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Abstract— The development of a real-world Unmanned Air-
craft System (UAS) Traffic Management (UTM) system to ensure
the safe integration of Unmanned Aerial Vehicles (UAVs) in
low altitude airspace, has recently generated novel research
challenges. A key problem is the development of Pre-Flight
Conflict Detection and Resolution (CDR) methods that provide
collision-free flight paths to all UAVs before their takeoff.
Such problem can be represented as a Multi-Agent Path Find-
ing (MAPF) problem. Currently, most MAPF methods assume
that the UTM system is a centralized entity in charge of
CDR. However, recent discussions on UTM suggest that such
centralized control might not be practical or desirable. Therefore,
we explore Pre-Flight CDR methods where independent UAS
Service Providers (UASSPs) with their own interests, commu-
nicate with each other to resolve conflicts among their UAV
operations—without centralized UTM directives. We propose a
novel MAPF model that supports the decentralized resolution of
conflicts, whereby different ‘agents’, here UASSPs, manage their
UAV operations. We present two approaches: (1) a prioritization
approach and (2) a simple yet practical pairwise negotiation
approach where UASSPs agents determine an agreement to
solve conflicts between their UAV operations. We evaluate the
performance of our proposed approaches with simulation sce-
narios based on a consultancy study of predicted UAV traffic
for delivery services in Sendai, Japan, 2030. We demonstrate
that our negotiation approach improves the “fairness” between
UASSPs, i.e. the distribution of costs between UASSPs in terms
of total delays and rejected operations due to replanning is more
balanced when compared to the prioritization approach.

Index Terms— Unmanned aircraft system traffic management
(UTM), pre-flight conflict detection and resolution (CDR), multi-
agent path finding (MAPF).

I. INTRODUCTION

W ITH the growing demand in commercial services
provided by Unmanned Aerial Vehicles (UAVs), the
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conception of an Unmanned Aircraft System Traffic Man-
agement (UTM) system has become necessary [17], [18],
as any ‘conflict’ [19], i.e. possibility of collision between
UAVs, must be avoided. Hence, the definition of UTM
regulations has generated growing interest in the develop-
ment of Conflict Detection and Resolution (CDR) methods
to ensure separation between UAVs. Similar to Air Traf-
fic Management (ATM), UTM will employ three redun-
dancy layers that are applied in different phases of a
UAV’s flight [15]: Pre-Flight CDR, In-Flight CDR and Colli-
sion Avoidance. This redundancy principle is based on the
guidelines of the International Civil Aviation Organization
(ICAO) [13].

On the one hand, the development of Collision Avoidance
and In-Flight CDR methods have recently received significant
attention [1], [7], [9], [14], [35], [37]. On the other hand, only
few works have presented practical methods to proactively de-
conflict UAV traffic before UAVs take off, i.e. Pre-Flight CDR
methods [10], [11].

In this article, we focus on the conception of Pre-Flight
CDR methods that aim at solving conflicts between UAV
operations before their takeoff. We assume four dimensional
(3D plus time) trajectory (4DT) executions, whereby UAVs
must follow waypoints at given timesteps.

The Pre-Flight CDR process, also called “strategic decon-
fliction” [28] will first provide 4DT flight plans determined
before takeoff. Then, in case of disturbances, i.e. dynamic
events that would disturb the plans generated by Pre-Flight
CDR, In-Flight CDR will be triggered in real-time while
UAVs are flying. Pre-Flight CDR is necessary to reduce
the amount of conflicts that In-Flight CDR would have to
process otherwise. We have previously evaluated the impact
of such situation [10]. If Pre-Flight CDR was not applied,
the complexity of deconfliction for In-Flight CDR would
increase, and possibly jeopardize the safety objective. Thus,
efficiency and safety are increased through the application of
Pre-Flight CDR combined with In-Flight CDR, whereby the
latter addresses disturbances.

It has been shown that the Pre-Flight CDR problem can
be formulated as a Multi-Agent Path Finding (MAPF) prob-
lem [11]. However, the standard MAPF formulation does not
capture real world considerations such as those of UTM. First,
most existing works in MAPF assume a centralized setting,
where each agent executes a unique path determined by a
central computing entity. Second, they assume that a global
cost is minimized over all agents, whereby all agents are
cooperative such that no agent is prioritized over another, and
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any agent may be instructed to take a longer path to avoid 
conflicts.

UTM assumes that different UAS Service Providers 
(UASSPs), each with their own group of UAVs, will provide 
services, such as de-confliction services, to UAS operators who 
submit UAV operation requests from customers [28]. UASSPs 
are independent entities with their own business objectives 
to maintain a certain service quality or satisfy operational 
constraints. For instance, if the flight path of a UAV operation 
significantly deviates from its nominal path to avoid conflicts, 
or if a UAV operation request is rejected, it could negatively 
affect customers’ expectations and require some compensation.

UASSPs aim to provide conflict-free paths while mini-
mizing their own costs in terms of the amount of delays 
and rejections on their given UAV operations. In the UTM 
context, a decentralized Pre-Flight CDR process is moti-
vated by practical requirements defined by regulating author-
ities such as NASA [28], whereby UASSPs communicate 
among themselves to resolve conflicts between their respective 
UAV operations. Moreover, UAV operations will have associ-
ated valuations to reflect the different levels of importance 
attributed by customers.

In this context, decentralized approaches for Pre-Flight CDR 
are necessary and beneficial because they allow UASSPs to 
deconflict their operations according to costs as determined 
by themselves. At the same time, UASSPs can protect private 
information that defines their views in terms of costs for 
replanning each operation.

In this article, we present a novel MAPF model for the Pre-
Flight CDR problem with the characteristics shown in Table I. 
In particular, we support a notion of “fairness” that relates 
to the distribution of costs in terms of delays and rejected 
operations between UASSPs. On the other hand, the standard 
MAPF formulation makes no distinction between UASSPs in 
the resolution process. Therefore, the resolution of conflicts 
may result in largely different impacts on each UASSP, as there 
is no provision to ensure a balanced distribution of delays and 
rejected operations among UASSPs. By contrast, our proposed 
approach provides “fairness” among UASSPs, which is a core 
consideration in UTM.

To the best of our knowledge, we are the first to propose 
a decentralized MAPF process for Pre-Flight CDR, where 
UASSP agents with their individual costs deconflict their flight 
paths before takeoff. This article makes the following main 
contributions:
• We formulate an extended MAPF model, where UASSPs

plan collision-free paths for their given UAV oper-
ations and aim to minimize their own cost objec-
tive. We define these costs based on independent
practical considerations such as induced delays and
rejections.

• We introduce a decentralized MAPF algorithm that sup-
ports resolution with negotiation between UASSPs repre-
senting UAV operations.

We compare our approach, which uses a bilateral negoti-
ated resolution, to an approach using prioritization instead of
negotiation.

TABLE I

MAPF CONCEPTS FOR PRE-FLIGHT CDR

With prioritization, UASSPs determine an order between
themselves, according to which they will replan their whole
set of UAV operations. Here, the lower placed UASSP will
replan all its operations while considering all of the higher
placed UASSP’s operations as fixed spatio-temporal obstacles.
We will consider two strategies to determine the order between
UASSPs: a randomized strategy and a cost-based strategy. We
evaluate our approaches on scenarios based on a realistic study
of predicted demand of UAV delivery operations for 2030 in
Sendai, Japan.

The rest of the paper is structured as follows. Section II
presents related works on MAPF and CDR approaches.
Section III formalizes the Pre-Flight CDR problem where each
UASSP agent with given UAV operations aims to minimize its
costs in terms of delays and rejected operations. Sections IV
and V describe our different proposed approaches, i.e. a priori-
tization process and a negotiation process. Section VI presents
the performed simulations and the experimental evaluations of
our approaches.

II. RELATED WORKS

A. Multi-Agent Path Finding

The Multi-Agent Path Finding (MAPF) problem has been
extensively studied in many works proposing approaches to
solve instances mostly for 2D benchmarks [6], [21]. In the
MAPF setting, agents located in a graph must follow a path
to their goal locations without colliding with each other. The
existing methods generally assume a centralized setting where
a single computing entity finds a solution considering all
given agents, with a global objective to minimize, such as
the “sum of costs” or the “makespan”. To minimize these
global objectives, optimal and suboptimal approaches have
been proposed [3], [29], [30], [33], [34].

Recently, new directions were established to handle real-
world scenarios, notably for ground robot path finding in
Amazon Robotics warehouses [21]. Several variants of the
MAPF formulation have been proposed [12], [20], [22] that
consider teams of agents and focus on allocating tasks to each
agent while providing conflict-free paths. In [11], an extension
of the MAPF problem to the Pre-Flight CDR problem in the
UTM context was presented, but it used a centralized setting.

In this article, we assume that all UAV operations are
submitted with already defined start and service locations. So,



in our work, we do not address the task allocation process. 
Instead, we consider distinct teams of UAV agents, whereby 
each team is represented by an UASSP agent that aims to 
minimize its own cost function.

Few works have considered a decentralized setting in MAPF 
[4], [8], [26], where agents communicate between themselves 
to find a conflict-free solution. However, these works consider 
the standard global optimization setup where agents, each with 
a unique path, communicate to resolve conflicts to minimize 
the total solution costs without expressing any self-interest.

In [2], the authors introduce a mapping to combinatorial 
auctions, and in [5], a taxation mechanism is proposed that 
incentivises self-interested agents to optimize social welfare.

In all these existing approaches, a mediating entity, such as 
an auctioneer, is needed to process all preferences of agents. 
By contrast, a decentralized process is required for the UTM 
architecture [28], in which all UASSP agents communicate 
between themselves to resolve conflicts of their operations.

B. Automated Negotiation

Several works in the Air Traffic Management (ATM)
domain have proposed decentralized CDR approaches that use
automated negotiation, mostly for the In-Flight CDR phase
[27], [32], [36]. In [36], the authors applied a monotonic
concession protocol where each aircraft can concede to the
other aircraft whether it will fly a higher cost trajectory to
resolve a conflict. However, these negotiation protocols assume
a common cost function known by all agents or require each
agent to explicitly communicate their preferences to others.

In [27], a decentralized negotiation based In-Flight CDR
approach is proposed where a pair of aircrafts can negotiate
their maneuvers to solve a conflict. Their short-term deconflic-
tion approach only processes a local immediate conflict in each
negotiation process, and computes simple response trajectories
to the immediate conflict, thus not mitigating downstream
conflicts. So the induced deviation from the initial flight path
might not be minimal for a given flight path and thus it
provides a sub-optimal solution in terms of total deviation.

These works on In-Flight CDR support concessions to
create a balance in the costs of resolutions between aircrafts.

In contrast, we resolve conflicts in a strategic way by
processing flight paths, i.e. operations, of UAVs before their
actual takeoff. Thus, unlike In-Flight CDR, the Pre-Flight
CDR process does not have strict real-time requirements since
all flights are processed within a certain amount of time ahead
of takeoff.

Other works such as [24] focus on the design of auto-
mated negotiation approaches by modeling a utility function
for each user with improved preference elicitation processes.
Reference [23] introduce a self-interested approach for MAPF
where each self-interested agent is assumed to negotiate one
individual path. However, this approach might not be scalable
or practical when there is a large number of conflicts between
paths, as a large amount of communications would be required
to reach a conflict-free solution for all paths.

By contrast, our work aims at solving a novel MAPF
problem that considers UASSP agents with given sets of flight

paths. We focus on the definition of a practical Pre-Flight
CDR approach based on negotiation, rather than based on the
process of users’ preference elicitation.

