic disor-
ders and ability to transmit specific begomoviruses (Perry 
1985; Brown et al. 1995; Jones 2003; Seal et al. 2006b; Liu 
et al. 2007; Vyskočilová et al. 2019; Chi et al. 2020). In the 
absence of reliable morphological features, mtCO1 barcod-
ing (Frohlich et al. 1999; Dinsdale et al. 2010), genome-wide 
SNP markers and whole genome sequencing approaches 
(Wosula et al. 2017; Chen et al. 2019; de Moya et al. 2019; 
Elfekih et al. 2019; Mugerwa et al. 2020) have been used 
to generate an improved understanding of the systematics 
within this species complex. A partial region of the mtCO1 
gene has been the molecular marker used most widely by the 
whitefly research community to classify B. tabaci species, 
with to date > 40 cryptic putative species proposed based 
on > 3–4% nucleotide divergence (Frohlich et al. 1999; Din-
sdale et al. 2010; Mugerwa et al. 2018; Vyskocilova et al. 
2018; Kunz et al. 2019). In Africa, B. tabaci species (East 
Africa 1 (EA1), Indian Ocean (IO), Mediterranean (MED), 
Middle East-Asia Minor (MEAM1, MEAM2-Africa), 
Morocco, New World (NW1)-Sudan [EU760727] and sub-
Saharan Africa (SSA) species SSA1‒SSA13 have been 
reported on beans, cassava, cotton, eggplant, tomato, sweet 
potato or various uncultivated plants (Frohlich et al. 1999; 
Legg et al. 2002, 2014b; Berry et al. 2004; Sseruwagi et al. 
2006; Boykin et al. 2012; Mugerwa et al. 2012, 2018; Tahiri 
et al. 2013; Esterhuizen et al. 2013).

Although the 3′ mtCO1 sequence has been widely 
used to delimit cryptic species within the B. tabaci com-
plex, studies are progressively revealing some classifica-
tions to be errors caused by nuclear mitochondrial DNA 
(NUMTs) or chimeric PCR products (Tay et al. 2017; de 

https://ictv.global/report
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Moya et al. 2019; Vyskočilová et al. 2018; Kunz et al., 
2019), as well as species status not correlating consistently 
with divergence in the mtCO1 barcode region (Qin et al. 
2016; Vyskočilová et al. 2018; Mugerwa et al. 2020). For 
describing whitefly diversity in this study, we have nev-
ertheless adopted it as a method to indicate species which 
should be considered as putative awaiting further biologi-
cal and genetic studies to confirm their taxonomic status. 
We have also within specific species referred to subgroups 
to assist correlation with the existing literature; within 
SSA1, five subgroups (SG) have been reported (Legg et al. 
2014b; Ghosh et al. 2015) and at least two distinct species 
are present within SSA1 (Mugerwa et al. 2020). Similarly, 
within the MED species, a population termed ‘ASL’ has 
been reported to be a distinct ‘non-MED’ species based 
on its failure to interbreed with MED-Q1 and MED-Q2 
populations (Vyskočilová et al. 2018). In this study, the 
host range and prevalence of MED-ASL are therefore 
considered independently of data obtained for MED-Q1 
whiteflies.

Field surveys and research efforts on African white-
flies have to date focussed on cassava due to the severity 
of the viruses they spread able to cause CMD as well as 
cassava brown streak disease (CBSD) (Storey and Nich-
ols 1938; Monger et al. 2001; Legg et al. 2004, 2006; 
Pennisi 2010; Alicai et al. 2016; Tomlinson et al. 2017). 
Increases in whitefly-transmitted disease epidemics and 
whitefly population densities have, however, been noted in 
the last decade in eastern Africa across other many other 
agricultural crops (H. Mugerwa personal observations). 
In order to understand the factors driving these increases 
and the interrelationships between whitefly populations 
on crops and uncultivated plants in eastern Africa, efforts 
must initially focus on gaining a better understanding of 
the prevalence and host range of different members of the 
cryptic species complex B. tabaci. The diversity of 121 
whiteflies from five weeds surrounding cassava crops in 
Uganda recently indicated that these were colonised by 
a staggering 13 different whitefly species (as indicated 
by mtCO1 barcode sequence) whose identity and distri-
bution was quite distinct to the diversity reported from 
cassava (Mugerwa et al. 2018). This study expanded the 
adult whiteflies characterised to ones collected from 59 
identified and 25 unidentified plant species across Uganda 
to generate a greater understanding of the diversity of 
whiteflies present on different plant species, as well as 
reveal possible alternate hosts for whiteflies devastating 
cassava and other crops in eastern Africa. Such knowledge 
is vital for the development of effective integrated manage-
ment practices aimed at controlling the rapidly emerging 
outbreaks of both whitefly and whitefly-transmitted viral 
diseases in sub-Saharan Africa.

Materials and methods

Field selection and sampling criteria

Whitefly adults were collected on crop and weed plants 
(Tables  1, 2) in the field from July to August 2013 in 
Uganda. Sampled sites were selected based on observation 
of whiteflies on crops and weed species, sampling along the 
main and rural roads separated by intervals of 10–20 km as 
described by Sseruwagi et al. (2004) and Mugerwa et al. 
(2018). Digital photographs of the different weeds were 
taken to aid host plant species identification. Adult white-
flies were collected using an aspirator and stored in 90% 
ethanol; adults collected from the same host plant in a sam-
pled site were stored in the same tube, but those collected 
from different host plants were stored in different tubes. For 
each collection site, geo-coordinates were recorded using a 
Geographical Positioning System (GPS, Garmin eTrex Vista 
Cx) together with the locality name (village, sub-county and 
district). Geo-coordinates were used to generate maps with 
ArcGIS 10.3.1 software (http://deskt​op.arcgi​s.com/en/).  

