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Summary

In this paper, moment-based boundary conditions for the lattice Boltzmann method
are extended to three dimensions. Boundary conditions for velocity and pressure are
explicitly derived for straight on-grid boundaries for the D3Q19 lattice. The method
is compared against the bounce-back scheme using both single and two relaxation
time collision schemes. The method is verified using classical benchmark test cases.
The results show very good agreement with the data found in the literature. It is
confirmed from the results that the derived moment-based boundary scheme is of
second order accuracy in grid spacing and does not produce numerical slip, and
therefore offers a transparent way of accurately prescribing velocity and pressure
boundaries that are aligned with grid points in 3D.
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1 INTRODUCTION

The lattice Boltzmann method (LBM) is a mesoscopic approach to simulating continuum physics. Originally derived from
the lattice gas cellular automaton it has been shown to be able to recover solutions to the Navier–Stokes equation that are
second order accurate in space1–3. Spatial locality, a linear advection term, no Poisson solver for pressure, and relative ease of
imposing complex boundaries and coupling with other numerical solvers are some of the LBM advantages over conventional
computational fluid dynamics methods and are the reason for its use in many applications4–6. Because of the locality property,
the method can be massively parallelised for speed-up on modern computing architectures7–11.
With new numerical methods comes new approaches on how to handle boundaries. The 2D boundary methods for the LBM

have been well documented in the literature12–16 so here we focus mainly on the methods that are applicable in 3D. The most
popular one is the bounce-back scheme, where particles collide with the wall and reverse their momentum. It is widely and
effectively used in applications with complex geometries7–11,17–19 due to its efficiency, simplicity and second order accuracy
when the boundary is placed midway between gridpoints, and first order otherwise. However, it has some drawbacks. Because of
its kinetic roots, it introduces an additional error, a numerical slip, when used in conjugation with a single relaxation time (SRT)
collision operator. One can use an improved collision scheme, such as two relaxation times (TRT) or multiple relaxation times
(MRT), to fix it or choose another boundary method that does not have the numerical slip. This drawback was first discovered by
Ginzbourg and Adler20 who quantified the effective location of the straight/diagonal boundaries in Poiseuille flow. He et al.21
derived explicit expressions for the slip velocity for different schemes in Poiseuille and Couette flows. Later, Bennett22 gave an
interpretation of some existing lattice Boltzmann boundary conditions for the distribution functions in terms of their moments. It
was shown that on-node bounce-back has an entirely equivalent formulation of setting �un = Qnnt = Qntt = 0 at a flat boundary
aligned with gridpoints. Here, u is the fluid velocity (the first moment), Q is the third moment (and is a non-hydrodynamic
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2 KRASTINS, KAO, PERICLEOUS, REIS

moment), and subscripts n and t refer to normal and tangential components, respectively. Thus it is seen that this method does
not explicitly impose a constraint on the tangential component of velocity, leading to the potential for the artificial slip error.
The TRT method may be used to enforce compatibility between the conditions on the third moment with the expected solution.
Extrapolation/interpolation schemes can be viewed as separate types of boundary methods. They require additional points to

set constraints for velocity and pressure or their gradients. First proposed by Chen et al.15 the extrapolation scheme for flat walls
was later modified and its numerical stability improved by Guo et al.23 using the idea of extrapolating the non-equilibrium parts
of the distribution function at a wall node. Like the interpolation schemes24,25, Guo’s non-equilibrium extrapolation scheme can
also be applied to curved walls26. It maintains simplicity, second-order accuracy and good numerical stability.
Another approach uses the idea of the bounce-back of the non-equilibrium parts of the distribution function, first proposed by

Zou and He16. This approach, which was originally formulated in terms of distribution functions, also has for the D2Q9 lattice
an equivalent interpretation in terms of moments: it can be viewed as setting the constraints �un = �ut = Qntt = 0 at solid
boundaries. We see an explicit condition on the tangential velocity but it is more difficult to give a mathematical or physical
justification for the third constraint. The extension of non-equilibrium bounce-back to the three dimensional D3Q15 lattice was
first proposed by Zou and He16 to handle pressure and velocity boundaries. It was then generalised by Hecht and Harting27

allowing an arbitrary angled flow at the open boundary. Just like Zou and He, they used tangential momentum corrections,
introduced by Maier et al.14, at the inlet of the D3Q19 model. Their method is second order accurate, explicit, spatially local,
relaxation time-independent, and it allows to implement exact boundary conditions on the wall which lies exactly on the lattice
nodes. However, one might find this method to be overcomplicated – applying the non-equilibrium bounce-back rule and then
modifying the tangential distribution functions by introducing the transverse momentum corrections, recalculating the resting
particle distribution function at the pressure boundary edges. Furthermore, because it uses a variation of the bounce-back rule,
the imposed conditions for the velocity moments still lack justification from a physical sense. Performing an analysis of the
moments at the face boundary reveals that the closure is somewhat arbitrary. The conditions are set for all three momentums,
�un = �Un, �ut1 = �Ut1, ut2 = �Ut2, and two third order moments, Qnt1t1 = �Un∕3 and Qnt2t2 = �Un∕3, where �Un∕3 is
the equilibrium approximation, see (7). While the selection of the former three moments makes sense, the last two conditions
seem odd because they both state the same and they do not have a clear physical interpretation like the second order moments,
momentum flux and stress, for example.
High-order accurate boundary conditions have been proposed by Ginzbourg and co-workers28–31. Local second-order bound-

ary (LSOB) method28 is derived from the locally known distribution functions via second-order Chapman–Enskog expansion
and Dirichlet boundary conditions with a given momentum. To the best of the authors’ knowledge, this remains the only local
boundary condition implementation method for the LBM that computes the exact solution of Poiseuille flow for arbitrary chan-
nel wall inclination with respect to the lattice. Despite it offering a highly accurate and fairly general treatment of boundaries, the
LSOB method is often overlooked due to its relatively complex implementation. Multi-reflection (MR) boundary method30,31,
however, is implementation-wise much simpler than the LSOB method and is formally third-order accurate for general flows.
Derived for arbitrary shaped boundaries, the MR method has been specified for corner treatment31, complex porous flow32, slip
conditions33,34 and extended for boundary/interface in advection–diffusion equations. Downsides of the MR method include
non-conservation of the local mass and non-locality. Local on-grid boundary conditions are important for efficient parallel com-
putations. To confront the aforementioned drawbacks, we have taken the first steps of generalising the moment-based approach
by extending it to the three-dimensional lattices with boundaries aligned with grid points, where the boundary conditions are
imposed directly onto the hydrodynamic moments of the LBM.
The first hydrodynamic moment-based scheme for velocity boundaries was proposed by Noble et al.13 who used hydrody-

namic moments, more precisely the velocity and energy35 to solve for the unknown distribution functions at the boundaries.
Their motivation was simple and valid – the bounce-back boundary condition has a relaxation time dependent slip, and it can-
not be easily generalised for mass inflows or moving walls. They were employing the hexagonal D2Q7 lattice where only two
distributions functions are unknown on the boundaries aligned with grid points, and two conditions are required to solve for
them. Other commonly used lattices, such as D2Q9 and D3Q19 have more unknown functions, and therefore they require more
conditions that come from linearly independent moments and a more general approach.
The more general moment-based method for imposing hydrodynamic boundary conditions was proposed recently by Ben-

nett22. He used the fact that since there is a one-to-one linear mapping from the distribution functions to its moments (m =Mf ),
this mapping can be inverted (f =M−1m). One can switch between momentsm and particle distribution functions f very easily
and therefore can impose a condition on all m to find all f. At a boundary, not all the moments are independent, but the idea
is to impose conditions on linearly independent moments only and convert these into conditions on the distribution functions.
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KRASTINS, KAO, PERICLEOUS, REIS 3

The intention is to use as far as possible the hydrodynamic moments only because we are simulating hydrodynamics. In some
cases, choosing the higher order velocity moments over the hydrodynamic ones might offer better stability, however exploring
the stability of the selected moments requires further research. Some other insights into stability could also come from Refs31,36,
which discuss numerical behaviour of lattice Boltzmann boundary conditions at nodal points, or Refs37,38 which discuss higher
order contributions to the lattice Boltzmann stress at boundaries.
The lattice Boltzmann method with moment-based based boundary conditions has been successfully applied to various phys-

ical systems, where exact hydrodynamic boundary conditions must be employed39–42. Furthermore, its stability and accuracy
has also been commented upon briefly43, and some theoretical analysis has been performed37, but there is still room for an in-
depth stability analysis. Studying stability of the present 3D method is left for future research. The results presented in these
works show that the method is second order accurate for velocity and pressure, which matches the accuracy of the LBM, and
it recovers the solution to the Navier–Stokes equations in unidirectional channel flow where boundaries are aligned with grid
points exactly on all grid sizes. Another important finding is that the moment-based method in combination with the SRT col-
lision operator works very well in the region of low to moderate Reynolds numbers, but more sophisticated collision operators
(e.g. TRT or MRT) are preferable for flows at high Reynolds numbers.
At present, the moment-based approach assumes walls are straight and aligned with grid point. Under such conditions the

method is:

• exact – pressure, velocity or shear stress is specified directly on nodes, and thus satisfies the boundary conditions by
construction. Bounce-back and diffuse reflection do not fully possess this property44. However, it is unknown at present
if the exactness property of the moment-based method can be extended to irregular geometries.