III. PROBLEM FORMULATION

In this section, we formalize our model that extends the
standard MAPF formulation with UASSP agents that are in
charge of deconflicting their given set of UAV operations. Each
UASSP agent aims to minimize its individual cost function,
which takes into account the delays induced for each UAV
operation with a given valuation, and the number of operations
rejected.

A. Motivation

In the context of UTM, using a decentralized process is a
practical requirement defined by regulating authorities [28].

Existing centralized methods in the standard MAPF frame-
work consider a global objective, and thus seek globally
optimal solutions without distinguishing agents’ individual
costs (see Table I).

By contrast, in the context of low altitude airspace traf-
fic management, each UASSP agent’s individual interest or
priority is an important realistic consideration. Thus, a decen-
tralized method allows us to address self-interested agents and
maintain privacy about their preferences in terms of costs for
replanning, unlike a centralized method.

Moreover, applying a decentralized resolution at the UASSP
level instead of the UAV level has two main advantages:

1. It addresses practical requirements: If we resolve con-
flicts on the UAV level, UAVs would communicate
between themselves to solve their conflicts in a decen-
tralized way in the Pre-Flight phase. However, in the
UTM system architecture defined by NASA UTM [28],
it is required that only UASSP agents communicate
between themselves to deconflict their operations in the
Pre-Flight phase. Further, UASSPs are economic entities
that have their own preferences in terms of deconfliction
costs. They are responsible for conflict resolution of their
operations.

2. It reduces communication costs: If UASSPs communi-
cate to deconflict their operations, yet the processing
would be for each UAV operation on a “per conflict”
basis, this would require a significantly high amount
of communications between UASSPs to resolve the
large numbers of conflicts. Thus, in contrast, UASSP
level resolution allows us to avoid this communication
overhead by processing several conflicts at once.

B. Definitions

We distinguish between a UAV agent (a UAV operation)
that performs a flight path, and a UASSP agent that manages
a group of UAV agents (UAV operations), as shown in Table I.
In this formulation of the Pre-Flight CDR problem, a UASSP
agent communicates with other UASSP agents to determine
the resolution for their respective group of UAV agents.

We define an agent as a UASSP that is responsible for a
set of UAV agents (UAV operations). We consider K given



UASSPs agents. Each UASSP agent (Ak)k∈[1;K ] has to resolve 
its own MAPF problem instance defined by a set of Nk UAV 
operations �k = (ai )i∈[1;Nk ] that are each performed by a 
UAV. Each operation represents a flight path with a fixed start 
location and a goal location. We consider an undirected graph 
G which is a 26-neighbor 3D cubic grid map. UAVs can 
‘move’ along an edge of G or can ‘wait’ on a vertex of G.

Each operation ai has an attributed valuation vi that reflects 
its importance, which can be “low”, “medium”, or “high”, 
depending on customer requirement. Thus several operations 
may have the same valuation.

Each UAV assigned to perform an operation ai is repre-
sented by a sphere of given radius ri , and a center position 
pi . For any pairs of UAV operations ai and a j , any violation of 
the minimum separation distance, i.e. the sum of the respective 
radii of the associated UAVs ri +r j , must be prevented. Hence, 
we define the following constraint to ensure there is no conflict 
at any timestep t :

∀t, dist (pi (t), p j (t)) > ri + r j (1)

In the UTM context, we also define altitude constraints for
the flight paths of UAVs by reference to coordinates (x, y, z):

elevation(x, y)+ altmin ≤ z ≤ elevation(x, y)+ altmax(2)

elevation(x, y) refers to the terrain elevation value of the
point of coordinates (x, y) in a path, measured from mean
sea level, and altmin = 90 m and altmax = 150 m are fixed
altitude bounds relative to elevation. Hence, there is a 60 m
altitude range for UAV operations. A solution of the given
MAPF instance for Ak consists of conflict-free paths for all
UAV operations in �k .

C. UASSP Cost Function

Unlike the standard MAPF formulation, each UASSP agent
Ak has its own independent objective which is to minimize
its own cost value Cv

k . That value represents the service
degradation due to conflict resolution on its given operations
of same valuation, as shown in Eq. 3. An operation is rejected
when no resolution is found to solve a conflict or when the
generated deviation exceeds the given battery autonomy. The
operation is then removed from the solution set, i.e. rejected.
A rejection is considered as a more important penalty than an
added delay, so the whole rejected path duration is considered
as the incurred cost.

We define the cost function Cv
k for each UASSP agent

Ak for all of its operations of same valuation v ∈
{low;medium; high} as:
Cv

k (�k) =
∑

ai∈�v
k

c(ai) (3)

c(ai) =
⎧⎨
⎩

T ′i − Ti i f path is replanned (delay)
Ti i f path is rejected
0 else

(4)

where �v
k ⊆ �k is the subset of operations of Ak with

same valuation v, c(ai ) represents the individual cost for each
operation ai with initial flight duration Ti and flight duration
obtained after replanning T ′i .

D. Fairness

Fairness is a core consideration in the UTM context, as sev-
eral economic and competitive entities are involved to provide
services to customers in the shared low altitude airspace.
We distinguish two notions of “fairness” according to the type
of agent, for a UAV agent and for a UASSP agent, and we
address both notions:
• UAV agent (operation) level: the order of valuations must

be respected among all operations. Here, we address this
issue by prioritizing higher valued UAV operations when
in conflict, i.e., they become spatio-temporal obstacles
for the lower valued operations which in turn must be
replanned.

• UASSP agent level: we conceive fairness as the more
balanced distribution of costs, such as total delays and
rejected operations, among all UASSP agents for all
operations of same valuation.

Fairness at the UAV operation level simply prioritizes
according to the given valuations of the operations. On the
other hand, fairness at the UASSP agent level requires the
conception of a CDR approach that allows UASSP agents to
determine a mutual solution that they would consider as “fair”.

