
NeuroImage 231 (2021) 117822 

Contents lists available at ScienceDirect 

NeuroImage 

journal homepage: www.elsevier.com/locate/neuroimage 

Estimating brain age from structural MRI and MEG data: Insights from 

dimensionality reduction techniques 

Alba Xifra-Porxas a , b , # , Arna Ghosh 

b , c , # , Georgios D. Mitsis d , Marie-Hélène Boudrias b , e , ∗ 

a Graduate Program in Biological and Biomedical Engineering, McGill University, Montréal, Canada 
b Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montréal, Canada 
c Integrated Program in Neuroscience, McGill University, Montréal, Canada 
d Department of Bioengineering, McGill University, Montréal, Canada 
e School of Physical and Occupational Therapy, McGill University, Montréal, Canada 

a r t i c l e i n f o 

Keywords: 

Age prediction 

Brain aging 

Magnetic resonance imaging 

Magnetoencephalography 

Machine learning 

Canonical correlation analysis 

a b s t r a c t 

Brain age prediction studies aim at reliably estimating the difference between the chronological age of an individ- 

ual and their predicted age based on neuroimaging data, which has been proposed as an informative measure of 

disease and cognitive decline. As most previous studies relied exclusively on magnetic resonance imaging (MRI) 

data, we hereby investigate whether combining structural MRI with functional magnetoencephalography (MEG) 

information improves age prediction using a large cohort of healthy subjects ( N = 613, age 18–88 years) from the 

Cam-CAN repository. To this end, we examined the performance of dimensionality reduction and multivariate 

associative techniques, namely Principal Component Analysis (PCA) and Canonical Correlation Analysis (CCA), 

to tackle the high dimensionality of neuroimaging data. Using MEG features (mean absolute error (MAE) of 9.60 

years) yielded worse performance when compared to using MRI features (MAE of 5.33 years), but a stacking 

model combining both feature sets improved age prediction performance (MAE of 4.88 years). Furthermore, we 

found that PCA resulted in inferior performance, whereas CCA in conjunction with Gaussian process regression 

models yielded the best prediction performance. Notably, CCA allowed us to visualize the features that signif- 

icantly contributed to brain age prediction. We found that MRI features from subcortical structures were more 

reliable age predictors than cortical features, and that spectral MEG measures were more reliable than connectiv- 

ity metrics. Our results provide an insight into the underlying processes that are reflective of brain aging, yielding 

promise for the identification of reliable biomarkers of neurodegenerative diseases that emerge later during the 

lifespan. 
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. Introduction 

The human brain changes continuously across the adult lifespan.

his process, termed brain aging, underlies the gradual decline in cogni-

ive performance observed with aging. Although aging-induced changes

re not necessarily pathological, the risk of developing neurodegenera-

ive disorders rises with increasing age Abbott (2011) , and diseases such

s Alzheimer’s disease are thought to arise partly as a result of patho-

ogical processes associated with accelerated brain aging ( Sluimer et al.,

009 ). Therefore, a better understanding of the neural correlates un-

erlying brain aging, as well as better ways to identify biomarkers of

ealthy aging could contribute to improve the detection of early-stage

eurodegeneration or predict age-related cognitive decline. 

One promising approach for identifying individual differences in

rain aging relies on the use of neuroimaging data to accurately pre-
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ict “brain age ” – the biological age of an individual’s brain ( Cole et al.,

019b ). In that context, machine learning (ML) techniques have proven

o be a promising tool to ‘learn’ a correspondence between patterns

n structural or functional brain features and the age of an individual

 Dosenbach et al., 2010 ; Franke et al., 2010 ). ML techniques typically

tilize functions in a high-dimensional space, whereby each dimension

orresponds to a feature derived from neuroimaging data, to estimate

he brain age. When predictive models are trained on neuroimaging

atasets across the lifespan with a large number of subjects, they can

eneralize sufficiently well on unseen or ‘novel’ individuals. This pro-

ides the opportunity to deploy ML models at the population level and

se the predicted age as a biomarker for atypical brain aging processes.

Most studies have explored the use of ML on data obtained from

euroimaging techniques to quantify atypical brain development in

iseased populations. A common practice entails training a ML-based

rediction model on healthy subjects and subsequently using it to
anuary 2021 
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stimate brain age in patients. The difference between an individ-

al’s predicted brain age and their chronological age is then com-

uted (the “brain age delta ”), providing a potential measure that

ndicates increased risk of pathological changes that may lead to

eurodegenerative diseases. For instance, this approach has been

pplied to study brain disorders and diseases including Alzheimer’s

isease ( Franke and Gaser, 2012 ; Gaser et al., 2013 ), traumatic brain

njury ( Cole et al., 2015 ), schizophrenia ( Koutsouleris et al., 2014 ;

chnack et al., 2016 ; Shahab et al., 2019 ), epilepsy ( Pardoe et al.,

017 ), dementia ( Wang et al., 2019 ), Down’s syndrome ( Cole et al.,

017a ), Prader-Willi syndrome ( Azor et al., 2019 ), and several others

 Kaufmann et al., 2019 ), as well as other pathologies such as chronic

ain ( Cruz-Almeida et al., 2019 ), HIV ( Cole et al., 2017c ) and diabetes

 Franke et al., 2013 ). Additionally, brain age prediction has also been ex-

ended beyond understanding neurological disorders such as in the con-

ext of testing the positive influence of meditation ( Luders et al., 2016 ),

s well as education and physical exercise ( Steffener et al., 2016b ) on

rain age. Recent work has also shown a relationship between the brain

ge delta and specific cognitive functions, namely visual attention, cog-

itive flexibility, and semantic verbal fluency ( Boyle et al., 2020 ). 

