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Abstract

In this work, we aim to determine the main factors driving self-initiated behavioral changes

during the seasonal flu. To this end, we designed and deployed a questionnaire via Influweb,

a Web platform for participatory surveillance in Italy, during the 2017 − 18 and 2018 − 19

seasons. We collected 599 surveys completed by 434 users. The data provide socio-demo-

graphic information, level of concerns about the flu, past experience with illnesses, and the

type of behavioral changes voluntarily implemented by each participant. We describe each

response with a set of features and divide them in three target categories. These describe

those that report i) no (26%), ii) only moderately (36%), iii) significant (38%) changes in

behaviors. In these settings, we adopt machine learning algorithms to investigate the extent

to which target variables can be predicted by looking only at the set of features. Notably,

66% of the samples in the category describing more significant changes in behaviors are

correctly classified through Gradient Boosted Trees. Furthermore, we investigate the impor-

tance of each feature in the classification task and uncover complex relationships between

individuals’ characteristics and their attitude towards behavioral change. We find that inten-

sity, recency of past illnesses, perceived susceptibility to and perceived severity of an infec-

tion are the most significant features in the classification task and are associated to

significant changes in behaviors. Overall, the research contributes to the small set of empiri-

cal studies devoted to the data-driven characterization of behavioral changes induced by

infectious diseases.

Author summary

Human behavior and infectious diseases are linked by a feedback loop. While individuals

might change their behavior as a response to an epidemic, such changes might influence

the spreading itself. So far, our understanding and characterization of behavioral changes

induced by diseases has been strongly limited by the lack of empirical data. As result, the

vast majority of research has been focused on theoretical, what if, scenarios. In this work,

we collected a unique dataset comprised of 599 surveys submitted by 434 users to the par-

ticipatory surveillance platform Influweb over the 2017 − 18 and 2018 − 19 flu seasons.
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The data provide socio-demographic information, level of concerns about the flu, past

experience with illnesses, and the type of self-initiated behavioral changes implemented

by each participant. Our analysis, conducted adopting machine learning algorithms, show

that both past experience of illness and personal beliefs about the disease are fundamental

drivers of behavioral change. These findings are in good agreement with the constructs of

the Health Belief Model and provide, to the best of our knowledge, the first data driven

characterization of behavioral changes during the seasonal flu.

Introduction

Understanding and influencing behavioral changes are key challenges for a range of disciplines

such as Medicine, Psychology, Epidemiology, Social Policy and Computational Social Science.

Most of the relevant literature focuses on complex interventions designed to nudge populations

to adopt healthier and safer habits. Recommendations about the increase of physical activity

[1], quit smoking [2], change of behaviors in workplaces [3], or promoting safe sexual behav-

iors [4] are classic examples. Yet, even in the absence of top-down (complex) interventions,

external incentives, or penalties, people may spontaneously modify their behaviors in response

to different types of events. Infectious diseases are a notable example of both [5–10]. Indeed,

they may induce a range of governmental (i.e. top-down) and/or self-initiated (i.e. bottom-up)

(re)actions such as social distancing (e.g., reduction of contacts or mobility, self-isolation,

quarantine, closure of public places, bans of gatherings), use of antivirals, change of diets and

of personal hygiene practices [6].

As we write, COVID-19 is sweeping the world with unprecedented socio-economical costs.

The virus has tragically exposed our unpreparedness to deal with emerging diseases. Further-

more, it has highlighted how developing an understanding of behavioral changes is crucial to

i) increase the predictive power and the realism of epidemic models, ii) improve communica-

tion campaigns from a public health perspective, iii) improve our understanding of human

dynamics under stress. In fact, human dynamics and human transmissible diseases are inter-

twined: an outbreak can induce behavioral responses which in turn can affect the course of the

epidemic as a whole [11–22]. While this observation is rather obvious, our understanding of

behavioral changes is extremely limited and largely anecdotal [6, 11, 12]. Arguably, the key

issue is the lack of ground truth data. According to a recent review, only 15% of the articles on

the subject considered empirical data, most models being “purely theoretical and lack(ing)

representative data and a validation process” [6]. The mobilisation of several communities to

develop tools aimed at understanding and modeling changes in behaviors induced by the

COVID-19 pandemic provides further evidence of such limitations [23–28]. Surveys represent

the most common data source for these research efforts [25–27, 29–34]. Indeed, they allow to

gather ground truth data, querying participants with specific questions about changes in

behaviors. However, they are limited by small sample sizes, subjectivity of participants in inter-

preting questions, recall their actions and thought processes in the past. An increasing number

of works exploit social media data and other digital sources of information to characterize the

behavioral response of humans to the spreading of infectious diseases [10, 30, 35–39]. While

this data allows to drastically increase the sample and to collect information in near real time