• local – only the information from the boundary cell is used in the calculations (like Zou–He16, LSOB28). The method
can be parallelised easily for efficient computing. This is in contrast to the interpolation/extrapolation schemes. It should
be noted that, at present, the application of the moment-based method is restricted to straight boundaries and thus these
comments should not be taken out of context. The extension to more complicated geometries is a subject for further
research.

• straightforward – the idea and the implementation of the method is relatively simple. The unknown distribution functions
are calculated using the hydrodynamic moments that the boundary conditions are imposed on. The trickiest part might
be finding a physical interpretation for the higher order moments that may need to be at edge or corner boundaries, see
Section 3. Complexity wise it is not as simple as the bounce-back rule and lacks geometric flexibility as opposed to LSOB
andMRmeaning that it is currently limited to boundaries aligned with the grid points. However, it is conceptually simpler
and more straightforward than other methods that involve a mixture of the bounce-back rule, hydrodynamic moments,
momentum corrections and other modifications to the distribution functions.

Although we have not considered diagonal boundaries here we expect the methodology to be directly transferrable. That is,
we can still find incoming distributions by imposing constraints on an equal number of linearly independent moments precisely
and locally at grid points. However, a detailed consideration is reserved for future study.
The remainder of this article is organised as follows. In Section 2, the lattice Boltzmann method is described for the D3Q19

lattice. In Section 3, the moment-basedmethod for imposing boundary conditions is extended to three dimensions and conditions
from this method are explicitly derived. The results from the validation of the method are presented in Section 4, and conclusions
are drawn in Section 5. Derivation details of the method are given in Appendix A. The moment-based formulation of boundary
conditions for the D3Q15 model is given in the Appendix B.

2 LATTICE BOLTZMANNMETHOD

The LBM is a discretised form of the Boltzmann equation that governs the evolution of the particle distribution function via
streaming and collision processes45. It can simply be written as

fi(x + ci�t, t + �t) − fi(x, t) = −
1
�
(fi(x, t) − f

eq
i (x, t))�t + Fi(x, t)�t, (1)

where fi is the discrete particle distribution function and Fi is the source term. The BGK approximation46 is used to describe
the collision operator. It assumes that the distribution functions relax to their local equilibria f eqi over a short collision time �.
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4 KRASTINS, KAO, PERICLEOUS, REIS

FIGURE 1 D3Q19 lattice. Rest particle velocity is not shown.

TABLE 1 The D3Q19 velocity set parameters.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

wi
1
3

1
18

1
18

1
18

1
18

1
18

1
18

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

cix 0 1 -1 0 0 0 0 1 -1 -1 1 0 0 0 0 1 -1 -1 1
ciy 0 0 0 1 -1 0 0 1 -1 1 -1 1 -1 -1 1 0 0 0 0
ciz 0 0 0 0 0 1 -1 0 0 0 0 1 -1 1 -1 1 -1 1 -1

The equilibria f eqi are prescribed to be

f eqi = �wi

(

1 +
3(ci ⋅ u)
c2

+
9(ci ⋅ u)2

2c4
− 3u

2

2c2

)

, (2)

where � is the fluid density, wi and ci are, respectively, the weights and discrete particle velocities given in Table 1 , u is the
fluid velocity c = �x∕�t is the lattice speed, with �x and �t being the space and time steps. The sound speed speed cs is a
constant. The hydrodynamic variables, such as density, momentum and momentum flux can be calculated from the distribution
functions by taking velocity moments as

� =
∑

i
fi, �u� =

∑

i
fici� +

�t
2
Fi, Π�� =

∑

i
fici�ci� , (3)

redefining the local momentum with the half forcing term.

2.1 From lattice Boltzmann to Navier–Stokes
The fact the the Navier–Stokes equations (NSEs) are embedded within the LBM can be shown by performing a multiscale
analysis. One such method that has been an integral part of all the major comprehensive literature on the topic of the LBM47–50

is the Chapman–Enskog expansion, where fi is expanded formally about a small parameter � as

fi = f
(0)
i + �f (1)i + �2f (2)i +… . (4)

The second order Taylor series expansion in time and space is performed on (1) without the source term and neglecting the higher
order terms. Separating the different � scales and taking moments of the LBM allows us to find order-by-order contributions to
the non-conserved moments, and this eventually yields hydrodynamic partial differential equations. Only the equilibrium and
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KRASTINS, KAO, PERICLEOUS, REIS 5

first order correction parts of Π are needed to furnish the Navier-Stokes equations and higher order contributions are considered
to be negligible here. It is found that the equilibrium and non-equilibrium part of the momentum flux tensor can be expressed as

Π(0)�� =
∑

i
f (0)i ci�ci� = �u�u� + �c2s ��� , (5)

Π(1)�� =
∑

i
f (1)i ci�ci� = −��t

�
3
()�u� + )�u�) + O(Ma3), (6)

and the equilibrium part of the third order moment, which appears in the recovery ofΠ1 and hence the Navier–Stokes equations,
is

Q(0)
��
 =

∑

i
f (0)i ci�ci�ci
 =

�
3
(u���
 + u���
 + u
���). (7)

Combining these expressions into the moment equations yields to order �2 the weakly compressible NSEs,
)�
)t
+ ∇ ⋅ (�u) = 0, (8)

)(�u)
)t

+ ∇ ⋅ (�uu) = −∇p + ∇ ⋅ (��(∇u + ∇uT )) + O(Ma3), (9)

where the pressure p = �c2s and the kinematic viscosity � = (2� − �t) ∕6. The term weakly compressible means that the
incompressible NSEs are recovered in the low Mach number limit.

2.2 Two relaxation time LBM
As the name suggests, the two relaxation time collision operator uses two relaxation rates, one for the even order moments and
one for the odd order moments. The relaxation time for the even moments is directly linked to the viscosity of the physical
system, while the other is a free parameter that can be fine-tuned for optimal accuracy and stability. Since the truncation errors
depend on the product of these two parameters51, one can effectively tune the LBM for optimal performance with a judiciously
chosen value of the so-called "magic parameter":

Λ =
(

�+

�t
− 1
2

)

(�−

�t
− 1
2

)

, (10)

where �+ is the symmetric relaxation time that is related to viscosity and �− is the antisymmetric time. While different values of
Λ offer improved stability for different problems, Λ = 1∕4 appears to be the most stable choice according to Fourier advection-
diffusion equation analysis51,52. Still, any fixed value of Λ assures the correct dimensionless scaling and independence of the
relative errors on the viscosity51. Because all the velocity sets are symmetric, distribution functions can be paired up in terms
of their velocities as ci = −c{̄ forming the so-called link36. Any link can be decomposed into its symmetric and antisymmetric
parts as

f+i =
1
2
(fi + f{̄), f−i =

1
2
(fi − f{̄),

f eq+i = 1
2
(f eqi + f eq{̄ ), f eq−i = 1

2
(f eqi − f eq{̄ ).

(11)

The rest population is its own opposite so it only has a symmetric part, f+0 = f0 and f
eq+
0 = f eq0 , and a zero antisymmetric

component, f−0 = 0 and f
eq−
0 = 0. Using the introduced components, the TRT post-collision distribution function can be written

as
f ∗i = −

1
�+
(f+i − f

eq+
i ) − 1

�−
(f−i − f

eq−
i ). (12)

The relaxation time related to the viscosity is the symmetric one:

� = 1
6
(

2�+ − �t
)

. (13)

Due to symmetry the preparatory calculations in the collision step are performed only for one half of the populations. That makes
TRT almost as computationally efficient as SRT, but with an improved control over stability and accuracy50. And although TRT
can be used to correct the numerical slip in bounce-back schemes, in the moment-based method it is chosen purely for numerical
stability.
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6 KRASTINS, KAO, PERICLEOUS, REIS

3 MOMENT-BASED BOUNDARY CONDITIONS IN THREE DIMENSIONS

The D3Q19 model has exactly 19 independent moments, which are all listed in equation (14), starting from the zeroth velocity
moment, which is otherwise known as density, and going all the way to the third and fourth order moments, whose physical
interpretation are not as clear. These moments are used in calculating the incoming particle distribution functions at the local
domain boundaries.