E. Optimality

We distinguish two notions of optimality whereby each
reflects a different objective:

1. Optimality in terms of total deviation caused by resolv-
ing conflicts for all given UAV agents of an UASSP
agent: This relates to the difference in the total durations
between the conflict-free flights and the initial flights of
the given UAV agents (delays). The optimality hereby
refers to the solution that minimizes the deviation caused
for all UAV agents’ flight paths, i.e., the solution that
minimizes the “sum of costs” objective, as in standard
MAPF.

2. Optimality in terms of fairness for all UASSP agents:
This concerns the distribution of costs related to devi-
ations among different UASSP agents. The optimality
hereby refers to the solution that maximizes fairness,
i.e., the distribution of deviations costs among UASSP
agents.

Here, we focus on fairness among different UASSP agents,
which is a novel objective for optimality.

Note that in the UTM context, it is important to make
a trade-off between theoretical optimality of a solution and
practical constraints, such as scalability.

IV. PREPROCESSING PHASE

This section describes the initial steps that each UASSP
agent performs independently before processing Pre-Flight
CDR with other UASSPs. For this purpose, we address spe-
cific properties of the configuration of UAV delivery service
scenarios. Each UASSP agent is responsible for a given set
of hubs. Each UAV assigned to perform an operation departs
from a given hub and returns to the same hub once its
mission is completed. We assume that each hub can service a



Fig. 1. Flowchart of the Pre-Flight CDR process for a UASSP agent: (1) Each
UASSP agent first solves all existing conflicts among its own set of operations,
using a standard MAPF solver such as ECBS [3]; (2) Each UASSP agent
communicates with other UASSPs to deconflict operations between them.

predetermined limited surrounding area (‘service area’) with a
fixed radius as represented in Fig. 1, whereby specific service
locations are assigned to each UAV. Therefore, the hubs of a
UASSP agent may have overlapping service areas with other
hubs pertaining to other UASSPs, where conflicts can occur
between UAV operations of different UASSPs.

First, each UASSP processes its own operations so that its
own paths are initially conflict-free, as shown in Fig. 1. Then,
each UASSP agent Ak only needs to communicate the subset
of operations �shared

k ⊆ �k that may be in potential conflicts
with the other UASSPs based on their overlapping service
areas as depicted in Fig. 1. For this purpose, each UASSP
performs an initial step where operations that are crossing
an overlapping area are filtered with a simple geometrical
verification of each flight path segments, based on the radius
of each service area.

In other words, we draw a distinction between conflicting
paths belonging to a same UASSP (‘internal conflicts’) and
those between different UASSPs (‘external conflicts’). Without
this step, new ‘internal conflicts’ might be detected and created
after solving ‘external conflicts’, which might be impractical,
as this would increase the amount of communications. Hence,
we always start with conflict-free paths from each UASSP
side.

V. DECENTRALIZED APPROACHES

We assume that each UASSP agent uses a given MAPF
solver to solve their ‘internal conflicts’, such as the bounded
suboptimal ECBS algorithm [3] (here, we refer to the optimal-
ity in terms of total deviation as mentioned in SECT. III-E).
So, each UASSP agent processes its own MAPF instance
in a bounded suboptimal way with the use of the ECBS
algorithm. This bounded suboptimality guarantee is relative
to the consideration of other UASSPs agents’ operations as
spatio-temporal obstacles. Then, each UASSP agent starts the
de-confliction with other UASSP agents, based on its conflict-
free set of operations.

In this section, we introduce two distinct decentralized
algorithms to solve the Pre-Flight CDR problem between
UASSPs agents.

• A prioritization approach where UASSPs determine an
order of replanning between themselves. Here each
UASSP will replan their respective operations considering
the trajectories of operations of higher placed UASSPs as
fixed spatio-temporal obstacles.

• A pairwise negotiation approach where UASSPs make
concessions on the operations that they both will replan.
This allows UASSPs to share the costs between them by
determining which operations should be replanned and
which not.

Let us first consider the prioritization approach as a baseline
approach. Then we will describe the pairwise negotiation
resolution approach, and then generalize to the resolution with
more than two agents.

A. Prioritization Approach

Similar to the Cooperative A* approach [31] used to solve
MAPF instances for a centralized setting, we hereby propose a
decentralized resolution with prioritization between UASSPs.
In Cooperative A*, each agent is initially associated to a
unique and distinct priority, and when two agents are in
conflict, the agent with lower priority must replan its path
considering the agent with higher priority as obstacle.

Differently, since we consider UASSP agents with given
UAV operations, the determined priority order for each UASSP
agent applies to all of its operations, thus several paths at once.
However, randomly attributing priorities to UASSP agents
might be unfair, as it would distribute costs among UASSP
agents without a rationale, and thus may lead to arbitrarily
high individual costs for UASSP agents.

Therefore, we propose an informed “cost-based” strategy
that relies on the computed costs of each UASSP agent, so as
to determine the priority ordering among UASSP agents (see
Algorithm 1). Here, UASSP agents will mutually determine
their pairwise order by communicating their incurred costs
with Eq. 3.

Each UASSP agent computes its incurred cost as if it was
to resolve all conflicts alone, i.e. by determining conflict-free
paths while considering all the paths of the other given UASSP
as spatio-temporal obstacles.

Then, the UASSP which would have incurred a higher cost
is placed higher, as “winner”, and does not have to replan
its paths, while the UASSP with lower cost, as “loser”, has
to replan all its paths in conflict with those of the “winner”.
The rationale here is that the “loser” has to re-plan because it
results in less total costs.

Note that each UASSP agent carries out the same method
of conflict detection computation to determine which conflicts
need to be solved with the other UASSP agent. This ensures
that if a conflict is detected by one UASSP agent, it will also
be detected by the other UASSP agent.

Regarding the computation of conflict resolution, one
UASSP agent is not repeating the computation that has been
performed by the other one, in the sense that each UASSP
agent will compute and propose a different conflict-free solu-
tion to the other UASSP agent. Such creation of a conflict-free
solution is done by the UASSP agent’s re-planning of its own



Algorithm 1 Pairwise Prioritization
Data: (Ai ; A j ) two UASSP agents with respective

associated set of operations �shared
i and �shared

j
Result: Conflict-free paths for all UASSPs
/* Pseudocode for agent Ai */
/* Cost evaluation for each agent

operations */

�
replanned
i ← SolveM AP F(�shared

i ,�shared
j );

Send Cv
i (�

replanned
i ) to A j ;

Receive Cv
j (�

replanned
j ) from A j ;

/* Determine if “winner” or “loser” */

if Cv
i (�

replanned
i ) ≤ Cv

j (�
replanned
j ) then

/* Ai is the “loser” and A j’s paths
become obstacles for Ai */

�shared
i ← �

replanned
i ;

/* Else Ai is the “winner” and does not
replan its paths */

UAV operations, while considering the other UASSP agent’s
UAV operations as spatio-temporal obstacles.

B. Negotiation Approach

The prioritization approach presents a simple decentral-
ized MAPF solver that incorporates individual costs of each
UASSP agent and provides a resolution in a systematic
manner. However, this method might be considered “unfair”,
as some UASSP agents may have to sustain a large amount
of costs by replanning all their operations, only because they
are ranked lower than other UASSP agents.

Therefore, we propose a simple yet practical resolution
method based on negotiation by incremental concession mak-
ing. This allows UASSPs to bargain and effectively share
their replanning costs by mutually determining which of their
operations to replan or not to replan. Thus, there is no “loser”
who has to bear all costs or “winner” who does not replan at
all.

Operators submit operations some time ahead of their
desired start time, e.g., at least 30 minutes before their UAV
desired takeoff time. Typically, the chosen time window is
large enough to handle a significant amount of operations from
different UASSPs. Note that the actual negotiation time is a
few minutes.

1) Bargaining Problem: This approach can be assimilated
as solving a bargaining problem, which is a game theory
concept that aims to find an equilibrium when conflicts of
interest arise between players with separate and conflicting
objectives [25].

We propose a mapping of the Pre-Flight CDR problem to
the bargaining problem as presented in Table II. Here, conflict
resolution is framed as a two-player game where each UASSP
agent would prefer the other agent to bear the costs, i.e. resolve
the given conflicts by replanning their own operations.

2) Theoretical Properties: Solving the bargaining problem
means finding an agreement s ∈ F for both UASSP agents

TABLE II

REDUCTION OF THE PRE-FLIGHT CDR PROBLEM TO THE
BARGAINING PROBLEM

Ai and A j according to their respective cost function Cv
i

and Cv
j . The agreement point s hereby represents the costs

computed by each UASSP agent for a conflict-free solution
where certain operations are replanned between both UASSP
agents, and s is on the Pareto frontier [25]. In particular,
if the Pareto frontier of the costs to all agents is known,
then the agreement is the Kalai-Smorodinsky solution [16].
The properties of this solution are based on the axioms of
game theory: Pareto optimality, symmetry, invariance and
monotonicity [16]. However, here the Pareto frontier is not
known, as the cost of each proposal (conflict-free solution)
can only be valued by the UASSP agent that will replan its
operations. Thus, the process converges to a solution that is as
close as possible to the optimal “fair” solution with its costs
on the Pareto frontier.

3) Our Approach: A pair of agents communicate with
each other to negotiate which paths to replan within a fixed
maximum number of rounds NMax (see Algorithm 2).

For this purpose, at each round, they follow three main steps
as follows:

1) Each UASSP agent Ai makes a proposal �
proposal
i to

the other agent. A proposal contains all operations of
the agent whereby the agent proposes to solve certain
conflicts by replanning certain of its operations, while
assuming the other agent will solve the remaining con-
flicts.

2) Then, each UASSP agent Ai evaluates the proposal
received from the other agent by computing a response
�

response
i . A response is a conflict-free solution com-

puted by the agent which replans its operations consid-
ering the paths proposed by the other agent as spatio-
temporal obstacles.

3) Each agent determines the costs from their proposal
made Cv

i (�
proposal
i ) and their response to the proposal

of the other agent Cv
i (�

response
i ). An agreement is

reached if the cost of the response is lower than the
cost of the proposal: Cv

i (�
response
i ) ≤ Cv

i (�
proposal
i ).

Otherwise, the bargaining process iterates again for another
round through these steps while incrementing the costs for
the respective new proposals until an agreement is reached.
An agreement represents conflict-free solutions that effectively
distribute costs between the two UASSPs.

The key step in this approach is the determination of
a proposal by each agent in each round. A proposal is a
concession on which operations to replan whose associated
cost increases at each round to ensure convergence to an
agreement.



Algorithm 2 Pairwise Negotiation
Data: (Ai ; A j ) two UASSP agents with respective

associated set of operations �shared
i and �shared

j ;
NMax

Result: Conflict-free paths for all UASSPs
/* Pseudocode for agent Ai */
/* Initial proposal and response */

�
proposal
i ← �shared

i ;
Send �

proposal
i to A j ;

Receive �
proposal
j from A j ;

�
response
i ← SolveM AP F(�shared

i ,�
proposal
j );

/* Determine the groups of operations
g ∈ Gi involved in external
conflicts, and sort by increasing
value of individual costs Cv

i (g) */
Gi ← GenerateGroupsOperations(�response

i );
δi ← [

]|Gi |/NMax ;
while true do

/* Generate new updated proposal with
incremented cost */

gδi ← get FirstGroups(Gi, δi ); � Select δ groups
with lowest costs to re-plan
�

proposal
i ← U pdate(gδi ,�

proposal
i );

Send �
proposal
i to A j ;

Receive �
proposal
j from A j ;

/* Compute response to proposal of
other agent */

�
response
i ← SolveM AP F(�shared

i ,�
proposal
j );

/* Evaluate response and compare to
proposal */

if Cv
i (�

response
i ) ≤ Cv

i (�
proposal
i ) then

break; � Agreement reached

else
δi ← δi + 	|Gi |/NMax
; � Update δi

To generate a proposal, an agent must identify which
of its operations are in conflict with the other agent and
determine which operations it will replan to resolve some of
the identified conflicts. The proposal is updated at each round
by additionally replanning some operations according to the
criterion of their incurred costs.