(which is particularly important during the unfolding of an outbreak), the ground truth is typi-

cally missing. Thus, a set of assumptions are needed to connect the online (i.e. people’s posts)

and offline worlds (i.e. behavioral changes).
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In this context, we aim at advancing our comprehension of self-initiated, bottom-up,

behavioral changes induced by infectious diseases with an approach that puts ground truth

data about individuals’ behaviors at its core. As an example of recurring and widely spread

human transmittable disease, we consider seasonal influenza. The reasons behind this choice

are four. First, the World Health Organization, estimates the seasonal flu to result in about 3 to

5 million cases of severe illness, and about 290, 000 to 650, 000 respiratory deaths worldwide

[40]. Besides the cost in terms of human lives, the seasonal flu represents also one of the main

economic costs for public health systems [41]. Second, the seasonal flu is transmitted via drop-

lets, droplets nuclei (i.e. aerosols) and contacts [42, 43]. Thus, the routes of transmissions are

intimately linked and affected by our behaviors; from social interactions to hygiene standards

[44, 45]. Third, we can leverage existing participatory Web platforms for digital surveillance of

the seasonal flu to reach and query large numbers of users with explicit questions about behav-

ioral changes. In fact, the yearly cadence of the seasonal flu allows the planning of regular data

collection campaigns that can go beyond gathering information about disease’s prevalence. An

important behavioral aspect that participatory surveillance already tackles is the healthcare

seeking one. During seasonal influenza periods, the majority of individuals with symptoms

don’t go visit a doctor. Having a way to ask people about their symptoms that are not detected

by traditional surveillance methods is important to shed a light on this individual behavior

that affects the accuracy of the epidemiological signal. But going beyond symptoms, as we do

here, can provide unprecedented insights on spontaneous changes in social norms that can

have an impact on how diseases spread. This is becoming crucial especially now, with the

CODIV-19 pandemic, when even self-implemented changes can dramatically slow down the

diffusion of the disease. Fourth, the few empirical studies on behavioral changes induced by

infectious diseases are mostly focused on pandemics such as the 1918 Spanish flu [46–48], the

2009 swine flu [8–10, 29, 33, 34], and as we write, COVID-19 [23–28]. However, these events

are rare; their timing, intensity, patterns, media coverage, and governmental interventions are

often out of the ordinary. The COVID-19 pandemic unfortunately offers a vivid example. At

the moment of writing, as a way to slow-down the spreading, many countries have imple-

mented measures that range from closing school, bars, restaurants and public gatherings to

more strict nation-wide lock-downs. In absence of pharmacological solutions social distancing

is the only option. These measures are unprecedented and the resulting drastic changes in

behaviors are, to different extents across countries, not self-initiated but mandated top-down

interventions. Thus, the relevance of existing and future literature focused on pandemics for

other outbreaks and diseases is unclear.

In this work, we combine health and behavioral data, collected from Web users, with a

machine learning pipeline to characterize self-initiated behavioral changes during the seasonal

flu. In particular, we developed and deployed a questionnaire via Influweb [49, 50], a digital

surveillance platform that since 2008 collects data about the progression of the seasonal flu in

Italy, to collect socio-demographic indicators, medical history of individuals, information

regarding feelings, concerns towards the flu and to query users about changes in their behav-

iors induced by the disease. By studying the responses, we identify three classes of behavioral

changes describing those that report i) no (26%), ii) only moderately (36%), iii) significant

(38%) changes in behaviors. From this standpoint, we adopt a range of machine learning algo-

rithms such as Gradient Boosted Trees (GBT) [51], Support Vector Machine (SVM) [52],

Logistic Regression (LG) [53] and Random Forest (RF) [54] to solve a classification task in

which a set of 23 features (obtained from the responses and the characteristics of the epidemic)

are used to predict the class of behavioral change of each user. In order to interpret the out-

comes of the classifiers, we use SHapley Additive exPlanations (SHAP) values [55–57]. These

allow to measure the importance of each feature in the classification task. We find that GBT is
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able to correctly classify 66% of the samples describing significant changes. Interestingly, our

result indicate that the severity and recency of past illnesses, the perceived susceptibility to the

disease, the perceived severity of infection events are the key factors driving behavioral

changes. The last two drivers are in line with the constructs of the Health Belief Model (HBM)

[58–60], which is by far the most commonly used psychological theory to explain and predict

health-related behaviors. Furthermore, we find that the progression of the disease, the infor-

mation collected about it, the risks to affect vulnerable others are also relevant factors influenc-

ing behavioral changes.

Overall, these results quantify the extent to which individuals voluntarily change behaviors

in response to the seasonal flu, uncover the key factors influencing such changes, and quantify

the limits of predictability of behavioral classes in our sample. The research presented here

contributes to the unfortunately still small set of empirical data-driven studies on disease out-

breaks and behavioral changes. To the best of our knowledge, this is the first data-driven study

focused on the seasonal flu and the first to use data on behavioral changes, induced by diseases,

collected from a digital surveillance platform. The methodology and findings presented here

pave the way to future extensions and generalizations able to capture multiple diseases, larger

sample sizes as well as different countries. This methodology potentially represents a public

health monitoring tool. In fact, the routine surveillance from Influweb are already communi-

cated to the Italian National Institute of Public Health every week during the influenza season

since 2015. Additional quantitative assessment about the change in behaviors induced by the

flu among the general population could represent a valuable insight for policy makers when

communicating recommended behaviors to avoid contagion.