0tℎ ∶ � =
∑

i
fi 1 equation

1st ∶ �u� =
∑

i
fici� 3 equations

2nd ∶ Π�� =
∑

i
fici�ci� 6 equations

3rd ∶ Q��
 =
∑

i
fici�ci�ci
 6 equations

4tℎ ∶ S��
� =
∑

i
fici�ci�ci
ci� 3 equations

(14)

The information in the LBM can travel diagonally from one site to another. Therefore, apart from face boundaries we also need
to separately consider edges, where two faces meet, and corners, where three faces meet.
There are five unknown distribution functions at every face boundary, nine unknowns at every edge boundary and twelve

unknowns at every corner boundary. It means that five, nine and twelve linearly independent moments are required at every face,
edge and corner, respectively, to solve for the unknown distribution functions. However, not all of the moments in equation (14)
are linearly independent at a boundary. In fact, they can be placed into groups of unique combinations of distribution functions
for any given boundary whether it is at the face, edge or corner boundary.
Next, the derivation process for each of these different cases will be described, distinguishing between velocity and pressure

type boundaries, and the combination of them. Note that the pressure boundary considered here only allows the inflow or outflow
normal to the face boundary. This is not to be confused with an open type boundary where the velocity can have arbitrary
directions and the pressure distribution may not be uniform.

3.1 Face velocity
From equation (14), five hydrodynamic moments are chosen to impose a conditions on a boundary face. If, for example, the
west boundary is chosen, see Figure 2 , the unknown incoming distributions at the west face are f1, f7, f10, f15 and f18.
Grouped up moments and their corresponding combinations of fi are shown in Table 2 . Moments that are not listed in Table
2 do not contain the informations of the unknown functions. They are Πyz,Qyyz,Qyzz and Syyzz. By looking at their respective
expressions in (14) one can confirm that they do not contain the unknown functions of interest.
The moments in a row are not linearly independent so only one moment can be picked from each row to impose a constraint

on it and to solve the system for the unknown fi at the boundary. The aim is to pick hydrodynamic moments only and avoid
selecting the higher order moments as much as possible because they do not have a clear physical meaning.

TABLE 2 Moment combinations at the west face boundary.

# Moments Unknown f combinations Selected
1 �, �ux,Πxx f1 + f7 + f10 + f15 + f18 �uVx , �

P

2 �uy,Πxy, Qxxy f7 − f10 �uV ,Py
3 �uz,Πxz, Qxxz f15 − f18 �uV ,Pz
4 Πyy, Qxyy, Sxxyy f7 + f10 ΠV ,Pyy
5 Πzz, Qxzz, Sxxzz f15 + f18 ΠV ,Pzz

For the velocity boundary it is logical to select the three momenta, �ux, �uy and �uz. The remaining two moments are chosen
to be Πyy and Πzz due to a natural physical interpretation (normal stresses) compared to the higher order moments. Now that
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KRASTINS, KAO, PERICLEOUS, REIS 7

FIGURE 2 Unknown incoming distribution functions (red) at the west face boundary.

there are five linearly independent equations for the five unknowns, the system can finally be solved. Before solving it, the
momentum fluxes need to be defined. Using the first two terms from the Chapman–Enskog multiscale expansion, see Section
2.1, the momentum flux is approximated using the Chapman–Enskog expansion used to derive the Navier-Stokes equations from
the LBM:

Πyy = Π(0)yy + �Π
(1)
yy + O(�

2), Πzz = Π(0)zz + �Π
(1)
zz + O(�

2). (15)

Since the higher order contributions to the moments, which include temporal derivatives of conserved moments, are assumed
negligible, replacing the terms in the above expressions with (5) and (6) gives

Πyy = �c2s + �u
2
y −

2��
3
)uy
)y
, Πzz = �c2s + �u

2
z −

2��
3
)uz
)z
. (16)

For simple boundaries, such as velocity inlet, slip walls and no-slip walls moving with a constant velocity, the tangential velocity
derivatives in (16), which come form the O(�) contributions to the moment, can be discarded giving the following expressions
for the momentum fluxes at the velocity face boundary:

Πyy = �c2s + �u
2
y, Πzz = �c2s + �u

2
z. (17)

Setting the velocities at the face boundary to Ux, Uy and Uz and using the selected moment expressions from Table 2 , the
solution for the unknown distribution functions can be obtained as,

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

f1 = �
(

1
3
− U 2

y − U
2
z

)

− f0 − f2 + f11 + f12 + f13 + f14,

f7 =
�
2

(

1
3
+ Uy

(

Uy + 1
)

)

− f3 − f9 − f11 − f14,

f10 =
�
2

(

1
3
+ Uy

(

Uy − 1
)

)

− f4 − f8 − f12 − f13,

f15 =
�
2

(

1
3
+ Uz

(

Uz + 1
)

)

− f5 − f11 − f13 − f17,

f18 =
�
2

(

1
3
+ Uz

(

Uz − 1
)

)

− f6 − f12 − f14 − f16,

(18)

where the density is expressed through the consistency condition, which relates the density and the momentum normal to the
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8 KRASTINS, KAO, PERICLEOUS, REIS

west face boundary, as

� = 1
1 − Ux

(

f0 + f3 + f4 + f5 + f6 + f11 + f12 + f13 + f14 + 2
(

f2 + f8 + f9 + f16 + f17
)

)

, (19)

More detailed step-by-step derivation process is given in Appendix A.1.

3.2 Face pressure
Pressure boundaries require the density to be specified, leaving out the normal momentum as it is now an unknown moment,
see Table 2 . So, the only change from the velocity type boundary is the selection of the density, �, in the first group. Other
momenta, �uy and �uz, and momentum fluxes, Πyy and Πzz, remain unchanged.
Restricting the pressure inlet boundary to normal flow, the tangential velocities are set to zero. Due to the velocities being

zero and their derivatives being zero, only the first terms in the momentum flux expressions remain from (16) giving

�uy = 0, �uz = 0, Πyy = �c2s , Πzz = �c2s . (20)

Setting the pressure value at the boundary to p = �0c2s =
�0
3

in lattice unites (�t = �x = 1), where �0 is being imposed, and
solving the new system, gives the following unknown functions for the west face boundary:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

f1 =
�0
3
− f0 − f2 + f11 + f12 + f13 + f14,

f7 =
�0
6
− f3 − f9 − f11 − f14,

f10 =
�0
6
− f4 − f8 − f12 − f13,

f15 =
�0
6
− f5 − f11 − f13 − f17,

f18 =
�0
6
− f6 − f12 − f14 − f16.

(21)

The normal velocity ux can be calculated from the set density �0 and the known distribution functions through the consistency
condition as

ux = 1 −
1
�0

(

f0 + f3 + f4 + f5 + f6 + f11 + f12 + f13 + f14 + 2
(

f2 + f8 + f9 + f16 + f17
)

)

. (22)

See Appendix A.2 for more detailed solution.

3.3 Edge velocity
For the edge boundary, exactly nine linearly independent combinations are required to solve for the unknowns.
For example, for the south-west edge boundary, the unknown distribution functions are shown in red in Figure 3 . They are the

same five from the west face plus five functions from the south face. Because one function overlaps, f7 in this case, there end up
being nine unknown function: f1, f3, f7, f9, f10, f11, f14, f15 and f18. The different combinations of the incoming distribution
functions and the correspondingmoments are listed in Table 3 . Ideally one would like to pick the first nine appropriate moments
and be done with it, however the combinations appearing to be different are not all linearly independent. One can easily check
that by looking at the rows 4, 9 and 10 in Table 3 , for example. The matrix composed from these expressions is a rank-two
matrix meaning that only two of the involved different row moments can be selected to specify a boundary condition.

rank

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

4 f11 − f14 + f15 − f18 �uz
Πxz9 f15 − f18 Qxxz

Πyz10 f11 − f14 Qyyz

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 2 (23)
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KRASTINS, KAO, PERICLEOUS, REIS 9

FIGURE 3 Unknown incoming distribution functions (red) at the south-west edge boundary.

TABLE 3 Unknown function combinations and the moments at the south-west edge boundary.