Whitefly DNA extraction

Three individual adult whiteflies were selected randomly 
from each sample. Genomic DNA was extracted from an 
individual whitefly by crushing it in 50 µL of 10% (w/v) 
Chelex 100 sodium form solution (Sigma-Aldrich, St Louis, 
MO, USA) in a 1.5-mL Eppendorf tube using a plastic rod 
following the procedure of Walsh et al. (1991). The extracts 
were incubated 20 min at 56 °C, then 5 min at 100 °C before 
centrifugation (5 min, ~ 16000 g) and storage at −20 °C till 
use as template for PCR amplification.

Mitochondrial DNA amplification, cloning 
and sequencing

Amplification of the partial mtCO1 fragment was performed 
using forward primer 2195Bt (5ʹ-TGR​TTT​TTT​GGT​CAT​
CCR​GAAGT-3ʹ) and reverse primer C012/Bt-sh2 (5ʹ-TTT​
ACT​GCA​CTT​TCT​GCC​-3ʹ) (Mugerwa et al. 2018). PCR 
reaction mixtures (20µL) contained 10µL of 2 × reSource™ 
Taq Mix (reSource Taq DNA Polymerase, 6 mM MgCl2, 
2 mM dNTPs) (Source BioScience, UK), 1µL of each 10 µM 
primer, 6µL of molecular biology-grade water (Sigma-
Aldrich) and 2µL of DNA template. Initial denaturation 
(94 °C 2 min) was followed by 35 cycles of denaturation 
(94 °C, 20 s), primer annealing (52 °C, 30 s) and exten-
sion (72 °C, 1 min). A final extension (72 °C, 10 min) was 
performed before storing reactions at 4 °C. Electrophoresis 
of PCR products was on 2%(w/v) agarose gels in 0.5 × TBE 

http://desktop.arcgis.com/en/
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stained with RedSafe™ (iNtRON Biotechnology, Korea). 
PCR products were visualised under UV light (302 nm) and 
those of the expected size (864 bp) purified for sequencing 
and cloning using a reSource™ PCR purification kit (Source 
BioScience, UK). Purified PCR products were sent for 
Sanger sequencing (Source BioScience, UK). Where a novel 
sequence was identified, purified PCR products were cloned 
from three separate PCR reactions using the pGEM®-T easy 
vector kit (Promega, UK) and resequenced to confirm the 
novel sequence. Sequences generated were deposited in 
GenBank (accession numbers MK444227-MK445130).

Identification of NUMTS and chimeric PCR products 
in generated sequence data

Identification of NUMTs and PCR artefacts in the sequences 
obtained was as described by Vyskočilová et al. (2018) and 
Kunz et al. (2019). Briefly, Sanger sequences generated in 
this study were aligned with high-throughput sequencing 
(HTS)-derived full mitogenome sequences downloaded 
directly from GenBank in Geneious Prime® 2019.2.1 with 
the MUSCLE alignment option set to eight iterations. All 
Sanger sequences which contained indels were eliminated 
and not considered for further analysis. The remaining 
Sanger sequences together with HTS-sequences were then 
trimmed to 651 bp and translated to amino acid residues 
from appropriate codon positions using the invertebrate 
mitochondrial DNA genetic codes to: (i) identify potential 
premature stop codons and (ii) enable amino acid residue 
alignment against the HTS reference COI amino acid data-
set. Sanger sequences which had premature stop codons and 
amino acid substitutions in highly conserved regions as iden-
tified within the trimmed HTS reference CO1 gene set were 
eliminated. The remaining sequences (n = 870) were used 
for further analysis.

Global B. tabaci samples, outgroups 
and phylogenetic analysis

Whitefly mtCO1 sequences obtained in this study were 
aligned together with equivalent reference whitefly 
sequences obtained from Kunz et al. (2019) in Geneious 
Prime® 2019.2.1. The model of molecular evolution was 
determined using JModelTest version 2.1.10. and phylo-
genetic trees generated using MrBayes version 3.2.6 set 
with the following commands: lset nst = 6 rates = gamma. 
MrBayes was run for 50 million generations and trees were 
sampled every 1000 generations. All runs reached a plateau 
in likelihood score (i.e. stationarity), which was indicated 
by the standard deviation of split frequencies (0.015), and 
the potential scale reduction factor (PSRF) was close to one, 
indicating the MCMC chains converged. The generated tree Ta
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file was viewed and edited in FigTree version 1.4.4 (http://
tree.bio.ed.ac.uk/softw​are/figtr​ee/).

Hierarchical analysis of whitefly species present 
on different plants

Hierarchical cluster analysis was used to infer whitefly–host 
range profiles based on whitefly numbers on different host 
plants. Data from Mugerwa et al. (2018) obtained from the 
same locations and time period were added to the data gener-
ated in this study to increase the robustness of the analysis, 
resulting in 991 sequences from 64 hosts. Host plants on 
which adult whiteflies were absent were denoted as 0. To 
find the optimal number of clusters, a combination of 23 
cluster validation indices implemented in the R statistical 
package NbClust (Charrad et al. 2014) were used. Cluster 
uncertainty was determined using the R package Pvclust 
(Suzuki and Shimodaira 2006). Clusters with Approximately 
Unbiased (AU) p-values > 83 were considered strongly sup-
ported by the data.

Results

Sampling and phylogenetic analysis

Three individual whiteflies were extracted and sequenced 
for each specific host location sample and 39.7% of sam-
ples contained a mix of whitefly species. A total of 870 
mtCO1 high-quality sequences from individual white-
flies were selected for further analysis after removing 34 
sequences that contained errors/pseudogenes as described in 
Vyskočilová et al. (2018). The identities of individual white-
flies were determined based on their phylogenetic placement 
and sequence identity of their partial mtCO1 sequences with 
already defined species (Tables 1, 2); sequences that clus-
tered with B. tabaci species and diverged < 4.0% from the 
mtCO1 nucleotide (nt) sequences of already defined species 
were classified as the corresponding species. Sequences that 
diverged by ≥ 4.0% from the mtCO1 nt sequences of already 
defined B. tabaci species were classified as novel species. 
Based on these criteria, 16 B. tabaci species were identified, 
of which three were novel (hereby named SSA14-SSA16) as 
they only shared a maximum nt identity of 86.0‒95.5% to 
B. tabaci sequences already present in GenBank (Table 3). 
A further five whitefly species were identified that grouped 
outside but close to the B. tabaci species complex. One of 
these represented Bemisia Uganda1 (n = 105), while the 
other four represented novel putative species and only pos-
sessed maximum sequence identity of 86.9–88.1% with an 
unidentified Bemisia species (PDBI – MN056066). For the 
purpose of this manuscript, the new species are referred to as 

B. Uganda2 (n = 1), B. Uganda3 (n = 3), B. Uganda4 (n = 2) 
and B. Uganda5 (n = 1).

Phylogenetic analysis (Fig. 1) grouped the partial mtCO1 
sequences into four of the 11 high-level genetic groups 
(HLGG) identified by Dinsdale et al. (2010) and termed 
‘Uganda’, ‘SSA’, ‘New World’ and ‘Africa-Middle East-Asia 
Minor’. A phylogeny with collapsed branches is presented 
in Fig. 1, while a phylogeny with un-collapsed branches is 
presented in Supplementary Fig. 1. At the base of the phy-
logeny, six SSA species are placed in the SSA HLGG with a 
probability value of 1, separating them from the six species 
in the Uganda clade (B. Uganda1-5 and Bemisia sp. PDB1). 
Within the SSA HLGG, our study identified 344 sequences 
assigned to SSA1 (n = 198), SSA2 (n = 36), SSA6 (n = 81) 
and SSA9 (n = 27), as well two whiteflies representing a 
new putative species SSA16 (Fig. 1). No representatives of 
SSA3 were found. The novel SSA16 sequences had 95.5% 
sequence identity to an SSA9 sequence (UG99) identified 
in this study.

The New World HLGG had a probability value of 0.96 
and consisted of five clades with the sequences obtained 
previously from the New World forming two of the clades 
clustering together but away from the SSA species. Adjacent 
to NW1 and NW2 species were SSA14 and SSA15 sup-
ported with a low probability value of 0.46, while SSA10 
species was indicated to be basal in the New World HLGG, 
but with a low probability value of 0.43. SSA14 and SSA15 
shared 81.3–84.9% sequence similarity with New World 1 
and 2 species (Table 3).

A large proportion (46%) of the Ugandan whitefly 
sequences from this study clustered into the Africa-Middle 
East-Asia Minor HLGG clade, distinct from the other clades 
with 0.96 probability value. The 401 partial 651 bp mtCO1 
‘barcode’ sequences were assigned to previously described 
species as follows: EA1 (n = 4), IO (n = 16), MEAM1 
(n = 39), MEAM2 Africa (n = 2), MED-ASL (n = 265), 
MED-Q1 (n = 47), SSA11 (n = 2), SSA12 (n = 2) and SSA13 
(n = 24).

Abundance and host range of whitefly species

The most abundant whitefly species identified from indi-
vidual mtCO1 sequences were MED-ASL (30.5%), SSA1 
(SG1 = 15.7%, SG2 = 3.7% and SG3 = 3.3; 22.7%) and B. 
Uganda1 (12.1%) (Fig. 2). These species were also found 
on the largest number of different identified plant species 
(33 for MED-ASL, 40 for SSA1 and 25 for B. Uganda1), 
but the presence of a small number of flies on a host can 
be through chance particularly for more abundant species. 
Hierarchical clustering of whitefly species numbers based 
on their presence on the various host plants was therefore 
undertaken and revealed four distinct clusters based on 
optimal cluster numbers estimated using NbClust (Fig. 3, 

http://tree.bio.ed.ac.uk/software/figtree/
http://tree.bio.ed.ac.uk/software/figtree/
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Supplementary Fig. 2). MED-ASL, SSA1 and SSA6 formed 
separate individual clusters with MED-ASL predominantly 
found on Cucurbita moschata (pumpkin, 55/265 whiteflies), 
Sida acuta (wireweed, 48/265) and Ipomoea batatus (sweet 
potato, 38/265), whereas SSA1 was predominantly found on 
Manihot esculenta (cassava, 69/198) and SSA6 on Ocimum 
gratissimum (African basil, 70/81). The fourth cluster con-
sisted generally of low and variable numbers of whiteflies 
on the other plant hosts (Supplementary Fig. 2), but with a 
sub-cluster of B. Uganda1, MED Q1 and SSA2 due to their 
strong associations with sweet potato (37/105 B. Uganda1), 
tobacco (26/47 MED Q1) and cassava (29/36 SSA2).

Hierarchical clustering of host plants based on whiteflies 
detected was also performed. Four groups were apparent 
with cassava and African basil-forming individual clusters 
due to each having exceptionally high numbers of SSA1-
SSA2 and SSA6 whiteflies, respectively. A third cluster con-
sisted of sweet potato, Sida acuta and pumpkin which all 
had high numbers of MED-ASL whiteflies (Supplementary 
Fig. 3). The fourth cluster consisted of the rest of the host 
plants which had lower numbers of whiteflies and less robust 
associations.

The data was also examined by eye to determine whether 
further whitefly–host plant species associations were sug-
gested. If associations supported by at least three typed 
whiteflies are selected, a pattern of multiple whitefly spe-
cies found on specific crops becomes apparent (Table 4). 
B. tabaci species SSA1 and SSA2 are known as ‘cassava 
whiteflies’ and this close host association holds for SSA2, 
but SSA1 whiteflies appeared more polyphagous with ≥ 3 
whiteflies collected from bean, cowpea, eggplant, Jatropha 
gossypifolia, N. rustica, pumpkin and tomato as well as the 
weeds Erythrina abyssinica, O. gratissimum and S. acuta.

Within SSA1, ‘subgroups’ have been described based 
on ~ 1–1.5% mtCO1 nucleotide sequence differences (Legg 
et al. 2014b). Three of these subgroups have been con-
firmed recently to represent two distinct species, namely 
SSA1-SG1/SG2 as one species and SSA1-SG3 as another 
(Mugerwa et al. 2020). Differences in the abundance and 
host range of these two species are apparent in this study 
with the majority of one species (SSA1-SG1 and SSA1-
SG2) collected from cassava, in contrast to none of 29 
whiteflies typed as SSA1-SG3. The greatest numbers of 
SSA1-SG3 were from eggplant (5/29 SG3 sequences) and 
common bean (5/29 SG3 sequences) (Table 1). For the 
other SSA species collected (SSA6, SSA9-SSA16), there 
was also no association with cassava, with the only clear 
pattern of association being that of SSA6 with African 
basil (70/81 SSA6). For the other SSA species, five of 
them (SSA11, SSA12, SSA14-SSA16) were only detected 
once or twice and hence host associations could not be 
inferred. For SSA9, 27 whiteflies were distributed across 
eight plant families, but with the greatest number (6/27) Ta
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on tomato (Table 1). No host associations were visible for 
either the nine SSA10 whiteflies or the 24 SSA13 white-
flies collected in this study.

Six of the plant species (bean, eggplant, pumpkin, tomato, 
S. acuta and African basil) from which ≥ 3 whiteflies of 

SSA1 were collected, also represented plants from which 
MED-ASL was collected. The latter species appears the 
most polyphagous of the whitefly species sampled in this 
study, with ≥ 3 whiteflies also collected from various bras-
sicas, okra, sesame, sweet potato, as well as weeds including 
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Aspilia africana, Hoslundia opposita and Solanum incanum. 
The predominant sampled plants for MED-ASL in this study 
were pumpkin (20.6%), S. acuta (18.1%) and sweet potato 
(14.3%) (Table 1). Whiteflies belonging to the globally dis-
tributed and highly polyphagous MED-Q1 and MEAM1 spe-
cies were much less abundant than MED-ASL, with only 47 
MED-Q1 and 39 MEAM1 whiteflies detected in contrast 
to the 265 MED-ASL. MED-Q1 were collected predomi-
nantly from tobacco (26/47), whereas the largest proportions 
of MEAM1 flies came from eggplant (10/39) and tomato 
(7/39).

Within the Uganda HLGG clade, B. Uganda1 was the 
most abundant (n = 105) with ≥ 3 whiteflies collected from 
bean, Bidens pilosa, Conyza sumatrensis, eggplant, Sola-
num nigrum, sweet potato, tobacco and tomato. The highest 
occurrence of B. Uganda1 was on sweet potato (37/105), 
common bean (11/105) followed by tomato (8/105). For 
the other ‘Bemisia Uganda’ whiteflies, only one whitefly 
was found for each of B. Uganda2 and B. Uganda5 species 
(collected from bean and Dichrocephala integrifolia). Four 
whiteflies of B. Uganda3 were detected (from bean and two 

weeds) and two of B. Uganda4 (from sweet potato and a 
weed) (Table 2).

The three plant species (sweet potato, bean and tomato) 
that B. Uganda1 was collected in highest numbers from were 
the same from which high numbers of B. tabaci species were 
collected (Table 4); the following plant species were ones 
on which the most diverse number of Bemisia species were 
found: bean (SSA1, MED-ASL, B. Uganda1), eggplant 
(SSA1, SSA9, MED-ASL, MEAM1, B. Uganda1), pump-
kin (SSA1, SSA9, MED-ASL), sweet potato (MED-ASL, B. 
Uganda1), tomato (SSA1, SSA9, MED-ASL, MEAM1, IO, 
B. Uganda1), Sida acuta (SSA1, SSA13, MED-ASL, MED-
Q1) and African basil (SSA1, SSA6, MED-ASL).

