
Implementation of a pseudonym-based signature
scheme with bilinear pairings on Android

Leonardo Oliveira, Victor Sucasas, Georgios Mantas, and Jonathan Rodriguez

Instituto de Telecomunicações, Aveiro, Portugal

Abstract. Privacy preservation is of paramount importance in the
emerging smart city scenario, where numerous and diverse online services
will be accessed by users through their mobile or wearable devices. In
this scenario, service provides or eavesdroppers can track users activities,
location, and interactions with other users, which may discourage citi-
zens from accessing smart city services. Pseudonym-based systems have
been proposed as an efficient solution to provide identity confidential-
ity, and more concretely pseudonym-based signature schemes have been
suggested as an effective means to authenticate entities and messages
privately. In this paper we describe our implementation of a pseudonym-
based signature scheme, based on bilinear-pairings. Concretely, our im-
plementation consists of an Android application that enables users to
authenticate messages under self-generated pseudonyms, while still en-
abling anonymity revocation by a trusted third party in case of misbehav-
ior. The paper presents a description of the implementation, performance
results, and it also describes the use cases for which it was designed.

Key words: privacy-preserving; mobile applications; bilinear pairings

1 Introduction

Privacy-preserving solutions are required to address the users’ privacy concerns
and foster a rapid penetration of smart city applications in the real world. Pro-
viding anonymous and secure communication between mobile applications and
the Smart City infrastructure is cornerstone in this scenario, and current technol-
ogy faces the problem that traditional Public Key Management systems do not
provide privacy. Moreover, the current digital anonymous credential systems in
the state-of-the-art are too complex to be applied in wearable or mobile devices
due to its computation delay and communication overhead.

Previous research efforts have pointed out several privacy issues that de-
mand novel solutions [1]. For example, Public Key Infrastructure is not suitable
for privacy preservation, and new Key Management Systems should be imple-
mented [2]. In this framework, pseudonym-based systems have been suggested as
promising research direction, since pseudonyms can be used to hide the users’ real
identity [3], and still can enable revocation mechanisms in case of misbehavior.
Pseudonyms are issued by a certification authority and they can be used to sign
messages, thus providing authentication and integrity [4][5]. Also, pseudonyms

2 Leonardo Oliveira et al.

can be renewed on demand to avoid linkability of different data transactions,
which could eventually allow eavesdroppers to infer the users identities. This
pseudonym renewal requires a permanent contact with the Certification Author-
ity, except systems that provide pseudonym self-generation, such as the work in
[6], which has been followed by other works such as [7][8][9]. This paper describes
the implementation of the system described in [7], which was originally designed
for a Vehicular Network, and it has been now adapted into a mobile application.

The rest of the paper is structured as follows: Section 2 describes the system
model, the system functionality, and some use case scenarios envisaged for this
system; Section 3 provides a brief description of the cryptosystem; Section 4
provides the implementation details; Section 5 shows a performance evaluation;
and finally, section 6 concludes this paper.

2 System Model

The system is composed of a set of smartphones (clients) running a mobile
app that enables privacy-preserving authentication between each other. Namely,
clients can send signed messages in an anonymous manner, i.e. the receiver can
trust the sender of the message but it is not feasible to figure out the identity
of the original sender (except if traffic analysis techniques are applied at the
network level, which is out of the scope of this work and it should be addressed
by appropriate countermeasures). These clients can sign the transmitted mes-
sages with their self-generated pseudonyms, which cannot be linked to the users
real identities. Moreover, different pseudonyms from the same user can also not
be linked to each other. Hence, all pseudonyms shared in the network will be
statistically indistinguishable.

A message is any type of information that is being shared between the clients.
The system also enables the transmissions of null messages, where the proposed
message authentication application is used with the sole purpose of authenti-
cating the client and not any message in particular. Section 2.2 provides a real
scenario exemplifying the type of messages that could be exchanged.

Apart from clients, the system is also composed of a certification authority
(CA) and verifiers. The CA is in charge of generating public parameters required
for the cryptosystem implemented in the proposed system, and the generation
of credentials for legitimate users. The CA is also in charge of revoking users
credentials in case of misbehavior. The verifier is any entity receiving and vali-
dating a signed message, for this validation the verifier is not required to have
a valid credential, only the public parameters generated and distributed by the
CA are sufficient to validate messages.

