Skip navigation

Hydroelastic solitary waves with constant vorticity

Hydroelastic solitary waves with constant vorticity

Gao, Tao ORCID: 0000-0002-6425-1568, Milewski, Paul and Vanden-Broeck, Jean-Marc (2018) Hydroelastic solitary waves with constant vorticity. Wave Motion, 85. pp. 84-97. ISSN 0165-2125 (doi:https://doi.org/10.1016/j.wavemoti.2018.11.005)

[img]
Preview
PDF (Author's Accepted Manuscript)
25951 GAO_Hydroelastic_Solitary_Waves_With_Constant_Vorticity_(AAM)_2019.pdf - Accepted Version
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (1MB) | Preview

Abstract

In this work, two-dimensional hydroelastic solitary waves in the presence of constant vorticity are studied. Time-dependent conformal mapping techniques first developed for irrotational waves are applied subject to appropriate modification. An illustrative high-order Nonlinear Schrödinger Equation is presented to investigate whether a given envelope collapses into a singular point in finite time by using the virial theory. Travelling solitary waves on water of infinite depth are computed for different values of vorticity and new generalised solitary waves are discovered. The stabilities of these waves are examined numerically by using fully nonlinear time-dependent computations which confirm the virial theory analysis.

Item Type: Article
Uncontrolled Keywords: hydroelastic wave, vorticity, solitary wave
Subjects: Q Science > QA Mathematics
Faculty / Department / Research Group: Faculty of Liberal Arts & Sciences
Faculty of Liberal Arts & Sciences > Department of Mathematical Sciences
Last Modified: 27 Nov 2019 01:38
Selected for GREAT 2016: None
Selected for GREAT 2017: None
Selected for GREAT 2018: None
Selected for GREAT 2019: None
URI: http://gala.gre.ac.uk/id/eprint/25951

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics