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Abstract:

Dry machining represents an eco-friendly method that reduces the 
environmental impacts, saves energy costs, and protects operator 
health. This paper presents a multi-response optimization which aims to 
enhance the power factor and decrease the energy consumption as well 
as the surface roughness for the dry machining of a stainless steel 304. 
The cutting speed (V), depth of cut (a), feed rate (f), and nose radius (r) 
were the processing conditions. The outputs of the optimization are the 
power factor, energy consumption, and surface roughness. The 
relationships between inputs and outputs were established using the 
radial basis function models. The experimental data were normalized, 
with the use of the grey relational analysis. The principal component 
analysis is applied to calculate the weight values of technical responses. 
The desirability approach is used to observe the optimal values. The 
results showed that the technical outputs are primarily influenced by the 
feed rate and cutting speed. The reductions of energy consumption and 
surface roughness are approximately 34.9 % and 57.7 %, respectively, 
and the power factor improves around 28.8 %, compared to the initial 
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process parameter settings. The outcomes and findings of the 
investigated work can be used for further research in sustainable design 
and manufacturing as well as directly used in the knowledge-based and 
expert systems for dry milling applications in industrial practices.  
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Green Machining for the Dry Milling Process of Stainless Steel 304

Abstract: 

Dry machining represents an eco-friendly method that reduces the environmental impacts, saves 

energy costs, and protects operator health. This paper presents a multi-response optimization 

which aims to enhance the power factor and decrease the energy consumption as well as the 

surface roughness for the dry machining of a stainless steel 304. The cutting speed (V), depth of 

cut (a), feed rate (f), and nose radius (r) were the processing conditions. The outputs of the 

optimization are the power factor, energy consumption, and surface roughness. The relationships 

between inputs and outputs were established using the radial basis function models. The 

experimental data were normalized, with the use of the grey relational analysis. The principal 

component analysis is applied to calculate the weight values of technical responses. The 

desirability approach is used to observe the optimal values. The results showed that the technical 

outputs are primarily influenced by the feed rate and cutting speed. The reductions of energy 

consumption and surface roughness are approximately 34.85 % and 57.65 %, respectively, and 

the power factor improves around 28.83 %, compared to the initial process parameter settings. 

The outcomes and findings of the investigated work can be used for further research in 

sustainable design and manufacturing as well as directly used in the knowledge-based and expert 

systems for dry milling applications in industrial practices.  

Keywords: Dry milling; Power factor; Energy consumption; Sustainable Manufacturing; 

Principal component analysis; Radial basis function.
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1. Introduction

In wet machining, liquid coolant is normally used to reduce the temperature of both 

workpiece and cutting tool, as well as to evacuate chips from the cutting area, with hundreds of 

thousands of gallons of coolant fluid used per year, causing a lot of money spent and poor 

environmental impacts 1. The total cost of the lubrication accounts for 7-17 % of the cutting tool 

cost, and it is even greater than overhead and labor costs 2. Fortunately, dry machining is 

becoming more prevalent, especially in milling, and it is considered as one of the eco-friendly 

machining processes, with good environmental impacts and cost-effectiveness. With the 

emerging trends of sustainable design and manufacturing, dry machining is considered as one of 

the green solutions to enforce environmental protection laws for occupational safety and health 

regulations; and it is an effective solution for sustainable manufacturing, especially to help to 

minimize the use of lubricants that cause air and water pollutions.

The improvements in the technical parameters of dry machining processes have been 

considered by many researchers3-5. Fundamentally, the technical outputs of a machining process, 

including the surface integrity, cutting temperature, and tool life were improved by means of 

optimization of process parameters (or machining factors) 6, 7. Babu et al. 8 analyzed the surface 

roughness and vibration for the orthogonal milling. The temperature variations in the workpiece 

and cutting tool were explored for the dry machining of Inconel 718 9. The surface integrity was 

improved for milling processes of the Al-Zn-Mg-Cu alloy 10, aluminum 11, Ti-6Al-4V alloy 12, 

and the hard turning of AISI 52100 13. The grey relational analysis (GRA) was applied to achieve 

optimum inputs that maximize the surface properties, energy criteria, and production rate 14. 

Krolczyk et al. 15 found that a longer tool life can be obtained under dry cutting compared to the 

lubricant condition. Additionally, Baowan et al. 16 revealed that the surface roughness and tool 

life were significantly influenced by the cutting angle and tools. Pham et al. 17 stated that the 

tool-chip contact length, the workpiece vibration, and the surface roughness were increased with 
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increasing cutting depth and feed rate for the dry milling of A6061 aluminum alloy. Jahan et al. 

18 concluded that the mid-level of the feed and depth of cut could be used to decrease the tool 

wear and surface roughness in the milling of polycarbonates. Mia and Dhar 19 emphasized that 

specific cutting energy was influenced favorably by the increase in cutting speed. 

Recently, the trade-off between energy consumption, surface integrity, and productivity 

has been explored in the works of literature. As part of trade-off among responses, Khan et al. 20 

conducted multi-response optimization for the face milling of steel to attain improved surface 

quality, material removal quantity and cutting energy. From conventional statistics-based 

approaches to advanced neural and evolutionary algorithms are continually used for computation 

of the best trade-off. For instance, Mia et al. 21 performed intelligent optimization of the 

machining process from the perspective of smart manufacturing. On the other side, the response 

surface methodology (RSM) was applied to analyze the impacts of input process parameters on 

energy consumption 22, power consumption, cutting force, and surface roughness 23. Similarly, 

the multi-objective optimizations were performed in order to minimize the energy consumption 

in the dry turning of stainless steel 24. Zhang et al. 25 proposed the relations between the process 

parameters on the total processing time, specific energy consumption, and carbon emissions. 