The studies mentioned above have mainly focused on estimating

rain age based on structural magnetic resonance imaging (MRI), with

ost studies using T1-weighted images (e.g. Cole, Leech and Sharp,

015 ; Cole, Poudel, et al. , 2017). This is partly due to the availability of

arge lifespan MR-based open datasets, which has allowed researchers

o train and validate their predictive models on a large number of sub-

ects. However, it is well known that in addition to structural alterations,

hanges in brain function also occur during aging ( Cabeza et al., 2018 ;

rady, 2012 ; Peters, 2006 ). One example of brain function changes as-

ociated with age is functional connectivity, which measures the statis-

ical interdependence between time series from distinct brain regions

 Sala-Llonch et al., 2015 ). Functional connectivity measures derived

rom functional MRI (fMRI) data have been successfully used to pre-

ict age ( Dosenbach et al., 2010 ; Li et al., 2018 ; Nielsen et al., 2018 ;

ergun et al., 2013 ). However, the improvement of brain age prediction

nd ultimately the detection of early disease stages using fMRI is limited

ue to the sluggishness of the hemodynamic response function, which

everely limits the time resolution at which the underlying neural events

an be resolved and consequently the ability to perform directional con-

ectivity analysis ( Smith et al., 2011 ). Abnormal synchronization pro-

esses at faster timescales have been detected in several neuropsychi-

tric disorders Schnitzler and Gross (2005) , and in particular in move-

ent disorders such as Parkinson’s disease ( Heinrichs-Graham et al.,

014 ; Kondylis et al., 2016 ; Moisello et al., 2015 ; Nelson et al., 2017 )

nd essential tremor ( Kondylis et al., 2016 ; Raethjen and Deuschl, 2012 ;

chnitzler et al., 2009 ). Therefore, neuroimaging techniques with higher

emporal resolution, such as electroencephalography (EEG) and magne-

oencephalography (MEG), can offer complementary features associated

ith both normal and pathological aging. In particular, MEG provides

igher spatiotemporal resolution compared to EEG because magnetic

elds propagate with little attenuation and distortion Baillet (2017) .

ecently, several studies have investigated age-related brain function

hanges using EEG ( Dimitriadis and Salis, 2017 ; Sun et al., 2019 ;

oubi et al., 2018 ), which has enabled researchers to build a brain age

rediction model based on the temporal and spectral features of electro-

hysiological brain activity, as well as the connectivity between brain

egions. A detailed overview of different neuroimaging modalities and

L methods that have been used to estimate brain age is presented in

 Cole et al., 2019a ). 

The aforementioned studies investigated the age-related structural

nd functional brain changes separately. Recently, several researchers

ave examined the combination of features from different modalities

nd demonstrated that this could lead to better brain age prediction

erformance. For instance, Liem and colleagues combined anatomical

eatures extracted from MR images and fMRI connectivity measures

 Liem et al., 2017 ). Another recent study combined MRI anatomical fea-
2 
ures, fMRI connectivity measures and MEG features ( Engemann et al.,

020 ). However, changes in brain tissue composition with age al-

er the T1 signal intensity of brain structures ( Cho et al., 1997 ;

alat et al., 2009 ), possibly as a result of changes in iron concentra-

ion ( Harder et al., 2008 ; Ogg and Steen, 1998 ). Studies using MR-

erived anatomical features such as cortical thickness and subcortical

olume are thus not taking into account age-related changes in tissue

ignal properties that may improve brain age prediction performance.

herefore, combining whole brain T1 signal intensities with functional

EEG/MEG or fMRI) features yields potential to this end. Further re-

earch is needed to determine the extent to which this approach can

mprove the latter. 

Moreover, a major roadblock to clinical applications of ML models is

heir explainability Bzdok and Ioannidis (2019) , in other words the abil-

ty to attribute their predictions to specific input variables. From a clini-

al perspective, it would be useful to identify the neuroimaging features

hat are important to the ML model to estimate brain age. As argued

y Kriegeskorte et al ., decoding models can reveal whether information

ertaining to a specific outcome or behavioural measure is present in

 particular brain region or feature Kriegeskorte and Douglas (2019) .

n the same study, the authors also highlighted the difficulties and con-

ounds associated with interpreting weights in a linear decoding model

nd consequently suggested the use of multivariate techniques to iden-

ify the most informative predictors. The current brain age prediction

odels (e.g. Azor et al., 2019 ; Cole et al., 2017b ) have used a similarity

etric to retrieve lower dimensional embeddings from neuroimaging

eatures. However, this technique does not warrant explainability, as it

elies on the neuroimaging features similarity between individuals to

ake predictions. Therefore, it is of interest to explore dimensionality

eduction techniques that allow identification of the informative neu-

oimaging features for age prediction. 

To address the aforementioned challenges related to the combined

se of structural and functional neuroimaging data to predict age and

he explainability of the associated ML models, the main aims of the

resent study were to: (i) investigate whether adding functional infor-

ation from MEG recordings to the whole-brain MRI voxel intensity

eatures would improve brain age prediction performance, (ii) examine

he performance of dimensionality reduction techniques in conjunction

ith ML models, and (iii) improve the explainability of ML-based brain

ge prediction by applying multivariate associative statistical methods

or identifying key features that exhibit the most prominent age-related

hanges. To do so, we used structural MRI and functional MEG data col-

ected from a large cohort of healthy subjects. We applied Principal Com-

onent Analysis (PCA) and Canonical Correlation Analysis (CCA) as di-

ensionality reduction and multivariate associative techniques, respec-

ively, to assess their predictive performance compared to the widely

sed similarity metric technique. Finally, we identified and visualized

he most informative features in the context of age prediction. 

. Materials and methods 

.1. Dataset 

We analyzed data from the open-access Cambridge Center for

ging Neuroscience (Cam-CAN) repository (see Shafto et al. 2014 ;

aylor et al. 2017 for details of the dataset and acquisition protocols),

vailable at https://camcan-archive.mrc-cbu.cam.ac.uk//dataaccess/ .

pecifically, we used structural (T1-weighted MRI) and functional

resting-state MEG) neuroimaging data from 652 healthy subjects

male/female = 322/330, mean age = 54.3 ± 18.6, age range 18–88

ears). The MR images were acquired from a 3T Siemens TIM Trio scan-

er with a 32-channel head coil. The images were acquired using a

PRAGE sequence with TR = 2250 ms, TE = 2.99 ms, Flip angle = 9°,

ield of View = 256 × 240 × 192 mm 

3 and voxel size = 1 mm isotropic.

he resting-state MEG data were recorded using a 306-channel Elekta

euromag Vectorview (102 magnetometers and 204 planar gradiome-

https://camcan-archive.mrc-cbu.cam.ac.uk//dataaccess/
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Fig. 1. Feature extraction pipeline for MRI and 

MEG data. 
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ers) at a sampling rate of 1 kHz. For the resting-state scan, subjects were

sked to lie still and remain awake with their eyes closed for around

 min. Following exclusions (e.g. subjects that did not have both MRI

nd MEG data, unsatisfactory pre-processing results such as failure to

emove cardiac and ocular artifacts and/or failure to extract the corti-

al surface for source reconstruction), we report findings from a final

ataset including 613 subjects. A descriptive list of subjects included in

ur dataset is detailed in the Supplementary Materials, and Supp. Fig. 1

epicts gender and age distributions for the included participants. 

.2. Neuroimaging data processing 

A summary of the feature extraction process for MR images and MEG

ecordings is illustrated in Fig. 1 . 

.2.1. MRI structural analysis 

The processing of T1-weighted MR images followed the pipeline

resented in ( Cole et al., 2017b ) and was implemented using tools

rom the FMRIB Software Library (FSL, http://www.fmrib.ox.ac.uk/fsl )

 Jenkinson et al., 2012 ). Briefly, the Brain Extraction Tool (BET)

mith (2002) was used to isolate the brain tissue, and the FM-

IB’s Linear/Nonlinear Image Registration Tools (FLIRT/FNIRT)

 Andersson et al., 2007 ; Jenkinson and Smith, 2001 ) were used to per-

orm a non-linear registration to the MNI152 template brain (2mm res-

lution). Next, the registered images were segmented into Grey Mat-

er (GM), White Matter (WM), and Cerebrospinal Fluid (CSF) using the

NI152 template mask for each tissue type. The GM maps were further

egmented into cortical and subcortical regions to delineate the effects

f aging on these regions. The resultant images were vectorized and

ubsequently z-scored to obtain a feature vector for each subject. This

rocess resulted in a feature matrix where each row consisted of normal-

zed intensity values for a single subject (see Fig. 1 for the exact number

f features from each brain structure). 

.2.2. MEG analysis 

The MEG data were processed using the open-source software MNE-

ython ( https://martinos.org/mne ) ( Gramfort et al., 2014 ). Raw MEG

ata were high-pass filtered at 1 Hz, notch filtered at 50 Hz and 100 Hz

o remove power line artifacts, and resampled at 200 Hz. Cardiac and
3 
ye movement artifacts were identified using Independent Component

nalysis (ICA) and automatically classified comparing the ICA compo-

ents with the simultaneously recorded electrocardiography (ECG) and

lectrooculography (EOG) signals ( Jas et al., 2018 ). Briefly, an ICA com-

onent was classified as a cardiac/ocular artifact based on the similar-

ty of its time-series with ECG/EOG signals, using the MNE functions

ica.find_bads_ecg ” and “ica.find_bads_eog ”. We used the default MNE

hreshold of 3.0 (value above which a component is classified as an arti-

act). For a reduced number of subjects, the ECG/EOG signals were noisy

nd the automated algorithm could not classify the ICA components. In

hese cases, we visually inspected the topographies of the ICA compo-

ents and removed the artefactual components accordingly. Preprocess-

ng html reports are publicly available in figshare ( Xifra-Porxas et al.,

021 ), which contain the power spectrum of the data before and after

ltering, the ICA decomposition report of each subject, and the ICA com-

onents that were automatically identified as cardiac and ocular arte-

acts. A text file with the ICA components that were manually classified

s artifacts is also included in the figshare collection. 

Artifact-free MEG data were converted from sensor to source space

n the subject’s cortical surface using the linearly constrained minimum

ariance (LCMV) beamformer ( Van Veen et al., 1997 ). The cortical sur-

ace was reconstructed from the T1-weighted MR images as obtained

rom the FreeSurfer recon-all algorithm ( Dale et al., 1999 ; Fischl et al.,

004 , 2002 , 2001 , 1999a , 1999b ; Fischl and Dale, 2000 ). The sources

ere constrained within the cortical regions of the brain and assumed to

e perpendicular to the cortical envelope. The noise covariance matrix

as estimated using the empty room recordings, and the data covari-

nce matrix was estimated directly from the MEG data. After source

econstruction, we parcellated the cortex into 148 brain regions us-

ng the Destrieux atlas ( Destrieux et al., 2010 ). Each parcel time series

ere corrected for signal leakage effects using a symmetric, multivariate

orrection method intended for all-to-all functional connectivity analy-

is ( Colclough et al., 2015 ). For each parcel, the power spectral den-

ity (PSD) for the entire resting state scan was calculated and averaged

ithin 7 frequency bands, namely Delta (2–4 Hz), Theta (4–8 Hz), lower

lpha (8–10 Hz), higher Alpha (10–13 Hz), lower Beta (13–26 Hz),

igher Beta (26–35 Hz) and Gamma (35–48 Hz). Relative power was

alculated by dividing the power within each band by the total power

cross all bands ( Niso et al., 2019 ). In addition to the PSD values, ampli-

http://www.fmrib.ox.ac.uk/fsl
https://martinos.org/mne


A. Xifra-Porxas, A. Ghosh, G.D. Mitsis et al. NeuroImage 231 (2021) 117822 

t  

t  

(  

m  

I  

n  

a  

t  

f  

t

2

 

t  

t  

n  

t  

t  

t  

n  

l

2

2  

a

s  

T  

p  

t  

i

 

(  

t  

b  

T  

n  

c  

t  

s  

s  

i

2  

a  

t  

w  

o  

v  

t  

a  

i  

v  

t  

P  

s  

w  

n  

t  

w  

o  

r  

i

2  

d  

t  

T  

b  

e  

s  

m  

i  

c

 

m  

r  

m  

t  

j

 

fi  

2  

f  

t  

i  

w  

d  

M  

i  

d  

T  

i

 

l  

e  

f

2

 

i  

a  

u  

a  

b  

i  

2  

o  

W  

s  

t  

b  

n  

v  

M  

p  

b  

n  

r  

m  

m  

w  

a

 

t  

l  

g  

(  

f  

p  

m  

b  
ude envelope correlation (AEC) within each frequency band was used

o estimate the functional connectivity between different cortical parcels

 Brookes et al., 2012 ; Hipp et al., 2012 ), as this method provides a robust

easure for stationary connectivity estimation ( Colclough et al., 2016 ).

nter-layer Coupling (ILC) was also calculated from the functional con-

ectivity matrices to estimate the similarity of the connectivity profile

cross frequency bands ( Tewarie et al., 2016 ). Therefore, each row of

he resulting MEG feature matrix consisted of PSD, AEC and ILC values

or a single subject (see Fig. 1 for the exact number of features from each

ype). 

.3. Brain age prediction analysis 

We examined the performance of three dimensionality reduction

echniques: the similarity metric, PCA and CCA. The MRI and MEG fea-

ures were embedded into a lower dimensional space using these tech-

iques. The transformed features were subsequently used as input fea-

ures in the prediction models. The higher dimensional feature set prior

o transformation was also directly used as input to evaluate the po-

ential improvement achieved by using dimensionality reduction tech-

iques. All the prediction models were implemented using the scikit-

earn toolbox ( Pedregosa et al., 2011 ) in Python. 

.3.1. Dimensionality reduction techniques 

.3.1.1. Similarity metric. Following the approach presented by Cole

nd colleagues ( Cole et al., 2017b ), we represented the data as a 𝑁 × 𝑁

imilarity matrix ( 𝑁 being the number of subjects in the training set).

he similarity between any two subjects was calculated using the dot

roduct between their corresponding feature vectors. Therefore, each

esting subject was represented as an N -element vector containing sim-

larity values corresponding to each of the N training subjects. 

However, the use of a similarity metric entails the following issues:

1) the training set requires an adequate number of subjects to sample

he spectrum of healthy aging completely, and (2) the predictions are

ased on how similar a test subject is to each of the training subjects.

o address these issues, we used dimensionality reduction techniques,

amely PCA and CCA, to identify the neuroimaging features that mostly

ontribute to brain age prediction. Specifically, PCA and CCA project

he data onto a lower dimensional space and allow ML models to repre-

ent age as a function of neuroimaging features, as opposed to similarity

cores. This approach allowed us to visualize the age-related neuroimag-

ng features after the model was trained. 

.3.1.2. Principal component analysis (PCA). PCA is a linear dimension-

lity reduction technique using singular value decomposition (SVD) of

he data to project it onto a lower dimensional space Jolliffe (2002) . It is

idely used to decompose multivariate datasets into a set of successive

rthogonal components that explain the maximum amount of the data

ariance (e.g. Amico and Goñi, 2017 ; Larivière et al. , 2019 ). The ob-

ained principal components correspond to the maximal modes of vari-

tion and hence correspond to the most prominently changing features

n the dataset. Often, the number of principal components is selected

isually as the point where the total variance explained by increasing

he number of components starts plateauing ( “knee rule ”). We applied

CA to project the feature matrix onto a lower dimensional space and

ubsequently estimate brain age using a prediction model. In each case,

e used the knee of the curve relating the variance explained vs the

umber of principal components to decide the number of components

o be retained. In all the models using only MRI data, 5 components

ere retained, whereas in all models using MEG data or a combination

f MRI and MEG data, 10 components were retained. The number of

etained principal components explained about 60-66% of the variance

n the data. 

.3.1.3. Canonical correlation analysis (CCA). CCA is an alternative

imensionality reduction technique that identifies latent variables
4 
o model the covariance between some input and output variables

hompson (2005) . CCA has been successfully applied in the context of

rain-behavior relationships ( Smith et al., 2015 ), neurodegenerative dis-

ases ( Avants et al., 2014 ) and psychopathology ( Xia et al., 2018 ). CCA,

imilarly to PCA, uses the SVD factorization method to reduce the di-

ensionality of the data. However, in CCA the covariance matrix is used

nstead of the input variance matrix. Therefore, the obtained canonical

omponents are maximally correlated to the output variable. 

In the present case, the CCA inputs were the neuroimaging feature

atrices and the output the chronological age vector. Therefore, CCA

etrieved a linear combination of the neuroimaging features that were

aximally correlated to the age of the subjects. We used CCA to project

he feature vector along this direction and subsequently used the pro-

ection values to predict age. 

CCA yields a loading vector for every CCA component, which quanti-

es the contribution of each feature to that CCA component ( Wang et al.,

018 ). We used these loading values to assess the contribution of each

eature to brain age prediction and thereby understand which regions of

he brain mostly exhibited age-related changes. To estimate the reliabil-

ty of these loading values, we used the bootstrapped ratio, whereby

e repeated the CCA analysis for 1000 bootstrapped samples of the

ataset chosen at random with replacement ( Efron and Tibshirani, 1986 ;

cIntosh and Lobaugh, 2004 ). The bootstrapped ratio (BSR) of the load-

ng values indicates which areas reliably contribute to the brain age pre-

iction, thus increasing the overall reliability of the prediction models.

he procedure for generating the BSR of the loading values is illustrated

n Fig. 2 . 

We also examined deep CCA ( Andrew et al., 2013 ) to learn a non-

inear combination of features that maximally covary with age. How-

ver, deep CCA was not numerically stable and hence it was not explored

urther. 

.3.2. Prediction model 

Predictive models using MRI or MEG features independently were

mplemented using Gaussian Process Regression (GPR) models with an

dditive dot-product and white kernel. The GPR models were defined

sing the neuroimaging features as inputs (i.e. independent variables)

nd chronological age as the output (i.e. dependent variable). GPR has

een widely used for predicting chronological age from T1-weighted

mages ( Aycheh et al., 2018 ; Cole et al., 2018 , 2017a, 2017b, 2017c,

015). GPR is a non-parametric approach, which finds a distribution

ver possible functions that are consistent with the data Rasmussen and

illiams (2006) . The main assumption underlying GPR is that any finite

ubset of the available data must follow a multivariate Gaussian distribu-

ion. The prior belief about the relationship between variables is decided

y the sufficient statistics of these multivariate Gaussian distributions,

amely the mean vector and standard deviation matrix. The standard de-

iation matrix, therefore, indicates the confidence of model predictions.

ultivariate Gaussian distributions also have the ability to reflect local

atterns of covariance between individual data points. Therefore, a com-

ination of multiple such distributions in a Gaussian process can model

on-linear relationships and is more flexible than conventional paramet-

ic models, which rely on fitting global models. The implemented GPR

odels contained two hyperparameters that required tuning, the inho-

ogeneity of the dot-product and the noise level of the white kernel,

hich were selected among five candidate values ranging between 0.01

nd 100. 

Models combining both MRI and MEG features were implemented

hrough a stacking framework using random forest regression, fol-

owing recent age prediction studies proposing model-stacking strate-

ies to combine features from different neuroimaging modalities

 Engemann et al., 2020 ; Liem et al., 2017 ). To aggregate the information

rom MRI and MEG data, a feature vector was constructed, which com-

rised the cross-validation predictions from the single-modality GPR

odels and the corresponding uncertainty in prediction (characterized

y the standard deviation of GPR prediction). This feature vector con-
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Fig. 2. Calculation of loadings and boot- 

strapped ratio (BSR) of loading values from the 

employed CCA model. 
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Table 1 

Comparison of age prediction by GPR models combined with dif- 

ferent dimensionality reduction techniques based on MRI and MEG 

features, as well as stacking of both modalities. Mean absolute error 

(MAE) values were calculated over the testing set (mean ± standard 

deviation). 

Input Features Model MAE (years) R 2 

MRI GPR 5.88 ± 0.56 0.83 ± 0.05 

Similarity + GPR 5.61 ± 0.72 0.85 ± 0.05 

PCA + GPR 8.07 ± 0.68 0.69 ± 0.07 

CCA + GPR 5.33 ± 0.51 0.86 ± 0.03 

MEG GPR 9.60 ± 0.98 0.55 ± 0.09 

Similarity + GPR 9.80 ± 0.94 0.54 ± 0.10 

PCA + GPR 12.64 ± 1.12 0.28 ± 0.13 

CCA + GPR 9.68 ± 0.89 0.55 ± 0.09 

MRI + MEG 

(Stacking) 

GPR 4.97 ± 0.53 0.88 ± 0.03 

Similarity + GPR 5.17 ± 0.60 0.87 ± 0.04 

PCA + GPR 7.26 ± 0.73 0.73 ± 0.07 

CCA + GPR 4.88 ± 0.52 0.88 ± 0.03 
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O  
ained four features per subject and was used to train the random for-

st model. Note that the same training-testing splits as in the single-

odality models were used to train the random forests to ensure they

ere tested on left-out predictions. The random forests contained two

unable hyperparameters: the number of trees, which was set to 10, 50,

r 100, and the tree-depth, which was set to 5, 10, 20 or None (None

ndicating splitting till leaf nodes contained only one sample). 

The performance of each model was evaluated using a nested 10-fold

ross-validation strategy and scored based on the mean absolute error

MAE) between estimated and chronological age. The hyperparameter

election for the GPR and random forest models was done by grid search

ithin a 5-fold inner loop. Specifically, we performed the dimensional-

ty reduction followed by fitting the regression model on the training

et of each fold of the inner loop. We repeated these steps for multiple

ets of hyperparameter values and selected the hyperparameter set that

ielded the best performance across the validation sets of the inner loop.

sing this optimal hyperparameter set, we repeated the dimensionality

eduction and fitting the regression model on the training set of the outer

old. This pipeline was thereafter applied on the test set to evaluate its

erformance on new data points. The nested cross-validation scheme

as repeated 10 times to attain a less biased estimate of model perfor-

ance, hence 100 MAE values were obtained for each model. To get an

stimate of the chance level of age prediction, we used predictions from

 random model with no training. Irrespective of the modality of data

sed, the chance level of MAE was ~16.74 years and 𝑅 

2 was around

ero. These values served as a baseline to assess the performance of the

xamined prediction models. 

The codes implementing all the preprocessing and examined pre-

iction models are available on GitHub at https://github.com/axifra/

rainAge _ MRI-MEG . 

. Results 

We compared the performance of all models using a 10-fold cross-

alidation approach and repeated the cross-validation framework 10

imes. A summary of the performance of the different brain age pre-

iction methods is presented in Fig. 3 , in terms of the MAE difference

ith respect to an MRI-only model using GPR. In Table 1 , we report

he absolute MAE values. All models, irrespective of the data modality,

erformed better than chance level (MAE ~16.74 years) thus indicat-

ng that all the considered neuroimaging features exhibited some age-

elated effects. 

.1. Dimensionality reduction techniques 

.1.1. MRI features 

The voxel-wise T1-weighted intensity levels (from all tissues) were

sed as input to the different dimensionality reduction techniques.

CA + GPR yielded the best performance with respect to age prediction,

ith a corresponding MAE of 5.33 years ( Table 1 ), which corresponded

o an improvement of around 0.5 years compared to feeding the high
5 
imensional feature vector directly into a GPR model, and an improve-

ent of around 0.3 years compared to the similarity metric method

 Fig. 3 ). PCA resulted in a significantly inferior performance, yielding a

AE of 8.07 years ( Table 1 ). The failure of the similarity metric to yield

he best performance is likely due to the sample size of the dataset,

hich was much smaller than the dataset used in ( Cole et al., 2017b ).

his could possibly have led to incomplete sampling of the aging sub-

pace and hence yielded worse performance. 

To delineate the contribution of cortical and subcortical MRI fea-

ures, we compared the performance for each of these features sepa-

ately. Subcortical MRI features clearly outperformed cortical features,

rrespective of the model used ( Fig. 4 , Supp. Table 1). The GPR model

nd CCA + GPR method yielded similar performance, with subcortical

RI features yielding a MAE of ~5.76 years and cortical MRI features

ielding a MAE of ~7.11 years. The performance of the similarity met-

ic technique was slightly worse and PCA, as before, resulted in a sig-

ificantly poorer performance compared to all other techniques. These

esults indicate that the subcortical regions were more reliable indica-

ors of brain age compared to cortical regions. This finding was further

upported by the CCA loadings of MRI features, whereby subcortical

egions exhibited higher BSR of loading values compared to cortical re-

ions ( Fig. 6 b). 

.1.2. MEG features 

The MEG features extracted from the source-space MEG data were

he relative PSD within seven frequency bands for each brain region

xamined, as well as the AEC and ILC measures to quantify functional

onnectivity ( Tewarie et al., 2016 ). Using the high dimensional feature

ector directly as the input to a GPR model yielded similar performance

s the models transforming the features to a low dimensional embedding

sing the similarity metric or CCA, with a MAE of ~ 9.70 years ( Table 1 ).

n the other hand, PCA yielded inferior performance, similarly to the

https://github.com/axifra/BrainAge_MRI-MEG
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Fig. 3. Boxplots depicting the age prediction perfor- 

mance for models using different dimensionality re- 

duction techniques based on MRI and MEG features, as 

well as combining both data modalities using a stack- 

ing model. Each dot represents the mean absolute error 

(MAE) difference from the MRI-based GPR model at a 

given fold (10 k-folds x 10 repetitions). The best per- 

formance was obtained with the stacking model, either 

using GPR alone or GPR combined with CCA, showing 

an improvement of around 1 year with respect to the 

MRI-based GPR model. PCA degraded performance in 

all cases. 

Fig. 4. Boxplots depicting the age prediction perfor- 

mance for models using either cortical or subcortical 

MRI features, using different dimensionality reduction 

techniques. Each dot represents the mean absolute er- 

ror (MAE) at a given fold (10 k-folds x 10 repetitions). 

Better performance was obtained with subcortical MRI 

features compared to cortical MRI features. 
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RI features ( Table 1 ). Overall, MEG features yielded a considerably

nferior performance compared to MRI features ( Fig. 3 ). 

An important consideration when comparing MEG age prediction

erformance to MRI is that the MEG features only contained information

rom the cortex, whereas the MRI intensities were from both cortical and

ubcortical regions. Therefore, we compared the performance of models

sing MEG features to those including only cortical MRI features. MEG

eatures still yielded worse performance for all the examined methods,
6 
ompared to using cortical MRI features (worse by 2.49 years for GPR,

.66 years for similarity, 2.59 years for PCA, and 2.67 years for CCA

espectively). This suggests that MEG features were worse predictors of

rain age than MRI features. 

We subsequently explored which MEG features were better at pre-

icting brain age. We found that ILC values did not significantly con-

ribute to age prediction, with the corresponding MAE values being very

lose to those of the random model (Supp. Table 2). PSD performed bet-
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Fig. 5. Plot of predicted vs. chronological age for the stacking CCA + GPR model 

using both MRI and MEG features. The black dotted line corresponds to the 

ideal linear model ( 𝒚 = 𝒙 ), whereas the red line corresponds to the fitted model 

( 𝒚 = 𝜶 + 𝜷𝒙 ). 
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er than AEC when using the high dimensional feature vector directly

nto a GPR model, but AEC performed better than PSD when using the

CA + GPR model (Supp. Table 2). 

.2. Combining structural and functional features from MRI and MEG data

We next examined the potential benefit of combining MEG and MRI

eatures compared to using MRI features alone. Note that we included

RI features from all structural tissues (GM, WM and CSF) and both

pectral and connectivity MEG features. To build the multimodal pre-

iction, we combined the age predictions from each modality using a

tacking model. All models exhibited improved performance when both

odalities were used for age prediction ( Table 1 ). Without dimension-

lity reduction, we found that using the stacking model yielded an age

rediction improvement of around one year compared to using MRI-only

eatures ( Fig. 3 ). Furthermore, CCA yielded the best performance with a

AE of 4.88 years ( Table 1 ), improving the performance of CCA + GPR

odel using MRI-only features by around 0.5 years. These results sug-

est that functional MEG features contained complementary informa-

ion to anatomical MRI features, thereby providing non-redundant in-

ormation that improved the estimation of brain age. 

Recently, several studies have reported an age-related bias in es-

imates of brain age, commonly observed as an overestimation of

ge in younger subjects and an underestimation of age in older sub-

ects ( Aycheh et al., 2018 ; Cole and Franke, 2017 ; Liang et al., 2019 ;

mith et al., 2019 ). Our cohort had less subjects within the lower and

igher age ranges (Supp. Fig. 1), which could have led to an age-related

ias in the estimates. To investigate this, in Fig. 5 we show the predicted

s. chronological age for the best model using both MRI and MEG fea-

ures (stacking CCA + GPR). The fitted model yields a good match with

he ideal model, and no bias is observed for the youngest and oldest

ubjects. 

.3. CCA loadings 

One of the goals of the present work was to identify the brain regions

xhibiting more pronounced age-related changes. The CCA loadings pro-

ided a way to assess the contribution of each neuroimaging feature to

ge prediction, thus indicating the features that yielded the most reli-

ble age-related changes. The histogram of the BSR of voxel intensity

oading values, as well as the top 15% BSR of loading values for GM,

M, and CSF are shown in Fig. 6 a & 6 b, respectively. The histogram
7 
f BSR values indicates that GM and WM voxels exhibited more reli-

ble age-related changes as compared to CSF (the histogram peak for

M and WM was located around -300 and -400 respectively, whereas

he histogram peak for CSF was located around -100). Almost all of

he loading values were negative, indicating a decreased voxel intensity

ith increasing age. Further, the top 15% of BSR values corresponded to

ubcortical regions, thus supporting our results that these regions yield

etter age prediction (Supp. Table 1). Some of these areas are shown

n Fig. 6 b, while 3D nifti volumes of the CCA loadings are available

n NeuroVault ( https://identifiers.org/neurovault.collection:6091 ). The

ighlighted GM areas were localized in subcortical structures such as

he putamen, thalamus, and the caudate nucleus, as well as regions

n the cerebellum. Most of the highlighted WM voxels were confined

o the corpus callosum, thus indicating that the latter was associated

o the most consistent age-related changes among WM voxels. Another

tructure among WM voxels that exhibited age-related changes was the

halamic radiation. 

Furthermore, we visualized the CCA loadings for the MEG features.

he PSD loadings are shown in Fig. 7 and the AEC loadings are shown in

upp. Fig. 2. We found that PSD values were more reliable (BSR values

450) than AEC values (BSR values ~300). Regarding the PSD load-

ngs ( Fig. 7 ), we observed different regions showing age-related effects

ithin various frequency bands. Contrary to MRI loadings, whereby

ost of the loading values were negative, PSD loadings were found to be

oth positive and negative. The low-frequency bands exhibited decreas-

ng PSD values with age, with delta and theta band PSD exhibiting max-

mal age-related effects in the frontal areas and alpha band PSD exhibit-

ng maximal age-related effects in the visual and motor areas. Higher fre-

uency bands (beta and gamma) exhibited increasing PSD values with

ge in frontal and motor areas. Regarding the AEC loadings (Supp. Fig.

), the all-to-all connectivity matrices (one per frequency band) were

orted by functional networks according to the Yeo 7-network brain cor-

ical parcellation ( Yeo et al., 2011 ). Most functional connections exhib-

ted increased connectivity with age within all frequency bands, with

he exception being the visual network, which exhibited decreased con-

ectivity with age for the high alpha and high beta frequency bands.

he ILC loadings are not shown since ILC values did not significantly

ontribute to age prediction (Supp. Table 2). 

. Discussion 

In this study, we aimed to leverage multimodal neuroimaging data

o predict brain age in a large cohort of healthy subjects ( N = 613)

etween 18–88 years and assess the performance of several dimension-

lity reduction techniques. We found that applying a CCA + GPR model

o each imaging modality and combining their predictions through a

tacking model yielded the best performance ( Fig. 3 ), with a MAE of

.88 years. Conversely, we found that PCA yielded inferior performance

or brain age prediction, regardless of the imaging modality ( Fig. 3 ).

urthermore, we identified and visualized the regions that exhibited

ge-related changes and found that subcortical T1-weighted intensity

evels were more informative for age prediction compared to cortical

egions ( Figs. 4 , 6 ). We also identified age-related changes in the spec-

ral features of various cortical regions using MEG data ( Fig. 7 ). In ad-

ition, we demonstrated that using multivariate associative techniques

uch as CCA yields better explainability of the predictive models, which

ay contribute to the identification of clinically relevant biomarkers of

athological aging. 

.1. Dimensionality reduction techniques 

We used T1-weighted MR images and resting-state MEG data to de-

elop a brain-age prediction framework that uses both structural and

unctional information of the brain. We restricted our analysis to cor-

ical sources of the MEG data and thereby had functional information

rom cortical regions only. Since the goal was to predict age, the desired

https://identifiers.org/neurovault.collection:6091
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Fig. 6. BSR of CCA loading values for T1-weighted in- 

tensity levels. (a) Distribution of BSR values for GM 

(orange), WM (green) and CSF (blue) voxels. (b) Brain 

regions with the top 15% BSR values, highlighting that 

the most reliable voxels for brain age prediction were 

located within subcortical regions. 

