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Abstract

Due to the demand for performance improvement and the existence of prior information,

semi-supervised community detection with pairwise constraints becomes a hot topic. Most

existing methods have been successfully encoding the must-link constraints, but neglect

the opposite ones, i.e., the cannot-link constraints, which can force the exclusion between

nodes. In this paper, we are interested in understanding the role of cannot-link constraints

and effectively encoding pairwise constraints. Towards these goals, we define an integral

generative process jointly considering the network topology, must-link and cannot-link con-

straints. We propose to characterize this process as a Multi-variance Mixed Gaussian Gen-

erative (MMGG) Model to address diverse degrees of confidences that exist in network

topology and pairwise constraints and formulate it as a weighted nonnegative matrix factori-

zation problem. The experiments on artificial and real-world networks not only illustrate the

superiority of our proposed MMGG, but also, most importantly, reveal the roles of pairwise

constraints. That is, though the must-link is more important than cannot-link when either of

them is available, both must-link and cannot-link are equally important when both of them

are available. To the best of our knowledge, this is the first work on discovering and explor-

ing the importance of cannot-link constraints in semi-supervised community detection.

Introduction

Networks have been ubiquitous in diverse fields, such as social networks, biological networks

and technological networks, and attract many researchers to explore the sciences hid in the

structures. Most of the networks in real life have a structure of community or modularity,

which can embody the inhomogeneity of edge distribution. Communities, groups of nodes

with high internal density, are of great importance and interesting in various domains. For
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instance, communities in scientist collaboration networks represent the same research topics,

and in protein interaction networks nodes in the same community typically have the similar

function. Therefore, identifying communities helps in exploring and understanding how the

networks work. Albeit there is no universal definition of community structure, lots of algo-

rithms have been proposed and achieved good performance [1–5]. But most of them identify

communities using the network topology alone.

Recently, community detection using topology information combined with prior informa-

tion becomes a hot topic, i.e. semi-supervised community detection [6–14]. This may be due

to the following two reasons. On one hand, classical topology based community detection

algorithms often cannot yield satisfactory results on networks where community structure is

too complicated, such as overlapping or hierarchical properties. Recent researches on commu-

nity detectability theoretically prove that any algorithms cannot correctly detect community

structure if the difference between the number of intra and inter community edges is below a

threshold [15]. On the other hand, the prior information is available in many real-world appli-

cations. Taking scientists collaboration network as an example, except the citation relationship

as topology information, the title, key words and word frequency of the paper can be regarded

as the prior knowledge. In addition, labels from the human are another source of the prior

information. How to effectively and efficiently employ the prior information to enhance the

performance of community detection is the key to semi-supervised community detection.

Prior knowledge utilized in existing methods can be categorized into two kinds, i.e., node

label and pairwise label. Node label directly provides the relationship between a node and a

community, i.e. indication of which community a node belongs to or must not belongs to

[6,7]. Pairwise label builds the connections between two nodes, i.e. indicating whether two

nodes belong to the same community [8–13]. If they belong to the same community, there

exists a must-link between them. Whereas there exists a cannot-link. Compared with the node

label, the pairwise label turns to be more readily available. Labeling whether two nodes belong

to the same community would be much easier than labeling whether a node belongs to a cer-

tain community. For example, if we find that the keywords or tf-idf features of two web pages

are very similar and they are under the same domain name, we can make use of this useful

information to determine that they belong to the same community, i.e. must-link, even though

they may not link with each other in network topology. Furthermore, the pairwise label can be

used to represent the node label, but not vice versa. For example, if we know nodes A and B

belong to community I and nodes C and D belong to community II, there exist must-links

between nodes A and B and nodes C and D, and cannot-link between nodes A and C, nodes A

and D, nodes B and C and node B and D. Therefore, we only consider employing pairwise

label in semi-supervised community detection in this paper.

Usage of the pairwise label in most existing semi-supervised community detection algo-

rithms can be divided into two categories, i.e., refining the network topology and characteriz-

ing node property, according to the role that pairwise supervised information acts. One group

of methods first use the pairwise supervised information to refine the network topology, and

then apply the existing unsupervised community detection algorithm to the refined networks

[8–11]. By adding edges between must-link nodes and removing the edges between cannot-

link nodes, Ma et al. modify the adjacency matrix of the network and adopt the symmetric

nonnegative matrix factorization to detect community structure [8]. Zhang et al. extend this

framework to other methods including modularity maximization model and Infomap algo-

rithm [9]. Then Zhang et al. further extend this framework by adding a logical inference step

to better utilize the supervised information [10]. This kind of methods often ignore the differ-

ence between the pairwise relationship in the network topology and pairwise constraint. In

fact, however, pairwise constraint is much stronger than network topology. Specifically, the
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edge between two nodes only indicates there exist some relationships between them, but not

implies they must belong to the same community, while the nodes with must-link must belong

to the same community. And if there is not an edge between two nodes, they do not exist direct

relationship, which does not imply they belong to different communities, while nodes with

cannot-link really belong to the different communities. As reported by Zhang et al. the

improvement from must-link constraints is much significant than that from cannot-link con-

straints [9–10]. This is because the edges in the network is sparse, thus adding equivalent

must-link constraints could make intra-community edges much denser and improve the per-

formance. The cannot-link constraints, however, cannot effectively cause the inter-community

edges further sparse, thus the performance improvement is limited. In contrast, the other

group of methods are based on the discriminative model which describes the node property in

the detected communities [12,13]. Yang et al. propose a unified semi-supervised framework

making the must-link (cannot-link) nodes have the similar (dissimilar) latent space represen-

tations which is the basis for classifying nodes into different communities [12]. Since this

framework can distinguish the must-link constraints from the edge relationship, it achieves

satisfactory result for must-link constraints. But it fails to encode cannot-link constraints for

performance improvement, because the dissimilarity between the pair of cannot-link nodes

cannot be properly defined.