Song et al. 26 developed a new model to predict the machining forces in multi-axis milling. The 

impacts of the process parameters on the machining energy for the micro-milling composites 

were analyzed by Kuram 27. The stress field distribution on a cutter in the milling of titanium 

alloy was analyzed based on the empirical models of the milling force and the contact area 

between the cutter and the chip 28. As a result, various approximation methods and optimizing 

techniques were used to render the relationship between the processing conditions and output 

criteria and to find the optimum process parameter. The different performances measured were 

optimized and improved by means of the optimum factors. However, the drawbacks of the 

published works can be listed as bellow:
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The outputs response parameters of the machining process such as the energy 

consumption, cutting forces, quality of the machined part, and tool life were widely considered 

in the published works. Practically, the power factor (the ratio of the active power consumption 

and the apparent power) is necessary to be considered as an important technical parameter for 

maximizing energy efficiency.

The stainless steels are widely used for manufacturing components used in the 

automotive and aerospace industry as well as in medical sector 29, 30. Unfortunately, it is difficult 

to machine this material due to work hardening, high surface roughness, high tool wear, and low 

production rate. Furthermore, machining stainless steel is required higher energy consumption 

because of low thermal conductivity and high heat capacity. Therefore, it is necessary and 

important to develop optimization models to support the decision-making process and predicting 

the values of the power factor (PF), energy consumption (EC), and surface roughness (Ra) for 

dry machining applications.

As a result, a few studies have focused on the process parameters optimization for 

improving the technological performances of the dry machining processes. However, 

optimizations of the machining process parameters and cutting tool’s geometry for simultaneous 

improvements of the power factor (PF), energy consumption (EC), and surface roughness (Ra) 

have not been considered in the aforementioned works; and these were investigated and 

presented in details in this study. Furthermore, the optimal results directly selected from 

experimental data may fall into the trap of local optimization.

In order to overcome the above-mentioned drawbacks of the published works, in this 

study, a multiple-response optimization of machining parameters of the dry milling process, for 

the case of stainless steel 304, was considered and applied; it aims to simultaneously enhance the 

power factor (PF), energy consumption (EC), and surface roughness (Ra). In addition, it was 

well-recognized that the effects of machining process parameters as the inputs for the 
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optimization may contribute to the variations of the measured performances of the machining 

operation. Therefore, an effective approach for modeling dry milling behavior and optimizing 

the processing factors in terms of improving working performances is still a significant 

contribution.

The rest of the paper is organized as follows. Section 2 presents the methods used for the 

proposed optimization problems. Section 3 presents the experimental setting and measurements.  

Section 4 presents results and discussions.  Finally, summaries and conclusions are presented in 

Section 5.

2. Methods

2.1 Optimizing issue

The power factor (PF) is defined as the ratio of the active power consumption (APC) to 

the apparent power (APP), as shown in Eq. 1.

2 2

APC APCPF
APP APC RP

 


(1)

The power transmitted from the electrical source to the device contains two sub-

components, including the active power and reactive power (RP). The active power characterizes 

the useful capacity of the device. Reactive power does not produce any productive work but it is 

necessary for energy transformation. Reactive power significantly creates a magnetic field for 

transferring electrical energy into other forms of energy. The apparent power is the vector sum of 

the active power and reactive power. The higher the power factor, the higher the active power 

and the device will produce more useful power. In fact, the power factor depends on a load of 

electrical equipment 31. For a milling machine, most of the sub-systems have a variable speed and 

variable operating load, which leads to the changes in the power factor. The variations of 

machining conditions, such as the cutting speed, feed, depth of cut, nose radius, lubrication 
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conditions, and workpiece materials, may cause the variable loads; hence the power factor 

changes. Therefore, when considering the power consumption of a machining process, the 

selection of relevant machining conditions to enhance the power factor is always necessary and 

important.

The average value of the power factor is calculated at the fifteen positions over the 

cutting time. Here, PF is computed using Eq. 2.

1

1 n

i
i

PF PF
n 

  (2)

where PFi and n are the power factor at the i position and the total measured point, respectively.

Figure 1 presents a typical total energy consumed in a machine tool that can be divided 

into four components, including the setting energy, air cutting energy, cutting energy, and tool 

changing energy. Practically, the energy consumed for setting, air cutting, and tool changing 

times can be considered as constant values due to their less dependence on processing conditions 

(machining process parameters: cutting speed, depth of cut, feed rate, and nose radius). 

Therefore, the energetic objective in this work focuses on energy consumption in the cutting 

stage which is effectively used to remove the material from the workpiece. In this study, the 

energy consumption (EC) in cutting time is calculated using Eq. 3:

 c cEC P t  (3)

where Pc and tc denote the power consumed and the cutting time, respectively.

Table 1 presents the processing inputs, including the cutting speed (V), depth of cut (a), 

feed rate (f), and nose radius (r) for a multi-response optimization, which aims to enhance 

simultaneously the power factor and decrease the energy consumption and surface roughness in 

the dry machining. The levels of the processing inputs are determined based on the common 

values used in the milling processes of the automotive components and verified by cutting tool's 

handbooks.
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2.2 Optimizing framework

The systematic optimization procedure is shown in Fig. 2, including 5 sequential steps 

presented as follows:

Step 1: The machining runs are conducted according to the experimental matrix 

generated by the Box-Behnken method (BBM) 32. BBM is chosen due to an acceptable balance 

between predictive accuracy and economy. The Box-Behnken method is an effective method, 

which combines a two-level factorial design. Three required levels of each factor are “1”, “0”, 

and “+1”, which present the low, middle and high levels. The number of design points is placed 

on the midpoints of the edges and the center of the block. BBM is more efficient than the other 

techniques, such as central composite and full factorial designs due to a lower number of 

experiments, which significantly contribute to experimental costs and time. The full factorial 

designs are costly in terms of real-machining experiments when the factor number is higher than 

2. Moreover, BBM does not present the parameter combinations at their highest or lowest levels. 

The experiments are avoided to perform at extreme conditions, which may lead to unsatisfactory 

results.