Fig. 7. BSR of CCA loading values depicting 

cortical regions with PSD values that are corre- 

lated (pink) or anti-correlated (blue) with age 

for each frequency band. 
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AE for the perfect model would be 0 years. However, owing to subject

ariability and the ill-conditioning of the problem, specifically the defi-

ition of a “healthy ” subject and the assumption that chronological age

hould perfectly correspond to brain age, we did not expect to achieve a

AE of 0 years. It is also worth noting that Cam-CAN provides the age at

he time participants entered the study, however the MRI and MEG ses-

ions occurred between 0-3 years following recruitment into the study.

his adds further noise to the model and may put an upper bound on

AE values. 

In the present study we used GPR as the regression model of choice

or brain age prediction. Furthermore, we explored the contribution

f dimensionality reduction techniques to age prediction. A commonly

sed dimensionality reduction technique in neuroimaging studies is

CA. However, PCA yielded inferior prediction performance for both

maging modalities ( Fig. 3 ). This result may be explained by the fact

hat large variability exists between neuroimaging features across sub-

ects. As argued by ( Stringer et al., 2019 ), PCA decomposition yields a

ower dimensional space where the data manifold is smoother compared

o the original data manifold in the high-dimensional neuroimaging fea-

ure space. Given that this smoother manifold is comprised of the top

rincipal components, it is indicative of the low frequency information

n the data. Our results indicate that this lower dimensional principal

omponent-induced manifold is not predictive of brain age, thereby im-

lying that aging causes higher frequency changes in the original data

anifold. The high frequency nature of the age-related information sug-

ests that neighbouring points (each point representing a subject) on the

ata manifold may have different brain age values. As stated earlier, sim-

larity between neuroimaging features of two subjects could be guided

y other phenotypical factors, thus resulting in the two subjects from

ifferent age groups being placed in each other’s neighbourhood on the

ata manifold. Additionally, PCA yields components that are maximally
8 
arying in the dataset, which could be aligned to directions of subject

ariability in the dataset instead of age-related changes. Therefore, our

esults suggest that using PCA to perform dimensionality reduction does

ot lead to good performance in the context of brain age prediction. In

ontrast, CCA improved performance by yielding the component that

aximally covaries with age, therefore identifying features that are in-

ormative for age prediction. 

.2. Combining structural and functional features from MRI and MEG data

Combining anatomical information from MR images and functional

nformation from MEG recordings resulted in an improvement in brain

ge prediction for all models ( Fig. 3 ). Particularly, the performance of

he GPR model with the high dimensional MRI features improved by

round one year when the MEG features were also considered, and the

CA + GPR model performance improved by around 0.5 years. The supe-

ior performance of the age prediction model when combining structural

nd functional features suggests that both modalities carry complemen-

ary information that are to some degree independent. Our results are

n agreement with a recent study that used MRI and MEG data from

he CamCAN dataset to estimate brain age where it was reported that

ombining both modalities showed an improvement in age prediction

f around 0.8 years compared to MRI-only prediction ( Engemann et al.,

020 ). Comparing the age prediction results in absolute values, Enge-

ann et al. reported a MAE of 5.2 years, whereas our models achieved

etter performance (GPR model: 4.97 years, CCA + GPR: model 4.88

ears). A key difference between the two studies is that the MRI features

onsidered by Engemann et al . were cortical thickness, cortical surface

rea and subcortical volume, whereas in this study we used whole-brain

RI voxel intensity features. Therefore, our results suggest that brain

ge prediction models may benefit from exploiting the rich information
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Fig. 8. Association between the percentage decrease in volume with age and 

the bootstrapped ratio (BSR) of CCA loadings for each subcortical region. A 

significant correlation was observed (Pearson’s correlation coefficient), whereby 

a higher CCA loading was associated with a larger decrease in volume across 

age. The subcortical volume of each structure was extracted using FreeSurfer 

for each subject. The percentage decrease in volume indicates the total decrease 

over the age range of the participants, that is from 18 to 88 years. Note that the 

BSR of CCA loadings are depicted as absolute values. 
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ontained in MR images, instead of extracting specific anatomical fea-

ures from them. 

.3. CCA loadings 

Apart from yielded the best prediction accuracy, CCA was used to

dentify the brain regions that contribute more reliably to age predic-

ion. CCA returns loading values for each input feature, therefore im-

roving model explainability. Using the BSR of loading values for MRI

eatures, we found that most of the voxel T1-weighted intensity levels

ere negatively correlated with age ( Fig. 6 a). A decrease in voxel inten-

ities with age has been reported by ( Salat et al., 2009 ), who suggested

hat this association was an indicator of brain atrophy. Thus, our find-

ngs are in agreement with previous studies that have reported cortical

hinning with age ( Fjell et al., 2009 ; Hogstrom et al., 2013 ; Salat et al.,

004 ; Storsve et al., 2014 ). 

Furthermore, our results indicate that subcortical regions are more

eliable predictors of age compared to cortical regions. The brain struc-

ures that most reliably exhibited age-related changes included the puta-

en, thalamus, and caudate nucleus, which are important structures

nvolved in relaying a variety of information across the brain, in sen-

orimotor coordination, and in higher cognitive functions ( Grahn et al.,

008 ; Sefcsik et al., 2009 ; Sherman and Guillery, 2002 ). A number of

tereological and MRI studies have reported atrophy in subcortical re-

ions associated with aging, specifically in the putamen ( Bugiani et al.,

978 ), amygdala ( Coffey et al. , 1992 ; Fjell et al. , 2013 ), hippocampus

 Fjell et al. , 2013 ; Nobis et al. , 2019 ), caudate nucleus ( Krishnan et al.,

990 ), substantia nigra ( McGeer et al., 1977 ), thalamus ( Sullivan

t al. , 2004 ; Fjell et al. , 2013 ), and cerebellum ( Andersen et al., 2003 ;

ood et al., 2001 ; Torvik et al., 1986 ). Recent studies using large subject

ohorts have also reported an age-related decrease in the hippocampal

nd temporal lobe volumes ( Nobis et al. , 2019 ). Hence, our findings

re in agreement with the changes in size of specific brain areas associ-

ted with aging as reported in previous relevant studies. Furthermore,

e explored whether there was an association between the decrease

n volume for several subcortical regions and their respective BSR of

CA loadings, illustrated in Fig. 8 . We found that a higher CCA loading

as associated with a larger decrease in volume across age ( R = 0.55,

 = 0.03). This suggests that the CCA loadings, to some extent, reflect

he shrinkage of subcortical structures. However, it is likely that they are

lso associated with increased iron deposition in subcortical areas with
9 
ge ( Harder et al., 2008 ; Ogg and Steen, 1998 ). Moreover, we cannot

ule out the possibility that the absence of strong negative correlations

etween age and MRI voxel intensities in the cortex could be attributed

o improper alignment of sulci and gyri to the standard MNI152 brain

emplate. 