Finally, as of April 2020, the COVID-19 pandemic is already set to be a defining moment of

the decade, if not more. It is hard to immagine what the long lasting impact of the crisis on our

socio-economic fabric will be. Arguably however, the public has been sensibilized, as never

before, to the importance of simple hygiene measures, such as washing hands, to reduce the

chances of transmission and of social distancing as key weapon against transmittable diseases.

It is natural to wonder how these unprecedented events will affect our behaviors during future

outbreaks such as the next flu seasons. Answers to this question might be found by comparing

our findings (pre-pandemic) with similar future studies (post-pandemic). Thus, beside the

specific contributions highlighted above, our paper has the potential to serve as time capsule,

informing later efforts aimed at quantify the effects of COVID-19 on our (re)actions to coming

outbreaks.

Materials and methods

Influweb dataset

Influweb is a scientific project aimed at monitoring the activity of Influenza-like Illness in Italy

with the aid of volunteers via the internet [49, 50]. It has been operational since 2008 and it is

part of the InfluenzaNet network, active in many other European and non-European countries

[61, 62], such as The Netherlands, Belgium, Portugal, United Kingdom, Sweden, France,

Spain, Denmark and Ireland. Throughout the years InfluenzaNet platforms have been shown

to be reliable sources of high-resolution and high-quality public health information [61, 63–

65]. In this work, we focus on the data collected through the Italian node of the platform, Influ-

web by means of three surveys:

• Intake questionnaire: is submitted when the user completes the registration and can be

updated at the beginning of a new season; it covers demographic, geographic, socioeconomic
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(household size and composition, occupation, education, and transportation), and health

(vaccination, diet, pregnancy, smoking, and underlying medical conditions) indicators.

• Symptoms questionnaire: is submitted weekly during the flu season. Participants are asked

whether they experienced fever, respiratory or gastrointestinal symptoms (or “no symp-

toms”) since their last survey. If symptoms are reported, further questions are asked to assess

the syndrome (e.g, sudden onset of symptoms and body temperature).

• Behavioral questionnaire: is submitted during the flu season and contains questions related

to perceptions towards the flu and behavioral attitude of participants.

The behavioral questionnaire has been designed and deployed in Influweb, as part of this

study, during the 2017 − 18 and 2018 − 19 seasons, with the aim of shedding a light on behav-

ioral aspects beyond the mere epidemiological data collection conducted via the two other

questionnaires since 2008. A full account of the behavioral change questionnaire can be found

on the Influweb Web page [66]. In order to reduce the burden for the users, the behavioral

questionnaires have been administered only during few weeks in each season, i.e. right before

the peak and a couple of weeks after the peak. We refer the reader to the Supporting Informa-

tion (SI) for more details. In total 599 behavioral surveys were submitted by N = 434 unique

users: 73% responded only once, 27% instead more than once (in the same and/or across sea-

sons). Consequently, while the large part of surveys are uniquely linked to a specific user, some

are not. It is important to notice how sentiments, perceptions, and behaviors might vary dur-

ing the flu season. Thus, we consider the 599 surveys, rather than the users, the unit of analysis.

As shown in the SI, this choice does not affect the overall results.

Ethics statement

Informed consent was obtained online from all participants enabling the collection, storage,

and treatment of data, and their publication in anonymized, processed, and aggregated forms

for scientific purposes. The Influweb website [50] has a “Privacy Policy” section in which the

users who decide to enroll in the study can find all the information on who is responsible for

the data acquisition and processing.

Behavioral change classes

In the behavioral survey, participants were asked, among other things, whether they have

changed or not a number of behaviors in response to the flu. A natural categorization of the

participants’ responses would be to consider on one side individuals who do not change any of

the possible behaviors, and on the other individuals who change at least one. However, our

data suggest that this approach can be too restrictive. In fact, individuals who report to engage

in behavioral change seem to form two different groups: 1) individuals who take only moder-

ate preventive measures, such as more frequent hygiene measures, a healthier diet or the use of

tissues when sneezing or coughing more often than usual, 2) individuals who, besides the pre-

vious precautions, take also social distancing measures as a response to the epidemic. For

example, they take time off work, cancel or postpone social events, or use less public transpor-

tation. In the SI we report a list of all possible behaviors changed by individuals in these two

groups. Indeed, the average number of behaviors changed by individuals who report at least

one social distancing measure is much higher than the average of those who take only moder-

ate preventive measures (respectively 6.26 and 2.52). This can be observed also in Fig 1, where

we show the histograms of the number of behaviors changed in the two classes. Furthermore,

individuals who report at least one social distancing measure do also report at least one moder-

ate preventive measure. These observations support the idea that in our dataset are present at
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least two main forms of behavioral change: moderate preventive measure and social distanc-

ing. The latter can be regarded as a reinforcement of the former. Furthermore, the approach of

dividing individuals into three classes aims at providing a more composite representation of

behaviors. In ref. [67] is underlined that most of current models do not allow for heteroge-

neous behavioral responses to an epidemic. However, this homogeneous assumption is

broadly inconsistent with what we know about human behavior [68, 69].