Step 2: The PF, EC, and Ra models are then developed with respect to process parameters 

using the RBF approximate approach.

Step 3: Normalization of the experimental data using the GRA 33.

The normalized value for the response with the “smaller-the-better” characteristic is 

calculated using Eq. 4.

* max ( ) (k)( )
max ( ) min (k)

i i
i

i i

x k xx k
x k x





(4)

The normalized value for the response with the “higher-the-better” characteristic is 

computed with the help of Eq. 5. 

* ( ) min (k)( )
max ( ) min (k)

i i
i

i i

x k xx k
x k x





(5)

Page 21 of 61

http://mc.manuscriptcentral.com/JOEM

Journal of Engineering Manufacture

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

9

where xi(k) denotes the actual value. Additionally, max xi(k) and min xi(k) are the maximum and 

minimum values of the response, respectively.

The deviation sequence Δi(k) is calculated by applying Eq. 6.

* *
0( ) ( ) ( )i ik x k x k   (6)

The value of the grey relation coefficients ξi(k) for each response is calculated according 

to Eq. 7.

min max

max

*( )
( ) *i

i

k
k




  


  
(7)

where Δmax and Δmin are the maximum and minimum values of Δi(k), respectively. ξ denotes the 

distinguishing factor.

Step 4: Determining the weight values of performances using the principal component 

analysis (PCA).

The correlation coefficient from the grey relation coefficient is calculated using Eq. 8.

, j = 1,2, ... m, l = 1, 2, ... n.
( ( ), ( ))
( )* (l)

i i
jl

i i

Cov x j x lR
x j x 

 
  

 
(8)

where xi(j) and cov(xi(j),xi(l)) are the grey relational coefficient and the covariance of the 

response, respectively. Additionally, σxi(j) and σxi(l) are the standard deviations of the response, 

respectively. The eigenvalues and consequent eigenvectors are determined by applying Eq. 9.

( ) V 0k m ikR I  (9)

where λk, Vik, and Im represent the eigenvalue, the eigenvector, and the identity matrix, 

respectively. Therefore, the principal component is obtained using Eq. 10.

1
( )

n

m ik
i

Ymk x i V


  (10)

where xm(i) and Ymk are the normalized response variable and the principal component, 

respectively.

Step 5: Determining the optimal parameters using the desirability approach (DA). 
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The DA is applied to transform the response yi(x) into an individual desirability function 

di (0≤di≤1) for achieving the desired value. The value of di lies between 0 and 1, when di = ‘1’. It 

indicates that the ideal response is achieved. The optimal results of the response are adjusted 

with different weight values. The targets are combined into the desirability function (D) for 

multi-objective and processing factors. The optimal factors are determined based on the 

maximum value of the desirability function.

The di is calculated with respect to the maximizing goal, as shown in Eq. 11.

0,

,

1, Y

( )
i i

wi i
i i i i

i i

i i

Y L
Y L

d L Y H
H L

H




   










(11)

The di is calculated with respect to the minimizing goal, as shown in Eq. 12.

0,

,

1, Y

( )

i i

i w
i i i i

i i

i i

i

Y L
H Y

d L Y H
H L

H




   










(12)

The di is calculated with respect to the target, as shown in Eq. 13.

1

2

,

,

0,

w

i i
i i i

i i

w

i i
i i i i

i i

d

Y L L Y T
T L

Y H T Y H
T H
otherwise



 
    

     






(13)

The di is calculated with respect to the range, as shown in Eq. 14.

1,
0,otherwise

i i iL Y H
di

 
 


(14)

where Li, Hi, Ti, and wi are the low, high, target, and weight values of the ith response, 

respectively. 

The value of the desirability function of the response is calculated by means of Eq. 15.

1/

1

i
ri
i

rN
d

i
D

 
    

 (15)

where N is the number of the measured responses.
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2.3 Radial Basis Function model

RBF (radial basis function) is one kind of neural networks using a hidden layer of radial 

units and an output layer of linear units, which is applied to interpolate the data points. RBF 

approximations are characterized by the reasonably fast training and compact networks. They are 

useful in approximating a wide range of nonlinear spaces. The RBF is expressed as a formula in 

Eq. 16 34.

 
1

( ) (
n

i i
i

F x x x bx C


    (16)

where γ is a positive constant. λi, b, and c are the parameters to be determined, respectively, 

which are obtained by Eq. 17 &18 in the matrix form.

0 0T

P F
P a
      

    
     

(17)

, , , , 

1

2

1
1
. .
. .
. .
1

T

T

T
n

X
X

P

X

 
 
 
    
 
 
 
  

1

2

.

.

.

n








 
 
 
    
 
 
 
  

2

.

.

.

d

c
b

a

b

 
 
 
    
 
 
 
  

1

2

.

.

.

d

b
b

b

b

 
 
 
    
 
 
 
  

1

2

2

( )
( )
.
.
.

( )

f x
f x

F

f x

 
 
 
    
 
 
 
  

(18)

where ϕ and d are the n × n matrix and the dimension of vector X, respectively.

In this study, the multi-quadratic models of the radius basic function are used to render the 

nonlinear approximations, which are presented using Eq. 19.

2 2(r) r   (19)
Four evaluating criteria, including the R2 value, the root mean square error (RMSE), the 

max absolute error (MAE), and the average absolute error (AAE) are used to investigate the 

predictive accuracy of the RBF models.