In this paper, we aim to explore the effectiveness of cannot-link constraints on improving

the community detection and further make the semi-supervised community detection with

pairwise label more effective. To this end, we consider the generative model for semi-super-

vised community detection, which can effectively model the generation processes of network

topology, must-link and cannot-link constraints together. We have the three findings on the

nodes’ membership in the following.

1. A pair of nodes with must-link constraint must belong to the same community, i.e. if there

is a must-link between two nodes, they belong to the same community with absolute confi-

dence (probability). A pair of nodes with cannot-link constraint must not belong to the

same community, i.e. if there is a cannot-link between two nodes, they have to belong to

the different communities with very high confidence (probability).

2. If a pair of nodes belong to the same community, there exists an edge between them with a

certain probability. If a pair of nodes belong to the different communities, there does not

exist an edge between them with a certain confidence (probability).

3. The confidence (probability) in the second finding is much lower than that in the first one,

since the pairwise constraints are much stronger than network topology.

Based on the first two findings, we assume that the network topology, must-link and can-

not-link are generated based on the membership similarity of the pair of nodes together.

Specifically, if xi denotes the membership distribution of node vi, we let xix
T
j represent the

membership similarity between nodes vi and vj. If we use aij 2 {0, 1} as the indicator to denote

whether there is an edge between nodes vi and vj, we model the likelihood of the network

topology as N ðxix
T
j jaij; sadjÞ where σadj is the variance between the membership similarity

and edge existence. Similarly, we model the likelihood of must-link and cannot-link con-

straints as N ðxix
T
j j1; smlÞ and N ðxix

T
j j0; sclÞ, respectively. By combining the likelihoods of

topology information, must-link constraint and cannot-link constraint together, we obtain the

final likelihood of generating both the topology and constraint information. In addition, based

on the aforementioned third finding we set σadj> σml and σadj> σcl, representing the higher

confidence of constraint information over that of the topology information. Therefore, the
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membership indicator vector xi i = 1,2 � � � N can be obtained by maximizing the likelihood of

the generation of topology and constraints which is equivalent to minimizing the negative log-

arithmic function of the likelihood. This optimization can be solved by using the weighted

symmetric nonnegative matrix factorization method which has the same complexity as the

standard nonnegative matrix factorization.

The main contributions of this paper are two-fold: (1) We characterize semi-supervised

community detection as a Multi-variance Mixed Gaussian Generative (MMGG) Model to

address diverse degrees of confidences that exist in network topology and pairwise constraints

and formulate it as a weighted nonnegative matrix factorization problem. (2) We reveal the

roles of pairwise constraints, which is neglected by most researchers. That is, though the must-

link is more important than cannot-link when either of them is available, both must-link and

cannot-link are equally important when both of them are available.

Results

To illustrate the effect of our proposed Multi-variance Mixed Gaussian Generative (MMGG)

Model for semi-supervised community detection, we conduct experiments on two widely-

used artificial benchmarks and six real-world networks ranging from social networks to tech-

nological networks. Here, we set σadj = 1 and vary both 1=s2
ml and 1=s2

cl from {2, 5, 10, 50, 100}.

To demonstrate its superiority, we compare it with a baseline method recently proposed by

Zhang et al [9]. This method refines the network topology using the pairwise supervised infor-

mation, i.e., connects (disconnects) two nodes with must-link (cannot-link), and applies the

symmetric nonnegative matrix factorization (SNMF) algorithm to the refined network to

detect communities. We name this framework as ‘ModTop’ since it encodes supervised infor-

mation by directly modify the topology. The reasons why we take it as baseline are twofold.

First, both ModTop and our proposed MMGG can make use of must-link and cannot-link

constraints simultaneously. Second, they both take nonnegative matrix factorization as the key

component to detect communities, which is fair for comparison. Normalized mutual informa-

tion (NMI) is adapted to evaluate the performance improvement [16], since it is more infor-

mative than accuracy.

To fully explore and understand the effect of must-link and cannot-link constraint, we dis-

play the performance induced by must-link and cannot-link constraints respectively. In the

‘cannot-link’ subgraph, we use the following 5 methods for comparison:

ModTop-CL (blue dashed line with circle mark): encodes only cannot-link constraints via

Zhang’s method,

ModTop-MCL (red dashed line with square mark): encodes both must-link and cannot-link

constraints via Zhang’s method,

MMGG-CL (yellow dotted line with plus mark): encodes only cannot-link constraints via our

proposed method,

MMGG-CL(M) (magenta dotted line with x-mark): encodes must-link constraints via Zhang’s

method and encode cannot-link constraints via our proposed method,

MMGG-MCL (green solid line with star mark): encodes both must-link and cannot-link con-

straints via our proposed method.

The comparison of ModTop-CL and MMGG-CL is to illustrate the effectiveness of MMGG

on encoding cannot-link constraint alone. The comparison of ModTop-MCL and MMGG-

CL(M) is to show the improvement of MMGG on encoding cannot-link on the network

Exploring the roles of cannot-link constraint in community detection via MMGG
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topology which is modified by the must-link constraints. The comparison of MMGG-CL(M)

and MMGG-MCL is to explore the different cannot-link constraints encoding effects caused

by different must-link encoding methods. The difference between ModTop-MCL and

MMGG-MCL is to illustrate the overall improvement of MMGG.

