Artificial neural network structure optimisation for accurately
prediction of exergy, comfort and life cycle cost performance of a low

energy building

Ivan Garcia Kerdan®, David Morillon Galvez

Instituto de Ingenieria, Universidad Nacional Auténoma de México, 04510 Ciudad de México, México

Abstract

In recent years, surrogate modelling approaches have been implemented to overcome the time and
computational power demands of traditional building energy modelling. Artificial neural networks (ANN),
due to their potential to capture building energy systems complex interactions are regarded as powerful
surrogate models; however, the definition of optimal ANN structures and hyperparameters have been
overlooked causing substandard prediction performance. The aim of this study is to present a novel hybrid
neuro-genetic modelling framework developed as an open source tool capable of identifying optimal
multi-input/multi-output ANN structures for accurately predicting building thermodynamic performance.
The ANN optimisation process uses a genetic algorithm that minimises the root mean squared error
(RMSE) data difference between the target and predicted values for both the training and testing data. As
a case study, an archetype social house located in different climatic regions in Mexico is used. The ANN
training database has been generated by simulating a sample of high-resolution energy models
considering a combination of different active and passive energy strategies (input data) while calculating
building exergy destructions, occupant thermal comfort and life cycle cost (output data). After
automatically evaluating thousands of different structures, the neuro-genetic tool has identified a single
deep ANN structure (3 hidden layers with 18, 17, 20 neurons respectively) capable of predicting the
model’s high output variability, achieving a prediction accuracy >0.95 for each of the outputs. The
presented framework and tool can be adapted to further optimisation stages in the building design

process and to solve similar problems in other research areas.
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Nomenclature

Ap total building area [m?]
Acol solar collector area [m?]
Apy/T hybrid photovoltaic/solar collector area [m?]
cc, capital cost [USS]
CE, annual energy cost [USS]
e euler's number [e = 2.718]
Epy PV electricity generation [kWh]

Engemen zone thermal energy demand [KWh]
Enyign, artificial lighting energy demand [kWh]
En, ... ventilation energy demand [kWh]

Exgq air or ground exergy [kWh]
EXgem bui total building exergy demand [kWh]
EXgemtn zone thermal exergy demand [kwh]
EXgestnonren  NON-renewable exergy destructions [kWh]
Expuw domestic hot water exergy demand [kWh]
EXjign: lighting exergy demand [kWh]
ExDU,pnren  €xergy destructions intensity [kWh/m?]
EXgypnonren  hON-renewable exergy supply [kWh/m?]
EXgyp iot total exergy input supply [kWh]
Exgyn solar exergy input [kWh]
EX yent ventilation exergy demand [kwh]
Fy primary energy factor [ -]
F, fuel quality factor [ -]
G incident solar radiation [W/m?]
L thermal load [W/m?]
M metabolic rate [W/m?]
M, maintenance cost [USS]
Qcol solar collector energy generation [kWh]
Qpuw hot water energy demand [kWh]
Q gen building thermal systems primary energy consumption [kWh]
Afuel energy source quality factor [ - ]
T4 discount factor [ -]
Ty outdoor temperature [K]
Ty air or ground source temperature [K].
T; inside setpoint temperature [K]
Typ operational temperature [°C]
Tyou hot water demand average temperature [K]
Toun sun temperature [K]
Why heat pump electricity demand [kWh]
Greek Symbols
n system energy efficiency [ -]
Y system exergy efficiency [ -]
Acronyms
ANN Artificial neural network
ANN-GA Hybrid neuro-genetic algorithm
ASHP Air-source heat pump
COoP Coefficient of performance



ELM-WT
GA
GP

GSHP
LHS
MAE
NSGA-II
ORC
PMV
RBF
RLC
RMSE
SVM

extreme learning machine with wavelet transform algorithm
Genetic algorithm

Gaussian process

Ground-source heat pump

Latin hypercube sampling

Mean Absolute Error

Non-dominated sorting genetic algorithm Il
Organic Rankine cycle

Predicted mean vote index

Radial basis function

reinforcement leaning control

Root mean square error

Support vector machine



1 Introduction

Globally, buildings are responsible for approximately 20-40% of the national primary energy utilisation [1]
and 25-30% of the global CO2 emissions [2]. In recent years, the international community has committed
to reduce emissions from the building sector and according to the International Energy Agency [3], energy
efficiency has been regarded as the first fuel to achieve a sustainable global sector holding the largest

cost-effective potential among decarbonisation measures.

As the challenge of improving energy and resource utilisation in the building sector is becoming more
evident, developing techniques for designing sustainable, efficient and cost-effective buildings and energy
systems is still a challenge that researchers, engineers and architects face nowadays. Commonly, there
has been a reliance on complex dynamic simulation tools to assess the environmental performance of
buildings and to optimise energy and resource utilisation [4]. Pre-processing efforts and running the
optimisation process are regarded as major limitations due to the nature of detailed building modelling
and the expensive computational cost [5]. However, in recent years, driven by the focus of reducing
computational times, this research area has moved from using complex dynamic simulation and
optimisation tools to relying more on data-based and machine learning solutions [6]. Specifically,
surrogate modelling using non-parametric models such as artificial neural networks (ANN), support vector
machines (SVM), and Gaussian process models (GP) have been the most popular methods used in design,

sensitivity and uncertainty analysis and optimisation of building energy systems [7].

In addition, automated machine learning (AutoML) techniques have been developed recently. Regularly,
AutoML is employed during the design and development phase to automatically select machine learning
algorithms, thus, assisting inexperienced users in developing their own machine learning models. Barreiro
et al. [8] developed the Net-Net AutoML approach to test different model typologies to predict complex
Biological Ecosystems Networks. Similarly, Feurer et al. [9] developed auto-sklearn, an AutoML Python
package that uses Bayesian optimisation to automatically improve machine learning models performance
by taking into account previous performance of similar datasets. Nevertheless, the main limitation for
more experienced users is the inherited constraints of such black-box frameworks, limiting the flexibility
in adapting new features. Furthermore, the application of such frameworks in building energy design

has been limited.

Apart from the computational aspect, other research groups have focused on improving applied
thermodynamic analysis [10]. In this sense, exergy analysis have found some space among the research
community aiming at improving energy utilisation in buildings [11]. This method derives from
Thermodynamics’ 2" Law principles in combination with the 1% Law. The main advantage of exergy

analysis compared to traditional energy analysis, is the identification of exact locations of irreversibilities



or true inefficiencies, which in buildings mostly occur in thermal energy exchange processes and in the
delivery of high quality energy sources (electricity, gas) to cover low quality demands (cooling heating and
hot water). From a sectoral perspective, using resources inefficiently and unwisely have a considerable
effect on the national energy system and energy security [12]. However, if these irreversibilities (exergy
destructions) are minimised, then high-exergy or high-quality energy vectors can be re-oriented to cover
higher quality processes such as high-temperature heat demand in the industrial and chemical industry

or electricity demand for the transport sector.

Thus, this study aims to integrate highly efficient computational algorithms with novel thermodynamic
methods to ultimately improve the prediction capability and support design decisions for low energy
buildings. This paper is organized as follows. First, the most relevant literature about exergy and machine
learning applications in building research is presented. Secondly, the proposed methodological
framework and case study are described. The presented approach combines dynamic exergy analysis
modelling with a hybrid AutoML approach, more specifically, an Artificial Neural Network-Genetic
Algorithm (ANN-GA) process, which aims at optimising complex ANN structures to improve prediction
performance. As an added value, the ANN-GA algorithm is presented as an open source tool with further
development potential by the research community. Following, the paper shows the application of the
framework using a social house building model located in Mexico. First, using data from building energy
simulations as training and testing data, optimal ANN structures are identified via the proposed
framework. Secondly, the section shows the optimised ANN model prediction performance of the output
targets, namely building exergy destructions, thermal comfort and life cycle cost. Finally, conclusions and

suggestions for future work are presented.

2 Literature review

2.1Building exergy analysis

Entropy minimisation and exergy methods, which act as complement of common energy analysis, have
been applied for more than three decades in areas such as cryogenics [13], industrial processes [14], air
separation [15], combustion [16] and power generation [17], eventually reaching certain degree of
maturity. The application of the Thermodynamics’ 2" law overcomes 1% law limitations by explicitly
defining locations, causes, and magnitudes of energy deterioration [18]. By locating the sources of these
inefficiencies, designers, engineers or decision makers can make more informed decisions aiming at

minimising exergy destructions as much as possible.

Gasparatos et al. [19] demonstrated the intrinsic low thermodynamic efficiency of current buildings
recommending further exploration of the causes. In building research, efforts have been made to develop

consistent exergy analysis methods, such as the ones developed by the IEA-ECB Annex 49 [20] and the



"LowEx - COSTeXergy’ [21] research groups. An updated review of the latest building exergy studies and
developed methodologies can be found in [11]. However, as current building energy programmes and
regulations still focus on maximising building envelope thermal performance, the application of exergy
analysis, which hold the greatest potential in improving the performance of the building energy system,
has been limited to academic work. In this sense, Fisk [22] criticized the low influence of exergy analysis

on professional practice with very limited consideration in building construction guides and standards.

The limitations of using only the 1 Law in building energy design can be seen in other areas such as
simulation and optimisation. In this regard, Garcia Kerdan et al. [23] demonstrated that by using the 1%
law only in the simulation and optimisation design process can limit the potential of obtaining the
maximum possible thermodynamic efficiency in a building, evidencing that using both laws becomes a
satisfactory approach to design more sustainable buildings. The study showed that by implementing
exergoeconomic analysis, the building design optimisation process was able to achieve solutions with
greater emissions’ reductions compared to the typical energy approach, due to the capability of the
former of locating and quantifying exact sources and locations of thermodynamic inefficiencies, being

able to reduce them in a cost-effective way.

2.2 Surrogate modelling for energy design

In research and industry, building modelling has become a common approach in the design and
optimisation of energy efficient buildings [5]. Commonly, complex simulation tools are used for this task.
For instance, Shadram et al. [24] developed a physics-based multi-objective optimisation framework using
Grasshopper, EnergyPlus and Octopus. In this case, to reduce simulation times in the parametric study,
the building models needed to be simplified, reducing models’ accuracy but dramatically improving
computational power requirements. However, recently data-driven approaches, such as surrogate
modelling, have been integrated more frequently aiming at reducing simulation times [7]. Surrogate
models are statistical models that aim to approximate complex simulation models. In building design, such
models are usually developed through machine learning methods, a common methodology in control
research [25]. According to Geyer and Singaravel [25] the main steps to build and use a surrogate model

in building energy design are the following:

i Build a detailed simulation model.
ii.  Runthat model for many different cases to generate a database of results.

iii. Use the outputs to train and test the meta-model.

Surrogate models have the potential to be used as a rapid tool to support design decisions for building
practitioners [26]; however, data quality needs to be assessed. Nonetheless, while the use of surrogate

models has the capacity to ease computational burden and reduce simulation and post-processing times,



the time to develop the surrogate model needs to be carefully considered as it can greatly affect the

design process.

Westermann and Evins [7] provided a comprehensive review of surrogate modelling application for
building design and optimisation. In optimisation studies, surrogate modelling is used to accelerate the
optimisation process and to enable gradient based approaches. However, as Hashempour et al. [27]
argues, the greatest complexity lies in the selection of conflicting objectives. The study suggests the
importance of implementing integrated decision-making models that have the potential to satisfy

environmental and human comfort aspects such as thermal, visual and acoustic comfort.

Wortmann et al. [28] suggest that for general architectural design there is a faster convergence in
surrogate-based optimisation than metaheuristic methods. Among surrogate-based optimisation
techniques, typical linear regression models [29], Lasso regression [30], radial basis function (RBF)
algorithms [31], and Support Vector Machines (SVM) [32] are commonly used; nevertheless, Artificial
Neural Networks (ANN) were found to be the most popular method for surrogate modelling-based
optimisation, with energy use, overheating, carbon emissions and total cost as the most common

prediction outputs [7].

2.2.1 ANN for building energy design

ANN were first developed in the late 1950s aiming at simulating the neuron network behaviour of the
human brain [33]. Similar to the regression model process, the ANN learns the relationship between the
data inputs and the defined (controlled and uncontrolled) variables by analysing the previously and/or

newly fed data. Detailed information on ANN theory can be found in Hagan et al. [34].

ANN has been applied in many academic fields, mainly those where modelling and prediction of
engineering systems is necessary. In energy research, Kalogirou [35] was one of the first researchers to
illustrate the potential of ANN for the design of a wide variety of energy systems. More specifically, in
building energy design, Magnier and Haghighat [36] used a simulation-based ANN to characterise building
behaviour. Then, the model was integrated with a multi-objective Genetic Algorithm aiming at minimising
simulation times compared to classical optimisation approaches. Melo et al. [26] evaluated the feasibility
of using an ANN to improve accuracy of simplified models for national labelling purposes. The ANN was
applied to model the building stock of a Brazilian city based on the results of extensive EnergyPlus
simulations. Sensitivity and uncertainty analyses were carried out to evaluate the behaviour of the ANN
model, indicating that an ANN was able to represent with high accuracy the interaction between input

and output data for a vast and diverse building stock.



Wong et al. [37], using hourly EnergyPlus simulations, developed ANN models aiming at improving energy
use, thermal demand, and electric lighting for a building with high daylight potential. The obtained
surrogate models were able to dynamically simulate the building as four of the inputs were directly related
to the hourly climatic conditions found in the EnergyPlus weather file. Following, a simple optimisation
exercise considering two of the nine input variables was conducted, aiming at finding the minimum
electric lighting consumption. Similarly, Ascione et al. [38] applied a Multi-Layer Perceptron (MLP) ANN
model to predict energy performance for new and retrofit building designs. The authors used two
different families of ANN models to predict heating and cooling energy use, thermal comfort and
electricity production from PV (exclusively for retrofit projects). The ANN models showed good prediction

capability reducing computational times by 98%.

Although with limited application, ANN can be used to derive meta-models, overcoming the limitation of
derivative-free optimisation algorithms [39]. Sharif and Hammad [40] aimed at reducing simulation times
from physics-based multi-objective optimisation studies, implemented ANN surrogate models by using
data from optimisation runs. The study focused on retrofit projects aiming at reducing total energy use,
life cycle cost and carbon emissions of a university building. The surrogate-based optimisation method

was able to reduce simulation times by up to 99%.

2.2.2 Exergy-based ANN studies

In the field of exergy analysis, some ANN studies can be found in the literature, but with limited application
to buildings. S6zen and Arcaklioglu [41] used ANN to obtain exergy losses of an ejector-absorption heat
transformer. As these systems require complex differential equations and computational models, the
application of ANN was able to dramatically reduce computational times while showing high statistical
coefficient of determination compared to outputs from the complex model. Yoru et al. [42] applied a
simplified ANN model to predict the exergy performance of a gas turbine. Outputs demonstrate good

prediction performance of ANN models with Root Mean Square Error (RMSE) values below 0.002.

Khosravi et al. [43] used adaptive neuro-fuzzy inference system and ANN to model energy and exergy
efficiency of a geothermal organic Rankine cycle (ORC) equipped with a solar thermal equipment. The
developed model was built considering the main design parameters of the system such as solar radiation,
well temperature, flow rates and pressures and solar collector area. Aghbashlo et al. [44] used extreme
learning machine with wavelet transform algorithm (ELM-WT) to estimate the exergetic performance of
a biodiesel/diesel engine. Compared to typical ANN models, the proposed approach was able to better

predict thermodynamic performance with a Pearson coefficient of around 0.95.

Yang et al. [45] investigated the application of reinforcement leaning control (RLC) for low exergy building

systems using different ANN structures. Using PV/T panels as case study, the authors found that the



proposed RLC method outperformed the typical rule-based control by increasing net power output by up
to 11.5%. When the whole building was modelled, the RLC met 100% of the required heating demand
compared to 97% from typical control. Nevertheless, no studies were found that optimise building exergy

performance using any type of machine learning technique.

2.3 ANN structure optimisation

As shown, several studies have focused on producing ANN models capable of reproducing complex
simulations results. Furthermore, some of these models have been applied for design optimisation;
however, few energy publications have tackled the issue of finding optimal ANN structures as a measure
to ensure that the best possible solution is obtained. Typically, this has been tackled using heuristic trial-
and-error methods, limiting the number of studied structures. The main issue is that there is no general

ANN structure that can be used for every problem, as it greatly depends on the problem and data type.

To tackle this limitation, neuro-evolutive algorithms have been proposed to train ANNs. This is mostly
done through genetic algorithms combined with artificial neural networks (ANN-GA). The first applications
can be found in areas such as civil and structural engineering. Koopialipoor et al. [46] applied a hybrid
ANN-GA to model the overbreak induced by the drilling in tunnel operations. Similarly, Azimi et al. [47]
used a hybrid neuro-genetic approach to find optimal ANN structures to better predict blast induced
ground vibrations due to mining. The optimal ANN structure shows higher prediction accuracy compared

to empirical predictors and neuro-fuzzy system approaches.

In the field of combustion, Taghavi et al. [48] implemented a neuro-genetic approach to optimise three
different ANN structures: Autoregressive Networks, MLP and RBF. The application of genetic algorithms
ensured that optimum structures were found for each type of network. For instance, when comparing the
prediction capability of the optimised MLP network against the conventional approach, the performance
prediction was increased from 0.89 to 0.96 while also reducing the computational time for network
training. Suresh et al. [49] coupled an ANN with GA optimisation to calculate the maximum possible
efficiency of an ash coal power plant. Flow sheet simulations were used to train the ANN models.
Following, using the ANN performance metrics as fitness function, the model found a set of optimal input
parameters that resulted in minimum energy requirements and an increase in exergy efficiency. Finally,
Baklacioglu et al. [50] used a ANN-GA, to optimally select the parameters of the network to model the
exergetic efficiency of a turboprop engine. The authors utilised the momentum factor to improve the
backpropagation algorithm to adjust the weight parameters of the ANN. The outputs suggest that the

proposed hybridisation provides an increase in the accuracy and fitness of the results.



2.4Research gap

For building energy research, the literature review has shown a limited amount of studies focusing on the
application of exergy analysis and enhanced machine learning techniques for rapid and effective
prediction of sustainable and thermodynamic efficient buildings. Although a wide range of studies and
simulation tools oriented to assess building exergy design seem to be in place, no efforts have been made
to combine it with ANN modelling. Conversely, ANN structure optimisation, which has only been applied
to specific research areas, have failed to provide generalisable open source tools and methods for

application, limiting its research scope to a single field and probably a single study.

This paper proposes a novel development of an exergy-based ANN model to accurately predict
energy/exergy performance and other metrics such as occupant thermal comfort and life cycle cost.
However, to ensure that the best prediction model is obtained, a genetic optimisation is applied to
discover the best possible ANN structure and hyperparameters. To ensure reproducibility and
generalisation of the proposed framework, the programming code is presented and published as an open

source collaboration software.

3 Materials and methods

The proposed exergy-based neuro-genetic framework is shown in Fig.1 and can be summarised in the

following steps:

1. Building energy/exergy baseline simulation model development. In this step, a detailed building energy
model is thermodynamically evaluated using EXRET-Opt [51], a recently developed building simulation
tool based on the EnergyPlus engine [52] that further integrates exergy and exergoeconomics analyses.

2. Parametric study design and simulation. Considering different building energy technologies and
measures, a near-random sample is generated using Latin Hypercube Sampling (LHS) method and
simulated using EXRET-Opt. The aim at this stage is to generate a comprehensive database that would
be used to train the ANN.

3. ANN training and surrogate model development. With the database in place, the neuro-genetic tool
based on Python-based machine learning libraries is adopted to train the ANNs using backpropagation.
Although build upon a limited amount of simulated results from dynamic thermal simulations (step 2),
the framework allows the ANN to learn the complex thermodynamics interactions between the
building physics and the building energy systems.

4. ANN structure optimisation. At this stage, genetic optimisation is applied to find optimal ANN
hyperparameters and structures preserving the essential behaviour of more complex modelling
configurations. The optimisation process can define as a cost function different ANN performance

metrics such as RMSE or MSE.
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5. Optimised ANN prediction performance. After the optimal ANN structure is identified by the tool,

prediction performance against the physics-based energy modelling target outputs is conducted.

2. Parametric study design}3.Artificial Neural Network
and simulation Training and surrogate
Latin hypercube sampling model development
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Fig. 1 Poposed exergy-based hybrid neuro-genetic framework for ANN structure optimisation

3.1 Mathematical modelling: Exergy, LCC and thermal comfort
This section presents a general overview of the main mathematical formulas employed to obtain the
desired prediction outputs: i) exergy destructions, ii) life cycle cost, and iii) thermal comfort. These have
been integrated and modelled into the energy/exergy simulation tool (EXRET-Opt) described in Step 1 in
the previous action. More detailed information about the formulas [51], tool’s technical description [53]

and applications [54] can be found.

3.1.1 Exergy analysis

As mentioned, exergy analysis is integrated to locate the main sources of irreversibilities in the energy
system. This study considers an input-output exergy analysis that requires a thermodynamic abstraction
of energy subsystems located in the building. The section presents a simplified version of the analysis
applied in this research. The detailed calculation and thermodynamic abstraction of building energy

systems can be found in [55].

As first step, it is necessary to calculate the total exergy demand of the building. This will represent the
minimum exergy required to cover all services. In this study, following four demands have been

considered:

i. Thermal exergy demand (heating and cooling)

11



To (t
Exdem,th(tk) = ?:1 <Endem,th(tk) * (1 - %)) [kWh] (1)

where Ty, is the outdoor temperature [K], Tj;j, is the inside setpoint temperature [K] and Engep, ¢p, is the

thermal energy demand [kWh].

ji. Ventilation exergy demand

T, (tx) T (t)
EX pene (tx) = ?:1 <Envent(tk) * (1 T (tko)—;fo ) In T; (ti))> [kWh] (2)

where En ,,.,,; is ventilation energy demand.

jii. Domestic hot water exergy demand

— Nwa (tk) _ To(ty) Tpyy (Ek) )
Expraw (t) = Qorw (Be) * =g = (1 (TpWHak)—To(tk))* In(Fe55)) twnl @)

where Qppy is the hot water energy demand [kWh], 1y is the system efficiency [ - ], gy is the energy

source quality factor [ -], and T, . is the hot water demand average temperature [K].
iv.  Lighting exergy demand
Exjigne(ti) = Engigne(ty) * F;  [kWh] (4)

where Enu-ght is the energy demand for artificial lighting [kWh], and F, is the fuel quality factor [ -], in
this case electricity (1.0). Other end-use services such as refrigeration and cooking have not been

considered in this study. Thus, to obtain the total building exergy demand:

Exdem,bui = Exdem,th(tk) +Ex vent(tk) + ExDHW(tk) + Exlight(tk) [kWh] (5)

The detailed analysis calculates the exergy flow through the rest of the subsystems. For instance, for the
HVAC systems this means calculate exergy flows in the emission, distribution, storage, generation and
supply systems [51]. On the other end, it is necessary to calculate the total exergy supplied to the building.
This serves to assess the overall exergy destructions and exergy efficiency of the entire building. Although
exergy analysis does not differentiate exergy destructions depending on the energy source, for this study,
a distinction has been made between non-renewable and renewable-based exergy inputs. This has been
done to encourage the application of renewable energy-based technologies. Thus, for non-renewable-
based exergy, the followed equation is used:

Q gen,i(tr)

Mgeni (00 1P FQ) + (Exyigne(ty) * ) [kWh] (6)

Exsup,nonren(tk) = Zi (
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where, Q gep is the primary energy consumption by the building thermal systems (HVAC and DHW
systems) [KWh], 14en is the systems’ energy efficiencies [ -], F, [-]is the primary energy factor [56], F,

is fuel quality factor [20], and Ex;;gp, is the lighting exergy demand [kWh].