Geographical distribution of prevalent whitefly 
species

Figure 4 details the geographical distributions of the most 
predominant B. tabaci species (MED-ASL 30.5%, SSA1 
22.7%, SSA6 9.3%, MED-Q1 5.4%, MEAM1 4.5% and 
SSA2 4.1%). SSA1(-SG1) occurred throughout the country 

Fig. 2   Percentage composition 
of whitefly species identified 
in Uganda on different host 
plants during July–August 
2013. The abbreviations for the 
species: SSA = sub-Saharan 
Africa, IO = Indian Ocean, 
MEAM = Middle East-Asia 
Minor, MED = Mediterranean 
and B. Uganda = Bemisia 
Uganda



	 Journal of Pest Science

1 3

Cannabis sativa

Crassocephalum crepidioides

Senna occidentalis

Dichrocephala integrifolia

Emilia coccinea

Etakari (local name)

Kabowabowa (local name)

Tithonia diversifolia

Gossypium herbaceum

Senna sp.
Microglossa pyrifolia

Solanum aethiopicum

Oxygonum sinuatum

Ageratum sp
Nicotiana rustica
Toovu (local name)

Arachis hypogaea

Abelmoschus esculentus

Erythrina abyssinica

Eputoni (local name)

Solanum nigrum

Jatropha curcas

Conyza sumatrensis

Helianthus annuus

Amaranthus spinosus

Capsicum annuum

 Helianthus annuus

Sesamum indicum

Bidens pilosa

Mimosa sp.

Erlangea tomentosa

Bothriocline tomentosa

Cleome gynandra

Spathodea campanulata

Aspilia Africana

Lantana camara

Njoka Etaruuma (local name)

Luyamayama (local name)
Manihot glaziovii

Striga hermonthica

Vigna unguiculata

Brassica sp.

Carica papaya

Vernonia amygdalina

Rotheca myricoides
Ageratum conzyoides
Leonotis nepetaefolia

Brassica oleracea

Pavonia urens

Kigombolola (local name)

Hoslundia opposita
Solanum incanum

Ribes uva-crispa

Ocimum gratissimum

Euphorbia heterophylla

Nicotiana tabacum
Commelina benghalensis

Ipomoea batatas

Phaseolus vulgaris

Cucurbita moschata
Sida acuta

Solanum melongena
Solanum lycopersicum
Unknowns

Manihot esculenta

S
S
A
1

S
S

A
2

S
S
A
6

M
E
D
-A

S
L

M
E

D
-Q

1
M

E
A

M
1

M
E

A
M

2

IOE
A

1

B
 U

G
1

S
S

A
9

S
S

A
10

S
S

A
11

S
S

A
12

S
S

A
13

S
S

A
14

S
S

A
15

S
S

A
16

B
 U

G
2

B
 U

G
3

B
 U

G
4

B
 U

G
5

0

1

Whitefly counts

0     20    40     60



Journal of Pest Science	

1 3

(Fig. 4a), mostly in the central region (80/137), followed by 
the northern (24/137), eastern (17/137) and western (16/137) 
regions. SSA1-SG2 was collected only in the central region 
(32/32), the same region from which the highest number of 
SSA1-SG3 whiteflies was collected from 18/29. SSA1-SG3 
was also collected from the northern region (9/29) and occa-
sionally in the western (2/29) region. SSA2 was prevalent in 
the northern region (22/36) and occurred less in the eastern 
(8/36), western (4/36) and central (2/36) regions (Fig. 4b). 
This contrasts markedly with SSA1 as well as all other spe-
cies detected which were in lower prevalence in northern 
Uganda. The MED-ASL population occurred throughout the 
country and mostly in the central region (99/265), followed 
by the eastern (85/265) and western (63/265) regions. It 
occurred least in the northern region (18/265) (Fig. 4c). The 
other MED population identified, namely Q1, occurred only 
in the central (39/47), eastern (13/47) and western (5/47) 
regions (Fig. 4d). The B. Uganda1 species was also found 
abundant (12.1% of sequences) in this survey in all regions 
of Uganda except the north (Fig. 4e). It occurred most in 
the central region (55/105), followed by the western region 
(37/105) and least in the eastern region (13/105). Like B. 
Uganda1, SSA6 had a countrywide distribution except for 
the north (Fig. 4f). It occurred most in the central region 
(44/81), followed by the eastern (19/81) and western (18/81) 
regions. The MEAM1 species occurred in areas close to 
Lake Victoria in the central region (figure not shown).

Discussion

Whitefly genetic diversity

This study represents one of the most comprehensive studies 
in Africa to date to establish the identity of whiteflies on key 
crops and neighbouring weeds. Twenty-one whitefly species 
were identified through their partial mtCO1 sequences, of 
which seven represented novel species diverging by > 4% 
with any mtCO1 nucleotide sequence in GenBank. Three 
of these seven clustered within the B. tabaci clade and are 
named as B. tabaci SSA14, SSA15 and SSA16, following 
the proposed nomenclature by Boykin et al. (2018). The four 
other new whitefly species grouped outside the B. tabaci spe-
cies complex cluster (sharing only 86.9–88.1% maximum nt 
identity with GenBank sequence—PDBI–MN056066) and 

were provisionally named B. Uganda2–B. Uganda5 prior 
to more thorough taxonomic classification. The remain-
ing 14 whitefly species substantiated earlier reports from 
East Africa of whiteflies classified as B. Uganda1 and 13 B. 
tabaci species (Sseruwagi et al. 2005; Legg et al. 2014a, b; 
Mugerwa et al. 2018). The high genetic diversity observed 
in whitefly in Uganda, compared with the rest of the world 
adds further support to East Africa being a centre of origin 
of B. tabaci (Mugerwa et al. 2018).