# Moments Unknown f combinations Selected
1 � f1 + f3 + f7 + f9 + f10 + f11 + f14 + f15 + f18 �PV

2 �ux f1 + f7 − f9 + f10 + f15 + f18 �uV ,PVx
3 �uy f3 + f7 + f9 − f10 + f11 + f14 �uV ,PVy
4 �uz f11 − f14 + f15 − f18 �uV ,PVz
5 Πxx f1 + f7 + f9 + f10 + f15 + f18 ΠV ,PVxx
6 Πyy f3 + f7 + f9 + f10 + f11 + f14 ΠV ,PVyy
7 Πzz f11 + f14 + f15 + f18 ΠV ,PVzz
8 Πxy f7 − f9 − f10 ΠVxy
9 Πxz, Qxxz f15 − f18 ΠV ,PVxz
10 Πyz, Qyyz f11 − f14 -
11 Qxxy f7 + f9 − f10 -
12 Qxyy f7 − f9 + f10 -
13 Qxzz, Sxxzz f15 + f18 -
14 Qyzz, Syyzz f11 + f14 QV ,PV

yzz
15 Sxxyy f7 + f9 + f10 -

The same simply noticeable restriction applies to the rows 7, 13 and 14.

rank

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

7 f11 + f14 + f15 + f18 Πzz
Qxzz13 f15 + f18 Sxxzz
Qyzz14 f11 + f14 Syyzz

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 2 (24)

So, in a situation where there are more unknown combinations than unknowns, the linearly independent rows have to be selected
prioritising the physically interpretable ones.
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10 KRASTINS, KAO, PERICLEOUS, REIS

By looking at the rank of the matrix consisting of the unknown combinations for the south-west edge boundary, it turns out
that the first seven rows from Table 3 are all linearly independent. Other dependencies are less obvious. The row 8 is a linear
combination of the rows 1, 2 and 3.

rank

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 f1 + f3 + f7 + f9 + f10 + f11 + f14 + f15 + f18 �

2 f1 + f7 − f9 + f10 + f15 + f18 �ux
3 f3 + f7 + f9 − f10 + f11 + f14 �uy
8 f7 − f9 − f10 Πxy

⎤

⎥

⎥

⎥

⎥

⎥

⎦

= 3 (25)

The rows 9 and 10 have already been covered earlier. The rows 11 and 12 are a linear combination of the rows 1, 3, 5 and 1, 2,
6, respectively.

rank

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 f1 + f3 + f7 + f9 + f10 + f11 + f14 + f15 + f18 �

3 f3 + f7 + f9 − f10 + f11 + f14 �uy
5 f1 + f7 + f9 + f10 + f15 + f18 Πxx
11 f7 + f9 − f10 Qxxy

⎤

⎥

⎥

⎥

⎥

⎥

⎦

= 3 (26)

rank

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 f1 + f3 + f7 + f9 + f10 + f11 + f14 + f15 + f18 �

2 f1 + f7 − f9 + f10 + f15 + f18 �ux
6 f3 + f7 + f9 + f10 + f11 + f14 Πyy
12 f7 − f9 + f10 Qxyy

⎤

⎥

⎥

⎥

⎥

⎥

⎦

= 3 (27)

And finally, the row 15 is a linear combination of the rows 1, 5 and 6.

rank

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 f1 + f3 + f7 + f9 + f10 + f11 + f14 + f15 + f18 �

5 f1 + f7 + f9 + f10 + f15 + f18 Πxx
6 f3 + f7 + f9 + f10 + f11 + f14 Πyy
15 f7 + f9 + f10 Sxxyy

⎤

⎥

⎥

⎥

⎥

⎥

⎦

= 3 (28)

Considering the available options from the analysis above, for the velocity boundary at the south-west edge, the first nine
appropriate moments are the three momenta, �ux, �uy, �uz, the momentum fluxes and shear stresses, Πxx, Πyy, Πzz, Πxy, Πxz or
Πyz, and one higher order moment, Qxzz or Qyzz. There is still some freedom in selecting the moments to complete the system,
however no matter how the nine moments are chosen, having the higher order moment in the selection is inevitable. By basing
the choice of the two moments on the symmetry of the components, meaning that either Πxz and Qyzz or Πyz and Qxzz are
selected, the final system is written as

rank

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2 f1 + f7 − f9 + f10 + f15 + f18 �ux
3 f3 + f7 + f9 − f10 + f11 + f14 �uy
4 f11 − f14 + f15 − f18 �uz
5 f1 + f7 + f9 + f10 + f15 + f18 Πxx
6 f3 + f7 + f9 + f10 + f11 + f14 Πyy
7 f11 + f14 + f15 + f18 Πzz
8 f7 − f9 − f10 Πxy
9 f15 − f18 Πxz
14 f11 + f14 Qyzz

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 9. (29)

Similar to using the truncated approximation (16) for the momentum fluxes, Πxx,Πyy and Πzz, and shear stresses, Πxy and
Πxz, the higher order momentQyzz is approximated using its equilibrium value (7), where the terms of orderO(u3) are neglected.
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KRASTINS, KAO, PERICLEOUS, REIS 11

This can be justified by the fact that only the equilibrium value of Q��
 is used in the recovery of the Navier–Stokes equation
up to the second order through the Chapman–Enskog analysis. The equilibrium approximation can be written as

Qyzz =
�
3
(uy + uz�yz + uz�yz) =

�
3
uy. (30)

The system of the unknowns and its solution is included in Appendix A.3.

3.4 Edge pressure
Specifying the pressure inlet at the edge is not straight forward. The conditions here have to agree with the ones at both adjacent
faces, but that cannot be achieved due to the uncertainty of the velocity values. At the south-west edge, the normal pointing into
the domain has components on x and y axis. The conditions for velocities on the west face read ux = unknown, uy = 0 and
uz = 0, and on the south face they are ux = 0, uy = unknown and uz = 0. Problems arise when trying to merge these conditions.
Tangential velocity is easy, uz = 0, but how can we know what value to set for the other velocities? Are they both unknown or
both zero, or maybe one is unknown while the other is zero? This is not a common physical setup, in fact it is far from it. Rarely,
if at all two pressure inlets are encountered being perpendicular to each other. One possible setup is shown in Figure 4 where
two channels form the perpendicular pressure inlets. In this situation, there is a solid wall separating the two openings meaning
that all the velocities are zero at that point. This is nothing else but a velocity edge discussed above in Section 3.3.

channel
flow 1

ch
an

n
el

fl
o

w
 2

p
re

ss
u

re
 i

n
le

t 
1

pressure inlet 2

calculation
domain

FIGURE 4 An example of two perpendicular pressure inlets.

3.5 Edge pressure-velocity
The combination of the pressure and velocity type boundaries can be encountered when considering a simple channel flow with
a pressure inlet or outlet, or both, for example. So, in situations where the two adjacent faces have different boundary conditions
imposed on them, namely velocity and pressure, the density together with the three momenta have to be specified simultaneously
at the edge boundary. It means that �, �ux, �uy and �uz are definitely selected from Table 3 . Momentum fluxes Πxx, Πyy and
Πzz also get included. Only one of the shear stresses, Πxz or Πyz, can be selected because of (23). And only one of the third
order moments, Qxzz or Qyzz, is a viable option due to (24). Following the choice made earlier when talking about the velocity
boundaries, the momentsΠxz andQyzz are selected to complete the system. The only difference from the velocity edge boundary
is that the pressure is known. Because of this and (25), the shear stress component Πxy is left out of the selection.
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12 KRASTINS, KAO, PERICLEOUS, REIS

The chosen moments are given in (31), and the solution is given in Appendix A.4.

rank

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 f1 + f3 + f7 + f9 + f10 + f11 + f14 + f15 + f18 �

2 f1 + f7 − f9 + f10 + f15 + f18 �ux
3 f3 + f7 + f9 − f10 + f11 + f14 �uy
4 f11 − f14 + f15 − f18 �uz
5 f1 + f7 + f9 + f10 + f15 + f18 Πxx
6 f3 + f7 + f9 + f10 + f11 + f14 Πyy
7 f11 + f14 + f15 + f18 Πzz
9 f15 − f18 Πxz
14 f11 + f14 Qyzz

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 9. (31)

3.6 Corner velocity
For the corner boundary, the number of the unknown distribution functions and therefore the number of the required linearly
independent equations is twelve. The low-south-west corner node is considered here. It means that the twelve unknown functions
are f1, f3, f5, f7, f9, f10, f11, f13, f14, f15, f17 and f18, see Figure 5 .

FIGURE 5 Unknown incoming distribution functions (red) at the low-south-west corner boundary.

Listing all the unknown combinations for the low-south-west corner boundary gives a total of 19 different combinations. They
are shown in Table 4 . Every moment has a unique combination of the unknown distribution functions so one is left with no
choice but selecting the first twelve appropriate moments to impose the boundary conditions on them. See Appendix A.5 for the
description of the linear dependencies.
For the velocity boundary, the main thing is to pick the three momenta, �ux, �uy and �uz, followed by the momentum fluxes

and shear stresses, Πxx, Πyy, Πzz, Πxy, Πxz and Πyz. Then ideally choosing the third order moments before considering anything
else. Therefore, the last three fourth order moments from Table 4 , Sxxyy, Sxxzz and Syyzz, are overlooked for now. There are
enough moments to impose a boundary condition at the corner without them. So, not counting the density, the next ten moment
combinations (rows 2 to 11) are linearly independent. Together with the rows 13 and 14 they make the basic complete system of
equations ready to be solved, see Appendix A.5 for details. Again, there is still some freedom left in choosing which moments
will be included in the final system, but there is no clear reason why one would be chosen over the other. For instance, which is
better out of the two in each case? Is it Qxxy or Qxxz, Qxyy or Qyyz, Qxzz or Qyzz? One could probably argue that there are two
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KRASTINS, KAO, PERICLEOUS, REIS 13

TABLE 4 Unknown function combinations and the moments at the low-south-west edge boundary.