In summary, we divide individuals according to their responses into three classes:

• individuals who do not change their behavior (defined as no change in the following). This

class corresponds to 26% of responses;

• individuals who take only moderate preventive measures (defined asmoderate change in the

following). This class corresponds to 36% of responses;

• individuals who take also social distancing measures (defined as social distancing in the fol-

lowing). This class corresponds to 38% of responses.

Nevertheless, in the SI we report the results of the analyses done considering only two cate-

gories: 1) change 2) no-change. The results show a classification performance significantly

higher than the random benchmark, although the relative difference between the two is lower

than with three categories. Most importantly, the key features for classification in the two clas-

ses are consistent with those that emerge considering a tripartite division.

Features engineering

As mentioned above, our dataset comprises intake, symptoms, and behavioral questionnaires

collected from Influweb during the 2017 − 18 and 2018 − 19 flu seasons in Italy. We combine

Fig 1. Histograms of number of behaviors changed for the class of social distancing and for class of moderate change. The two histograms look

significantly different, with that of social distancing much more skewed towards higher values.

https://doi.org/10.1371/journal.pcbi.1007879.g001
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all these data obtaining 23 features for each of the 599 responses. In particular, the features

have been created based on the following information: 1) socio-demographic indicators (age,

gender, etc.), 2) health indicators (allergies, chronic diseases, frequency of flu episodes, etc.), 3)

information indicators (whether the user actively sought information about the flu, self-assess-

ment of the level of information about the disease), 4) feelings and beliefs towards the flu (con-

cerns, impact on personal life of a possible contagion, etc.), 5) epidemic indicators (incidence

of flu epidemics at the moment of response and timing of the peak respect to the moment of

response).

In Table 1 we provide a complete list of features with related meanings. Before moving for-

ward, it is important to describe in some more details the construction of three key features. In

particular, we define a disease score that aims to provide a measure of the severity of the ill-

nesses experienced in the past by participants. We define it as:

disease score ¼
X

i

MiniegDi
niegDi

ð1Þ

Where i runs over all the weekly (symptoms) questionnaires submitted by the individual;Mi is

the number of symptoms reported in the i − th weekly questionnaire; egDi weighs the duration

of illness giving more importance to the most recent ones. In particular, Δi is the difference—in

Table 1. List of features.

Type Feature Meaning

socio-

demographic

gender gender

age age class (15, 15-30, 30-50, 50-65, 65+ years)

contacts true if the individual has daily contacts with large groups, patients, children

smoke true if the individual smokes regularly

diet true if the individual follows a special diet

children true if the individual has children in school age

public transport true if the individual takes regularly public transportation

elderly true if the individual has old people (65+) in her household

health-related flu frequency frequency of flu-like illness

flu true if the individual had flu in the current season

disease score measure of severity of diseases experienced in the past

vaccination true if the individual has received a vaccine in the current season

vaccination last
year

true if the individual has received a vaccine in the previous season

allergy true if the individual has allergies that can cause respiratory problems

disease true if the individual receives regularly medication for chronic diseases

information-

related

info seeking true if the individual seeks regularly information regarding the flu

information self-evaluation of the level of information regarding the flu

beliefs preventive true if the individual thinks that proactive measures can prevent the

contagion

perceived
susceptibility

measure of anxiety deriving from a possible contagion

efficacy measure of awareness of efficacy of behavioral measures. It can assume

integer values in between 0 and +8, the higher the more the individual

believes that behavioral change can lower the risk of an infection

perceived severity measure of concerns related to the possibility of contagion

epidemic

indicators

peak days between the ILI peak and the date of compilation of the behavioral

survey

prevalence flu prevalence in the Italian region where the participant reside in

https://doi.org/10.1371/journal.pcbi.1007879.t001
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years—between the submission date of the i − th weekly and the behavioral survey, and γ is a

parameter that expresses how fast people forget past experiences (here set to 1 year); ni is the

number of individuals present in our dataset who reported their symptoms during the same

week of the i − th weekly questionnaire. Weighing observations with this term gives less impor-

tance to periods with just a few active participants and makes the disease score of different indi-

viduals comparable. The disease score can then be interpreted as follows: the higher, the more

recent and severe the episode experienced by the individual. In the SI we test a much simpler

definition of disease score where we disregard the exponential temporal weights egDi . Adopting a

simpler definition slightly reduces the precision, but does not change the overall results.