R-squared (R2) presents the coefficient of determination, between 0 and 1 where R2 = 1 

means no error between the observed an approximated values. The R2 coefficient is defined as 
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the ratio of explained variation to total variation. R-squared is a statistical measure of the degree 

of fit. The value of R2 is computed as follows:









i
ii

i
ii

yy

yy
R 2

2

2

)(

)ˆ(
1 (20)

where n,  and are the number of test points, the observed value, the mean of observed ii yy , iŷ

value, and the approximated value, respectively.

The root mean square error (RSME) is a quadratic scoring rule, which is used to measure 

the average magnitude of the error. In other words, it’s the square root of the average of squared 

differences between prediction and actual observation. The value of RSME is calculated as 

follows:

2

1

ˆ( )
n

i i
i

y y
RMSE

n





 (22)

The maximum absolute error (MAE) denotes the maximum difference between observed 

and approximated values. The value of MAE is computed as follows:

max i iMAE y y  $ (22)

The average absolute error (AAE) presents the average difference between observed and 

approximated values. The value of AAE is calculated as follows:

1

n
i ii

y y
AAE

n





 $
(23)

3. Experimental setting and measurements

Milling tests were performed in a Spinner U620 machining center (Fig. 3a). The 

dimensions of machining specimens were 350 mm×150 mm×25 mm. The tool holder equipped 

with two inserts is 12 mm in diameters. The different wiper inserts having 0.2 mm, 0.4 mm, and 

0.8 mm of the nose radius are used in the milling trials. 
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Power Meter KEW6305 was used to measure the power consumption during the milling 

process. Three clamp sensors were connected to the three-phase power lines of CNC machine 

with correct direction. The observed data was stored on a flashcard and analyzed with the aid of 

the KEW6305 software on the computer, as shown in Fig. 3b.

The surface roughness was measured using a tester Mitutoyo SJ-301 in the vertical and 

horizontal directions. The average values of the roughness properties were observed from five 

different points (Fig. 3c).

 The representative values of the active power consumed at different inputs are depicted 

in Fig. 4. The profiles of the surface roughness are shown in Fig. 5. The variations of the power 

factor in the processing time are illustrated in Fig. 6.

4. Results and discussion

4.1. Investigation of model accuracy

The experimental results of the dry milling process are given in Table 2. 

The values of the R2, RMSE, MAE, and AAE for three technical responses are listed in 

Table 3. The R2-values of the PF, EC, and Ra are 0.9954, 0.9921, and 0.9938, respectively, 

showing the perfect correlation between predicted values and observed values (Fig. 7). This R2 

value is comparable with other established models, reported by 35-37, warranting the acceptance 

of the present model. The small values of the evaluating errors (RMSE, MAE, and AAE) 

indicate the adequacy of the proposed models. 

In this study, the experimental data from 1 to 25 are used to develop the RBF models. 

The experimental data from 26 to 29 are adopted to test the accuracy of the obtained models. The 

comparisons between experimental and predictive values at the random points are shown in Fig. 

8. The small errors indicate that the RBF models are adequate and can be used for the optimizing 

process. 
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4.2. Parametric effects

The effects of the inputs on the power factor shown in Fig. 9 pointed out that the higher 

levels of the processing inputs, including the cutting speed, depth of cut, feed rate, and nose 

radius lead to a higher power factor. Fig. 9a exhibits the impacts of the cutting speed and nose 

radius on the power factor. At a higher value of the cutting speed, the consumed power of the 

motor increases in order to reach the desired value of the spindle speed. Therefore, the active 

power increases, leading to a higher power factor. As nose radius increases, the cutting edge 

becomes curved, which results in more material deformation at the cutting area and thus higher 

energy consumption. Moreover, a larger radius increases the length of the cutting edge; hence, 

more power is consumed to overcome the frictional resistance. Therefore, a higher nose radius 

leads to an increased load on the motor; hence, the power factor improves.

The influences of the feed rate and depth of cut on the power factor are displayed in Fig. 

9b. When the feed and depth of cut increases, the undeformed chip section increases. This results 

in higher machining forces 38, 39; hence the machine tool consumes more power. In fact, an 

increment in the depth of cut or feed rate causes an increased load on the motor to remove a 

higher material volume. As a result, higher active power is observed, resulting in an increment in 

the power factor. 

Fig. 9c shows that f is the most effective parameter on the power factor due to the highest 

contribution regarding single term (22.81 %), followed by a (16.33 %), V (14.98 %), and r 

(10.64 %), respectively. When the feed rate increases, the cutting forces and the cutting 

momentum also increase. Hence, the active power of the servo spindle motor and the feed drive 

motors increases. As a result, the  PF rises up. The feed rate has more effect on the PF than that 

of cutting speed due to the contribution of the active power of the feed drive motors. When the 

feed rate increases, the reaction forces on the X and Y-axis of the feed drive system as well as 

the cutting momentum on the spindle motor increase. Therefore, the total active power of 
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movement system increase. The significant quadratic terms have significant impacts, in which r2 

has the largest contribution (8.42 %); followed by f2 (6.31 %), V2 (5.77 %) and a2 (2.68 %), 

respectively. 