For renewable-based exergy inputs, the formulas proposed by Torio et al. [57] have been implemented.
In this study, solar, air and ground energy have been considered as renewable sources. For instance,
equipment using solar energy, such as solar collectors, the exergy input is calculated considering the
production and the collectors’ efficiency. Thus, solar exergy input (Ex,, ) can be calculated as follows:

Exqun (t) = G(t) * Acor + (1= 22)  kwh) (7)

sun
where G is the incident solar radiation [W/m?], A.,; is the area of the solar collector [m?] and Ty, is the

source temperature (~6000 K). In the presence of a photovoltaic generation, exergy efficiency (Ypy/7),

and consequently exergy inputs, can be calculated as follows:

To (t
Bpy @)+ Qcot(1-7-55)

To (tx) ) [ '] (8)

Tsun(ty)

EDPV/T =

G(fk)APV/T(l—

where Epy (t;) is the electricity generated through the PV panels [kWh] and Q,,; is the thermal energy
generated by the solar collector [kWh]. In this case, the denominator represents the total solar exergy
input into the system. On average, considering typical energy efficiencies for both technologies, a hybrid

PV/T has an exergy efficiency of around 13% [57].

The study also considers heat pumps to cover thermal energy demands, specially cooling and domestic
hot water demand. Therefore, the energy located in the air or the ground is also considered as renewable
exergy inputs. To calculate the exergy efficiency of a heat pump (¥,;,) and consequently the exergy input,

the following formula can be used:

COP(l—M)

Dy = Exgemth(tk) _ Tin(ty) [-] (9)
P ExggtWhp < To (k) )
1+(copP-1 +W
( ) Tasg(tk) hp

where Ex  is ambient exergy (air or ground) [kWh], W is the heat pump electricity demand [kWh], COP

is the heat pump coefficient of performance [ - ], and T4 () is the source temperature [K].

Then, to calculate total exergy input supply (EXgyp 0¢), NON-renewable and renewable exergy supply are

added:

T T
Exsup,tot = Exsup,nanren(tk) + G(tk)APV/T (1 - Ts(:m((tfg)) + (1 + (COP—-1) (Ta(;;(tf;z)) + Whp) [kWh]

(10)
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As we are interested in calculating only exergy destructions from non-renewable sources, the following
outputs, namely non-renewable-based exergy destructions and the total exergy destructions intensity

ExDU have been defined as follows.

Exdest,nonren(tk) = Exsup,nonren(tk) - Exdem,bui(tk) [kWh] (11)
EXDUponren = 5222528 [kWh/m?] (12)

where A, is the total building area [m?]. Eq. 12 represents the first of the three output values considered

in the simulations and used to train the ANN models.

3.1.2 Life cycle cost (LCC) analysis
The second output, which is life cycle cost (50 Years), is calculated as follows:

[CCn+Mn]+[CEy]
(A+ryn

LCC = Y¥N_; [USS] (13)

where nis the total years of evaluation (in this case 50 years has been selected), CC,, is the design’s capital
cost [USS], M,, is the maintenance cost [USS], CE,, is the annual energy cost [USS] and 1 is the discount

rate [-].

3.1.3 Thermal Comfort

The third output, thermal comfort has been calculated considering two different metrics depending if the
building is mechanically or natural ventilated. For mechanical ventilated designs, the Predicted Mean Vote
(PMV) index is used to account for total hours of discomfort. PMV is a result of Fanger’s comfort equation
[58] by developing a correlation with the thermal loads. By providing a quantitative combination between
individual and environmental variables, PMV will indicate the occupants’ judgement of the climatic
conditions. Detailed information on the derivation of PMV can be found in [59] and is calculated as

follows:

(|JPMV]) > 0.5 = [(0.303e79:036M 4 0,028)L| > 0.5 [-] (14a)

where M is the metabolic rate [W/m?], L is the thermal load [W/m?], and e is the Euler's number

[e =2.718]. If the PMV is greater than 0.5, this considers that the space is providing uncomfortable period.

For natural ventilated designs, the adaptive comfort model is used [60]. This model considers the effect
of outdoor temperature on the indoor environment conditions. The main difference with the PMV model,
is that outdoor conditions dynamically affects the comfort zone, usually assuming that occupants are

more tolerant to a wider temperature range. The comfort temperature is defined as follows:

14



T, = 0.31 Ty +17.8 £ 2.5 [°c] (14b)

where T, is the average between the indoor air dry bulb temperature and inside surfaces mean radiant
temperature [°C] while T is the outside temperature [°C]. Any temperature outside the range will be
considered as uncomfortable conditions. Both metrics (14a) and (14b) are calculated by EXRET-Opt using
the EnergyPlus engine. As the model considers an hourly resolution, the discomfort hours are aggregated

at an annual level to then convert it to annual percentage time of thermal discomfort.

3.2 Building case study and parametric study
The case study building model is based on a two-storey/two-flat social house located in Mexico (Fig. 2).
This design has been used in a previous study by the authors where the calibration and validation process
have been conducted [54]. In Table A-1 (Appendix A), the baseline envelope and energy system technical

details are presented.
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To assess different building designs, the study considers a wide range of passive and active technologies.
Among the possible measures that can be modelled are diverse insulation types and widths, glazing
systems, solar protection devices (overhangs and fins), artificial lighting devices as well as renewable
technologies such as solar PV, solar collectors and micro wind turbines. Regarding the HVAC system, the
model considers either using natural ventilation or the option between an air source heat pump (ASHP)
or ground source heat pump (GSHP). As an added complexity, this study has also considered as input
variables three different locations, representing Mexico’s three main climates (Fig. 2). Detailed technical
and economic information of all possible design parameters (climate, passive and active technologies)
that would also act as input variables in the database generation and consequently ANN training process

can be found in Table 1, resulting in a search space of around 6.8 quintillion different solutions.

To generate the database sample, a parametric study has been conducted using Latin Hypercube Sampling
(LHS), where 3,000 different building models are simulated. LHS has been selected as sampling method
as it stratifies the input probability distributions, assuring an even spread of sample data points across the
search space. The size of the database represents only 6e™® % of the total search space; however, it is
expected that the proposed framework is capable of finding robust ANN models even with limited amount
of data. The physics-based models have been set with an hourly resolution, meaning that 8760 outputs
for each desired variable are simulated for each model. As the physics-based modelling tool (EXRET-Opt)
has the capability to perform sizing calculation for any equipment, this enables the automatically
generation not only of the design’s operational energy/exergy expenditure but also the project’s life cycle
cost (eq. 13). The entire simulation and database generation process required a computational effort of
72 hours using an Intel Core i5 8 GB PC. This generated data can be found in the Supplementary

Information (S.1).