# Moments Unknown f combinations Selected
1 � f1 + f3 + f5 + f7 + f9 + f10 + f11 + f13 + f14 + f15 + f17 + f18 �PV

2 �ux f1 + f7 − f9 + f10 + f15 − f17 + f18 �uV ,PVx
3 �uy f3 + f7 + f9 − f10 + f11 − f13 + f14 �uV ,PVy
4 �uz f5 + f11 + f13 − f14 + f15 + f17 − f18 �uV ,PVz
5 Πxx f1 + f7 + f9 + f10 + f15 + f17 + f18 ΠV ,PVxx
6 Πyy f3 + f7 + f9 + f10 + f11 + f13 + f14 ΠV ,PVyy
7 Πzz f5 + f11 + f13 + f14 + f15 + f17 + f18 ΠV ,PVzz
8 Πxy f7 − f9 − f10 ΠV ,PVxy
9 Πxz f15 − f17 − f18 ΠV ,PVxz
10 Πyz f11 − f13 − f14 ΠVyz
11 Qxxy f7 + f9 − f10 QV ,PV

xxy
12 Qxxz f15 + f17 − f18 -
13 Qxyy f7 − f9 + f10 -
14 Qxzz f15 − f17 + f18 QV ,PV

xzz
15 Qyyz f11 + f13 − f14 QV ,PV

yyz
16 Qyzz f11 − f13 + f14 -
17 Sxxyy f7 + f9 + f10 -
18 Sxxzz f15 + f17 + f18 -
19 Syyzz f11 + f13 + f14 -

mathematically explainable options. From a symmetry point of view, eitherQxxy,Qyyz and Qxzz are selected orQxxz,Qxyy and
Qyzz make the cut. This is as far as the mathematical reasoning can take. Any further choices are left to be made subjectively.
The final system of the moment combinations includes the momenta �ux, �uy and �uz, the momentum fluxes and shear stresses

Πxx, Πyy, Πzz, Πxy, Πxz and Πyz, and three higher order moments Qxxy, Qyyz and Qxzz. Alternatively, one can choose the other
trio of the third order moments. The details of the solution at the low-south-east corner boundary are given in Appendix A.5.1.

3.7 Corner pressure-velocity
As discussed earlier, for a system with mixed type boundaries, both the density and velocity conditions have to specified. If
density � is to be included into the linearly independent moment selection then one of the moments must be left out. Velocities
are set, which means that one of the shear stresses must be discarded. There is no clear sign for which is the odd one out as they
form a closed symmetry group. But the choice has to be made so Πyz is discarded from the selection of moments, see Appendix
A.5.2 for more details.

4 RESULTS

In this section, the newly derived 3D moment-based boundary conditions are validated on various 2D and 3D benchmark cases
testing the set conditions at the faces, edges and corners of the domain. The 2D simulations are used to verify our method,
while the 3D simulations are used for the assessment of the method’s accuracy. Velocity boundaries are tested for stationary and
moving walls with the no-slip condition applied. The relaxation time �+ is defined via the Reynolds number, Re = UL∕�. The
LB velocity is set to U = 1∕c = �t∕�x = 0.1, L = N − 1 so that �x = 1∕L and � relates to �+ through (13). From (10), �− is
always chosen so that Λ = 1∕4 for the moment-based method in all examples.
One of the tests in 2D is the relaxation time independence study performed using the 2D Poiseuille flow case. Moreover, it

is linked to the exact recovery of the no-slip condition for the velocity on the wall. Because the solution of the developed 2D
Poiseuille flow is essentially 1D, a relatively small numerical grid of 33 × 3 × 3 can be used in the calculations to test for the �
dependence and the no-slip recovery. A grid size of 1292×3 is selected for the 2D lid-driven cavity flow to match the the meshes
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14 KRASTINS, KAO, PERICLEOUS, REIS

employed by other authors53,54. Velocity profiles along the centerlines as well as the extreme values of the stream functions are
compared in order to validate the method.
For the 3D convergence studies, the grid size is being varied proportionally with the relaxation time fixing the Reynolds

number. A changing grid of Nx × Ny × Nz up to 1292 × 3 is used for the 3D developed duct flow in 2D while fixing the LB
velocity at 0.1. Force is applied to the fluid domain in the z direction in both 2D and 3D calculations. Zero Neumann boundary
condition for the flow variables is applied to the redundant dimensions. A varying grid ofNx ×Ny ×Nz up to 2573 is used for
the 3D lid-driven cavity flow while fixing the Reynolds number at Re = 100 and Re = 1000.

4.1 2D validation of the method
The relaxation time dependence study is performed to see how the moment-based boundary conditions compare to the bounce-
back scheme using SRT. Although the �-dependence of the bounce-back relative error is removed with any fixed Λ when using
TRT, only Λ = 3∕16 locates the solid walls midway in straight Poiseuille flows. The results are shown in Figure 6 . For a fair
comparison, the duct flow is considered with the on-grid wall location for the moment-based method and midway location for
the bounce-back scheme. The moment-based boundary conditions with either of the collision schemes show a whole range of the
relaxation time values for which the solution only has accumulated machine precision type error and does not change in general,
apart from the small region where � approaches its asymptotic lower limit, �min = 1∕2. The lower limit, �min, simply restricts the
fluid viscosity from becoming negative. Similar behaviour to that of the moment-based boundary conditions can be seen for the
bounce-back scheme with TRT, but not with SRT. This is the famous numerical slip error20,21 coming from the uncertainty of
the wall position that depends on the relaxation time. Only when the wall is exactly in the middle between the fluid and boundary
nodes, � =

√

3∕16 + 1∕2, the numerical error vanishes resulting in a close-to-machine precision accumulated error.
A relaxation time dependence study confirms that the moment-based boundary conditions generate no slip at the walls, and

they are �-independent, see Figure 6 . The channel width and Reynolds number are both fixed while adjusting the magnitude
of the flow driving force when sweeping through the LB viscosity values. The relative slip velocity for the bounce-back scheme
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FIGURE 6 � independence study for the the moment-based boundary conditions and the bounce-back rule using SRT and TRT
collision schemes in a 2D developed duct flow case. The relative L2 norm (left) and the relative slip velocity measured next to
the wall (right). The duct wall location is on-grid for the moment-based method and midway for the bounce-back scheme.

using SRT increases monotonically with � crossing the horizontal axis at � =
√

3∕16 + 1∕2 which corresponds to the middle
position of the wall. The slip velocity is scaled by the maximum flow velocity in the duct giving the relative slip velocity.
The 2D lid-driven cavity flow is selected as one of the benchmark cases to test the ability of the moment-based boundary

conditions to describe more complicated flows. The performed grid convergence study reveals that the combination of the LBM
andmoment-based boundary conditions is of second order accuracy, as shown in Figure 7 . At Re = 100, the TRT scheme yields
slightly better accuracy than SRT (not shown) due to its improved stability. At Re = 1000, the TRT results still show second
order convergence, but relatively larger errors. In addition, no stable SRT results were obtained at Re = 1000. For comparison,
the grid convergence results of the 2D moment-based boundary conditions obtained by Mohammed and Reis43 using MRT and
Reis38 using TRT have been included. The results of Mohammed and Reis show better accuracy at Re = 100, but interestingly
the results of the present 3D TRT-LBM moment-based boundary conditions at Re = 1000 show slightly improved overall
accuracy in comparison to the 2D lattice models. Velocity profiles along the centerlines as well as the extreme values of the
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KRASTINS, KAO, PERICLEOUS, REIS 15

stream functions have been compared to the data from the literature53,54 at Reynolds numbers Re = 100 and Re = 1000. The
results shown in Figure 8 and Table 5 are in very good agreement with the results obtained by Ghia et al.53, who were the
first ones to do a comprehensive study on the lid-driven cavity flow, but more so with the results from Botella and Peyret54, who
used a spectral method in their work.
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FIGURE 7 Velocity field (left) and streamlines (middle) at Re = 1000. Grid convergence (right) of the 2D lid-driven cavity
flow case using the moment-based boundary conditions, and comparison with the results of Reis38 and Mohammed and Reis43.
The relaxation time �+ is defined via Re and �− is chosen so that Λ = 1∕4.
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FIGURE 8 A comparison of horizontal ux (left) and vertical uy (right) velocity along the centre lines between the present work
and the work by Ghia et al.53 and Botella & Peyret54 at Re = 100 and Re = 1000 on a 1292 grid.

4.2 3D validation of the moment-based boundary conditions
3D cases are the most appropriate representatives of the method’s accuracy due to all boundaries being included. Because the
LBM together with the moment-based boundary conditions can recover the simplest 2D Poiseuille flow velocity profile exactly,
unlike Guo’s non-equilibrium method23, a 3D duct flow is chosen to test the viscosity (or relaxation time) independence of the
method’s accuracy and the grid convergence of the algorithm. The former study is performed at a fixed grid verifying whether
the solution is set only by the fixed Reynolds number in combination with fixed magic parameter, in this case Re = 100 and
Λ = 1∕4. The latter study considers two flow driving mechanisms - external force and pressure difference. The analytical
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16 KRASTINS, KAO, PERICLEOUS, REIS

TABLE 5 Comparison of the extreme values of the stream function at Re = 100 and Re = 1000 on a 1292 grid.