2.1 System Functionalities

The system provides mechanisms to: i) enable the CA to provide certificates to
trusted clients, so only legitimate clients can successfully send signed messages;

Title Suppressed Due to Excessive Length 3

and ii) enables clients to use the certificates to generate pseudonyms on demand
and sign messages with such pseudonyms; iii) enables verifiers to validate signed
messages from legitimate clients and discard messages from dishonest clients
that are not provided with valid certificates. The proposed system assures the
privacy of each sender (client), since the verifiers cannot link the pseudonyms to
the users real identities or to other pseudonyms of the same client. The fugure
1 illustrates the interaction between the system’s entities, that will be described
bellow.

Fig. 1. The interactions between the entities in the system. Any client can act as a
verifier.

The system also enables conditional privacy, i.e. it allows the trusted author-
ity (the CA) to identify the origin of a message in exceptional situations. This
can occur when a client is malfunctioning or misbehaving, which could lead to
the transmission of signed messages with misleading information. In such a case,
the CA can track the pseudonym used by the sender of these messages to the
users real identity. Moreover, the CA can include the future pseudonyms of the
blacklisted misuser in a Revocation List (RL), enabling other users to ignore
future messages from the same sender.

Before being capable of sending messages, a client needs to be certified. This
happens in a registration process that starts in a Certified Authority (CA). The
CA holds all the information of the clients that belong to the system, including,
of course, their real identity. For each registered client, the CA can issue cre-

4 Leonardo Oliveira et al.

dentials. Those credentials can be used by clients to authenticate themselves or
authenticate transmitted messages towards a verifier.

When receiving a message, the verifier validates its authenticity. The verifi-
cation can be done by other clients or verifying entities deprived of credentials.
A message is valid if it comes from a valid client, which only happens with clients
that use a credential issued from the CA. Nonetheless, the verifier still cannot
know the origin of message, he can just perform the verification algorithm needed
to validate it. Verification algorithm can be performed by any entity holding the
public parameters generated by the CA.

The system is time based and requires loose synchronization between entities.
Namely, clients can renew all the pseudonyms updating a public parameter that
can be self-generated. In the verification process, a time restriction public key
must also be renewed and distributed by the CA to all potential verifiers. Hence,
the system is divided in time slots, in which the CA and the users update a
restriction key and the pseudonyms respectively. The revocation list must also
be renewed and distributed by the CA with all blacklist pseudonyms.

2.2 Use-case Scenarios

The proposed system can be used in any use case scenario requiring privacy-
preserving authentication. The proposed system however has been designed and
will be tested in a real environment in a crowdsourcing application, where users
collect information about the surrounding environment and transmit this in-
formation to a back end server. Namely, users of the developed app running
the client side of the system will send messages with information like air pol-
lution, noise level and their landmarks. The information will be gathered by
sensor integrated in the mobile devices or externalized and connected to the
users smartphones through Bluetooth. These messages, after being signed with
a pseudonym, will be sent to an data aggregator, i.e. a smart-city server, where
they would be validated while preserving the senders privacy. Thus, this server
would act as a verifier of the transmitted information. The stored information
will perform data analysis to generate statistical information about air and noise
quality of different locations. The data aggregator (verifier) will also be in charge
of detecting misbehavior (e.g. users transmitting misleading or adulterated data)
and eventually contact the CA to report the affected pseudonyms, hence trigger-
ing the anonymity revocation mechanism in the CA. After that, all pseudonyms
from blacklist clients would be revoked and the client would be ignored in the
future results. It is worth commenting that a number of research works have
already proposed effective means to detect data outliers that could be used in
the proposed use case scenario.

The proposed system is also suitable for a scenario where several clients
need to authenticate themselves to get access to given service, while preserving
their privacy. In that case, they would send empty messages, where the only
important part would be the signature itself, that could be validated by the
service provider. The service provider, playing the role of verifier, would grant
access to authorized clients without the knowledge of their real identities. Cases

Title Suppressed Due to Excessive Length 5

of misbehavior, like the usage of the same pseudonym several times in a short
space of time, could trigger anonymity revocation.

3 Pseudonym-based signature scheme

Although we would like to refer interested readers to the works [6] and [7] for
more details on the pseudonym based signature scheme and the conditional
privacy-preserving system respectively, in this section we describe briefly the
mathematical operations included in our implementation. The system is devided
in the following logical blocks: i) parameter generation; ii) credential generation;
iii) pseudonym generation; iv) message signing; and v) signature verification.