Similarly, in the ‘must-link’ subgraph, we use the following 5 methods for comparison:

ModTop-ML (blue dashed line with circle mark): encodes only must-link constraints via

Zhang’s method,

ModTop-MCL (red dashed line with square mark): encodes both must-link and cannot-link

constraints via Zhang’s method,

MMGG-ML (yellow dotted line with plus mark): encodes only must-link constraints via our

proposed method,

MMGG-ML(C) (magenta dotted line with x-mark): encodes cannot-link constraints using

Zhang’s method and encode must-link constraints via our proposed method,

MMGG-MCL (green solid line with star mark): encodes both must-link and cannot-link con-

straints via our proposed method.

The purposes of introducing these methods for comparison are similar with those in the

cannot-link subgraph. To make the comparison clear, ModTop-MCL and MMGG-MCL are

shown in both must-link graph and cannot-link graph for reference. The reason for this is that

both them simultaneously encode the must-link and cannot-link and it is not appropriate to

show them only in one sub-figure.

Artificial benchmarks

Girvan-Newman (GN) benchmark [4] and Lancichinetti-Fortunato-Radicchi (LFR) bench-

mark [17] are two widely-used network generators which can randomly generate networks

with specific parameters and known community structures. Network generated by GN net-

work generator consists of four non-overlapping communities with the same size. Each com-

munity has 32 nodes each of which connects with 16 other nodes on average. Among these 16

edges, there are Zin intra-community edges and Zout inter-community edges, i.e., connecting

Zin nodes in the own community and Zout nodes in the other communities and Zin + Zout = 16.

These two parameters determine the clarity of the community structure and the detectability

of the algorithms. Most of the methods, including nonnegative matrix factorization, modular-

ity maximization and Infomap etc., achieve satisfactory results when Zout� 6, but significantly

degrade as Zout continue to increase.

The performance of encoding pairwise constraints on GN network is shown in Fig 1, in

which the first (second) row is the results on networks with Zout = 7 (Zout = 8) and the first

(second) column is must-link graph (cannot-link graph).

From the results we find out the following three basic conclusions. 1) The performance of

our proposed framework (MMGG) significantly outperforms that of the baseline method

(ModTop) both on encoding the must-link constraints and on encoding cannot-link con-

straints. 2) The MMGG-MCL, i.e., embedding both the must-link and the cannot-link con-

straints using our framework, achieves the best performance which is much higher than other

ModTop-related methods. For example, on GN networks with Zout = 8, by encoding 3% con-

straints, ModTop-CL, ModTop-ML and ModTop-MCL achieve 69.3%, 77.3% and 77.4%,

respectively. MMGG-CL, MMGG-CL(M), MMGG-ML and MMGG-ML(C) significantly

increase to 86.0%, 91.3%, 88.5% and 83.8%, respectively. And the MMGG-MCL achieves
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98.2%, which is at least 6.9% higher than MMGG-based methods with single constraints and

at least 20.8% higher than TopMod-based methods. 3) On encoding single kind of constraints,

the MMGG is more superior than TopMod. For example, the performance on encoding 5%

percent must-link and cannot-link constraints by using TopMod on GN networks with Zout =

7 are 92.7% 87.5% respectively. And those by using our proposed MMGG are both 98.7%

which are 6% and 21.2% higher than the corresponding method based on TopMod.

Compared with the GN benchmark, the LFR benchmark generator [17] is more complex

and closer to the properties of real-world networks. Thus the community detection on LFR are

more challenging and the results are more convincing. Different from the GN benchmark

which fixes the node degree and community size, the distributions of node degree and com-

munity size obey power laws with parameters γ and β in LFR benchmark. Similar with the role

of Zout in GN benchmark, the fraction of inter-community edges (known as mixing parame-

ter) μ can also be specific. Besides, we can further tune the minimum and maximum commu-

nity size, and the number of nodes to make the generator more flexible. In this paper, we set

the number of nodes to 1,000, the minimum community size to 10, the maximum community

size to 5 times the minimum community size, the exponent of node degree distribution and

community size distribution to 2 and 1, respectively as Lancichinetti et al [17]. do. Due to the

Fig 1. The performance on GN benchmark networks. The first (second) row is the results on networks with Zout = 7

(Zout = 8) and the first (second) column is the must-link graph (the cannot-link graph).

https://doi.org/10.1371/journal.pone.0178029.g001
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important role of mixing parameter μ, we vary it from 0.7 to 0.8. The results are shown in

Fig 2, where the first, second and third rows are the results with μ = 0.7, 0.75 and 0.8, respec-

tively. The superiority of MMGG is more pronounced on vague networks, i.e. large mixing

parameter μ on LFR network. This meets the purpose of our research and the scenario of

Fig 2. The performance on LFR benchmark networks. The first, second and third rows are the results with μ = 0.7,

0.75 and 0.8, respectively.

https://doi.org/10.1371/journal.pone.0178029.g002
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semi-supervised community detection, i.e. improve the performance of community detection

on networks where the community structure is vague and the performance is not satisfactory.