Primary vortex Secondary vortex (BL) Secondary vortex (BR)

Reference Re=100 Re=1000 Re=100 Re=1000 Re=100 Re=1000

Present,  -0.103402 -0.119244 1.51760⋅10−6 2.30158⋅10−4 1.21731⋅10−5 1.72769⋅10−3
x, y 0.6172, 0.7344 0.5313, 0.5625 0.0313, 0.0391 0.0859, 0.0781 0.9453, 0.0625 0.8594, 0.1094

Ghia et al.53,  -0.103423 -0.117929 1.74877⋅10−6 2.31129⋅10−4 1.25374⋅10−5 1.75102⋅10−3
x, y 0.6172, 0.7344 0.5313, 0.5625 0.0313, 0.0391 0.0859, 0.0781 0.9453, 0.0625 0.8594, 0.1094

Botella  - -0.118937 - 2.33453⋅10−4 - 1.72972⋅10−3
& Peyret54, x, y - 0.5308, 0.5652 - 0.0833, 0.0781 - 0.864, 0.1118

BL - bottom left, BR - bottom right

formula for the velocity in a developed 3D square duct flow has been adopted from the theory of elasticity when talking about
the deflection surface of a membrane55. It has the following form:

uz =
4L2Fz
�3��

∞
∑

i=1,3,5,...

(−1)
i−1
2

i3
cos

(

i� x
L

)

⎡

⎢

⎢

⎢

⎣

1 −
cosh

(

i� y
L

)

cosh
(

i� 1
2

)

⎤

⎥

⎥

⎥

⎦

. (32)

The expression for the velocity includes the information of the geometry of the square duct or the width L, fluid properties
or the dynamic viscosity �� and applied conditions or the driving force Fz. For pressure-driven duct flow the driving force is
the pressure gradient −dp∕dz. The infinite sum is used to account for the rectangular shape of the duct. The coordinates in the
velocity solution (32) range from −L∕2 to L∕2 so that the origin (0, 0) is placed in the middle of the duct. If the zeros are
substituted into (32) then the formula for the maximum velocity can be obtained as

umax =
4L2Fz
��

∞
∑

i=1,3,5,...

(−1)
i−1
2

(i�)3

⎡

⎢

⎢

⎢

⎣

1 − 1

cosh
(

i� 1
2

)

⎤

⎥

⎥

⎥

⎦

. (33)

Analytical velocity values of the 3D duct flow are recovered beyond the machine precision and are not affecting the grid con-
vergence study. To evaluate the deviation from the exact solution, the L2 relative error norm is calculated for the velocity field,

L2 =

√

√

√

√

∑

i(ui − u∗i )
2

∑

i u
∗2
i

, (34)

where u∗i is the exact solution at the calculation domain node i.
The results shown in Figure 9 are from 3D pressure- and force-driven flow simulations in Stokes regime meaning that the

second order terms in the equilibrium function (2) are omitted. The viscosity independence study shows that at a fixed grid, Re
and Λ the accuracy of the solution remains the same suggesting correct parametrisation of the method proposed. In theory, for
a force-driven periodic duct flow the density � should be constant, however, density variations in the cross-section are observed
in the present model. This is a consequence of non-linear truncation errors that are anisotropic for reduced lattices such as
D3Q15 and D3Q19.56 We remind the reader that this spurious behaviour in the numerical solution is observed with bounce-back
conditions with the same LBM parametrisation and collision model57,58 – it is a result of the lattice, not the proposed boundary
implementation.We note that with the D2Q9 lattice the LBMwith moment-based conditions solves the two-dimensional Navier-
Stokes equations exactly for Poiseuille flow with no spurious behaviour on the minimal grid resolution.37,38 Exploring potential
density variations of the LBM with moment-based conditions on a full D3Q27 lattice is a topic for future studies. A brief
parametric study of different Λ values, Λ = {1∕4; 3∕16; 1∕6; 1∕12}, showed that Λ = 1∕12 offers best results in terms of
suppressing the density variations and hence the spurious currents in the cross-section of a 3D duct flow on a D3Q19 lattice.
This is in accordance with the findings of Bauer and Rüde.57 Despite the presence of the spurious currents, the solution in the
flow direction is unaffected. The grid convergence plot shows that the moment-based boundary conditions are at least second
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KRASTINS, KAO, PERICLEOUS, REIS 17

order accurate in the region where the grid size error is dominant. This is true for both the force-driven and pressure-driven
flow case. The bounce-back scheme in combination with TRT and Λ = 3∕16 used in modelling the force-driven duct flow also
shows the same order accuracy. The convergence results for the 3D duct flow have been compared to those reported by Mei et
al.59 and Hecht and Harting.27 Although both methods show second order convergence, the present method overall shows better
accuracy.
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FIGURE9 Results of themoment-based boundarymethod in a 3D developed duct flow case. Left: viscosity independence study
at a fixed grid for different grids, Re = 100 and Λ = 1∕4. Right: grid convergence study of the the present LBM and comparison
to the results of Mei et al.59 and Hecht and Harting.27 Here, notation "LBMp" represents the results of a pressure-driven duct
flow using the moment-based boundary method, "LBMbb" – a force-driven duct flow using the bounce-back scheme.

In addition to the 3D duct flow case, the grid convergence study is also performed using the 3D lid-driven cavity flow.
Reynolds number is fixed at Re = 1000 and the lid velocity is kept constant at ulid = 0.1 in lattice units so that only the viscosity
changes proportionally with the grid size. Figure 10 shows the results of the convergence study. The data are gathered from
comparing the velocity field values at different grid sizes. The LBM results of the present work are compared to those obtained
by Albensoeder and Kuhlmann60 (AK) who used a spectral method. The results of the present LBM at Re = 100 are also added
for comparison. Because the lid driven cavity flow does not have an analytical solution, the variable field values obtained on the
finest grid of 2573 are used as the reference. For this purpose, (34) is expanded to a 3D vector field calculation as

L2 =

√

√

√

√

√

∑

i

(

(uxi − u∗xi)
2 + (uyi − u∗yi)

2 + (uzi − u∗zi)
2
)

∑

i(u
∗2
xi + u

∗2
yi + u

∗2
zi )

, (35)

where u∗�i is the velocity field value on the finest grid, here 2573. The results show that the present method remains second
order accurate for the 3D lid-driven cavity flow. Although the AK results yield better accuracy than the present model at Re =
1000, their spectral method shows only O(N−1.5) grid convergence. The velocity profiles along the centre lines are plotted and
compared to the results obtained by Albensoeder and Kuhlmann60 and Mei et al.59, see Figure 11 . In the present case, the
velocity field at Re = 100 and Re = 1000 is calculated using a 333 and a 653 grid respectively. The results show a very good
match at Re = 100. Moreover, the present data at Re = 1000 show better agreement with the results obtained byAlbensoeder and
Kuhlmann, who used an accurate spectral method, rather than Mei et al. who used the LBM SRT with interpolated boundaries.

5 CONCLUSIONS

For the first time, the moment-based boundary conditions have been extended to three dimensions and explicitly derived for
the D3Q19 model. Velocity, pressure and pressure-velocity conditions have been specified for the face, edge and corner bound-
aries, where appropriate. Due to the large three-dimensional stencil, the use of the higher order moments on the boundaries is
inevitable. For some cases, even when using the more sophisticated TRT collision scheme, it has been observed that the more
‘physical’ or the asymmetric choice of moments on the corner boundary can lead to instabilities and further to the solution diver-
gence at higher Reynolds numbers. However, the problem can be resolved by choosing a symmetric set of velocity moments, as
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FIGURE 11 A comparison of horizontal ux (left) and vertical uy (right) velocity along the centre lines at Re = 100 and
Re = 1000 between the present study and the results of Mei et al.59 and Albensoeder and Kuhlmann60.

predicted by Mohammed and Reis43. Unfortunately, sometimes it means dropping the condition for the hydrodynamic moment
in favour of the third order moment, such as at edges and corners. It is noted that the LSOB method28 solves the rectangu-
lar matrix formulation and seems to avoid any symmetry breaking. Some preliminary stability analysis for the moment-based
boundary method in 2D has been conducted37,43, however, an in-depth stability analysis of the current 3D method requires fur-
ther studies and is a topic for future. At present, a shortcoming of the moment-based method for boundary constraints is its
limitation to boundaries aligned with grid points. Overcoming this is a subject for ongoing research.
The newly derived 3D moment-based boundary conditions have been validated on benchmark cases testing for the relaxation

time dependence, grid convergence and solution accuracy at various flow regimes. The results of the proposed 3D method show
excellent agreement with the data obtained using highly accurate spectral methods. Moreover, the method shows the expected
second order grid convergence for all the benchmark cases described. Unlike Guo’s non-equilibrium method23, the moment-
based method can recover the simplest 2D Poiseuille flow velocity profile exactly. In addition, contrary to the bounce-back rule,
the present 3D hydrodynamic scheme recovers the no-slip boundary condition for velocity exactly on the wall, the position of
which is independent of the relaxation time. This is all achieved locally and thus inherits the main computational advantages of
the lattice Boltzmann method.
This work comprises the derivation of the 3D moment-based method for the D3Q19 model, but it can be applied to other

3D lattices, D3Q15 and D3Q27 that is. A brief insight into the moment selection for the D3Q15 model is given in Appendix
B, which constitutes the future work of the full derivation and description of the moment-based boundary conditions for other
lattices in 3D including the generalisation of the symbolic description and stability analysis.
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APPENDIX

A DERIVATIONS FOR THE BOUNDARY CONDITIONS

Here the missing steps from the derivation process of the conditions for the velocity and pressure face, edge and corner
boundaries are shown.

A.1 Face velocity
For the west face boundary, five selected moments from Table 2 are rearranged and written out to express the unknown distri-
bution functions. By setting the velocities at the west face boundary to Ux, Uy and Uz and putting all the unknowns on the left
hand side, the system of equations takes the following form:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

f1 + f7 + f10 + f15 + f18 = �Ux − f2 + f8 + f9 + f16 + f17,

f7 − f10 = �Uy − f3 + f4 + f8 − f9 − f11 + f12 + f13 − f14,

f15 − f18 = �Uz − f5 + f6 − f11 + f12 − f13 + f14 + f16 − f17,

f7 + f10 =
�
3
+ �U 2

y − f3 − f4 − f8 − f9 − f11 − f12 − f13 − f14,

f15 + f18 =
�
3
+ �U 2

z − f5 − f6 − f11 − f12 − f13 − f14 − f16 − f17.

(A1)

Solving the system (A1) yields the unknown distribution functions,
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

f1 = �
(

Ux − U 2
y − U

2
z −

2
3

)

+ f2 + f3 + f4 + f5 + f6 + 2(f8 + f9 + f11 + f12 + f13 + f14 + f16 + f17),

f7 =
�
2

(1
3
+ Uy(Uy + 1)

)

− f3 − f9 − f11 − f14,

f10 =
�
2

(1
3
+ Uy(Uy − 1)

)

− f4 − f8 − f12 − f13,

f15 =
�
2

(1
3
+ Uz(Uz + 1)

)

− f5 − f11 − f13 − f17,

f18 =
�
2

(1
3
+ Uz(Uz − 1)

)

− f6 − f12 − f14 − f16.

(A2)

which can be further simplified to obtain the solution at the west face velocity boundary given in (18).
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A.2 Face pressure
For the west face pressure boundary, the system of equations is composed of the five moments from Table 2 . Separating the
knowns and unknowns yields the following,

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

f1 + f7 + f10 + f15 + f18 = �0 − f0 − f2 − f3 − f4 − f5 − f6 − f8 − f9 − f11 − f12 − f13 − f14 − f16 − f17,

f7 − f10 = −f3 + f4 + f8 − f9 − f11 + f12 + f13 − f14,

f15 − f18 = −f5 + f6 − f11 + f12 − f13 + f14 + f16 − f17,

f7 + f10 =
�0
3
− f3 − f4 − f8 − f9 − f11 − f12 − f13 − f14,

f15 + f18 =
�0
3
− f5 − f6 − f11 − f12 − f13 − f14 − f16 − f17.

(A3)

where the density �0 is being imposed on the west face boundary. Solving (A3) leads to (21).

A.3 Edge velocity
For the south-west edge boundary, nine selected linearly independent moments from Table 3 are rearranged and written out
to express the unknown distribution functions. Setting the south-west edge boundary velocities to Ux, Uy and Uz, the unknown
distribution functions can be calculated as

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

f1 = �
(2
3
(2Uy − 1) + Ux − UxUy − U 2

y − U
2
z

)

+ f2 + f5 + f6 + 2(f4 + f16 + f17) + 4(f8 + f12 + f13),

f3 = �
(1
3
(2Uy − 1) + Ux − UxUy − U 2

x

)

+ f4 + 2(f2 + f16 + f17) + 4f8,

f7 =
�
2

(2
3
− Ux − Uy + (Ux + Uy)2

)

− f2 − f4 − f12 − f13 − f16 − f17 − 3f8,

f9 =
�
2

(1
3
− Ux + U 2

x

)

− f2 − f8 − f16 − f17,

f10 =
�
2

(1
3
− Uy + U 2

y

)

− f4 − f8 − f12 − f13,

f11 =
�
2

(1
3
Uy + Uz(1 − Ux)

)

− 1
2
(f5 − f6) + f12 + f16 − f17,

f14 =
�
2

(1
3
Uy − Uz(1 − Ux)

)

+ 1
2
(f5 − f6) + f13 − f16 + f17,

f15 =
�
2

(1
3
(1 − Uy) + Uz(Uz + Ux)

)

− 1
2
(f5 + f6) − f12 − f13 − f16,

f18 =
�
2

(1
3
(1 − Uy) + Uz(Uz − Ux)

)

− 1
2
(f5 + f6) − f12 − f13 − f17,

(A4)

The density in the above equations is given by the formula

� =
f0 + f5 + f6 + 2(f2 + f4 + f12 + f13 + f16 + f17 + 2f8)

1 − Ux − Uy + UxUy
, (A5)

which is expressed in terms of the known distribution functions and the relevant moments at the south-west edge boundary.
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A.4 Edge pressure-velocity
For the south-west pressure-velocity edge boundary, setting the density to �0 and velocities to Ux, Uy, Uy, and solving for the
unknown distribution functions gives the following expressions:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

f1 = �
(1
3
(1 + Uy) − U 2

y − U
2
z

)

− f0 − f2 + 2(f12 + f13),

f3 = �
(1
3
(2 − Uy) − U 2

x

)

− f0 − f4 − f5 − f6 − 2(f12 + f13),

f7 =
�
2

(

−4
3
+ Ux(1 + Ux) + Uy(1 + Uy)

)

+ f0 + f2 + f4 + f5 + f6 + f8 + f12 + f13 + f16 + f17,

f9 =
�
2

(1
3
− Ux + U 2

x

)

− f2 − f8 − f16 − f17,

f10 =
�
2

(1
3
− Uy + U 2

y

)

− f4 − f8 − f12 − f13,

f11 =
�
2

(1
3
Uy + Uz(1 − Ux)

)

− 1
2
(f5 − f6) + f12 + f16 − f17,

f14 =
�
2

(1
3
Uy − Uz(1 − Ux)

)

+ 1
2
(f5 − f6) + f13 − f16 + f17,

f15 =
�
2

(1
3
(1 − Uy) + Uz(Uz + Ux)

)

− 1
2
(f5 + f6) − f12 − f13 − f16,

f18 =
�
2

(1
3
(1 − Uy) + Uz(Uz − Ux)

)

− 1
2
(f5 + f6) − f12 − f13 − f17.

(A6)

A.5 Corner boundaries
The first nine rows of the moment combinations in Table 4 are all linearly independent. The row 10, not obvious at all, is a
linear combination of the rows 1, 2, 3, 4, 8 and 9.

rank

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f1 + f3 + f5 + f7 + f9 + f10+1
+f11 + f13 + f14 + f15 + f17 + f18

�

2 f1 + f7 − f9 + f10 + f15 − f17 + f18 �ux
3 f3 + f7 + f9 − f10 + f11 − f13 + f14 �uy
4 f5 + f11 + f13 − f14 + f15 + f17 − f18 �uz
8 f7 − f9 − f10 Πxy
9 f15 − f17 − f18 Πxz
10 f11 − f13 − f14 Πyz

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 6 (A7)

The row 12 is a linear combination of the rows 2, 5, 8, 9 and 11.

rank

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2 f1 + f7 − f9 + f10 + f15 − f17 + f18 �ux
5 f1 + f7 + f9 + f10 + f15 + f17 + f18 Πxx
8 f7 − f9 − f10 Πxy
9 f15 − f17 − f18 Πxz
11 f7 + f9 − f10 Qxxy

12 f15 + f17 − f18 Qxxz

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 5 (A8)
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The rows 13 and 14 cannot be expressed as a linear combinations of the preceding rows so they bothmake the selection. However,
the rows 15 and 16 can be expressed in terms of the rows 1, 2, 4, 6, 9, 13 and 1, 2, 3, 7, 8, 14, respectively.

rank

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f1 + f3 + f5 + f7 + f9 + f10+1
+f11 + f13 + f14 + f15 + f17 + f18

�

2 f1 + f7 − f9 + f10 + f15 − f17 + f18 �ux
4 f5 + f11 + f13 − f14 + f15 + f17 − f18 �uz
6 f3 + f7 + f9 + f10 + f11 + f13 + f14 Πyy
9 f15 − f17 − f18 Πxz
13 f7 − f9 + f10 Qxyy