As shown in Table 1, the ANN design will consider a total 21 parameter. This is a significant simplification,
as the amount of inputs that can be found in the physics-based model are hundreds or even thousands of
different variables. Thus, the aim was to create efficient ANN models that capture the complexity of
physics-based simulation while still providing reliable outputs similar to those from the dynamic

energy/exergy simulation tools.
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Table 1 Technical and economic characteristics of input data for database generation

Input Type Subtype Description Cost
ID# Technologies/ Technologies/ unitary/range
measures Measures [usS]
1.1 Hot-humid climate:
® Cabo.San.Lucas.Intl.AP.767503_TMYx.epw
1.2 Hot-dry climate:
Weath
1 eather data n/a o Monterrey-Escobedo.Intl.AP.763943_TMYx.epw n/a
1.3 Temperate climate:
o Ciudad.Mexico-Juarez.Intl.AP.766790_TMYx.epw
° Air source HP COP: 2.5 and 3.0
1.2 Single duct VAV with cooling efficiency of 75%
T?tr?”b’;;ps & & VO™ 600-800 USS / kW +
vana 930 US$ per VAV
Air Volume svstem
(VAV) Y
HVAC
2 System G q
. roun
1600 USS / kW +
source heat HP COP: 3.5 >/
. 930 USS per VAV
pumps + (horizontal boreholes) svstem
Variable Air Single duct VAV with cooling efficiency of 75% y
Volume
(VAV)
3 Cooling setpoint n/a Values: 20 to 25 °C, with 0.1 °C resolution n/a
Building Values: 0 and 360° with respect to the North, with
4 . . n/a . n/a
orientation 10° resolution
Solar protection e  Overhangs Material: PVC module with 20 mm width
-1 4 2
>-13 (per window) e Fins Length values: 0.05to 2.0 m 0 USS/m
e Single 5mm clear glass (Uy = 5.7 W/m2K) 130 USS/m?
5mm clear glass with a 6/13 mm gap (air, argon or 2
350-500 US
* Double krypton) (Uy = 1.2-1.3 W/m?K) >/m
14 Glazing
. Triple 5mm clear glass with a 6/13 mm gap (air, argon or 620-870 USS/m?
P krypton) (Uy = 0.8-0.9 W/m?K)
e Polyurethane 2to15in1cm steps 8.9-31.0 US$/m?
* Extruded 1to 15in 1 cm steps 6.3-42.5 USS/m?
polystyrene
* Expanded 2to 15in 1 cm steps 5.8-13.2 US$/m?
15 Wall Insulation* polystyrene
. e Cellular Glass 4to 18in 1 cm steps 21.6-97.0 USS/m?
16 Roof Insulation

e  Glass Fibre
e Corkboard

e Phenolic
foam board
e Aerogel

6.7 7.58.5and 10 cm
2to30in 2 cm steps

2to 10in 1 cm steps

0.5t04in 0.5 cm steps

18

7.5-10.3 US$/m?
7.4-114.1 USS/m?

7.4-29.1 US$/m?
35.6-259.5 US$/m?



e Phase
change

) 10 and 20 mm 76.8-143.3 USS/m?
material
(PCM)
17 Air Gap e Wallair gap 0to 15in 1 cm steps n/a
e CELlamps Low wattage lamps with low ballast factor. 150 USS/KW
P Power density: 10.5 W/m?
18 Lighting
Low wattage solid-state lamps.
° LED Power density: 3.5 W/m? 300 Uss/kw
Solar e Solar PV Monocrystalline silicon panels with module )
19 photovoltaic panels efficiency of 13% 850 US5/m
1 0,
20 Solar thermal e Solar FIaF plate solar thermal collector (HSTC) with 70% 38 USS/m?
collectors efficiency.
. e Wind Small scale wind turbines 1000-3000 USS per
21 Wind energy turbines (micro) 1.0 - 1.5 kW unit

3.3 ANN definition for surrogate model
The main advantage of using ANNs over other machine learning techniques, is the ability to learn more
efficiently complex interrelated parameters by ignoring non-significant variables and data. This has the
potential to develop more efficient models that could be easier to optimise. The basic ANN structure is

made of an input layer, hidden layer(s), and an output layer.

The structure of the ANN has been set as a multilayer perceptron (MLP), which is a feed-forward neural
network with one or more layers between the input and output layers and where backpropagation is used
as a supervision learning method. When designing an MLP, the main issue is to determine the number of
layers and neurons. The neurons are made of three characteristics: 1) one or more weighted input

connections, a transfer function, and one or more output connections.

As mentioned, in this study the input layer is made of 21 different inputs (Table 1) including climate data,
insulation material, the HVAC system, PV/T panels, etc. Conversely, the output layer consists of three
nodes representing exergy destructions (eq. 12), life cycle cost (eq. 13) and thermal discomfort (eq. 14a
or 14b). Although the physics-based model was based on hourly simulations providing a time-series
resolution for each of the three outputs, these outputs have been aggregated annually for both exergy

destructions and life cycle costs. Similarly, for thermal discomfort, where the physics-based model
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provides a time-series of discomfort hours, these results have been converted to a percentage time of
annual discomfort, resulting in three annual output variables that are handled by the ANN. The process
will then specify an aleatory number of hidden layers and nodes between the input and output layers (Fig.

3).

Input P Output
P Hidden Layer(s) P
Layer Layer
Climate
data
> 1 Exergy
L destructions
HVAC >
system
2 Thermal
’k/\\\\/ / comfort
N . Life cycle
= cost
Wind e

energy

Fig. 3 Feed forward MLP ANN model structure

In an MLP, the outputs are recommended to be scaled. The scaling provides a more stable training
procedure by reducing the gradient size used to update the weights. Also, it is important to understand
the ratio between the number of input parameters and the amount of available data. The amount of data
needs to be large enough to have a regulation effect and avoid the risk of overfitting and other undesired

noise when generating the model.

3.4 ANN structure optimisation
Although the use of ANN has provided with several benefits in different research areas, the ANN structure
and hyperparameters definition are problem-dependant. ANN hyperparameters can be catalogued as
external parameters set by the network user. The selection of these will have important implications in

the ANN performance, where the optimal combination of these is not a trivial task.

Normally, the design process of ANN structures is based on a trial and error approach, mostly driven by
the experience of the user. To automate the process, it has been suggested to include a genetic
optimisation procedure, allowing the exploration of a multidimensional space of possible structures. In
this study, the design of the MLP ANN networks is done by integrating TensorFlow [61] and Python-

based Keras [62] neural network libraries into the presented tool. The selection of Keras allows the tool
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for rapid development capable of efficient computational times and parallelism. To find optimal ANN

structures, the recombination of the following hyperparameters has been considered:

e Training/Testing Data Share: [95/5, 90/10, 85/15, 80/20, 75/25, 70/30]
e Number of Layers: [1, 2, 3, 4]

e Min/Max Number of Neurons per Layer: [1:20]

e Batch List: [10, 25, 50, 100, 200]

e Optimisers: [adam, adagrad, rmsprop, sgd]

e Kernel/weight Initialiser: [uniform, normal]

e Epochs: [50, 100, 150, 200]

e Dropout Rate: [0.0, 0.1, 0.2, 0.3, 0.4, 0.5]

e Activation Type: [relu, elu, tanh, sigmoid]

Brute-force search represents the combination of 1,843,200 different ANN structures. Depending on the
complexity of the ANN, it could take between 1 and 90 seconds to simulate each structure. In a best-case
scenario, this could take at least 21 days to simulate all possible combinations. For the training/testing
data share, the training share refers to the amount of data that will be used for fitting (or training) the
model by adjusting the desired parameters, while the testing data will be used to understand the accuracy
of the analysed ANN structure. The number of iterations, epochs and batch size are regarded as the
parameters that mostly affect simulation times. Basically, these parameters affect the rate at which
samples are fed for model training. The epochs represent the group of samples which are forward passed

to the model to then backpropagate determining the optimal network weights.