For this purpose, both agents must communicate an initial
proposal which is a “zero-cost” solution where they do not
replan any of their paths, i.e., the replanning cost is zero, and
assume that the other agent will resolve all of the existing
conflicts. Here, for each agent the computed response is the
same computed solution as in Section V-A, where each agent
computes the conflict-free paths by considering all the paths
of the other agent as obstacles.

This first step allows both agents to identify the existing
conflicts between them, so that each agent Ai can determine
the set Gi of groups of operations involved in a conflict.
A group of operations g ∈ Gi is a subset of operations of
the same agent which are impacted by the same conflict with
an operation of the other agent.

There may be several distinct conflicts between agents, thus
several groups of operations. Then, a set contains the groups
of operations to be proposed for replanning at each round of
negotiation. Each group g ∈ Gi is associated to a cost value
Ci (g) computed with Eq. 3, which represents the individual
incurred cost to replan the operations of the group. Gi is sorted
by ascending order of costs for each group so that the groups
with lower costs are selected first.

The agents then determine the value δi , which is the number
of groups of operations from the sorted set Gi that they
will need to re-plan to update their current proposal at each
round, so that the negotiation process converges in less than
NMax rounds. In the case that both agents agree on their
respective proposals, the proposal with the lowest variance in
costs between the two agents is then chosen.

4) Convergence Analysis: This approach will always ter-
minate in less than NMax rounds since each agent will
progressively have to deviate their own proposal closer to the
“zero-cost” solution of the opposite UASSP agent.

The NMax value is the maximum number of rounds to
drive the costs of the proposed solutions for the given pair
of UASSP agents from their “zero-cost” proposal to their
“maximum cost” proposal. The “maximum cost” proposal
represents the response solution to the “zero-cost” proposal
of the opposite UASSP agent, whereby the UASSP agent will
solve all conflicts by itself.

In our negotiation process, at each round, the number of
conflicts to be solved by each UASSP agent to generate its
new proposal is determined by adding a constant increment to
δi , which is determined as a function of the maximum number
of conflicts and NMax (see Algorithm 2).

So, if the process reaches the Nth
Max round, each UASSP

will propose to solve all existing conflicts by itself, which is
the same solution as proposed in the prioritization approach.
Hence, the negotiation process will terminate in at most NMax

rounds.
In practice, an agreement between UASSPs can be found

well before reaching this last Nth
Max round, and thus the actual

number of rounds is much lower than NMax . The value of
NMax is determined empirically based on the average number
of conflicts between UASSPs given their number of operations
and the practical computational costs.

The larger the value of NMax is, the more precise the
increment on the proposals at each round will be. Thus, the
final solution will be closer to the optimal Pareto solution.
However, if this value is too large, then this would require
a heavier load of communications between UASSPs before
reaching an agreement.

C. Generalization to Multilateral Case

We have presented two different decentralized approaches
to resolve conflicts between pairs of UASSP agents. For
more than two UASSP agents, each agent would need to
communicate with all of the other agents and wait to collect all
of their responses and vice versa for each involved agent, until
an agreement is reached that satisfies all agents simultaneously.

However, such process would be complex and impractical
to deploy since the amount of communications required to



Algorithm 3 General approach with K ≥ 2 agents
Data: (Ak)k∈[1;K ] UASSP agents with associated set of

operations �shared
k

Result: Conflict-free paths for all UASSPs
/* Pseudo-code for agent Ai */
Other Blocked Paths = ∅ � List of paths from other
agents considered as obstacles
I s_Processed ← f alse;
while true do

/* Determine maximum number of
conflicts with other agents */

(A j ; NCon f licts
i j ) =

MaxCon f licts Pair((Ak)k∈[1;K ];k 
=i ) � Send/Receive
update message to/from other UASSPs
/* If Ai has the highest number of

conflicts with agent A j */

if (Ai , A j ) == arg max(Ak ,Al )k 
=l∈[1;K ]N
Con f licts
kl then

/* Apply resolution process with A j

*/
�shared

i ← Pairwi se_Resolution(Ai , A j );
I s_Processed ← true; � Send update message to
other UASSPs

else if I s_Processed then
/* Ai’s paths become obstacles for

the other agents if not
re-selected next */

Other Blocked Paths←
Other Blocked Paths ∪�shared

i ;
Send(Other Blocked Paths); � Send update
message to other UASSPs
break;

converge to an agreement and synchronization issues might
be large, especially when many agents are simultaneously
involved in conflicts between their operations.

Therefore, we propose to address the K ≥ 2 UASSP
agents case with a sequential bilateral approach as shown in
Algorithm 3.

In this approach, agents sequentially deconflict between
each other in pairs using the previously presented approaches.
The sequence of pairwise processing is determined with a
predefined criterion that all agents first communicate to deter-
mine which pair should first deconflict between each other. We
hereby use the number of conflicts detected between agents
as a criterion to determine the sequence of processing for all
agents.

Our approach is a more practical resolution method for
several UASSP agents as the used criterion allows us to reduce
the amount of communications needed to converge to the final
conflict-free solution for all UASSP agents. This might lead
to a lower overall solution quality because of the local, rather
than global, aspect of this approach.