For the public parameter generation, the CA performs the following steps,
and publishes the tuple (G1, G2, P,H1, H2, H3, P,W) and the time variant tuple
(Qi,Wi). The time variant values must be computed again in each time slot.
The value s is the CA secret key.

1. The CA selects two cyclic groups of prime order p , G1 and G2, in which the
discrete logarithm problem is hard and with an efficient bilinear map e such
that e : G1 ×G1 → G2.

2. The CA also picks two cryptographic hash functions H1 : {0, 1}∗ → G1 and
H2, H3 : {0, 1}∗ → Zp (where Zp is the multiplicative group).

3. The CA selects P as generator of G1.
4. The CA computes a time variant public key Qi = H1(T (time)).
5. The CA selects a secret s ∈R Zp.
6. The CA obtains W = sP and a restriction key Wi = sQi

To generate a credential for a client, the CA performs:

1. The CA selects randomly µ ∈ Zp.
2. The CA computes the secret value as Su = P 1

(s+µ) .

3. The CA sends the user the credential (µ, Su).

It is worth commenting that in the implemented system, every user receives
10 credentials where the µ values are obtained with a hash chain µi = Hi

3(µ) for
i = {0, ..., 10}.

Then, each user/client can self-generate pseudonyms using these credentials:

1. The client computes Qi = H1(T (time)).
2. The client computes a pseudonym for each of the 10 credentials by computing
Pseuj = µjQi for i = {1, ...10}

Clients provided with a valid credential can sign a message m using their
self-generated pseudonyms:

1. The client selects α, r, r′ ∈R Zp.

2. The client computes T = αSu, RG1 = rQi and R = e(Qi, P)r
′
.

6 Leonardo Oliveira et al.

3. The client computes c = H2(M ||T ||RG1
||R||Pseuj ||T (time)), where the op-

erator || represents concatenation.
4. The client computes s1 = αc+ r′ and s2 = µjc+ r.

The signature of m with the pseudonym Pseuj is the tuple σ = (T, c, s1, s2).
Which can be verified by any entity having the public parameters by performing
the following steps:

1. The verifier obtains Qi = H1(T (time)).
2. The verifier computes R′G1

= s2Qi−cPseuj and R′ = e(Qi, P)s1/e(Pseuj +
Wi, T)c.

3. The verifier computes c′ = H2(M ||T ||R′G1
||R′||Pseuj ||T (time)).

4. The verifier considers the signature valid if c′ = c holds.

These steps have been implemented into the described system in the different
entities defined in the system model. Due to space constraints we do not detail
here preliminary mathematical definitions or proofs of security. More details can
be found in the works [6] and [7].

4 Implementation Details

Our implementation of the system is based in Java. This enables to compilation
and deployment in different contexts. In the proposed scenario, it is deployed in
a mobile app, running in Android, where the client side of the system is placed.

In what concerts to the algorithmic part of the system, we used Java Pairing-
Based Cryptography Library (JPBC) [10], a Java library that allowed us to im-
plement all the cryptographic calculations related to bilinear maps. This library
can run out of the box on Android 2.1+, which was verified in our implementa-
tion.The system is mainly split into the entities described in the system model:
The CA, the Verifier and the Client (The clients can also act as verifiers when re-
ceiving signed messages). The following subsections describe the implementation
details of the different mechanisms of the proposed system:

4.1 Public Parameter Generation

Provides all the necessary cryptographic parameters used to perform several
calculations in different steps of the system. These parameters are available
publicly and distributed by the CA. It gives access to the cyclic groups G1
and G2, the multiplicative group of prime order p, Zp, the generator P, the
permanent public key W, time restriction public key Wi, the current time slot,
the time variant parameter and the hash functions H1, H2 and H3.

This class is wrapped by other classes, and it is never directly manipulated in
the interface of the implementation. In fact, this layer of the package developed is
the lower one. All the mathematical part is abstracted in the three main entities
described below. The CA Server, the Verifier and the client are the outer layers
of the system, representing the main logical entities.

Title Suppressed Due to Excessive Length 7

For a rationale of the implementation, the lines below describe the enclosed
modules, represented in the figure 4.1.

Fig. 2. The layered interconnection between the components, from thee JPBC library
to our system interface.