From these results in Fig 2, we can obtain the similar conclusions as in GN benchmark net-

works, expect the performance of MMGG-CL. Thus, we focus on the role analysis of must-link

and cannot-link on performance improvement here. From the experimental results we draw

the following conclusions. Firstly, as pointed by Zhang et al., the must-link constraint is more

important than the cannot-link constraint on performance improvement. Taking networks

with μ = 0.75 as an example, the performance of ModTop with 5% must-link constrains and

5% cannot-link constraints are 66.3% and 21.6% respectively. Though, the MMGG improves

them to 83.9% and 25.8%, the performance of must-link is still much higher than that of can-

not-link. Secondly, the performance can not be further improved and even degrades if cannot-

link is not properly integrated with must-link. From the figures in the first column of Fig 2, we

find that the performance of ModTop-ML and ModTop-MCL are very similar, which indi-

cates that cannot-link constraints are meaningless in ModTop framework. But the perfor-

mance of MMGG-ML is higher than MMGG-ML(C), which further illustrates that the

superiority of MMGG on embedding cannot-link constraints. Thirdly, our proposed MMGG

is more effective on encoding pairwise constraints, especially simultaneously encoding must-

link and cannot-link constraints. On one hand, the performance on encoding must-link by

MMGG (MMGG-ML) is much higher than that by ModTop (ModTop-ML). For example, on

LFR networks with μ = 0.8, MMGG-ML achieves 83.9% while ModTop-ML only achieves

66.3%. On the other hand, based on the encoded must-link constraints by MMGG, MMGG

can significantly improve the performance by additionally encoding cannot-link constraints.

For example, with 5% cannot-link constraints, the performance is further improved from

83.9% to 95.3% on networks with μ = 0.75, and that is further improved from 81.5% to 92.9%

on networks with μ = 0.8.

In summary, from the experiments on artificial networks, we obtain the following conclu-

sions. 1) The must-link is more important for performance improvement than cannot-link if

only one kind of pairwise constraint is available. 2) Both must-link and cannot-link are very

important if both of them are available. The second conclusion is very different from that of

Zhang et al. The reason why they obtain the flawed conclusion is that their encoding strategy

is defective.

Real-world networks

In this section, we verify our proposed MMGG on six real world networks with the same set-

tings as on artificial networks. And the quantitative results are shown in Figs 3, 4 and 5.

School Friendship Network is one of the most popular social networks compiled by the

National Longitudinal Study of Adolescent Health [18]. In the network, nodes represent the

students from 6 different grades (7–12). Edges are the self-reporting friendship among them.

The network can be divided into 6 communities according to students’ grade. Considering

there are two sub-communities, i.e. white students and black students, in the community of

grade 9, it is reasonable to divide the network into 7 communities. The results on School

Friendship Network are shown in Fig 3. We can find that though the performance without

constraints is acceptable, it can be further improved by encoding pairwise constraints. As

shown in the left two sub-figures, the improvement from ModTop-ML to ModTop-MCL is

very limited or even negligible (from 84.2% to 84.3% with 7% constraints), while that from

MMGG-ML to MMGG-MCL is remarkable (from 89.0% to 95.1% with 7% constraints). This

illustrates the important role of cannot-link constraints and indicates the effectiveness of our

proposed MMGG on encoding pairwise constraints.
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Dolphins Social Network is an undirected network reported by Lusseau [19]. In the net-

work, two dolphins are connected if they are together more often than expected by chance.

The 62 dolphins are classified into two communities, i.e. male dolphin community and female

dolphin community. The results are shown in the first row of Fig 4. From the right sub-figure,

we find the performance of encoding cannot-link constraints is significantly improved by

MMGG (from blue dashed line to yellow dotted line). We also find with 1% percent of con-

straints encoded, the NMI of MMGG achieves 100%, which means all nodes are correctly

classified. ModTop, however, needs 7% constraints to achieve 99%, which is 7 times that of

MMGG. This fully shows the efficiency of MMGG on encoding pairwise constraints.

American College Football Network is an undirected network that reflects the relationship

between American football teams among Division IA colleges during regular season Fall 2000

[4]. If two teams played against in that season, there is an edge between them in the network.

The network is divided into 12 different communities according to their conferences. The

results are in the second row of Fig 4. From a macro perspective, the performance improved

by ModTop is limited (red dashed line), while that by MMGG is remarkable (green solid line).

Fig 3. The performance on School Friendship Network. The first and second rows are the results with number of

communities as 6 and 7, respectively.

https://doi.org/10.1371/journal.pone.0178029.g003
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Fig 4. The performance on four real-world networks. 1st row: Dolphins Network; 2nd row: American

College Football Network; 3rd row: Adjnoun Network and 4th row: Political Blogs Network.

https://doi.org/10.1371/journal.pone.0178029.g004
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For example, by adding 7% constraints, ModTop improves from 92.1% to 92.4% (0.3%

improved), while MMGG achieves 96.2% (4.1% improved). The performance improved by

MMGG is about 14 times that by ModTop. From a micro perspective, in the left figure, the dif-

ference between MMGG-ML (yellow dotted line) and ModTop-ML (blue dashed line) shows

the improvement of MMGG on must-link constraint, and the different between MMGG-MCL

and MMGG-ML reflects the improvement of MMGG on cannot-link constraint. Both of them

illustrate the high effectiveness of MMGG.

Adjnoun Network is an undirected network of common adjective and noun adjacencies

for the novel "David Copperfield" by Charles Dickens [20]. Nodes represent the most com-

monly occurring adjectives and nouns in the book, and two words are linked if they occur in

adjacent position in the book. The nodes are classified into “adjectives” community and

“nouns” community. The results are presented in the third row of Fig 4. Since Adjnoun

Network has anti-community structure, i.e., the inter-community edges are denser than

the intra-community edges, most of the existing semi-supervised community detection meth-

ods, including ModTop, fail to achieve good results. Only the proposed MMGG-ML and

MMGG-MCL effectively work on this network. To achieve 100% on NMI, MMGG-ML and

MMGG-MCL only need 9% and 7% constraints. This case shows the superiority of MMGG on

anti-community detection.

Political Blogs Network, which is compiled by Lada Adamic and Natalie Glance, is a

directed network of hyperlinks between weblogs on US politics during the period of the 2004

presidential election [21]. The network topology is automatically extracted by a crawler, and

the nodes are labeled manually labeled as “liberal” or “conservative”. The results are shown in

the fourth row of Fig 4. From right figure, we can find that the performance improved by can-

not-link is very limited on this network. However, since the MMGG is also more effective than

ModTop on encoding must-link, the final performance of MMGG (green solid line) is much

better than that of ModTop (red dashed line). By adding 0.5% constraints, ModTop improves

the performance from 52.7% to 81.1%, while MMGG achieves 98.1%.

From experimental results on real world networks, we can draw similar conclusions as in

artificial networks. In short, MMGG not only can effectively improve the performance on

encoding single kind of pairwise constraints (the improvement from blue dashed line to the

Fig 5. The performance on Political Books Network.

https://doi.org/10.1371/journal.pone.0178029.g005
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yellow dotted line in each plot), but also is superior on simultaneously encoding both of them

(the improvement from red dashed line to green solid line).

Case study

Here we take Political Books Network [22] compiled by Valdis Krebs for case study. In the net-

work, nodes represent books about US politics sold by the online bookseller Amazon.com,

while two books are connected if they are frequently co-purchased by the same buyers. The

network is divided into three communities, i.e., "liberal", "neutral" and “conservative", accord-

ing to the views on US politics of the descriptions and the reviews of the books posted on Ama-

zon. The performance of ModTop and MMGG are shown in Fig 5, which has the similar trend

as on other real world networks. In order to make the results more intuitive, we visualize the

results of ModTop (second row) and our proposed MMGG (first row) with adding 1%, 5%

and 10% pairwise constraints (both must-link and cannot-link constraints) in Fig 6. The shape

of nodes represents the ground-truth community which books belong to, i.e., “square” for

“conservative” book, “circle” for “liberal” book and “triangle” for “neutral” book. The color of

nodes represents the detected community by algorithms. We can find out that the perfor-

mance of MMGG is still better than ModTop with 1% pairwise constraints, though neither of

them can correctly detect the “neutral" book community since the boundary of community

cannot be perfectly determined merely based on the network topology. Due to the high effec-

tiveness of our proposed MMGG on encoding pairwise constraints, the boundary between

“neutral" and “conservative” book community becomes clear with 5% of constraints. All nodes

can be correctly classified by adding 10% constraints. The result of ModTop with 10% con-

straints is similar with that of MMGG with 5%, i.e. only one community boundary becomes

clear, which further illustrates the effectiveness MMGG.

To further illustrate the scalability and complexity of our proposed MMGG, we test it on a

larger social network, Facebook network for University of Pennsylvania from a date in Sept.

2005 [23]. This network contains 29,631 nodes, each of which represents a student. They are

divided into 7 communities according to the year of enrollment. Without any prior informa-

tion, the NMF-based method can obtain the community structure in 1,303 seconds, and the

NMI of the result only achieves 22.1%. By adding 1% pairwise prior information, ModTop-

MCL achieves 30.9% in 1,370 seconds, while our proposed MMGG-MCL achieves 64.8% in

1,981 seconds. The time spent on MMGG is about 1.5 times that spent on ModTop, while the

performance improvement of MMGG is about 4.8 times that of the ModTop. Extra time spent

on MMGG consists of two part. The first is the time used to compute element-wise product of

weights matrix with other matrices. The second part mainly spends on the extra iterations for

convergence. Since we amplify the impact of the reconstruction error from the pairwise prior

constraints, we need more iterations to achieve the same convergence condition as in unsuper-

vised version (the difference between successive iterations is less than 10−3).

Parameter tuning

In this subsection, to make MMGG more practical, we exam the effect of the three variances,

i.e., σadj, σml and σml, on performance improvement. To this end, we conduct experiments on

LFR and GN benchmark networks. Since we use these three variances to model the confi-

dences on generating the network topology and constraints, the ratios between them (σadj / σml

and σadj / σcl), which reflect the differences of the confidences, are more important than the val-

ues. Therefore, we fix σadj = 1 and vary 1=s2
ml and 1=s2

cl from 1 to 100. Due to their similar

trends, we only present the results on LFR networks with μ = 0.8 and 5% pairwise constraints

in Fig 7(a) and 7(b) and those on GN networks with Zout = 0.8 and 4% pairwise constraints in
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Fig 7(c) and 7(d). It shows that the performance is low if either 1=s2
ml or 1=s2

cl is small. And

with the increases of 1=s2
ml and 1=s2

cl, the performance is significantly improved. When 1=s2
ml

and 1=s2
cl are in the vicinity of 5–10, the best performance is achieved. Therefore, we can set

s2
adj ¼ 1, s2

ml ¼ 0:2 and s2
cl ¼ 0:1 in practice.

Discussion

To understand the real roles of must-link and cannot-link constraints in semi-supervised com-

munity detection and improve the effectiveness of semi-supervised community detection on

Fig 6. The detected communities by ModTop and MMGG on Political Books Network. The first row shows the

results from MMGG, and the second shows those from ModTop.

https://doi.org/10.1371/journal.pone.0178029.g006
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encoding pairwise constraints, we consider the generation process of the network topology,

must-link and cannot-link constraints together. Due to the discovery that the network topol-

ogy and pairwise constraints are generated with different degrees of confidence, we model this

process as a Mixed Gaussian Model with Multi-variance. By maximizing the likelihood of the

generative process on given network topology as well as the pairwise constraints, semi-super-

vised community detection can be solved via a weighted nonnegative matrix factorization

method. The experiments on artificial and real-world networks reveal both the superiority of

our proposed new method and the real roles of the pairwise constraints. On one hand, our

proposed method can not only improve the performance on encoding single kind of pairwise

constraints but also is superior on encoding must-link and cannot-link constraints together.