We then define a perceived susceptibilitymeasure. Participants are asked some questions

regarding their feelings and perceptions towards the flu. The reduced STAI (State-Trait Anxi-

ety Inventory) test is used as guideline for this questionnaire [34, 70]. The goal is to assess their

level of anxiety towards a possible contagion. To each of the questions they can answer either

yes, no, do not know. We turn possible answers in numeric values, respectively +1, −1, 0.

Then, we sum all the answers. The resulting variable can assume values between −4 (minimum

level of anxiety) and +4 (maximum level of anxiety). This to quantify the fact that individuals

who are more anxious at the idea of becoming infected, also perceive themselves as more sus-

ceptible to the disease.

Finally, we define a perceived severitymeasure. Participants are asked to evaluate some

statements regarding the consequences of a possible contagion (for instance “Flu would be a

serious illness for me” or “A contagion would have serious financial consequences for me”).

This is done to asses the perceived impact that a possible contagion would have on individuals’

life in general. Participants can express their level of agreement with statements through the

possible answers probably true, probably false, do not know. We turn possible answers in

numeric values, respectively +1, −1, and 0 and we sum all answers to obtain the feature per-
ceived severity. It can assume values between −4 (minimum perceived severity) and +4 (maxi-

mum perceived severity). To the best of our knowledge, there is not a standard psychological

test to asses perceived severity (such as, for example, the STAI test). Nonetheless, we designed

questions to capture the nuanced nature of this feature. Indeed, one can perceive a possible

contagion as particularly severe for a variety of reasons. Similar approaches have been used in

recent surveys aimed to assess the psychological response of individuals to the COVID-19 pan-

demic [26, 27].

It is important to notice how several features have been designed to match the constructs of

the Health Belief Model (HBM) [58–60], which is by far the most commonly used psychologi-

cal theory to explain and predict health-related behaviors. The underlying concept of HBM is

that health behaviors are determined by personal beliefs and perceptions about the disease: the

more an individual feels threatened by the possibility of infection, the more she will be inclined

to embrace protective behaviors. More in detail, according to the HBM the perceived threat of

an individual is determined by two main constructs: 1) Perceived severity refers to the individu-

al’s belief about the severity of the disease. The HBM proposes that individuals who perceive

the disease as more severe are also more keen on protecting themselves through proactive

behavioral measures. Even if perceived severity is often based on medical information, it can

also be a consequence of the beliefs a person has about the difficulties a disease would create

on her life in general; 2) Perceived susceptibility, instead, refers to the personal evaluation of the

risk of contracting the disease. According to the HBM, individuals who consider themselves

more vulnerable to the disease, are also much more likely to engage health-promoting behav-

iors. Of course, many other factors can influence individuals’ decision-making process. In par-

ticular, the HBM suggests the existence ofmodifying variables (such as socio-demographic

indicators) to explain interpersonal variability, and of endogenous events—called cues to
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action—that prompt individuals towards the acceptance of healthier behaviors. The individual

should also consider that behavioral change is actually decisive to decrease risk of contagion,

and that the benefits associated with change are higher than the costs.

Classification algorithms

The data analyses are conducted with a range of machine learning algorithms. Decision tree

ensembles are a powerful tool for classification tasks [71]. They consist in a set of classification

trees. In fact, the underlying idea is that summing together the predictions of multiple “weak”

learners, one can achieve more robust predictions than with a single “strong” learner. This

general model is implemented by a great variety of algorithms, such as Gradient Boosted Trees

(GBT) [51]. GBT exploits a specific training strategy called additive training, in which at each

training step is added to the ensemble the tree that optimizes the objective function. In this

work, we use XGBoost, an open-source software library [72, 73]. Recently, it has gained a great

popularity for its speed and performance, and has become the algorithm of choice for many

machine learning applications. In practice, we use this algorithm to classify individuals accord-

ing to their features in the three behavioral change classes. To quantify the quality of the pre-

dictions of the GBT model we compare it to: i) a dummy classifier that generates random

predictions by respecting the training set’s class distribution. This is done to assess if and to

which extent the GBT model performs better than a null benchmark, ii) other standard

machine learning models such as Support Vector Machine (SVM) [52], Logistic Regression

(LG) [53] and Random Forest (RF) [54]. We use the scikit-learn [74] implementation of these

algorithms and we train them fine-tuning standard parameters. We refer the interested reader

to the SI for more details and the code.

Explainability

The ultimate goal of our analysis is to determine which are the main drivers of self-initiated

behavioral changes in response to epidemics and to which extent they influence people’s

behavior. To achieve this, understanding the hidden patterns spotted by the machine learning

classifier is essential. To interpret model’s decisions we exploit SHAP (SHapley Additive exPla-

nations), a unified approach that connects cooperative game theory with local explanations to

explain the output of any machine learning model [55–57]. It aims at understanding the role

and the significance of each feature in the model’s decisions using Shapley values. The Shapley

value is a solution concept in cooperative game theory that addresses the following issue: how

important is each player to the overall cooperation, and what payoff can she reasonably expect?

This is very similar to the problem we are considering. In our framework, the overall coopera-

tion is the classification task, players are the features, and the payoff of players is the impor-

tance of features for the classification performance. We refer the readers to the SI for more

details.

Results and discussion

Classification task

After having pre-processed data and built the features, the next step of the analysis consists in

training the models to classify individuals in the three classes of behavioral change. Following

a common approach, we divide our dataset in training set (70%) and test set (30%). Only the

training set is used to find the optimal parameters for the models, while the test set is retained

to evaluate performance. We search for optimal parameters using 10-fold cross validation over

an extensive grid of candidate values. We use four different metrics (precision, balanced
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accuracy, recall and f1 score) to obtain a complete overview of the performance of the classifica-

tion algorithm. From results in Table 2 we observe that GBT outperforms (across the four met-

rics) i) the trivial prediction strategy (RND), ii) other standard machine learning algorithms

(SVM, RF, LG). It is important to notice how the highest precision obtained is far from 1.

However, to the best of our knowledge, this is the first paper taking such approach, thus we

have no previous results (i.e. benchmarks) to compare and contrast with.

Next, we analyze in depth the performance of GBT. Fig 2 represents the confusion matrix

of model’s predictions. In statistical classification problems, the confusion matrix is a specific

table layout that allows visualization of the performance of an algorithm. Interestingly, the

Table 2. Classification performance.

model precision bal. accuracy recall f1 score

RND 0.343 0.335 0.334 0.335

SVM 0.519 0.503 0.500 0.504

LG 0.479 0.492 0.478 0.472

RF 0.506 0.498 0.506 0.505

GBT 0.546 0.549 0.550 0.546

https://doi.org/10.1371/journal.pcbi.1007879.t002

Fig 2. Confusion matrix of GBT. Each row and column represents a particular class: on the vertical axis are

represented the true labels, while on the horizontal axis are represented the predicted labels. Hence, in the main

diagonal boxes, we can observe the percentage of samples correctly labeled for each class, and in non-diagonal boxes,

we can observe the percentage of misclassifications among all possible pairs of classes.

https://doi.org/10.1371/journal.pcbi.1007879.g002
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best-predicted class is social distancing. In fact, 66% of its samples are classified correctly. This

result suggests that individuals changing their behaviors significantly stands out more in the

feature space. Furthermore, most of the classification errors are between the two classes of

behavioral change, while there are fewer errors between the two classes linked to changes in

behaviors and the no change class. Thus, as one would expect, there is more similarity between

responses in the two behavioral change classes than between responses of a behavioral change

class and those of no change class.

Understanding model’s decisions

In this section we want to make a step further and inspect what GBT learns from data using

SHAP, the tool of explainable machine learning that we have previously introduced.

In Fig 3 we have reported the mean absolute SHAP value of the ten most important features

with respect to the three behavioral classes. This provides a general overview of the most influ-

ential features for the model and their impact on the classification of each behavioral class.

Among the most determinant features we can recognize i) health-related factors (disease score,
allergy) ii) personal beliefs (perceived susceptibility, perceived severity, efficacy) iii) socio-demo-

graphic indicators (age, elderly, info seeking), iv) information regarding the flu season (peak,

prevalence). More in details, the top three features capture the severity and recency of past ill-

nesses, the perceived susceptibility, and the perceived severity. Thus, having a history of

Fig 3. Summary plot for SHAP analysis. It shows the mean absolute SHAP value of ten most important features for the three classes.

https://doi.org/10.1371/journal.pcbi.1007879.g003
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illnesses induces users to be more careful and adapt their behaviors significantly. The last two

features nicely match the HBM constructs associated to the drivers of behavioral changes.

Notably, in seventh position we find the distance between the moment of response to the sur-

vey and the position of the peak. This suggests that the progression of the disease influences

behaviors. Furthermore, seeking information about the flu has an important impact on the

classification of class of no change and of social distancing. Thus, consulting news about the

flu affects individuals’ decisions. Finally, it is interesting to notice how living with elderly peo-

ple is significantly linked to moderate changes in behaviors. Users conscious of the risks of

infection for elderly individuals might modify their behaviors as preventive measure. This

highlights how behavioral changes are indeed a complex phenomenon possibly driven, at least

in part, by altruistic concerns for others.

In order to deepen our understanding, in Fig 4 we study the relation between SHAP and

features values for the three most important features: disease score, perceived susceptibility, and

perceived severity. In particular, we plot the scatter plots in which the x-axes describe the fea-

ture and the y-axes the SHAP value for each of the 599 responses. In Fig 4A we inspect the

effect of disease score on model’s decisions. We observe that having higher disease score has a

huge positive effect on distancing measures. We observe that “low” and “medium” values of

disease score have a positive non-negligible effect on the probability of adopting moderate

behavioral measures. This observation is important to stress how a single variable might not be

enough to capture the adoption of a particular behavioral category. In Fig 4B, we can observe

that for the class of social distancing, SHAP values increase from negative to positive values as

a function of perceived susceptibility. This suggests that those who perceive themselves as more

susceptible to a possible contagion are more likely to adopt social distancing measures.

Fig 4. SHAP value plot for the three most important features: A) disease score, B) perceived susceptibility, C)

perceived severity.

https://doi.org/10.1371/journal.pcbi.1007879.g004
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Reasonably, for class of no change the trend of SHAP values is decreasing, meaning that those

who do not feel susceptible will not probably change their behavior. The effects for the class of

moderate change are similar to that of no change just discussed, even if we observe a weaker

downward trend. In Fig 4C, we can observe that for the class of social distancing SHAP values

increase from negative to positive values as a function of perceived severity. This prompts us to

conclude that individuals who perceive the disease as more severe are also more likely to pro-

tect themselves through the adoption of social distancing measures. On the other hand, since

for class of no change SHAP values show a decreasing trend, we can conclude also that those

who perceive the disease as not particularly severe will not probably change any of their

behaviors.

It is interesting to notice how these results are in line with empirical observations obtained,

via telephone surveys, in China (Wuhan and Shanghai) during the COVID-19 pandemic [27].

In fact, moderate or severe anxiety has been found to be positively correlated with the per-

ceived susceptibility and the perceived severity was the strongest predictor of behavioral

changes [27]. Our findings are also in line with a preliminary account of surveys collected in

Germany in early March 2020 [28]. In particular, the willingness to restrict people’s life was

higher in case the underlaying reason was protecting vulnerable groups. Furthermore, our

results provide insights for another study conducted in Europe during the early stages of the

COVID-19 outbreak (i.e. before all top-down interventions) [26]. Respondents of online sur-

veys, submitted via the InfluenzaNet network, have been found to be overly optimistic about

the unfolding of the virus. The large majority of them estimated the risk of getting infected in

the next two month to be lower or equal to one percent. Our findings suggest that these indi-

viduals were likely not to change in behaviors despite the news coming from China, evidence

of local transmission in few municipalities in Italy and the recommendations of many health

authorities. We can speculate that such low levels of perceived susceptibility and the resulting

lack of behavioral changes at the early stages of the pandemic might have facilitated the spread-

ing of the virus.

Overall, our observations are in very good accordance with what is assumed in the HBM

regarding the existence of beliefs constructs—such as perceived susceptibility and perceived
severity—that influence the probability of adopting safer behaviors. We can thus conclude

that, not only the GBT model independently selects as fundamental drivers of behavioral

change the belief constructs suggested in the HBM, but also that their effect is the same as theo-

rized in the HBM. Furthermore, the result highlights the importance of personal past experi-

ences with illnesses and altruism. From a public health perspective this suggests that, in order

for communication campaigns to be more effective, they should leverage the individuals’ per-

sonal experience, stress how recommended behaviors might help achieve more positive per-

sonal health outcomes while protecting vulnerable populations.

Conclusion

Our understanding of behavioral changes induced by infectious diseases is unfortunately

extremely limited and anecdotal. The lack of data isolating and capturing this complex phe-

nomenon is the key challenge. Here, we collected a unique dataset comprised of 599 responses

to a questionnaire about behavioral changes submitted by N = 434 volunteers of the participa-

tory Web platform Influweb during the 2017 − 18 and the 2018 − 19 flu seasons in Italy. For

each response, we identified 23 features regarding socio-demographic information, personal

history of illnesses, and sentiment about the flu epidemic, and one target class describing the

type of self-initiated behavioral changes implemented by respondents. Then, we investigated

the possibility of predicting these target classes from the features adopting a range of machine
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learning algorithms. Gradient Boosted Trees outperformed a random predictor, SVM, Ran-
dom Forest, and Logistic Regression. While the average precision (across the three classes) of

the best model is only 0.546, 66% of the samples belonging to the class of most drastic behav-

ioral changes were correctly identified. It is important to notice how, to the best of our knowl-

edge, there are not similar studies to compare and contrast our results. In fact, as mentioned

above, the study of behavioral changes induced by disease has been mostly a theoretical

endeavor.

Since we are interested in understanding the factors driving people to change behaviors, we

investigated the patterns spotted by the GBT model. To this end, we exploited a recent tool in

the field of explainable machine learning: SHAP. By using this approach we discovered that

the intensity and the recency of past personal episodes of illnesses, perceived susceptibility and

perceived severity of an infection are the most important features used for classification. These

findings highlight the importance of negative past experiences and are in very good accor-

dance with the expectations from the Health Belief Model. In fact, this theoretical framework

predicates the existence of beliefs constructs (such as perceived susceptibility and perceived
severity) as main drivers of behavioral change induced by epidemics. In the top ten of most

important features we found also i) the timing of response in relation to the peak of the sea-

sonal flu, ii) the extent to which participants sought information about the flu, iii) whether the

participant was living with elderly people. These results suggest that indeed the progression of

the season induces changes in behavior, that seeking information about the disease might

affect individuals’ decisions and that individuals might change behaviors as a form of altruistic

protection. In the SI, we verified the robustness and validity of our results by training the

model on different subsets of our dataset and changing the definition of a key variable.