The interaction impacts of the processing conditions on energy consumption are shown in 

Fig. 10. Fig. 10a depicts the impacts of the cutting speed and depth of cut on energy 

consumption. An increment in the depth of cut increases the undeformed chip section and the 

degree of plastic deformation 40. The greater resistance in the chip formation increases and 

higher energy is consumed. As the cutting speed increases, energy consumption significantly 

decreases. An increased cutting speed causes an increment in the temperature of the cutting 

region; hence, the hardness and strength of the workpiece are decreased. The softened part of 

material causes lower machining forces, as compared to its harder state. Additionally, an 

increased cutting speed leads to a decrease in the frictional coefficient and the lower cutting 

force is obtained. Therefore, higher cutting speed generates low cutting forces which result in 

less energy consumption. In contrast, it is obvious that the material removal rate would be higher 

when the cutting speed increased. The process parameters, including the cutting speed, feed, and 

depth of cut determine the material removal rate. An increment in the material removal rate 

requires higher power consumption. Higher rate of material removal required a higher power to 

turn the spindle motor. 

The impacts of the feed rate and nose radius on energy consumption are shown in Fig. 10b. 

Higher feed rate causes a rise in heat generated on the workpiece surface and tool and may lead 

to the formation of build-up-edge (BUE). The BUE can increase the cutting forces due to an 

increment in the contact area between the cutting tool and workpiece, resulting in higher power 

consumed. Additionally, the BUE causes an increase in the cutting tool temperature, which leads 

to an increase in the mechanical strength of the chip due to the work-hardening behavior. 

Obviously, higher power consumed is required to detach material. Fortunately, a higher value of 
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the feed rate or cutting speed leads to a decrease in the cutting time, resulting in a reduction in 

the energy consumed. Reduction in energy consumption with an increase in feed rate and/or 

cutting speed is logical because it results in faster machining and less processing time 41. It is 

inferred from Fig. 10b that an increased radius leads to an increment in cutting edge; hence, the 

cutting tool becomes blunt. The degree of the material deformation increases and more energy is 

required to overcome the resistance friction 42. 

In Fig. 10c,  it is found that f is the most effective parameter on energy consumption due to 

the highest contribution regarding single term (29.78 %), followed by V (19.55 %), a (5.00 %), 

and r (2.92 %), respectively. It is observed that energy consumption for the milling process is 

highly sensitive to feed rate as compared to the cutting speed due to the greater impact of the 

feed drive motors. As the feed rate increases, the load of the motor on the feed drive systems 

increases to reach the desired value and higher reaction forces are required. Therefore, the power 

used of movement system increases. The term f2 has the largest contribution with respect to the 

quadratic terms (15.46 %), followed by V2 (9.07 %), r2 (1.11 %) and a2 (0.43 %), respectively.

Fig. 11 depicted the influences of machining parameters on the surface roughness. The 

influences of the cutting speed and nose radius on the surface roughness are shown in Fig. 11a. 

An increment in the cutting speed leads to a decrease in the strength and hardness of the 

workpiece due to an increase in the temperature of the cutting region. The chip produced is 

easily detached from the workpiece, resulting in a reduction in surface roughness. Additionally, 

higher cutting speed reduces cutting forces together with the effect of natural frequency and 

vibration, giving a better surface finish. Moreover, the possibility of the formation of the BUE at 

high cutting speed is comparatively lower and thus generates smoother surfaces. An increased 

radius results in an increment in contact length between the milled surface and tool radius, 

leading to smaller peaks on the trail. The roughness profile is decreased with a high tip radius, 
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resulting in a smoother surface. Additionally, the chatter could be suppressed due to an 

increment in stand damping with an increased radius 43. 

Fig. 11b shows that an increased roughness is associated with the increased feed rate 

and/or depth of cut. At a low value of the feed rate, the distance between the peak and crest of 

the machined surface is short; hence, a smoother surface is produced. An increase in the feed rate 

causes higher distance between the peaks generated by the tool grooves left on the milled 

surface. Therefore, roughness values increase with feed rate due to more feed marks on the 

machined surface. At a higher value of the feed rate, the BUE can result in grooves formation 

and increases the degree of the plastic deformation. The machining parts of the workpiece are 

heavily detached from the surface, leading to a worsening surface 44. As the depth of cut 

increases, the contact area between the workpiece and the cutting tool increases, resulting in an 

increment in the material removal volume and cutting forces. It is also possible that the 

increment in the cutting forces, due to the increase of depth of cut above the stability lobe, 

caused chatter in machine tool which eventually resulted in poor surface finish i.e. an increase in 

surface roughness 45. Low depth of cut should be used to decrease the tendency of chatter.

Fig. 11c shows the effects of machining parameters on the surface roughness. As a result, 

the percentage contributions of the f, r, a, and V are 17.37 %, 16.26 %, 16.11 %, and 13.91 %, 

respectively. All quadratic factors have significant effects, in which f2 is the most influenced 

factor (14.36 %), followed by V2 (3.69 %), r2 (2.79 %) and a2 (2.54 %), respectively. 

The effects of different processing factors on the machined surface morphology are 

exhibited in Fig. 12. The machined defects such as pits, voids, and grooves are appeared at low 

cutting speed, as depicted in Fig. 12a. The smooth cut and small waviness, as well as grooves, 

are observed at a higher value of the cutting speed (Fig. 12b). The surface faults, including 

cracks, grooves, and valleys are displayed at the highest feed rate (Fig. 12d), as compared to the 

lowest one (Fig. 12c). 
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The wear behaviors of the inserts at various machining conditions are shown in Fig. 13. As 

depicted in Fig. 13a, the wear pattern is not much prominent, no groove or skin depletion. 

However, when the feed rate was increased, the wear pattern shows crater wear on the rake face, 

associated with edge chipped off – the fracture of cutting edge. To support this, it can be seen 

from Table 2, the power factor is increased from 0.566 to 0.752 (32% increase), and the resulted 

surface roughness increased from 0.98 to 1.55 (58% increase). An increased input leads to a 

higher temperature at the nose region, which causes excessive pressure and stress. The 

deformation of the cutting edge is increased with an increment in the factor, leading to the 

reduction of the hardness of the tool. 