4.2 CA Server

The CA Server is the central part of the system. It contains an instance of
the CA, that handles all the confidential information of the system required
to issue credentials and revoke anonymity. Once again, the server abstracts all
the interactions with the CA instance. When it starts running, it is available
to answer to requests of Public Parameters, Credentials - by the clients - and
exclusion of pseudonyms - by verifiers. The CA instance, when created, generates
the original copy of the Public Parameters, described above. Also, the number of
time slots and the number of pseudonyms by time slot are defined here. The CA
can generate a Credential for each client. The CA class can generate as many
credentials as the server needs. Each Credential is later used by the client to
generate its pseudonyms. Despite of this, the server also must have a list of all
the pseudonyms to enable anonymity revocation if needed. Because of this, the
pseudonyms are also generated in the server side using a copy of the credentials
issued by the CA. The server uses other class to handle this, called Pseudonym
Table. The Pseudonym Table provides a systematic manner to store lists of
pseudonyms by time slot. In theory, it is a table of N pseudonyms by T time
slots.

The class provides an interface to automatically manipulate those pseudonyms,
including its generation. When the server or also the verifier and client - needs

8 Leonardo Oliveira et al.

to generate a list of pseudonyms, it provides the correspondent credential and
time slot.

4.3 Client

The Client holds its information, so it has a Credential, the Public Parameters
and a Pseudonym Table. The first time the client runs, he connects to the CA
server, asking for the Public Parameters and a credential. After, he generates its
set of pseudonyms in the Pseudonym Table. The pseudonyms are linked to each
time slot and they can be generated on demand. When the client needs to send
a message, he uses a specific method to do it, sendMessage(). The method works
using some dependencies: the message is first signed using the pseudonym, and
after it is included inside a packet that also holds the signature, the pseudonym
and the message itself. This packet is then sent to the verifier.

4.4 Verifier

The Verifier, when initializing, has to get the Public Parameters from the CA
Server and an updated version of the pseudonym blacklist (also called revocation
list) the list of blocked pseudonyms. This blacklist is refreshed at least when
there is a new time slot. With that completed, the Verifier is ready to validate
received messages. When it receives a validation of a message, first it checks the
blacklist to verify if the pseudonym is not banned. If it is, it returns that the
message is invalid. If not, it performs the calculations to check the validity of the
message. According to the calculations, it returns whether the message is valid
or not. If for some reason the verifier detects a suspicious activity for a given
pseudonym, for instance, being used too many times in a small interval of time,
it can report it to the server.

The figure 3 shows the implementation’s class diagram, generated with Ob-
jectAid UML Explorer, in the Eclipse IDE.

In this analysis, it is missing some implementation details of the client side.
It is done in a mobile app, running on Android 4.4+. The android app uses
the Client class of the package. For demonstration purposes, the app developed
allows the client to connect to the server, receiving the credential and public
parameters, and manually synchronize the time slots and generate pseudonyms.
The pseudonyms can be selected manually to send messages. If for some reason
the time slot is outdated, all the attempts to send messages will fail, so the
synchronization must be accomplished.

In the figure 4, we represent the pseudonyms in the application side. A
pseudonym is a point in an elliptic curve. To be exact, in our implementation
they are portions of data described in 128 bytes. So, rather than numbers, the
app shows something more visual and meaningful. The pseudonyms are mapped
to a grid of colours, where they can be selected. The client can send a message
using the desired pseudonym. The quantity of pixels represents the amount of
possible variations that pseudonyms can have.

Title Suppressed Due to Excessive Length 9

Fig. 3. System’s class diagram, generated with ObjectAid UML Explorer, a tool avail-
able in the Eclipse IDE

10 Leonardo Oliveira et al.

Fig. 4. Some screenshots to the mobile app. The client’s available pseudonyms are
represented on the top, and the actions are logged below.

5 Results

For performance evaluation, we have tested the performance in both the server
and client side. Opposed to what happens in the server side, the clients resources
are more limited since it runs in a mobile device. Due to the strong component
of algorithmic computations performed in this cryptosystem, computations on a
mobile device can be more time consuming.

We measured the lapsed times in the server side, in an Intel Core i5-6200
CPU, executing the following operations: i) initializing the server; ii) issuing a
credential; iii) signing a message; iv) verifying a signature; and v) generating a
pseudonym. The server takes 207ms to initialize, which involves generating the
private and public parameters. For each credential generation, it takes 373ms.
The signature generation takes 60ms, the signature verification takes 94ms. Gen-
erating a pseudonym takes 50ms. For a scenario of 1 million users, with 10
pseudonyms per time slot, it would take more than 8min to precompute all
the pseudonyms. This pseudonym precomputation is advisable to speed up the
anonymity revocation mechanism since the time of searching for a pseudonym
in a list is negligible. For example, searching over 500.000 pseudonyms takes less
than 2ms.