On the other hand, and most importantly, although the must-link is more important for per-

formance improvement than cannot-link when only one kind of pairwise constraint is

Fig 7. Parameters tuning. (a-b) Parameters tuning on LFR networks with μ = 0.8 and 5% pairwise constraints from 3D

and 2D viewpoints. (c-d) Parameters tuning on GN networks with Zout = 0.8 and 4% pairwise constraints from 3D and 2D

viewpoints.

https://doi.org/10.1371/journal.pone.0178029.g007
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available, but must-link and cannot-link are equally important to achieve better performance

if they both are available. Though previous work also takes cannot-link constraints into con-

sideration, most of them incorrectly conclude that the performance improved by cannot-link

is limited and negligible due to their defective encoding strategy. To the best of our knowledge,

this is the first work of discovering and exploring the important and real role of cannot-link

constraints in semi-supervised community detection problem.

Methods

A network can be modeled as a graph G = (V, E), where V = {v1, v2, � � �, vN} is the set of N
nodes and E = {(vi, vj)} is the set of M edges each of which connects two nodes, i.e., vi and vj,
in V. For convenience, we additionally define a set NE = {(vi, vj)} as the set of pairs of nodes

which are not connected. The pairwise relationships in E and NE can also be equivalently rep-

resented as the adjacency matrix A = {aij} 2 {0,1}N×N where aij = 1 if (vi, vj) 2 E and aij = 0 if

(vi, vj) 2NE. For simplicity, we assume G is an undirected and unweighted graph, and the adja-

cency matrix A is nonnegative symmetric binary matrix. Besides, we assume the number of

communities K is known in advance. The must-link and cannot-link constraints are repre-

sented as ML = {(vi, vj)} and CL = {(vi, vj)}, respectively.

In the following, we consider the generative model of the semi-supervised community

detection with pairwise constraint. The reason why the generative model is adopted is that it is

more natural and convenient to describe the different strengths between the topology informa-

tion and pairwise prior information. Specifically, we will use the variance of the Gaussian

model to describe the confidence of information. We define the node membership matrix as

X ¼ fxikg 2 R
N�K . Each row xi denotes the probability distribution that node vi belongs to dif-

ferent communities, and each element xik denotes the probability that node vi belongs to com-

munity k. Thus xikxjk is the probability that both vi and vj belong to the community k, and

xix
T
j ¼ SK

k¼1
xikxjk is the probability that they belong to the same community.

Firstly, we assume the probability that there exists a connection between vi and vj is deter-

mined by the probability that they belong to the same community, thus the likelihood of the

existence of edges between then, i.e., aij, is

pðxix
T
j jaijÞ ¼ N ðxix

T
j jaij; sadjÞ ¼

1
ffiffiffiffiffiffiffiffiffiffiffiffi
2psadj

p exp �
ðxix

T
j � aijÞ

2

2s2
adj

 !

:

where N ðxjm; sÞ denotes that the variable x conforms the Gaussian distribution with mean μ
and variance σ. σadj is the parameter that measures the variance between the nodes’ member-

ship similarity and the edge existence between them. Thus, the likelihood of generation of

graph G is

pðXjAÞ ¼
YN

i;j¼1

pðxix
T
j jaijÞ ¼

YN

i;j¼1

1
ffiffiffiffiffiffiffiffiffiffiffiffi
2psadj

p exp �
ðxix

T
j � aijÞ

2

2s2
adj

 !

¼
Y

ði;jÞ2E

1
ffiffiffiffiffiffiffiffiffiffiffiffi
2psadj

p exp �
ðxix

T
j � 1Þ

2

2s2
adj

 !
Y

ði;jÞ2NE

1
ffiffiffiffiffiffiffiffiffiffiffiffi
2psadj

p exp �
ðxix

T
j � 0Þ

2

2s2
adj

 !

:

¼ pðXjEÞpðXjNEÞ

Secondly, for each pair of nodes vi and vj in must-link constraint set ML, since they belong

to the same community, their membership probability distribution xi and xj are very similar

and xix
T
j should be approximately 1. Therefore, we model the likelihood of generating the
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must-link constraints ML set as

pðXjMLÞ ¼
Y

ði;jÞ2ML

pðxix
T
j j1Þ ¼

Y

ði;jÞ2ML

1
ffiffiffiffiffiffiffiffiffiffiffi
2psml

p exp �
ðxix

T
j � 1Þ

2

2s2
ml

 !

:

Since the certainty that xix
T
j � 1 is very high, the variance σml should be much smaller than

σadj. Similarly, the likelihood of generating the cannot-link constraint CL set can be modeled

as

pðXjCLÞ ¼
Y

ði;jÞ2CL

pðxix
T
j j0Þ ¼

Y

ði;jÞ2CL

1
ffiffiffiffiffiffiffiffiffiffi
2pscl

p exp �
ðxix

T
j � 0Þ

2

2s2
cl

 !

;

where σcl is also much smaller than σadj. By combining the above analysis, the likelihood of

generation the network topology and the pairwise constraint together is

pðXjA; ML; CLÞ ¼ pðXjEÞpðXjNEÞpðXjMLÞpðXjCLÞ

Since the must-link and cannot-link constraints should be mutually exclusive, thus there do

not exist any pair of nodes which both belong to ML and CL. Thus, we can divide all pairs of

nodes into the following six groups.

For (i, j) 2 E \ML, since σml is much smaller than σadj

pðði; jÞjA; ML; CLÞ / exp �
ðxix

T
j � 1Þ

2

2s2
adj

�
ðxix

T
j � 1Þ

2

2s2
ml

 !