4.3. Optimal results

The pre-processing and corresponding values for two objectives after a linear 

normalization are listed in Table 4. The values of the GRC are shown in Table 5. As depicted in 

Table 6, the percentage contribution of the first principal component is 52.00 %, followed by the 

second component (33.20 %) and the third one (14.70 %), respectively. The weight values are 

calculated based on the squares of subsequent eigenvectors of the three principal components. 

Table 7 revealed that the weight values of the power factor (PF), energy consumption (EC), and 

surface roughness (Ra) using the principal component analysis (PCA) method are 0.32, 0.35, and 

0.33, respectively. 

The mathematical formulas showing the relationship between inputs and outputs are used 

to find optimal parameters with the support of the DA. A total of 29 optimal results are observed 

and the point with the D values close to 1 is the best solution. The optimal values of the inputs 

are shown in Fig. 14a. The values of the desirability are depicted in Fig. 14b. The desirability of 

0.97515 revealed that the optimal results observed are reliable and feasible. As revealed in Table 

8, the reduction of the EC and Ra are about 34.85 % and 57.65 %, respectively, while the PF 

increases around 28.83 %, as compared to the initial values.
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To evaluate the effectiveness of the proposed approach, a confirmatory experiment is 

conducted at the optimal solution. The experimental results are exhibited in Fig. 15. The 

comparative results are shown in Table 9. The small errors (below 5 %) indicate that optimal 

results are strongly correlated with the experimental data. The similar ranges for the predictive 

errors can be found in the works of 46, 47. Therefore, the developed approach can be effectively 

applied to the optimization of different milling processes.

As mentioned in the previous section, wet machining with liquid coolants is normally used 

in metal-machining operations and processes to reduce the temperature of both workpiece and 

tool and to evacuate chips from the cutting area. However, the heavy use of coolant fluids is not 

cost-effective and causes poor environmental impacts, especially there are more and more 

concerns regarding safety and environmental legislations applied in manufacturing industries, 

with emerging trends towards sustainable manufacturing. Today, dry machining is considered as 

one of the eco-friendly machining processes, with good environmental impacts and cost-

effectiveness. Dry machining is becoming more prevalent, and it also helps to increase tool life 

when machining the steels, cast iron, and some stainless materials. There have been emerging 

needs and growing efforts to investigate optimal machining process parameters for the dry 

machining operations. This study focuses on the optimization of the machining process 

parameters, aimed to enhance simultaneously the power factor, energy consumption, and surface 

roughness. A study did take into account not only the technical issues related to the machining 

process quality (surface roughness) but also environmental impacts and sustainable 

manufacturing ones: maximizing the power factor and decreasing the energy consumption. A 

specific case study of dry machining of stainless steel 304 was successfully implemented to 

investigate optimizations of the machining process parameters and cutting tool’s geometry for 

simultaneous improvements of the power factor (PF), energy consumption (EC), and surface 

roughness (Ra). The outcomes and findings of the investigated work in this study can be used for 
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further research in sustainable design and manufacturing as well as directly used in the 

knowledge-based and expert systems for dry milling applications in industrial practices.  

5. Conclusions

This paper presents a multi-response optimization which aims to simultaneously enhance 

the power factor (PF), decrease the energy consumption (EC), and improve the machining 

quality via reduction of the surface roughness (Ra), for the specific case of dry machining of 

stainless steel 304. The radial basis function (RBF) models of three technical responses were 

developed in terms of the machining process parameters, including the cutting velocity (V), feed 

rate (f), depth of cut (a), and tool nose radius (r). An integrative approach, including the grey 

relation analysis (GRA), the principal component analysis (PCA), and desirability approach 

(DA) was used to calculate the weight objectives and predict the optimal values of machining 

process parameters (cutting velocity, feed rate, depth of cut, and tool nose radius).  The key 

conclusions of this study can be presented as follows:

1. The RBF models for the power factor (PF), energy consumption (EC), and surface 

roughness (Ra), have R²-values of 0.9954, 0.9921, and 0.9938, respectively. This indicates a 

good agreement between the predicted and experimental values. The proposed optimization 

models adequately exhibit the nonlinear relationships among process parameters and machining 

responses or technical outputs (power factor, energy consumption, and surface roughness). The 

developed correlations can be used to predict the optimal machining process parameters with a 

sufficient accuracy when dry-machining of stainless steel 304. 

2. It can be concluded that the processing conditions, including the cutting speed (V), depth 

of cut (a), feed rate (f), and tool nose radius (r), have significant impacts on the technical outputs, 

including power factor (PF), energy consumption (EC), and surface roughness (Ra). In order to 

increase the power factor, the maximal levels of the process parameters are recommended for 

utilization. The highest values of the cutting speed and feed rate can be used to save the energy 
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consumption, while the lowest levels of the depth of cut and nose radius cause a decrease in 

consumed energy. The low values of the depth of cut and feed rate are recommended to decrease 

the surface roughness. The highest levels of the tool nose radius and cutting speed can be used to 

get a smoother surface.

3. The selection of the weight of objectives could give a better solution to determine the 

optimal machining process parameters. The optimal values of cutting speed (V), depth of cut (a), 

feed rate (f), and tool nose radius (r), are 160 m/min, 0.42 mm, 0.09 mm/z, and 0.8 mm, 

respectively. The power factor improves about 28.83 %, and the energy consumption and surface 

roughness decrease approximately 34.85 % and 57.65 % at the optimal solution using the weight 

values generated by Principal Component Analysis (PCA). 

4. The hybrid approach including the RBF (Radial Basis Function) models, GRA (Grey 

Relation Analysis), PCA (Principal Component Analysis), and DA (Desirability approach) can 

facilitate the optimization of the milling process; and this approach gives a reliable optimal 

solution, as compared to using practical experience or operation guide. 

5. Practically, the variation of the inputs (process parameters: cutting speed, depth of cut, 

feed rate, and tool nose radius) may lead to a conflict or contradictory impacts on the outputs 

(power factor, energy consumption and surface roughness) in dry-milling. In this way, a 

comprehensive optimization should be considered with more objectives, such as surface 

properties, tool life, and machining productivity.
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Notation

a Depth of cut

f Feed rate

r Nose radius

AAE Average absolute error

BBM Box-Behnken method

BUE Build-up-edge

CNC Computer Numerical Control 

DA Desirability approach

DM Dry machining

EC Energy consumption

GRA Grey relational analysis

GRC Grey relation coefficient

MAE Max absolute error

PCA Principal component analysis

PF Power factor

Ra Surface roughness

RBF Radial basis function

RMSE Root mean square error

RSM Response surface methodology

SEM Scanning electron microscopy

V Cutting speed
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Figure 13. SEM images of the worn tool’s rake surface at various machining conditions: (a) 

Experiment no. 16, (b) Experiment no. 20

Figure 14. Optimization results generated by DA: (a) Optimal values, (b) Bar graph of the 

desirability

 Figure 15. Experimental results at the optimal solution: (a) Power consumed, (b) Power factor, 

(c) Surface roughness 
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Figure 1. The profile of power consumption with respect to time indicating different cutting 
stages

Figure 2. Systematic diagram showing the optimizing procedure

Page 44 of 61

http://mc.manuscriptcentral.com/JOEM

Journal of Engineering Manufacture

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

4

a. b. c.

Figure 3. Experiments and measurements: (a) Dry milling experiments,
(b) Power measurements, (c) Measuring surface roughness

a. b. 

c. d. 5
Figure 4. The power consumption at various machining conditions:

(a) Experiment no. 1 (Replication-2), (b) Experiment no. 2 (Replication-2),
(c) Experiment no. 9 (Replication-3),  (d) Experiment no. 13 (Replication-3)
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a. b. 

c. d.
Figure 5. Surface roughness at various machining conditions:

(a) Experiment no. 1 (Replication-2), (b) Experiment no. 11 (Replication-3),
(c) Experiment no. 16 (Replication-4), (d) Experiment no. 21 (Replication-3)
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a. 

b. 

c. 
Figure 6. The variations of the power factor at various machining conditions:
(a) Experiment no. 11 (Replication-3),  (b) Experiment no. 20 (Replication-3),

(c) Experiment no. 24 (Replication-2)
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a. b. c.

Figure 7. Investigation of adequacy of RBF models: (a) Power factor, (b) Energy consumption,
(c) Surface roughness

a. b. c.

Figure 8. Validation of the accuracy for RBF models: (a) PF model, (b) EC model, (c) SR model
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a. b.

c.
Figure 9. The effects of machining parameters on the PF model: (a) PF versus V and r, 

(b) PF versus a and f, (c) Parameter contributions for the PF model
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a. b. 

c. 
Figure 10. The effects of machining parameters on the EC model: (a) EC versus V and a, 

(b) EC versus r and f, (c) Parameter contributions for the EC model
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a. b.

c.
Figure 11. Interaction effects of machining parameters on the Ra model: (a) Ra versus r and V, 

(b) Ra versus f and a, (c) Parameter contributions on the Ra model
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a. b.

c. d. 

Figure 12. SEM of surface morphology at various conditions:  (a) Experiment no. 4,
(b) Experiment no.12, (c) Experiment no.1, (d) Experiment no. 7

a. b.
Figure 13. SEM images of the worn tool’s rake surface at various machining conditions:

(a) Experiment no. 16, (b) Experiment no. 20

Crater wear

Edge chipped off
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a.

b.

Figure 14. Optimization results generated by DA: (a) Optimal values, (b) Bar graph of the 

desirability
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a. 

b. 

c. 
Figure 15. Experimental results at the optimal solution: (a) Power consumed, (b) Power factor, 

(c) Surface roughness
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   Table 1. Processing conditions 
Symbol Parameters level-1 level 0 level +1

V Cutting speed (m/min) 60 110 160
a Depth of cut (mm) 0.2 0.6 1.0
f Feed rate (mm/z) 0.04 0.08 0.12
r Nose radius (mm) 0.2 0.4 0.8

Table 2. Experimental results
No. Cutting speed 

V (m/min)
Depth of cut 

a (mm)
Feed rate  
f (mm/z)

Nose radius 
r (mm)

Power factor
PF

Energy 
consumption

EC (kJ)

Surface 
roughness
Ra (µm)