These time measurements were also performed in a smartphone (Samsung
Galaxy S6), running a Exynos 7420 Octa CPU. The computations in the client
side are: i) signing a message; ii) verifying a signature; and iii) generating a
pseudonym. In general, it resulted in around 10x more time spent when compared
to server side. The full results are presented in the figure 5. In terms of memory,
the size of each component is negligible. Despite of this, it is worth analysing the
amount of data transmitted between entities. The public parameters have 362
bytes. A credential has 1427 bytes (the credentials implemented are composed

Title Suppressed Due to Excessive Length 11

Fig. 5. Time performance in both the server and client side

by 10 secret values in G2 and 1 in G1). A packet composed by a signed message
has 383 bytes plus the size of the message itself. Each pseudonym has 128 bytes.
In the server side, for a scenario with 1 million users, with 10 pseudonyms per
time slot, it would be necessary 1.28GBytes to precompute all the pseudonyms.
The figure 5 illustrates the proportion between the size of such entities.

Fig. 6. Memory usage in both the server and client side

12 Leonardo Oliveira et al.

6 Conclusion

In this paper we describe the implementation of a privacy-preserving system
based on a pseudonym-based signature scheme that relies on bilinear pairings.
Despite of the heavy algorithmic computations associated to bilinear pairing
operations, it was possible to obtain a system with a small footprint in terms
of time performance and memory consumption, with the integration of JPBC
library, running on Java. The same results were also promising when obtained in
the client side (implemented in an Android smartphone), proving that bilinear
pairings can be efficiently implemented on mobile devices for some specific use
cases.

7 Acknowledgement

This work is supported by the European Structural Investment Funds, through
CENTRO 2020 [Project Nr. 017785(CENTRO-01-0247-FEDER-017785)] and
EU-H2020-MSCA-ITN-2016 SECRET-722424.

References

1. Li, Ming; Wenjing Lou; Kui Ren, ”Data security and privacy in wireless body area
networks,” Wireless Communications, IEEE , vol.17, no.1, pp.51,58, February 2010.

2. Wasef, A; Rongxing Lu; Xiaodong Lin; Xuemin Shen, ”Complementing public key
infrastructure to secure vehicular ad hoc networks [Security and Privacy in Emerg-
ing Wireless Networks],” Wireless Communications, IEEE , vol.17, no.5, pp.22,28,
October 2010

3. Dan Boneh and Matthew K. Franklin. 2001. Identity-Based Encryption from the
Weil Pairing. In Proceedings of the 21st Annual International Cryptology Confer-
ence on Advances in Cryptology (CRYPTO 01), Joe Kilian (Ed.). Springer-Verlag,
London, UK, UK, 213-229.

4. Jiun-Long Huang, Lo-Yao Yeh, and Hung-Yu Chien. Abaka: An anonymous batch
authenticated and key agreement scheme for value added services in vehicular ad
hoc networks. Vehicular Technology, IEEE Transactions on, 60(1):248262, Jan 2011.

5. Rongxing Lu, Xiaodong Lin, Zhiguo Shi, and X.S. Shen. A lightweight conditional
privacy-preservation protocol for vehicular traffic-monitoring systems. Intelligent
Systems, IEEE, 28(3):6265, May 2013.

6. Yong Zhang and Jun-Liang Chen. A delegation solution for universal identity man-
agement in soa. Services Computing, IEEE Transactions on, 4(1):7081, Jan 2011.

7. Victor Sucasas, Georgios Mantas, Firooz B. Saghezchi, Ayman Radwan and
Jonathan Rodriguez. An Autonomous Privacy-Preserving Authentication Scheme
for Intelligent Transportation Systems. Elsevier, Computers and Security. 2016

8. Victor Sucasas, Georgios Mantas, Ayman Radwan and Jonathan Rodriguez. An
OAuth2-based Protocol with Strong User Privacy Preservation for Smart City Mo-
bile e-Health Apps. IEEE ICC 2016

9. Victor Sucasas, Georgios Mantas, Ayman Radwan, Jonathan Rodriguez: A
Lightweight Privacy-Preserving OAuth2-Based Protocol for Smart City Mobile
Apps. GLOBECOM Workshops 2016

10. Angelo De Caro and Vincenzo Iovino. jPBC: Java pairing based cryptography.
Proceedings of the 16th IEEE Symposium on Computers and Communications,
ISCC 2011.