We found that the WM regions affected by age were mostly confined

o the corpus callosum and the thalamic radiation. These results are in

trong agreement with previous studies that have reported age-related

lterations in WM structures ( Salat et al., 2005 ), such as atrophy in cor-

us callosum fiber tracts ( Ota et al., 2006 ; Pfefferbaum et al., 2000 ) and

halamic radiation ( Cox et al. , 2016 ). Although CCA loadings for CSF

oxels did not exhibit high BSR values compared to their GM and WM

ounterparts, including CSF improved model performance. CSF informa-

ion possibly indicates changes in brain volume and ventricle size that

esulted in improved brain age prediction. 

Among the examined MEG features, PSD and AEC values yielded the

est performance; however, the PSD values were found to be more reli-

ble than AEC values (compare BSR values in Fig. 7 and Supp. Fig. 2).

hese results align with previous EEG and MEG studies ( Dimitriadis and

alis, 2017 ; Engemann et al., 2020 ; Sun et al., 2019 ; Zoubi et al., 2018 ),

hich reported improved brain age prediction using power spectral fea-

ures. We found the BSR of loading values for PSD values to be both pos-

tively and negatively correlated with age, depending on the frequency

and ( Fig. 7 ). Our results revealed that delta and theta power decreases

ith age, most prominently in frontal regions. These results are in agree-

ent with the fact that slower waves (0.5–7 Hz) have been reported to

ecrease in power in older adults as compared to their younger counter-

arts ( Caplan et al., 2015 ; Cummins and Finnigan, 2007 ; Leirer et al.,

011 ; Vlahou et al., 2014 ). Increased frontal theta activity has been

inked to better performance in memory tasks ( Jensen and Tesche, 2002 ;

nton et al., 2005 ), which may explain the decreasing power in lower

requencies for increasing age. Regarding the alpha band, the strongest

ffect of age was observed in the occipital cortex, whereby increased

ower within the higher alpha subband (10–13 Hz) was negatively cor-

elated with age. These results align with several studies that have

eported an association between a decrease in alpha power and in-

reasing age ( Gómez et al., 2013 ; Hübner et al., 2018 ). However other

tudies have not reported significant changes in alpha power with age

 Heinrichs-Graham and Wilson, 2016 ; Xifra-Porxas et al., 2019 ). Likely,

he later studies did not have sufficient statistical power to detect this

ge-related decrease in alpha power, since the cohort size was below 35

ubjects, whereas the studies that reported an association between alpha

ower and age (including ours) had a sample size larger than 85. Never-

heless, it is worth pointing out that the observed reduced alpha power

n older adults could be a result of dividing the alpha power in con-

entional lower and upper alpha bands, considering that a recent study

eported that younger and older adults had equivalent alpha power at

he individual alpha peak frequency ( Scally et al., 2018 ). 

In line with many previous studies, we observed an association

etween beta power and age ( Heinrichs-Graham and Wilson, 2016 ;

übner et al., 2018 ; Rossiter et al., 2014 ; Xifra-Porxas et al., 2019 ).

pecifically, we found that the age-related increase in lower beta power

13–26 Hz) was restricted to frontal regions, whereas higher beta power

26–35 Hz) was restricted to the motor cortex. This beta power in-

rease has been linked to higher levels of intracortical GABAergic in-

ibition as tested by pharmacological manipulations ( Hall et al., 2011 ;

uthukumaraswamy et al., 2013 ). This suggests that the age-related

hanges in beta power may be associated with greater GABAergic in-

ibitory activity within motor cortices of older subjects. 

Finally, we found that AEC measures exhibited an age-related in-

rease in connectivity within all frequency bands across all brain net-

orks, apart from the visual network which showed a decrease in con-

ectivity within the high alpha and high beta frequency bands. These

esults align well with a recent study where Larivière et al. reported

ower beta-band connectivity in the visual network and higher beta-

and connectivity in all other brain networks with age ( Larivière et al.,
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019 ). Higher functional connectivity in older adults has been associ-

ted with a lower cognitive reserve ( López et al., 2014 ), and individuals

ith mild cognitive impairment exhibit an enhancement of the strength

f functional connections ( Bajo et al., 2010 ; Buldú et al., 2011 ). Over-

ll, the results from these studies suggest that the age-related increase

n MEG functional connectivity, as seen in our study, may play a role in

odulating cognitive resources to compensate for the lack of efficiency

f the memory networks ( Bajo et al., 2010 ), and therefore represent a

arker of the decline in cognitive functions observed during aging. 

.4. Limitations 

A limitation of brain age prediction is the use of chronological age as

 surrogate for brain age. Although we used a cohort of healthy subjects,

rain age is known to depend on various other factors, such as education

 Steffener et al., 2016a ). In this work, we ignored all lifestyle factors

nd aimed to predict the biological age from neuroimaging features.

urthermore, we used a single model to predict the brain age for both

ales and females. These factors contribute to the biological age labels

eing an imperfect surrogate of the “true ” brain age of each subject. 

Moreover, the MEG features extracted in this study were restricted

o cortical regions. As MRI features from subcortical structures were

ound to be the best age predictors, we speculate that including func-

ional features from deep brain structures could have resulted in greater

mprovement in the prediction models. This suggests that the use of

ewly developed methodologies to more reliably detect brain activity

n deeper structures using MEG ( Pizzo et al., 2019 ) could contribute to

mproved age prediction in future studies. 

. Conclusions 

Leveraging structural and functional brain information from MRI and

EG data, we showed that combining features from both modalities us-

ng a stacking model yielded better performance compared to using a

ingle neuroimaging modality. We showed that dimensionality reduc-

ion techniques can be used to improve brain age prediction and identify

ey neuroimaging features that reflect age-related effects. Specifically,

e found that using CCA in conjunction with GPR yielded the best age

rediction performance, whereas using PCA deteriorated prediction per-

ormance. We also showed that the most reliable MRI predictors of age-

elated effects were features derived from subcortical structures such as

he putamen, thalamus, and caudate nucleus, and WM regions such as

he corpus callosum. Finally, we found that spectral MEG features were

ore reliable than connectivity metrics. 
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