1 110 0.2 0.04 0.4 0.518 50.33 0.45
2 110 0.6 0.12 0.8 0.867 25.46 1.08
3 110 0.6 0.08 0.4 0.652 31.56 0.85
4 60 0.6 0.08 0.2 0.611 53.66 1.34
5 160 0.6 0.12 0.4 0.851 18.42 0.95
6 60 0.6 0.12 0.4 0.736 42.6 1.47
7 110 0.2 0.12 0.4 0.690 21.99 1.14
8 60 0.6 0.08 0.8 0.685 59.13 0.78
9 60 1.0 0.08 0.4 0.703 61.68 1.31
10 110 1.0 0.12 0.4 0.868 26.72 1.49
11 110 1.0 0.08 0.2 0.732 35.41 1.42
12 160 0.6 0.08 0.2 0.719 22.84 0.89
13 160 1.0 0.08 0.4 0.835 27.26 0.79
14 60 0.2 0.08 0.4 0.547 48.96 0.82
15 160 0.6 0.04 0.4 0.690 44.62 0.47
16 110 0.6 0.04 0.2 0.566 54.03 0.98
17 60 0.6 0.04 0.4 0.529 94.95 0.82
18 110 1.0 0.04 0.4 0.659 63.82 1.06
19 160 0.2 0.08 0.4 0.671 22.07 0.41
20 110 0.6 0.12 0.2 0.752 23.74 1.55
21 110 0.6 0.04 0.8 0.648 62.35 0.52
22 160 0.6 0.08 0.8 0.862 26.68 0.36
23 110 0.2 0.08 0.2 0.576 28.23 0.91
24 110 0.2 0.08 0.8 0.681 32.95 0.48
25 110 1.0 0.08 0.8 0.843 39.02 0.89
26 80 0.4 0.06 0.4 0.533 53.50 0.45
27 100 0.8 0.02 0.4 0.563 86.83 1.08
28 130 0.5 0.10 0.8 0.817 22.98 0.85
29 150 0.9 0.05 0.2 0.712 39.61 1.34
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Table 3. The values of evaluating criteria
Responses R2 RMSE MEA AAE

PF 0.9954 0.0049 0.0152 0.0032
EC 0.9921 0.0076 0.0178 0.0046
Ra 0.9938 0.0064 0.0166 0.0039

Table 4. Pre-processed and deviation results
Pre-processed data xi(k) Deviation sequences Δ0i(k)No.

Power factor
PF

Energy consumption
EC 

Surface 
roughness

Ra 

Power factor
PF

Energy consumption
EC 

Surface 
roughness

Ra 

1 0.00 0.58 0.92 1.00 0.42 0.08
2 1.00 0.91 0.39 0.00 0.09 0.61
3 0.38 0.83 0.59 0.62 0.17 0.41
4 0.27 0.54 0.18 0.73 0.46 0.82
5 0.95 1.00 0.50 0.05 0.00 0.50
6 0.62 0.68 0.07 0.38 0.32 0.93
7 0.49 0.95 0.34 0.51 0.05 0.66
8 0.48 0.47 0.65 0.52 0.53 0.35
9 0.53 0.43 0.20 0.47 0.57 0.80
10 1.00 0.89 0.05 0.00 0.11 0.95
11 0.61 0.78 0.11 0.39 0.22 0.89
12 0.57 0.94 0.55 0.43 0.06 0.45
13 0.91 0.88 0.64 0.09 0.12 0.36
14 0.08 0.60 0.61 0.92 0.40 0.39
15 0.49 0.66 0.91 0.51 0.34 0.09
16 0.14 0.53 0.48 0.86 0.47 0.52
17 0.03 0.00 0.61 0.97 1.00 0.39
18 0.40 0.41 0.41 0.60 0.59 0.59
19 0.44 0.95 0.96 0.56 0.05 0.04
20 0.67 0.93 0.00 0.33 0.07 1.00
21 0.37 0.43 0.87 0.63 0.57 0.13
22 0.98 0.89 1.00 0.02 0.11 0.00
23 0.17 0.87 0.54 0.83 0.13 0.46
24 0.47 0.81 0.90 0.53 0.19 0.10
25 0.93 0.73 0.55 0.07 0.27 0.45
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Table 5. Values of grey relational coefficients (GRC) 
Grey relation coefficientNo.

Power factor
PF

Energy consumption
EC 

Surface roughness
Ra 

1 0.33 0.55 0.87
2 1.00 0.84 0.45
3 0.45 0.74 0.55
4 0.41 0.52 0.38
5 0.91 1.00 0.50
6 0.57 0.61 0.35
7 0.50 0.91 0.43
8 0.49 0.48 0.59
9 0.51 0.47 0.39
10 1.00 0.82 0.34
11 0.56 0.69 0.36
12 0.54 0.90 0.53
13 0.84 0.81 0.58
14 0.35 0.56 0.56
15 0.50 0.59 0.84
16 0.37 0.52 0.49
17 0.34 0.33 0.56
18 0.46 0.46 0.46
19 0.47 0.91 0.92
20 0.60 0.88 0.33
21 0.44 0.47 0.79
22 0.96 0.82 1.00
23 0.37 0.80 0.52
24 0.48 0.72 0.83
25 0.87 0.65 0.53

Table 6. Eigenvalues and proportions of the principal components
Principal component Eigen values Proportion (%)

First 1.5614  52.00
Second 0.9973 33.20
Third 0.4412 14.70

Table 7. Eigenvectors and contributions for the principal components 
EigenvectorsCharacteristics

The first principal 
component

The second principal 
component

The third principal
component

Weight 
value

PF 0.706  0.013  -0.708 0.32
EC 0.695 0.179   0.696 0.35
Ra -0.135  0.984  -0.117 0.33
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Table 8. Optimization results 
Optimization parameters ResponsesMethod

Cutting 
speed 

V 
(m/min)

Depth 
of cut 

a 
(mm)

Feed 
rate  

f 
(mm/z)

Nose 
radius 
r (mm)

Power 
factor

PF

Energy 
consumption

EC (kJ)

Surface 
roughness
Ra (µm)

Initial 110 0.60 0.08 0.4 0.652 31.56 0.85
DA 160 0.42 0.09 0.8 0.840 20.56 0.36

Improvement (%) 28.83 -34.85 -57.65

Table 9. Results of confirmatory experiment
ResponsesMethod

Power factor
PF

Power 
consumption

Pc (W)

Energy 
consumption

EC (kJ)

Surface 
roughness
Ra (µm)

DA 0.840 1746 20.56 0.36
Confirmatory experiment 0.836 1752 20.63 0.35

Error (%) 0.48 0.34 0.34 2.78
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