To avoid overfitting, different dropout rates have been considered. A dropout rate refers to the probability
p of each neuron within the network of not being considered during the training process (except in the
output layer). Also, different activation functions have been considered providing non-linear complex
functional mapping between inputs and output variables. This feature is what differentiates ANN from a
linear regression model. For detailed information on the hyperparameters’ characteristics, we advise the

reader to visit the Keras documentation (https://keras.io/guides/).

As previously detailed, a Non-dominated Sorting Genetic Algorithm-II (NSGA-II) [63] is used to optimise
the ANN structure. NSGA-Il is one the most popular algorithms used in building design optimisation and
renewable energy implementation research [64]. The main advantaged of using NSGA-II is to reduce the
probability of local minimum optimisation of the ANN structure. The complete neuro-genetic optimisation
framework is illustrated in Fig. 4. It shows a snapshot of the ANN structure optimisation process at each
iteration. In each generation the networks with the highest score are selected to recombine and by using

the classic GA operators of crossover and mutation, a new generation of improved networks are created.
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3.4.1 Fitness Evaluation

The ANN training process will assign appropriate weights between the input layer and the immediate
hidden layer, between the intermediate hidden layers (if any), and between the preceding hidden layer
and the output layer. Different metrics can be used as fitness function to search for optimal ANN
structures; however, this is not a trivial decision when the ANN is used to predict non-linear models. In
this study, similarly to Perera et al. [65], Root Mean Square Error (RMSE) has been selected as fitness
metric. The RMSE is a quadratic scoring rule able to measure the average error magnitude. In this case,
the RMSE represents the error of the analysed ANN against the results from the physics-based simulation.

The advantage is that it heavily penalises high errors, which is particularly desired in this study.

RMSE = \/% (- 9) (15)

where y; is the j™" actual value, yj the j™" predicted value and n the data number. The lowest RMSE at each
generation for both the training and testing will determine the mating pool and chromosome selection
that eventually would create the following generation. In this study, the objective function has been set

as the average of the sum of the RMSE for both the training (RMSE},4;,,) and testing (RMSE, ;) data.

RMSEtyqintRMSE¢est
2

min flx) = (16)

3.4.2 Source code

The presented neuro-genetic framework for ANN structure optimisation has been developed as an open
source tool coded in Python [66]. The latest release has been archived in Zenodo (doi:

10.5281/zenodo.3893600). For development purposes, the source code has been made available in the

following GitHub repository: https://github.com/kerdan85/NeuroGeneticExergy. For simplification, Table

2 shows the pseudocode of the complete ANN-GA optimisation process described in this section.
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Table 2 Neurogenetic framework pseudo code

Start ANN-GA process (main_Neurogenetic.py)
Import libraries (tensorflow, Keras, sklearn, pandas)
Define GA parameters

No. Generations (Gen: 50)
Population Size (PopSize: [10,20,30,40,50])
Crossover rate (Cross: 20%)
Mutation Percentage (MutPerc: 50%)
Objective function (Obj: Eq. 17)
Define ANN parameters range
Min/Max Training Share: [95/5, 90/10, 85/15, 80/20, 75/25, 70/30]
Min/Max No. of Layers: [1, 2, 3, 4]
Min/Max No. of Neurons per Layer: [1:20]
Min/Max Batch List: [10, 25, 50, 100, 200]
Optimisers: [adam, adagrad, rmsprop, sgd]
Kernel/weight Initialisers: [uniform, normal]
Min/Max Epochs: [50, 100, 150, 200]
Min/Max Dropout Rate: [0.0, 0.1, 0.2, 0.3, 0.4, 0.5]
Activation Type: [relu, elu, tanh, sigmoid]
Generate Initial Population of ANN models for g=1
Genetic Algorithm Started (genetic.py)
for g=1to Gen:
while termination condition not met:
for i=1 to PopSize:
Exergy/Comfort/LCC Dataset Import (data_input.py)
Define Train and Test data for population i
Artificial Neural Networks Modelling (ann.py)
Initialise keras

Define network (layers, neurons, etc.)
Compile network
Fit and evaluate network
Make predictions
Metrics outputs (e.g. RMSE, MAE)
Generation g solutions list
Fitness evaluation of Generation g
Select the best parents in the population for mating
Generating next generation using crossover
Variations to the offspring using mutation

Creating the new population based on the parents and offspring

Generate Population of ANN models for g+1
End Genetic Algorithm
Rank of best solutions and define best ANN structure
Optimal ANN structure Performance Evaluation
End ANN-GA process
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4 Results and Discussions

4.1 ANN structure optimisation

With the building energy/exergy database in place (Section 3.2), five different genetic optimisation
procedures have been conducted. Before proceeding, first, it was of interest to determine the optimum
population size (PopSize) per generation. Population size is a genetic algorithm parameter and not of the
ANN structure. Thus, the following PopSize = [10,20,30,40,50] have been considered. Fifty generations

have been assigned as the stopping criteria considering the fitness value (Eq. 17) as objective function.

Fig. 5 (left), shows the convergence of each of the simulations. Results show that a population size of 40,
which converges after the 26 generation, provides the best performance; while a PopSize=10 resulted
with the worst performance. Fig. 5 (right), illustrates the best fitness and mean fitness values at each

generation specifically for the PopSize=40 simulation.

Convergence PopSize = 40 -- Best = 0.21, AvgMean = 0.51
050 PopSize: 10 1 --=- mean fitness
- PopSize: 20 ‘,‘ —=— best fitness
o ---- PopSize: 30 07 I'n
’ =m== PopSize: 40 1 1 ; 1 .
PopSize: 50 "\ T A ' H fl
06 \ nor ! . i i
: * g o 1O i i
0.40 i AN Ly n i1 i
! AV N R [y I MNate
\ oo L e 5 b | O
O i bl iy L
2 205 B SRE L E B LE
2 0.35 5 F e |2 o0 N $ UL R
Z - i \ faib ER iy L SIS Al S
vy v s ! v z o ]
53 Pl i i 1y ! :' ¥
’ et iy =t §
0.30 i’- 1 1 .“,' i 1
i i H !
I . I‘I' 't‘l
0.25 0.3 .
0.20 0.2
4] 10 20 30 40 50 0 10 20 30 40 50

Generation

Generation

Fig. 5 Convergence and fitness evaluation considering different population (left) sizes and fitness performance for PopSize = 40

Table 3 summarises the overall performance and optimal ANN structure obtained for each population size
simulation. For instance, considering a PopSize= 10, the optimisation has converged more rapidly locating
a shallow ANN structure (1 hidden layer with 18 neurons) resulting in the worst overall fitness
performance. On the other hand, results show that while the population size increases, deeper optimal
networks are found by the genetic algorithm with an increase in fitness value and coefficient of

determination (R?) performance by 3.5% and 1.1% respectively.
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Table 3 Top ANN model performance for different population sizes

Fitness

Generation Layers Neurons R? RMSE,;, 4in, RMSE,.;; (Objective)
PopSize=10 11t 1 18 0.959 0.203 0.282 0.243
Popsize=20 48th 2 20, 20 0.961 0.198 0.277 0.237
Popsize=30 20t 2 18, 20 0.968 0.180 0.258 0.219
Popsize=40 27t 3 18,17,20  0.970 0.173 0.242 0.208
Popsize=50 43rd 3 19,18,10  0.964 0.190 0.251 0.220

Usually, it is expected that the greater the population size the greater the possibility that the initial
populations will have the optimal solution; however this can also cause an increase in generations for
convergence as there is an increase in the occurrence of mutations; therefore more generations are
necessary to get rid of undesired mutations. By setting a limited amount of generations (50) in this study,
the optimal size is represented by a mid-population number with an increased accuracy. That is the reason
why a PopSize of 40 and 30 have a better convergence performance than a PopSize=50, as sometimes
midsized populations will show lower variations in fitness values. The detailed outputs for every PopSize
simulation can be found in the Supplementary Data (S.2). In this section, only the data obtained from
PopSize=40 is further analysed as it provided the best fitness value. In this simulation, the total evaluated

ANN models were 2,000. On average, the time required to train each model was 20 s.