15 f11 + f13 − f14 Qyyz

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 6 (A9)

rank

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f1 + f3 + f5 + f7 + f9 + f10+1
+f11 + f13 + f14 + f15 + f17 + f18

�

2 f1 + f7 − f9 + f10 + f15 − f17 + f18 �ux
3 f3 + f7 + f9 − f10 + f11 − f13 + f14 �uy
7 f5 + f11 + f13 + f14 + f15 + f17 + f18 Πzz
8 f7 − f9 − f10 Πxy
14 f15 − f17 + f18 Qxzz

16 f11 − f13 + f14 Qyzz

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 6 (A10)

A.5.1 Corner velocity
For the low-south-west velocity corner boundary, the twelve selected linearly independent moments are the following:

rank

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2 f1 + f7 − f9 + f10 + f15 − f17 + f18 �ux
3 f3 + f7 + f9 − f10 + f11 − f13 + f14 �uy
4 f5 + f11 + f13 − f14 + f15 + f17 − f18 �uz
5 f1 + f7 + f9 + f10 + f15 + f17 + f18 Πxx
6 f3 + f7 + f9 + f10 + f11 + f13 + f14 Πyy
7 f5 + f11 + f13 + f14 + f15 + f17 + f18 Πzz
8 f7 − f9 − f10 Πxy
9 f15 − f17 − f18 Πxz
10 f11 − f13 − f14 Πyz
11 f7 + f9 − f10 Qxxy
14 f15 − f17 + f18 Qxzz
15 f11 + f13 − f14 Qyyz

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 12. (A11)
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Using the derived approximations for the second and third order moments at the boundaries, (16) and (30), and setting the
low-south-west corner velocities to Ux, Uy and Uz, the unknown incoming functions are calculated as

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

f1 = �
(1
3
(2Ux + Uz − 1) + Uy(1 − Ux − Uy − Uz)

)

+ f2 + 2f4 + 4f8 + 4f12,

f3 = �
(1
3
(2Uy + Ux − 1) + Uz(1 − Ux − Uy − Uz)

)

+ f4 + 2f6 + 4f12 + 4f16,

f5 = �
(1
3
(2Uz + Uy − 1) + Ux(1 − Ux − Uy − Uz)

)

+ f6 + 2f2 + 4f8 + 4f16,

f7 =
�
2

(1
3
(1 − Uz) + Uy

(

Ux + Uy + Uz −
2
3

))

− f4 − f8 − 2f12,

f9 =
�Uy
2

(1
3
− Ux

)

+ f8,

f10 =
�
2

(1
3
(1 − Uz) + Uy(Uy + Uz − 1)

)

− f4 − f8 − 2f12,

f11 =
�
2

(1
3
(1 − Ux) + Uz

(

Ux + Uy + Uz −
2
3

))

− f6 − f12 − 2f16,

f13 =
�Uz
2

(1
3
− Uy

)

+ f12,

f14 =
�
2

(1
3
(1 − Ux) + Uz(Ux + Uz − 1)

)

− f6 − f12 − 2f16,

f15 =
�
2

(1
3
(1 − Uy) + Ux

(

Ux + Uy + Uz −
2
3

))

− f2 − f16 − 2f8,

f17 =
�
2

(1
3
(1 − Uy) + Ux(Ux + Uy − 1)

)

− f2 − f16 − 2f8,

f18 =
�Ux
2

(1
3
− Uz

)

+ f16.

(A12)

This is a general form including all the velocity components. It simplifies significantly when specific cases are considered. For
example, all the velocity terms disappear when the no-slip condition is imposed at the corner. The density in the above equations
(A12) is calculated from the expression,

� − �Ux − �Uy − �Uz + Πxy + Πxz + Πyz = f0 + 2(f2 + f4 + f6) + 4(f8 + f12 + f16), (A13)

which links the density with the known distribution functions. Rearranging (A13) and substituting in the approximation values
(17) for the moments gives the density at the low-south-west corner boundary as

� =
f0 + 2(f2 + f4 + f6) + 4(f8 + f12 + f16)
1 − Ux(1 − Uy − Uz) − Uy(1 − Uz) − Uz

. (A14)
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A.5.2 Corner pressure-velocity
For the low-south-west pressure-velocity corner boundary, the twelve selected linearly independent moments from Table 4 are

rank

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f1 + f3 + f5 + f7 + f9 + f10+1
+f11 + f13 + f14 + f15 + f17 + f18

�

2 f1 + f7 − f9 + f10 + f15 − f17 + f18 �ux
3 f3 + f7 + f9 − f10 + f11 − f13 + f14 �uy
4 f5 + f11 + f13 − f14 + f15 + f17 − f18 �uz
5 f1 + f7 + f9 + f10 + f15 + f17 + f18 Πxx
6 f3 + f7 + f9 + f10 + f11 + f13 + f14 Πyy
7 f5 + f11 + f13 + f14 + f15 + f17 + f18 Πzz
8 f7 − f9 − f10 Πxy
9 f15 − f17 − f18 Πxz
11 f7 + f9 − f10 Qxxy
14 f15 − f17 + f18 Qxzz
15 f11 + f13 − f14 Qyyz

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 12. (A15)

Setting the density to �0 and velocities to Ux, Uy and Uz, the unknown distribution functions for pressure-velocity at the low-
south-west corner boundary are given as

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

f1 = �0

(

1
3
(2 − 2Uz − Ux) + UxUz − U 2

y

)

− f0 − f2 − 2f6 − 4f16,

f3 = �0

(

1
3
(2 − 2Ux − Uy) + UxUy − U 2

z

)

− f0 − f4 − 2f2 − 4f8,

f5 = �0

(

1
3
(2Uz + Uy − 1) + Ux(1 − Ux − Uy − Uz)

)

+ f6 + 2f2 + 4f8 + 4f16,

f7 =
�0
2

(

1
3
(2Uz + Uy − 2) + Ux − UxUz + U 2

y

)

+ 1
2
f0 + f2 + f6 + f8 + 2f16,

f9 =
�0Uy
2

(

1
3
− Ux

)

+ f8,

f10 =
�0
2

(

1
3
(2Uz − 2) + Ux − UxUy − UxUz + U 2

y

)

+ 1
2
f0 + f2 + f6 + f8 + 2f16,

f11 =
�0
2

(

1
3
(2Ux + Uz − 2) + Uy − UxUy + U 2

z

)

+ 1
2
f0 + f2 + f4 + f8 + 2f12,

f13 =
�0
2

(

1 − 2
3
Uz − Uy − Ux(1 − Uy − Uz)

)

− 1
2
f0 − f2 − f4 − f6 − f12 − 2f8 − 2f16,

f14 =
�0
2

(

1
3
(1 − Ux) + Uz(Ux + Uz − 1)

)

− f6 − f12 − 2f16,

f15 =
�0
2

(

1
3
(1 − Uy) + Ux

(

Ux + Uy + Uz −
2
3

))

− f2 − f16 − 2f8,

f17 =
�0
2

(

1
3
(1 − Uy) + Ux(Ux + Uy − 1)

)

− f2 − f16 − 2f8,

f18 =
�0Ux
2

(

1
3
− Uz

)

+ f16.

(A16)

To obtain the unknown distribution functions for the multiple pressure inlet at the low-south-west corner all the velocities in
the above system of equations (A16) have to be set to zero to realise the no-slip boundary condition for velocity, which greatly
simplifies the equations.
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FIGURE B1 D3Q15 lattice. Rest particle velocity is not shown.

B MOMENT COMBINATIONS FOR D3Q15

Here, a possible selection of the velocity moments on the boundaries is shown for the D3Q15 model. There are 5 unknowns
at the face boundary, 8 at the edge and 10 at the corner boundary. Having fewer unknowns at the edge and corner boundaries
theoretically allows for the selection of the hydrodynamic moments only. That is the case for the face (Table B1 ) and edge
(Table B2 ) boundaries, and the corner pressure-velocity boundaries. However, the corner velocity boundary still requires a
third order moment to be included into the selection because the density is unknown, see Table B3 .
In Table B1 , only the hydrodynamic moments are used for both pressure and velocity face boundaries. Although the selection

is physically sound, it will produce an antisymmetric solution that might lead to instabilities at higher Reynolds numbers. A
symmetric solution can be achieved by replacing theΠyy withQxzz. By including the third order moment, the system of equations
becomes symmetric and is less prone to developing instabilities.

TABLE B1 Moment combinations at the west face boundary for D3Q15.

# Moments Unknown f combinations Selected
1 �, �ux,Πxx f1 + f7 + f10 + f11 + f14 �uVx , �

P

2 �uy,Πxy, Qxxy f7 + f10 − f11 − f14 �uV ,Py
3 �uz,Πxz, Qyyz f7 − f10 + f11 − f14 �uV ,Pz
4 Πyy,Πzz, Qxzz, Sxxyy f7 + f10 + f11 + f14 ΠV ,Pyy
5 Πyz, Qxyz f7 − f10 − f11 + f14 ΠV ,Pyz
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