Note that in the prioritization approach, the paths of the
“winner” of pairwise resolution are declared as obstacles for
the other agents, which have not yet been deconflicted between
each other. In the negotiation approach, the paths of the

Fig. 2. Map of Sendai 2030 scenario area, including hub locations for all
UASSPs and service areas (circles).

UASSP agent with the lowest remaining number of conflicts
are declared as obstacles. Those are the ones that are less likely
to have an impact on the other agents’ paths.

Moreover, our proposed pairwise negotiation approach
aims at maximizing the fairness objective as defined in
Section III-E. Thus, we aim at obtaining a solution that is as
close as possible to the optimal solution in terms of fairness.

Note that the termination guarantee mentioned in
Sect. V-B.4 still holds here, since the multilateral case
is a sequence of bilateral processes.

VI. EXPERIMENTS

In this section, we first describe the properties of the model
case used for our simulations. Then, we present and analyze
the results obtained in our experiments.

A. Model Case Scenario

This section describes the model case used in our experi-
ments. The model case is based on a study that aims to project
UAV service demand in the Sendai region in Japan in 2030.
The study was conducted by a consulting company, as part of
a large-scale governmental project on designing, simulating
and specifying the UTM system.

The dimensions of the considered area in the given region
are 14.35 km×17.10 km. The representation of our space is
a 3D grid map composed of cells with edges of 30 meters
long. Thus, according to the dimensions of the model case,
we consider a 3D grid map of dimensions 478 × 570 cells,
which is delimited in altitude by a two cells range (60 m range)
relative to the elevation. The positions of static obstacles, i.e.,
blocked cells, is fixed according to the given elevation map of



the region. Further, there are 41 distinct no-fly zones identified 
by the study.

The study considers three major logistics companies (hereby 
anonymized as A, B and C) that provide deliveries of goods 
such as mail and package delivery, as well as a Red Cross 
blood center anonymized as D that collects blood samples 
between medical centers. The different hub locations are set 
by the study considering the expected demand in the area in 
2030. The assignment of the service locations is assumed to be 
done independently by UAS operators within a given service 
radius around a hub. Figure 2 depicts positions of hubs and 
their associated service area with a different color for each 
company. Inside these areas, we fix the minimum flight path 
length to 300 m.

We distinguish two types of deliveries: Hub-to-Home, 
that are deliveries performed from hubs to service loca-
tions (homes) located within a given service radius, and Hub-
to-Hub, that are deliveries performed between given pairs of 
hubs only. The study indicates a given amount of Hub-to-
Home and Hub-to-Hub deliveries for each of the companies.

In the study, one day of delivery service represents 13 hours, 
from 8 am to 9 pm. According to customers’ demand in the 
region, expected weight of deliveries and expected capabilities 
of UAVs, the study estimates that there is a total demand of 
up to 13,910 operations per day in normal season and up to 
21,235 operations per day in busy season, considering the 
given companies altogether. We consider quadcopter UAVs 
that have holonomic motion, and can move in any direction at 
any time, or hover. Each UAV has an attributed speed between 
15m/s and 18m/s and a given radius r between 15m and 30m, 
as defined in Section III.

In this article, we assume that each of the given companies 
uses its own UASSP, thus four UASSPs are considered in 
our experiments, and we consider fixed ratios of submitted 
operations for each UASSP according to the study.

B. Experimental Results

All approaches are implemented in Java within the JADE
framework to simulate communications between UASSP
agents, and are run on a 3.2GHz Intel Core i7-8700 desktop
with 16 GB RAM. The starting times of operations are
uniformly distributed within a 1-hour time window. In all
experiments, the total number of submitted operations varies
from 200 to 1000 operations in total, with NMax set up to 30,
and the operations are distributed among the given UASSPs
with fixed proportions according to the study.

We evaluate the performances of our approaches with two
main metrics:
• Total accumulated delay, i.e. the sum of all delays of all

operations of an UASSP agent;
• Amount of operations rejected of an UASSP agent

We also compute the standard deviation in total delays to
quantify the difference in the distribution of delays among the
UASSPs. 30 instances were generated for each experiment.

1) Comparison of Prioritization Approach With Random-
ized Ordering and Cost-Based Ordering: First, we compare
the difference in terms of total accumulated delays between

Fig. 3. Comparison of the average difference in total delays among UASSPs
A and B between the negotiation approach and the prioritization approach
with cost-based strategy.

Fig. 4. Comparison of the average standard deviation in total delays among
all UASSPs between the negotiation approach and the prioritization approach
with (1) randomized and with (2) cost-based strategy.

cost-based ordering as presented in Section V-A and a random-
ized ordering approach, where agents determine their priorities
randomly and replan accordingly. For the randomized strategy,
in our experiments, we generated all possible combinations of
orders among all four UASSPs. Table III reports the average
delays obtained for each UASSP over all the combinations.
As expected, the randomized strategy leads to larger delays
in average for each agent than the cost-based strategy. Fig. 4
shows a higher standard deviation in total delays between the
UASSPs.

2) Comparison of Prioritization Approach and Negotiation
Approach: We compare the performance of the prioritization
with cost-based ordering approach to the negotiation approach.
Overall, the impacts of the methods can be observed mainly
on UASSPs A and B, which have the highest number of oper-
ations and larger overlapping service areas, so most conflicts
happen between them. The costs for UASSPs C and D do not
significantly change due to their hubs configurations as shown
in Fig. 2. UASSP C has less conflicts with the other UASSPs
due to the smaller service areas of its hubs, and UASSP D has
fewer operations to process.