¼ exp �
ðs2

ml þ s2
adjÞðxix

T
j � 1Þ

2

2s2
mls

2
adj

 !

� exp �
ðxix

T
j � 1Þ

2

2s2
ml

 !

:

For (i, j) 2 NE \ CL, since σcl is much smaller than σadj

pðði; lÞjA; ML; CLÞ / exp �
ðxix

T
j � 0Þ

2

2s2
adj

�
ðxix

T
j � 0Þ

2

2s2
cl

 !

¼ exp �
ðs2

ml þ s2
adjÞðxix

T
j � 0Þ

2

2s2
cls

2
adj

 !

� exp �
ðxix

T
j � 0Þ

2

2s2
cl

 !

:

For (i, j) 2 E \ (ML [ CL)

pðði; jÞjA; ML; CLÞ / exp �
ðxix

T
j � 1Þ

2

2s2
adj

 !

:

For (i, j) 2 NE \ (ML [ CL)

pðði; jÞjA; ML; CLÞ / exp �
ðxix

T
j � 0Þ

2

2s2
adj

 !

:

Exploring the roles of cannot-link constraint in community detection via MMGG

PLOS ONE | https://doi.org/10.1371/journal.pone.0178029 July 5, 2017 16 / 21

https://doi.org/10.1371/journal.pone.0178029


For (i, j) 2 E \ CL, since σcl is much smaller than σadj

pðði; jÞjA; ML; CLÞ / exp �
ðxix

T
j � 1Þ

2

2s2
adj

�
ðxix

T
j � 0Þ

2

2s2
cl

 !

¼ exp �
ðs2

adj þ s2
clÞðxix

T
j Þ

2
� s2

clxix
T
j

s2
adjs

2
cl

 !

� exp �
ðxix

T
j � 0Þ

2

2s2
cl

 ! :

For (i, j) 2 NE \ML, since σml is much smaller than σadj

pðði; jÞjA; ML; CLÞ / exp �
xix

T
j � 0

2s2
adj
�

xix
T
j � 1

2s2
ml

 !

¼ exp
ðs2

adj þ s2
mlÞðxix

T
j Þ

2
� s2

adjxix
T
j

2s2
adjs

2
ml

 !

� exp �
ðxix

T
j � 1Þ

2

2s2
ml

 ! :

We summarize the means and variances for all the six groups in Table 1, and the final likeli-

hood p(X|A, ML, CL) can be expressed as

pðXjA; ML; CLÞ ¼
YN

i;j¼1

pðði; jÞjA; ML; CLÞ ¼
YN

i;j¼1

1
ffiffiffiffiffiffiffiffiffiffi
2psij

p exp �
ðxix

T
j � mijÞ

2

2s2
ij

 !

:

To inference the node membership matrix X, we can maximize the likelihood p(X|A, ML,

CL). Since the monotonicity of logarithmic function, we can directly minimize

� logðpðXjA; ML; CLÞÞ ¼
XN

i;j¼1

1

2s2
ij

ðxix
T
j � mijÞ

2
þ constij ¼

XN

i;j¼1

wijðxix
T
j � oijÞ

2
þ Const

Weight matrix W ¼ fwijg 2 R
N�N where wij ¼

1

2s2
ij

and new similarity matrix O ¼ foijg 2

RN�N where oij = μij as shown in Table 1. It is equivalent to a weighted symmetric nonnegative

matrix factorization problem

argminX�0
kW�ðXXT � OÞk2

F : ð1Þ

where�means the element-wise product and kXkF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i;j¼1

x2
ij

q

is the Frobenius norm of

matrix X. Compared with the adjacency matrix A = {aij} 2 {0,1}N×N where aij = 1 if (vi, vj) 2 E
and aij = 0 if (vi, vj) 2 NE, O is equivalent to connecting the nodes with must-link constraints

and disconnecting the nodes with cannot-link constraints based on A, which is the same as

ModTop [9]. Therefore, ModTop can be regarded as a special case of our proposed MMGG in

Table 1. The means and variances for the generative model of all the six groups of node pairs.

Groups Mean (μij) Variance (σij)

(i, j) 2 E \ML 1 σml

(i, j) 2 E \ CL 0 σcl

(i, j) 2 NE \ML 1 σml

(i, j) 2 NE \ CL 0 σcl

(i, j) 2 E \ (ML [ CL) 1 σadj

(i, j) 2 NE \ (ML [ CL) 0 σadj

https://doi.org/10.1371/journal.pone.0178029.t001
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which each element of weight matrix W is 1. This means that ModTop ignores the difference

between the topology information and pairwise constraints while our proposed MMGG

takes it into consideration. MMGG amplifies the impact of the reconstruction error of the

pairwise constraints by increasing the weights corresponding to the pairwise constraints. In

the results section, we set the weights corresponding to pairwise constraints larger than 1 in

MMGG-MCL, the those corresponding to must-link constraints larger than 1 in MMGG-

ML(C) and those corresponding to cannot-link constraints larger than 1 in MMGG-CL(M).

To solve this constrained optimization problem, we construct the Lagrangian function as

LðX;lÞ ¼ kW�ðXXT � OÞk
2
� trðlXTÞ;

where l ¼ flijg 2 R
N�K is the Lagrangian multiplier enforcing the nonnegative constraint on

X. By letting the derivative of L(X, λ) with respect to X equal to 0, we get

@LðX;lÞ
@X

¼ 4ðW�ðXXTÞ�WTÞX � 4ðW�O�WTÞX � l ¼ 0:

From the KKT condition lijX
4

ij ¼ 0, we obtain

ððW�ðXXTÞ�WTÞXÞijX
4

ij � ððW�O�WTÞXÞijX
4

ij ¼ 0:

The we get the following multiplication update rule

Xij ¼ Xij

ððW�O�WTÞXÞij

ððW�ðXXTÞ�WTÞXÞij

 !1
4

: ð2Þ

For each pair of W and O, we randomly initialize X and iteratively update it using Eq (2)

until it converges (the difference of losses between two consecutive iterations is less than 10−3)

or reaches the maximum number of iterations (1000). This process is repeated for 20 times,

and the X with the least loss is adopted as final result.

Convergence analysis

Definition 1: GðX; bXÞ is an auxiliary function for T(X) if the conditions GðX; bXÞ �
TðXÞ; Gð bX; bXÞ ¼ Tð bXÞ are satisfied.

Lemma 2: If GðX; bXÞ is an auxiliary function for T(X), the T(X) is nonincreasing under

the update rule

X ¼ arg min
X

GðX; bXÞ

Theorem 3. The value of TðXÞ ¼ kW�ðXXT � OÞk
2

F is non-increasing under the update

rule (2).

Proof: To prove this theorem we need to find an auxiliary function GðX; bXÞ for

TðXÞ ¼ kW�ðXXT � OÞk
2

F , which satisfies

GðX; bXÞ � TðXÞ; Gð bX; bXÞ ¼ Tð bXÞ:

Minimizing T(X) is equivalent to minimizing

SðXÞ ¼ trððW�ðXXTÞÞððXXTÞ�WTÞÞ � 2trððW� ðXXTÞÞðO
T
�WTÞÞ:
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We define the auxiliary function GðX; bXÞ as

GðX; bXÞ ¼
XN

i;j¼1

XK

k¼1

W2

ijð
bX bX

T

Þij
bXik

X4

jk

bX
3

jk

� 2
XN

i;j¼1

XK

k¼1

OijW
2

ij
bXik
bXjk 1þ log

XikXjk

bXik
bXjk

 !

It is easy to find Gð bX; bXÞ ¼ Sð bXÞ. We only need to prove GðX; bXÞ � SðXÞ. Since 1 + log

x� x

� 2
XN

i;j¼1

XK

k¼1

OijW
2

ij
bX ik
bXjk 1þ log

XikXjk

bXik
bXjk

 !

� � 2
XN

i;j¼1

XK

k¼1

OijW
2

ij
bXik
bXjk

XikXjk

bXik
bXjk

¼ � 2
XN

i;j¼1

XK

k¼1

OijW
2

ijXikXjk ¼ � 2trððW�ðXXTÞÞðOT�WTÞÞ

Since a4 + b4 + c4 + d4� 4abcd, by setting Xjk ¼ ajk
bXjk,

XN

i;j¼1

XK

k¼1

W2

ijð
bX bXTÞij

bX ik

X4

jk

bX
3

jk

¼

XN

i;j¼1

XK

kh¼1

W2

ij
bX ih
bX jh
bX ik
bX jkxa4

jk

�

XN

i;j¼1

XK

kh¼1

W2

ij
bX ih
bX jh
bX ik
bX jkaihaikajhajk ¼

XN

i;j¼1

XK

kh¼1

W2

ijXihXjhXikXjk

¼ trðW�ðXXTÞÞððXXTÞ�WTÞ

Therefore, we have GðX; bXÞ � SðXÞ. To make S(X) nonincreasing, we calculate the deriv-

ative of GðX; bXÞ with respect to Xjk

@GðX; bXÞ
@Xjk

¼ 4

XN

i;j¼1

W2

ijð
bX bX

T
Þij
bX ik

X3

jk

bX
3

jk

� 4

XN

i;j¼1

OijW
2

ij
bXik

bXjk

bXjk

¼ 4ððW�ðXXTÞ�WTÞXÞij
X3

jk

bX
3

jk

� 4ððW�O�WTÞXÞij
bXjk

Xjk
¼ 0

Then we obtain the update role as

Xij ¼ Xij

ððW�O�WTÞXÞij

ððW�ðXXTÞ�WTÞXÞij

 !1
4

:

Complexity analysis

Here, we define the number of nodes, edges, communities and pairwise constraints as N, M, K
and P respectively. The overall process of solving Multi-variance Mixed Gaussian Generative

Model consists of the construction of weight matrix W and new similarity matrix O as shown

in Eq (1) and solving the weighted nonnegative matrix factorization as shown in Eq (2). On

one hand, from Table 1, we can obtain the new similarity matrix O from adjacency matrix A

via assigning the elements corresponding to must-link as 1 and those corresponding to can-

not-link as 0. Since we set σadj = 1, the weight matrix W can be obtained from a N × N matrix

of ones by setting the elements corresponding to pairwise constraints as in Table 1. Thus, the

process of weight and similarity matrix construction only needs P operations. On the other
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hand, the only differences between the Eq (2) and standard nonnegative matrix are the ele-

ment-wise product of the new similarity and weight matrix and the element-wise product of

XXT and weight matrix. Since all elements in W are 1 except for P elements, the element-wise

product only needs P multiple operations. Thus Eq (2) needs P + N2K operations. In a sum-

mary, the complexity of each iteration is O(P + N2K). O(P + N2K) can be further reduced to

O(N2K) when P is given as a constant. Therefore, although MMGG effectively encodes the

pairwise constraints, it still has the same complexity as the standard nonnegative matrix factor-

ization and some semi-supervised community detection methods including Ma et al. [8] and

ModTop [9]. This further illustrates the high efficiency of MMGG. Furthermore, since the

main computation in our method is the matrix multiplication, and there are many parallel

algorithms on it have been proposed, we can make use of parallel and distributed computing

to make our framework applicable to more large-scale networks.
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