The presented study comes with limitations. First, while the socio-demographic indicators

of participants are in line with the Italian population as a whole (see SI), the sample might be

affected by self-selection biases. Indeed, we queried users willing to devote their time to the

monitoring of the seasonal flu. Their sentiments, concerns and thus behaviors in response to

the disease might deviate from those of the general population. Second, although, there are no

other studies to compare the precision of our prediction task with, the absolute value of it is

satisfactory, at best. The analysis of SHAP values and the connections of our findings with the

well known theoretical constructs of the HBM are definitely reassuring. Nevertheless, future

work is needed to collect larger samples and to quantify the general validity of these results.

Third, we identified three classes of behavioral changes. Arguably, this classification could be

refined to account for much more heterogeneity. To this end, the collection of larger samples

is key. Finally, the study focuses only on one piece of the puzzle. Indeed, we did not investigate

the effects of behavioral changes on the unfolding of the disease. Behaviors and diseases are

linked by a feedback loop. Here, we simply focused on the first. Challenging future work is

needed to connect these observations with the disease dynamics and back to the behaviors.

Overall, the research is a step towards the characterization of the factors driving behavioral

changes during an outbreak. The study contributes to the small body of empirical literature on

the subject and paves the way to future extensions and generalizations necessary to improve

our understanding of human adaptive behaviors. From a public health stand point, a data-

driven characterization of the key factors influencing changes in behaviors opens new perspec-

tives to the possibility of predicting them and devising more effective communication cam-

paigns aimed at mitigating transmission among individuals. In particular, our findings suggest

that communication campaigns aimed at promoting safer/healthier behaviors should leverage

personal past experiences and emphasize the altruistic component of such behaviors. As corol-

lary, our results indicate that public health officials might face harder challenges to promote

changes in behaviors in case of novel diseases, especially during the earliest phases of their
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spread. In fact, the lack of personal experiences might exacerbate the optimistic bias and result

in an underestimation of perceived susceptibility and severity [75, 76]. This observation is in

line with empirical observations from China and Europe during the COVID-19 pandemic

[26–28]. Indeed, while in the epicentre of the outbreak changes in behaviors were strongly

linked to perceived severity, in Europe, during the earliest phases of the pandemic, the large

majority of individuals considered themselves at very low risk despite the news from China

and the indications from public health officials. Arguably, these individuals were likely not to

implement self-initiated changes in behaviors as way to reduce transmission. The research pre-

sented here suggest that in these cases communication strategies could leverage the altruistic

benefits of adaptive behaviors.

Finally, as we write the COVID-19 pandemic is sweeping across the globe with unprece-

dented socio-economical costs. As result, despite initial phases of reluctancy, governments

have taken strict top-down measures aimed at hampering the spreading. While the focus on

this paper is on milder, yet significant, diseases that do not induce such strong reactions, our

results are in line and provide insights to interpret the preliminary work prompted by the cur-

rent health emergency [26–28]. More in general, this pandemic has dramatically exposed our

unpreparedness to deal and cope with new emerging diseases. In the specific context of the

research presented here, COVID-19 has highlighted the importance of understanding and

modeling behavioral changes to improve the predictive power of epidemic models, design

more efficient communication strategies aimed at nudging populations towards safer behav-

iors, and characterize the adaptive nature of human behavior. It is early to speculate about the

long lasting impact of COVID-19 in our society, but arguably these unprecedented events will

leave a deep scar that might affect the perceived susceptibility and severity, hence our behav-

iors, of future outbreaks. The results presented in this paper, obtained in a pre COVID-19

world, offer the possibility to quantify the impact of the current pandemic after its course.

Moreover, this work was conceived in a very different historical moment with a focus on sea-

sonal flu but the relevance of its approach and the importance of surveying the general popula-

tion to collect disease and behavioral information that would be otherwise not accessible to

health authorities have become even more evident during the present unprecedented condi-

tions. Supporting and strengthening already established participatory surveillance platforms

could help boosting our preparedness to future outbreaks.

Supporting information

S1 Appendix. In this appendix we report some qualitative observations on the data and we

compare our sample to the Italian population as a whole in terms of age, gender and geo-

graphic distribution. We provide a brief description of the classification algorithms that we

used, the specs, and the codes. We present an example to show how SHAP helps us in under-

standing model’s decisions. We assess the stability of GBT classification results training the

model on various subsets of the dataset. In particular, we consider singularly the two flu sea-

sons, we consider a single survey for each user, we disregard behavioral features, and finally we

consider a simplified definition of the disease score.
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