We observe that the total delays are more uniformly distrib-
uted between UASSPs A and B with the negotiation approach
than with the prioritization approach as shown in Fig. 3.
More precisely, with the use of resolution with negotiation,



TABLE III
COMPARISON OF THE TOTAL DEL AYS (IN  MINUTES) AND % OF OPER-

ATIONS REJECTED AMONG UASSPS BETWEEN THE NEGOTIATION 
APPROACH  AND  THE  PRIORITIZATION  APPROACH  WITH  RANDOM-

IZED STR ATEGY AND WITH  COST-BASED STR ATEGY

the standard deviation in total delays becomes lower than
with prioritization with cost-based ordering, in particular
from 600 operations (see Fig. 4). This indicates a reduction in
the difference in costs between UASSP agents when solving
conflicts between their operations, as the bargaining process
allows one to share the replanning costs among UASSP agents.

The solution obtained with the negotiation approach aims at
minimizing the gaps in total delays between pairs of UASSP
agents. That is, the negotiation approach tries to maximize
“fairness” and determine a solution close to the Pareto optimal
solution, whereby the gap in costs (e.g. in terms of total
delays) between all agents is minimal. As observed in our
experimental simulations, the average difference in total delays
between pairs of UASSP agents is around 6 minutes for
UASSPs A and B that have the most conflicts on average
between their operations (see Fig. 3).

The amount of rejected operations is also slightly reduced
with the negotiation approach, shown in Table III, as rejecting
an operation has more impact than delaying one operation. Yet,
since our considered space is not cluttered but rather an open
space, this number remains low. We observe that operations
were mostly rejected for the following reasons: either (1) a
conflict occurs near the start location of an operation, where
the other operation is considered as an obstacle and thus cannot
be replanned, or (2) a conflict occurs near a start location
because of added delay on some operation.

The trade-off between these two approaches is in terms of
processing time and solution quality. While resolution with
prioritization generates higher degradation in costs than the
resolution with negotiation, its processing is faster than the
negotiation approach.

The processing time includes the communication time and
the computation time. The communication time is negligible;
it is less than a few seconds on average. On the other hand, the
computation time represents the major part of the processing
time, as it involves the generation of a response to a proposal
for each UASSP agent at each negotiation round. This requires
replanning paths with the given MAPF solver, and this time

increases with the number of operations as more conflicts
occur. However, with a scalable MAPF solver like ECBS,
computation time remains low even for a thousand operations.

Both approaches are able to find conflict-free solutions for
all UASSP agents in less than 5 minutes on average, which
suggests good scalability. Note that Pre-Flight CDR does not
have strict deadlines as opposed to In-Flight CDR or Collision
Avoidance, so communication and processing are not time
critical.

We followed the Sendai 2030 model case, because it is a
realistic and representative study of predicted demand of UAV
delivery operations provided by a major consulting company.
We expect that our methods and results are applicable in
similar settings, e.g., a small number of UASSPs, with a large
number of operations.

Also, we demonstrated that the negotiation approach always
generates higher “fairness” than the prioritization approach,
because it allows a more balanced distribution of total delay
costs between UASSP agents.

VII. CONCLUSION

The development of a UTM (Unmanned Aircraft System
Traffic Management) system is required to safely integrate
UAVs in low altitude airspace. UAS operators will task UAVs
to perform flight operations for different applications, such
as surveillance, delivery, and so on. Thereby, they will rely
on UAS Service Providers (UASSPs) to provide conflict-free
paths for their UAVs.

Since several independent UASSPs share the same airspace,
and conflicts between UAV operations belonging to different
UASSPs need to be resolved, Pre-Flight CDR (Conflict Detec-
tion and Resolution) methods are necessary to strategically
provide 4DT (3D space+time) conflict-free flight paths before
UAVs take off to perform their operations.

In this article, we extend the MAPF (Multi-Agent Path
Finding) framework to model the Pre-Flight CDR problem.
Since the standard, centralized MAPF formulation does not
make any distinction between UASSP agents, we extend the
MAPF formulation by supporting an individual cost function
for each UASSP agent. The objective for each UASSP agent
is thus to determine a conflict-free solution for their operations
while minimizing their individual cost. These cost functions
aggregate delays generated for each operation in conflict and
the amount of operations rejected.

In response to the requirements of the UTM community
[28], we present a novel decentralized resolution method for
MAPF instances between UASSP agents. This method which
aims at ensuring “fairness” in the distribution of costs, mainly
in terms of total delays among all UASSP agents. Specifically,
we introduce two efficient decentralized algorithms to address
this problem: (1) resolution with prioritization as a baseline
method and (2) resolution with negotiation as a practical
method.

We experimentally compare the proposed approaches in a
realistic model case based on a real world study of UAV
delivery service in the Sendai region in Japan projected for
2030. Resolution with prioritization with a cost-based strategy



for ordering among UASSPs allows one to generate solutions 
with on average lower costs for all UASSPs, as compared to a 
randomized ordering. Then, our results suggest that resolution 
with negotiation generates a better distribution in costs among 
all UASSP agents, in particular in total delays, than resolution 
based on prioritization with a cost-based strategy.

Thus, unlike the standard MAPF objective, our negotia-
tion approach allows each UASSP agent to reduce its indi-
vidual costs, and also improves “fairness” among UASSP 
agents.

Since Pre-Flight CDR methods are not time critical, the 
negotiation process can start ahead as early as possible, 
as long as the UASSP agents are able to converge to a 
solution before the actual start of their operations. In particular, 
in our case study in Sendai, we assumed that there are up 
to 1600 operations in total per hour, and in our experiments 
we also considered a 1-hour time window for the scheduled 
start times of the submitted operations. Assuming that opera-
tions are uniformly submitted in time, we thus consider that 
an average of 800 operations are submitted in 30 minutes. 
Therefore, a sufficient and convenient time interval to start 
the negotiation process between UASSP agents could happen 
every 30 minutes, so that a significant number of submitted 
operations can be processed.

Finally, we hope that our work on Pre-Flight Conflict Detec-
tion and Resolution can contribute to a candidate solution 
for UTM technology, with the inclusion of individual cost 
functions to reflect the economic aspects of each UAS Service 
Provider.
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