Fig. 6 and Fig. 7 shows the fitness performance summary for two specific ANN hyperparameters: epochs
and the training/testing share. For the former, the graphs show the results obtained between epochs
magnitudes (50, 100, 150, 200) with respect to the number of layers and optimiser type. A trend seems
to appear showing that structures with 2-3 hidden layers, high epoch size values (>150) while using the
‘adam’ optimiser, provide the best performance. An interesting insight is that, although using an ANN
structure with 3 hidden layers seems to provide slightly better results, higher variability was found when
compared to models with 2 hidden layers, resulting in a higher mean value of the fitness function. A similar
trend can be seen when focusing on the training/testing share parameter (Fig. 7). Overall, the results show
that testing data shares between 20% and 25% with 1-2 hidden layers, provides better average outcomes;
however, the optimisation process found the best solution using a share value of 30% with 3 hidden layers.
This outcome highlights the strengths of the optimisation process on finding solutions outside the local
minimum and that would be difficult to identify in a common trial and error approach. In Appendix B,

similar plots for the rest of ANN hyperparameters (batch size, kernel type and dropout rate) can be found.
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Table 4 summarises the top ten ANN structures and hyperparameters based on the fitness value. The ANN

structure with the best fitness (0.208) appeared in the 27" generation. The identified structure consists

of 3 hidden layers with the following number of neurons [18, 17, 20] respectively. In terms of

hyperparameters, the optimal training and testing data share has been found at 70/30. Also, the model

considers a batch size and epochs at 10 and 200 respectively while using adam as an optimiser, uniform

distribution as weight initialiser, and exponential linear unit (elu) as activation function.

Table 4 Top ten ANN structures and hyperparameters (Simulation PopSize = 40)

generation hidden . ker!1 el/ dropout  test . .
rank item # layers neurons batch optimiser wi(:iiht epochs rate % activation RMSEqin RMS;est Objective
1 27-1081 3 (18, 17, 20) 10 adam uniform 200 0 0.3 elu 0.173 0.242 0.208
2 31-1594 3 (20, 19, 8) 10 adam normal 150 0 0.25 elu 0.182 0.252 0.217
3 31-1578 3 (20, 19, 8) 10 adam normal 200 0 0.25 elu 0.188 0.267 0.228
4 33-1681 3 (20, 19, 8) 25 adam normal 200 0 0.25 tanh 0.190 0.265 0.228
5 32-1601 3 (20, 19, 8) 10 adam normal 200 0 0.25 elu 0.197 0.263 0.230
6 34-1724 3 (20, 19, 8) 10 adam normal 200 0 0.2 elu 0.197 0.271 0.234
7 21-1093 1 20 10 adam uniform 200 0 0.3 tanh 0.206 0.276 0.241
8 39-1963 3 (20, 19, 8) 10 adam uniform 200 0 0.25 elu 0.193 0.292 0.243
9 16-841 1 19 10 adam uniform 200 0 0.1 elu 0.214 0.274 0.244
10 32-1617 3 (20, 19, 8) 50 adam normal 200 0 0.25 tanh 0.205 0.283 0.244

Considering the optimal ANN structure (rank =1), Fig. 8 shows the ANN training and testing performance

by analysing the MSE and RMSE variation against the number of epochs. As illustrated, the MSE reaches

a value of 0.045 (training) and 0.075 (testing) around epochs = 150 to then remain relatively constant,

meaning a convergence in the model.
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4.2 Optimal ANN prediction performance
This section presents the output prediction performance of the identified optimal ANN model. Regression
plots (Fig. 9) shows the non-renewable exergy destructions, thermal discomfort, and LCC correlation
between the building physics-based model (EXRET-Opt) results or target values against the ANN model
predictions. As shown, the optimised ANN (with a RMSE 0.173 and 0.242 for training and testing
respectively), can predict more than 95% of the variance for the three different outputs. This is a very
satisfactory outcome taking into account that the target data considers models with a diverse range of
energy technologies located in three distinct climates. Usually, when a problem has multiple outputs,
researchers tend to develop a family of ANN models to predict each single output. The advantage of the
proposed optimisation procedure has shown the ability to identify a single ANN model capable of

explaining multiple outputs with high variability.
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Fig. 9 Prediction performance of the optimal ANN model
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Fig. 10 shows a comparison of the prediction error for each of the outputs. As shown, the normal
distribution in each target output confirms the high reliability of the optimised ANN model in making

predictions.
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Fig. 10 Error histograms for prediction of exergy, discomfort and LCC using optimal ANN

To show the ANN model prediction capabilities of single models, Table 5 summarises the prediction error
for four specific building designs: i) building model with the minimum exergy destructions, ii) building
model with the minimum discomfort hours, iii) building model with the minimum life cycle cost

performance and iv) equal weight Pareto solution building model.
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Life cycle cost [USS]

4.2.1 Validation by climatic region

The main challenge for the developed ANN model has been to accurately predict building exergy
destructions, comfort and LCC performance under different climatic conditions. Therefore, and for
validation purposes, one hundred (100) building energy simulations for each climatic region have been

conducted using the simple random sampling method.

For the specific case of the hot-humid climate, Fig. 11 illustrates the ANN model performance
prediction against the target outputs as well as the associated residuals. These plots show the
prediction, overprediction and underprediction by the optimal ANN model using a different set of
data. The results illustrate that the model has been able to predict 94% of the overall variability of the
new data. Considering the three outputs separately, LCC has been found to have the highest prediction
performance (95%), followed by exergy destructions (94%) and discomfort hours (92%). Similar plots
for the hot-dry and temperate climates can be found in Appendix C. Overall, by region, the ANN model
has been found to have better prediction performance for the hot-humid region (94%), followed by

temperate (94%) and hot-dry (93%) regions.

Cabo San Lucas (Hot-humid climate) -- R? = 0.94
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Fig. 11 Optimal ANN model prediction performance and residuals for exergy, comfort and LCC in hot humid climatic conditions
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Table 6 summarises the relative absolute deviation distribution for each output and climatic region.
Overall, LCC prediction has the lowest values of relative errors with 3.4%, 3.5% and 3.7% for the hot-
humid, hot-dry and temperate climates respectively. Exergy destructions predictions has the highest
errors due to model simplifications and complex thermodynamic interaction of the building energy
system. This trend can be seen for every region, as almost 100% of thermal discomfort and LCC target
values have been predicted within a <15% of average absolute error, while for exergy destructions,

values have been predicted within a <25% range.