The discovery of a further seven novel Bemisia species in 
this study was unexpected as considerable whitefly molecu-
lar characterisation studies have been carried out in SSA in 
the past two decades focussed on sampling from cassava, 
with inclusion of a few other crop plants and weeds (Bur-
ban et al. 1992; Brown et al. 1995, 2000; Legg et al. 2002, 
2014a, b; Abdullahi et al. 2003; Sseruwagi et al. 2005, 2006; 
Mugerwa et al. 2012, 2018; Esterhuizen et al. 2013). The 
probable reasons for the increased diversity detected are 
considered the expansion of the collections to previously 
unsampled plant species, the use of an improved diagnostic 
primer set (Mugerwa et al. 2018) and the increased num-
ber of whiteflies characterised. All seven of the new species 
were present in only low numbers (1–4 whiteflies). The use 
of three whiteflies per sample was also critical in obtain-
ing a clearer indication of whitefly-plant associations, with 
around 40% of samples containing multiple whitefly species 
per crop location as also reported previously (Gnankine et al. 
2013). For some samples, the three whiteflies sampled were 
all different, e.g. a single Dichrocephala integrifolia weed 
sample was found to contain a mix of SSA1, MED and B. 
Uganda5.

Abundance and host range of whitefly species

The most prevalent whiteflies were classified as B. tabaci 
MED-ASL (30.5% samples), SSA1 (22.7%) and B.Uganda1 
(12.1%). These species were also indicated to be the most 
polyphagous occurring on 33, 40 and 25 identified plant spe-
cies, respectively. It should be noted that for many of these 
plant species only a single whitefly was collected, and hence, 
associations with feeding on these plant species cannot be 
made. The survey performed focussed on gaining an idea of 
the potential host range of abundant whitefly populations 
in Uganda, and further sampling is necessary at multiple 
times throughout cropping seasons to validate associations. 
To confirm whitefly colonisation, follow-on surveys should 
examine nymphal development stages (instars) on the identi-
fied plant species, as performed by Sseruwagi et al. (2006). 
The presence of either eggs or adults on a plant is not nec-
essarily linked to colonisation of the host, as demonstrated 
by Vyskočilová et al. (2019); for example, MED-ASL laid 
twice as many eggs on bean versus cotton, but development 
to adulthood was over 20-fold higher on cotton than bean. 

Fig. 3   Hierarchical clustering of whitefly numbers on host plants. 
Four clusters of host plants (Y axis) and whitefly species (X axis) 
were observed. Host plants clusters are denoted by black, pink, purple 
and cyan correspond to the whitefly clusters with the same colours on 
the X axis. SSA1 (purple), SSA6 (pink) and MED-ASL (cyan) have 
distinct host profiles on Manihot esculenta (purple), Ocimum gratis-
simum (pink) and Ipomoea batatas, Cucurbita moschata, Sida acuta 
(cyan), respectively

◂
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Furthermore, for whiteflies to play an important role in vec-
toring a plant virus, there is no need for colonisation with the 
efficiency of transmission dependent on feeding behaviour 
and whitefly virus specificity (Czosnek et al. 2017; Chi et al. 
2020).

Hierarchical clustering revealed clear host preferences 
of B. tabaci species for MED-ASL (pumpkin, S. acuta and 
sweet potato), MED-Q1 (tobacco), SSA1 and SSA2 (cas-
sava), SSA6 (African basil) and B. Uganda1 (sweet potato) 
assisting in predicting probable identity of whiteflies on 
these plant species. Specific whitefly–host associations 
were revealed most markedly for cassava where all 98 white-
flies were SSA1-SSA2 supporting previous reports (Legg 
1996; Sseruwagi et al. 2006; MacFadyen et al., 2020). It 
is noteworthy that even for the most abundant non-cassava 
populations, namely MED-ASL (n = 265) and B. Uganda1 
(n = 105), not a single whitefly was collected from cassava. 
The presence of a single whitefly on a plant species for much 
less prevalent species therefore might indicate a potential 
host. Support for this comes from a number of examples in 
the data. For SSA1-SG1, only 1/137 whiteflies character-
ised came from eggplant (n = 38) which would normally be 
considered biologically insignificant, yet eggplant is a com-
mon host plant for rearing B. tabaci populations including 
SSA1-SG1 in many insectaries (Lisha et al. 2003; Shah and 
Liu 2013; Vyskočilová et al. 2019). Similarly, SSA1-SG3 
whiteflies were shown by Milenovic et al. (2019) to feed 
successfully on not only cassava but also on sweet potato 
and tomato. In this study, these plants would not have been 
indicated to be potential hosts with either none or only a 
single SSA1-SG3 whitefly found to be present. The presence 
of large numbers of SSA1 flies on common bean (17/41) 
and cowpea (5/6) is therefore tentatively considered as an 
indication of these being alternate hosts, recently verified 
for SSA1 on cowpea by Macfadyen et al. (2020). Further-
more, if plant hosts from which ≥ 3 whiteflies are considered 
as reliable indicators, this study suggests pumpkin, tomato, 
eggplant, as well as the weeds Erythrina abyssinica and S. 
acuta are additional possible alternate hosts for SSA1 ‘cas-
sava’ whiteflies.

The most prevalent species MED-ASL in this survey 
was associated with high whitefly populations observed 
on some crops e.g. pumpkin (55/70 pumpkin whiteflies), 
sweet potato (38/79) and tomato (14/51) but not at all to 
cassava (0/98). The strong association with sweet potato 
in the field has been noted previously (Sseruwagi et al. 
2006; Misaka et al. 2019), and recent studies have veri-
fied that sweet potato is a preferred host for MED-ASL 
under laboratory as well as field conditions (Vyskočilová 
et al. 2019; Macfadyen et al. 2020). These data support 
the proposal of Vyskočilová et al. (2018, 2019) to clas-
sify MED-ASL as a distinct species from MED-Q1, due to 
these populations failing to interbreed, showing a distinct 

mtCO1 phylogenetic placement, as well as marked differ-
ences in their preferred host ranges. The limited distribu-
tion and association of MED-Q1 with tobacco was noted 
previously by Sseruwagi et al. (2006), but at the time it 
was considered possibly to be due to insufficient sampling. 
MED-Q1′s dominance on tobacco (26/35 tobacco white-
flies sampled) in contrast to only one MED-ASL whitefly 
from tobacco corroborates the insectary studies of these 
two MED populations on tobacco, where it was a suitable 
host for MED-Q1 but lethal for MED-ASL (Vyskočilová 
et al. 2019).

Whiteflies belonging to the globally invasive MED-
Q1 and MEAM1 species (Brown et al. 1995; Liu et al. 
2007; De Barro et  al. 2011) were much less abundant 
than MED-ASL in this study, with only 47 MED-Q1 and 
39 MEAM1 whiteflies detected. It is surprising that in 
Uganda, MEAM1 and MED-Q1 have not displaced indig-
enous populations, as has been the norm globally (Brown 
et al. 1995; Moya et al. 2001; Liu et al. 2007). A similar 
prevalence of MED-ASL versus MED-Q1 and MEAM1 
in Uganda was reported by Sseruwagi et  al. (2005) in 
2003/04, a decade before the present survey was conducted 
and acting as confirmation that neither MEAM1 or MED-
Q1 are recent introductions as the low numbers recorded 
in the present study might attest. Elsewhere, the success 
of MED populations has been associated with insecticide 
resistance in MED populations (Sun et al. 2013, 2014). 
Although the degree of insecticide resistance in MED-
ASL is unknown, this is considered an unlikely explana-
tion as insecticide usage in the smallholder farm plots 
sampled in Uganda was generally limited. Therefore, the 
factors behind MEAM1 and MED-Q1′s low occurrence in 
Uganda compared to MED-ASL are unclear, but may be 
linked to agroecology with clear plant host range differ-
ences between these three populations.

Other species that classify into the Africa-Middle East-
Asia Minor cluster (Dinsdale et al. 2010) add support to this 
high-level genetic group (HLGG) representing polyphagous 
member species of the B. tabaci complex (Brown et al. 1995; 
Liu et al. 2007; De Barro et al. 2011; Malka et al. 2018, 
2020). SSA12 and SSA13 are recently discovered species 
(Mugerwa et al. 2018), and little information is yet available 
on their host range. SSA12 was only collected from two 
unidentified uncultivated plants and appears therefore to be 
a native whitefly population of little risk to national agricul-
tural productivity. The collection of 24 whiteflies of SSA13 
from over a dozen different plants suggests that this is a 
polyphagous species that has potential to pose a greater risk.
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Geographical distribution of prevalent whitefly 
species

This study revealed the importance of sampling as wide a 
geographical region as possible covering all agroecologi-
cal zones. The north-east of Uganda had not been sampled 
for about 30 years due to political instability from the late 
1980s to the early 2000s (Barkan, 2011; Arieff et al. 2015), 
and SSA2 whiteflies were previously thought to have more 
or less disappeared (Sseruwagi 2004; Mugerwa et al. 2012; 
Legg et al. 2014b). This study showed that SSA2 was still 
the most prevalent on cassava in the northern region (22/36 
SSA2 samples). This is in marked contrast to four other 
species that were more prevalent than SSA2 on a country-
wide basis, namely MED-ASL (n = 265) detected at low 
frequency, and SSA6 (n = 81), MED-Q1 (n = 47) and B. 
Uganda1 (n = 105) that were not detected at all in northern 
Uganda in this study (Fig. 4). MacFadyen et al. (2020) also 
found SSA2 to be present in only a few regions of central to 
northern Uganda, and in neighbouring South Sudan, SSA2 
was reported recently as the most prevalent (Misaka et al. 
2019) adding weight to the prevalence and locality of SSA2 
being linked to agroecology and landscape factors rather 
than a chance event caused by the timing of our survey.

SSA1(-SG1) is prevalent across the rest of Uganda and 
this is considered linked to its ability to feed on and colo-
nise multiple host plants including cassava (Sseruwagi et al. 
2006; Milenovic et al. 2019). In northern Uganda, SSA1-
SG1 is prevalent on cassava in distinct regions from SSA2. 
As ‘superabundant’ populations have been associated with 
both SSA1-SG1 and SSA2 (Legg and Ogwal 1998; Legg 
et al. 2002, 2014b; Sseruwagi et al. 2005; Mugerwa et al. 
2012), determining the factors that influence the distribution 
of cassava whitefly populations (SSA1 and SSA2 species) is 
key for the development of effective management practices 
for both insect pest and vectored cassava viruses.

Implications of diversity and abundance for control 
of whitefly populations

Integrated pest management (IPM) approaches to control 
geminivirus diseases include the use of resistant cultivars, 
virus- and vector-free planting material, roguing of infected 
plants and insect vector management (Legg et al. 2005, 
2014a; Rojas et al. 2018). Recommended measures are most 
effective for annual crops if these can be combined with 

host-free periods and when designed in relation to the biol-
ogy and ecology of the virus and vector and the crop. All 
of these recommendations are, however, hard to implement 
in SSA at the smallholder level with susceptible crop and 
weed hosts being present year-round. The wide distribution 
of SSA1, MED-ASL and B. Uganda1 whitefly species in 
the diverse agroecologies on crops as well as uncultivated 
plant species will enable whiteflies to be easily reintroduced 
to targeted control areas from neighbouring fields either by 
wind or on plant material moved by humans. Effective con-
trol therefore needs to focus on identifying host resistance 
to whiteflies to reduce the high vector populations associ-
ated with viral disease outbreaks, as well as direct feeding 
damage. Considerable research efforts targeting resistance to 
cassava whiteflies are ongoing (http://www.cassa​vawhi​tefly​
.org), and it is hoped these efforts will be transferable in the 
near future to facilitate breeding for resistance to prevalent 
whitefly species impacting other crops in SSA.