Table 6 Relative absolute error deviation distribution between the optimal ANN model and validation data

Hot-humid (Cabos San Lucas, BCS)

R? <1%  <5%  <15% <25% Average
absolute errors
Exergy destructions 0.94 13% 55% 94% 98% 6.0%
Thermal discomfort 0.92 12% 78% 98% 100% 3.9%
LCC 0.95 21% 76% 99% 100% 3.4%
Hot-dry (Monterrey, NL)
R <1%  <5%  <15%  <25% Average
absolute errors
Exergy destructions 0.92 8% 41% 87% 98% 7.7%
Thermal discomfort 0.93 11% 61% 93% 100% 5.3%
LCC 0.95 24% 76% 100% 100% 3.5%
Temperate (Mexico City)
R? <1%  <5%  <15%  <25% Average
absolute errors
Exergy destructions 0.91 12% 55% 90% 97% 6.4%
Thermal discomfort 0.96 22% 77% 100% 100% 3.4%
LCC 0.94 17% 77% 98% 100% 3.7%

4.3 Discussion
The selection and development of surrogate models, and more specifically ANN models, for energy
systems design is not a trivial task. Although normally this has been done as an iterative design
process, where experience and knowledge have played a key role in its development, the probability
of finding the optimal surrogate model structure is very low. The obtained results have highlighted
the strengths of the proposed framework in identifying an optimal ANN model capable of accurately
predicting complex performance variables. Furthermore, the integration of exergy analysis makes the
framework suitable for identifying thermodynamic efficient building designs while keeping thermal

discomfort and life cycle cost as low as possible.

The design variation of the case study building model by using different technologies and climatic

conditions has generated high variability for each of the desired output; but more specifically, for non-
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renewable exergy destructions. Due to the complexity of the case study, it was not expected that the
optimisation procedure will identify shallow (single layer) networks as these are more suitable to
represent linearly separable functions. On the other hand, multiple hidden layers can be used to
represent convex regions. The identified optimal ANN structure, made of an input layer with 21
neurons (input data), 3 hidden layers with 18, 17, 20 neurons respectively, and an output layer with 3
neurons (output data), with very precise hyperparameters, would have been difficult to find if the
proposed metaheuristics optimisation framework has not been applied. The identified optimal deep
ANN model has been able to obtain an overall prediction accuracy above 95% and absolute errors
below 8% for every output variable and climatic region. The study has shown that one of the key
strengths of using the proposed hybrid neuro-genetic framework is the ability to define a single

complex deep network that have the potential to predict multiple outputs with high variability.

Additionally, the results also have shown that parameters from the genetic algorithm might influence
the identification of optimal ANN structure. In this study, only the population size has been varied with
different ANN structure identification and prediction performances; nevertheless, we recommend
that other metrics such as crossover rate or mutation to be varied as these could also have a
considerable impact in the identification of optimal ANN structures. Among the ANN
hyperparameters, low variability was found in the dropout rate. Apart from the dropout rate, batch
normalisation is another well-recognised approach to avoid overfitting and reduce training time in
multi-layer ANNs. Batch normalization can achieve significant training time reductions by normalising
the input on each layer, allowing higher learning rates. As it also has a regularisation effect, it could
make the use of the dropout rate redundant. According to Garbin et al. [67], each has its strengths
and limitations and recommends to use them with caution. Nevertheless, it is recommended that

batch normalisation to be implemented in future studies.

The developed approach ensures reproducibility and reliable predictions of energy/exergy
performance, thermal comfort and LCC of any building design. Apart from saving computational time
by bypassing the need to use EnergyPlus and EXRET-Opt for energy and exergy analyses, it provides a
model with enough complexity to simulate different measures in different climatic locations.
However, the study’s main limitation is that the developed surrogate model has been trained using
synthetic data, meaning that the accuracy highly depends on the data amount and generated quality
as well as the characteristics of the dynamic energy/exergy simulation engine. Secondly, the selection
of a single building design can limit to some extent the generalisation of the results, as different input
data and possibly different ANN structures will be required for an accurate prediction performance.
In this regard, the subjective selection of input variables could also have a significant effect on finding

optimal ANN structures; however, while the addition of new input variables (neurons) to the input
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layer could have a critical effect on the desired outputs, the framework has been developed and
intended to be adaptable to other types of building designs, data types and even generalisable to

other similar problems found in energy research.

5 Conclusions

This study has shown the development and application of a novel hybrid neuro-genetic (ANN-GA)
framework for surrogate modelling structure optimisation. Although improvement in the required
computational efforts and times is a common finding of such approaches, the study has also provided
the capability to locate more efficient surrogate modelling structures by using the full potential of
genetic optimisation. Furthermore, the paper has combined machine learning and exergy analysis,
creating a new holistic and robust approach for the design of low-energy buildings. An important
contribution of this study has been the publication of the framework/tool as open source, providing
the research community with the capacity to improve and adapt the modelling framework

accordingly.

In this study, data from 3,000 building models have been used to train and optimise ANN models. The
optimisation process, which required the simulation of 2,000 different ANN structures, located an
optimal solution by minimising the average sum of the RMSE for both the training and testing data.
The optimal ANN model has been successfully applied and have provided accurate predictions for
exergy, thermal discomfort and life cycle cost performance of a social house located in three different
climates. One of the main advantages of the presented neuro-genetic framework, is that it allows the
user to simplify the utilisation of surrogate models by using a single complex structure that can predict

multiple outputs with high variability.

ANN structure optimisation also offers a robust approach for rapid identification of strategies and
efficient designs for industry and policymakers. For the former, this will represent the reduction in
time and power requirements, streamlining the design process and producing more exergoeconomic-
efficient and environmentally friendly solutions. For the latter, the application of such framework
could help identify national strategy solutions in different regions, aiding in developing sustainable

building programmes and policies.

Although the focus of this paper was to automate the ANN structure procedure, a similar approach
can be used to integrate a second optimisation stage to locate optimal building designs. This means
that ongoing efforts to continue developing the open source tool are necessary. For future work, the
research will focus on adding this feature to find optimal building design parameters that would

optimise multiple thermodynamic and economic objectives.
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Appendices

Appendix A. Building technologies technoeconomic database

Table A-1 baseline model main characteristics [54]

Characteristic Description
Total floor space (m?) 130 (65 m? per flat)
Infiltration rate (ach) 4.0

Cavity Wall-Brick walls 130 mm brick with 20 mm air gap

Exterior Wall
xterior Walls Uvaiue= 0.72 W/m2K

160 mm concrete block

ROOf Uvalue= 393 W/mzK

100 mm concrete slab

f
Ground floor Uvalue= 3.87 W/mZK

Single-pane clear glass (5mm thick)

Windows Uvaie= 5.8 W/m?K
Glazing ratio 15%
L —an
HVAC System Minisplit system 5 kW and n=90%
No heating system
Cooling Set Point (°C) 22.5
Occupancy (people) 3-4 per flat
Equipment (W/m?) 3.9
Lighting level (W/m?) 10.7
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Appendix C. ANN performance validation
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Fig. C-1 Optimal ANN model prediction performance and residuals for exergy, comfort and LCC in temperate

climatic conditions

44



Monterrey (Hot dry climate) - R? = 0.93

Predictions - Exergy Destructions (non-renewable)

= 800 . - 1.00
£
< 600 @ 075
z 400 3 050
> *  target g 035 . -
g 200 = output ’ . e e el SR
L 0.00 Wl T N N A L
0 20 40 60 80 100 0 20 40 60 80 100
Samples Samples
—_ Predictions - Thermal Discomfort
&, 1.00
<
.,E 0.75 w 075
@©
o
$ 050 3 050
) *  target ]
S 025 xr 025
£ output " . n -
g 000 e aliamen A el et o,
[ 0 20 40 60 80 100
Samples Samples
Predictions - LCC-50 years
= ” 1.00
D
E’ 150000 c_t; 0.75
<] 3
z g 0.50
§ 100000 fotoet 8
&) output ’ o e "
% 50000 0.00 F.ﬁ.*ﬁ-f'.‘:-.—'-" o 4‘_“’-‘-&“%*.
0 20 40 60 80 100
Samples Samples

Fig. C-2 Optimal ANN model prediction performance and residuals for exergy, comfort and LCC in hot dry climatic
conditions
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