Application of pesticides to reduce whitefly populations 
on high value crops like tomato and cabbage is becoming 
a more common practice among African small-scale farm-
ers (PARM 2017). Globally, application of insecticides such 
as neonicotinoids to control high whitefly populations on 
various crops has resulted in the development of insecticide 
resistance in B. tabaci (Horowitz et al. 2005; Naveen et al. 
2017) with to date reports of B. tabaci resistance to > 60 
active ingredients used in insecticides (www.pesti​cider​
esist​ance.org). The development of insecticide resistance 
is generally delayed by the presence of refuge plants, but 
for haplodiploid pests such as B. tabaci, simulation stud-
ies have projected that there should be no significant effect 
on the evolution of resistance (Crowder et al. 2009). In the 
Ugandan farming system, this study has illustrated the pres-
ence of a wide variety of alternate hosts for the prevalent 
SSA1(-SG1), MED(-ASL) and B. Uganda1 colonising the 
high value crops. Although the impact of these refuges on 
the development of insecticide resistance is not known, 
it is clear that they enable reintroductions of the whitefly 
population(s) to occur shortly after the pesticides have lost 
their efficacy in the target crop plants. Moreover, in time 
with repeated use to control high whitefly populations on 
high value crops, selection will operate for insecticide 
resistance. This may favour the emergence of the MED-Q1 
species, currently appearing to be restricted to tobacco, as 
globally this has developed rapid resistance to insecticides 
after their use (Horowitz et al. 2005; Roditakis et al. 2009; 
Dennehy et al. 2010). Particular care needs to be taken to try 
to avoid the development of insecticide resistance in MED-
ASL considering its prevalence and polyphagous nature.

Fig. 4   Sampled locations (red dots) for whitefly specimens in Uganda 
used in genetic analysis. Geographical distribution of a SSA1-SG1, 
b SSA2, c MED-ASL, d MED-Q1, e Bemisia Uganda1 and f SSA6 
species collected during July–August 2013. Abbreviations for the 
B. tabaci species: SSA = sub-Saharan Africa (SG = subgroup), 
MED = Mediterranean and ASL = Africa silver leafing

◂
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Implications of diversity and host range for control 
of whitefly‑vectored viruses

Rey et al. (2012) have reviewed the emergence of begomovi-
rus disease outbreaks on the African continent and proximal 
Indian Ocean islands. They concluded that the emergence 
of begomovirus disease outbreaks is likely to be due to 
introduction and intensive cultivation of exotic crop spe-
cies having been introduced into environments harbouring 
indigenous begomoviruses. Uncultivated wild plants were 
suggested to be original hosts for many of the causal viruses 
from which ‘spillover’ to crops has occurred, being enabled 
by the presence of polyphagous whitefly vector populations 
(García-Arenal and Zerbini 2019). Alternate host plants are 
known to act as reservoirs of cassava viruses and inoculum 
diversity (Ndunguru et al. 2005; Alabi et al. 2008; Amisse 
et al. 2019). The wide occurrence of some whitefly species 
[SSA1 (-SG1), MED (-ASL) and B. Uganda1] on both agri-
cultural and weed plant species could potentially increase 
the acquisition and transmission of begomoviruses between 
plants hence resulting in mixed infections. Recombinant 
begomoviruses are commonly detected in cassava (e.g. Zhou 
et al. 1997; Berrie et al. 2001; Maruthi et al. 2002), and their 
origin often involves viruses from other hosts indicating how 
the polyphagous nature of the vector population can facili-
tate the creation of novel viruses.

Conclusions

An extensive countrywide survey of whiteflies in Uganda 
revealed 16 B. tabaci (three novel) and five closely related 
species (four novel) present in 870 whiteflies character-
ised from a total of 84 different plant species. The three 
most prevalent whitefly species, MED-ASL, SSA1 and B. 
Uganda1, together accounted for ~ 65.3% of all the white-
flies. These whitefly species were also indicated by their 
presence on numerous plant species to be the most polypha-
gous. Samples of the exotic crops bean, tomato, eggplant and 
pumpkin, and uncultivated plants S. acuta and African basil 
possessed the greatest diversity of whitefly species. These 
plant hosts coincide with those known globally to contain a 
wide diversity of recombinant begomoviruses. All whitefly 
species collected from crops were also found on uncultivated 
plants.

The knowledge generated in this study of potential alter-
nate hosts for the different whitefly species should be borne 
in mind when devising management strategies for these 
important agricultural pests. For each alternate host, further 
research will be needed to determine to what extent it con-
tributes significantly to the population dynamics of specific 
whitefly species. There is currently also scant knowledge of 

virus variability and transmission pathways in uncultivated 
plant hosts and transmission to crops. Future efforts should 
aim at correlating the whitefly diversity observed with their 
roles in vectoring viruses from uncultivated plants to crops. 
Advances made in deep sequencing technologies and reduc-
tions in their cost are now at a stage that enable detailed 
geometagenomic approaches to gain a fuller understanding 
of vector and virus diversity and evolution driving emerging 
begomovirus disease outbreaks that have for several decades 
been threatening food security in Africa.
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