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Two-process constitutive model for semicrystalline polymers across

a wide range of strain rates.

Michael I. Okerekea,∗, Ambrose I. Akpoyomarea

aDepartment of Engineering Science, University of Greenwich, Kent, United Kingdom

Abstract

The presence of crystalline and amorphous phases in semicrystalline polymers presents inter-
esting constitutive modelling challenges. In this study, a physically based, three-dimensional
constitutive model has been developed for simulating a wide range of features observed in
deformation and processing of semicrystalline polymers. The proposed model combines into
one constitutive model such features as: multiple viscoelastic relaxation processes, very
wide strain-rate range, temperature-dependence, adiabatic heating, structural rejuvenation;
in addition to it being applied to a semicrystalline polymer. The constitutive mathemat-
ics is based on a one-process glass-rubber model for amorphous polymers. It adapts that
model to semicrystalline polymers by extending it to two relaxation processes: one asso-
ciated with the glass transition of the mobile amorphous phase; the other associated with
relaxation of the crystalline fraction and its associated rigid amorphous phase. In particular,
two dominant processes were identified: the α-process and the β-process. The model has
been implemented numerically into a commercial finite element code through a user-defined
material subroutine (UMAT). The model has been validated against compression test re-
sults carried out on polypropylene. Also, the model predicts very well the experimentally
observed nonlinear rate-dependent response and post-yield de-ageing of polypropylene.

Keywords: semicrystalline polymers, polypropylene, constitutive modeling, nonlinear
rate-dependent response

1. Introduction1

The varied uses of polymers and polymer-based materials in structural designs have be-2

come commonplace. This is helped by advances in material science, processing techniques3

and the development of predictive models to predict, reliably, the constitutive responses4

of the polymeric constituents. The modelling of polymers is complicated by their diverse5

nonlinear phenomena which have been widely reported in literature[1, 2, 3].6
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The abundance of research into the physics of polymer deformation has increased the1

understanding of the origin of the many nonlinear phenomena of polymers. Several simple2

models have been developed to model different features of the polymer behaviour. It re-3

mains a key objective to develop a robust predictive tool that captures the whole range of4

mechanical responses of solid polymers ranging from linear elastic, viscoelastic, viscoplastic5

to several nonlinear viscoelastic and post-yield phenomena.6

7

A lot has been published on the constitutive modelling of amorphous polymers. Some8

of the widely cited authors are Haward[4, 5], Boyce and co-workers[6, 7, 8], Meijer and co-9

workers[9] as well as the so-called glass-rubber model [10, 11, 12]. The amorphous polymers10

are monophasic while semicrystalline polymers (SCPs) are multiphasic consisting of mo-11

bile amorphous, crystalline and rigid amorphous fractions/phases. Unlike the amorphous12

polymers, the multi-phase structures of semicrystalline polymers present a significant com-13

plication in understanding and quantitatively describing their plastic deformation.14

15

The microstructure of a semicrystalline polymers is composed mainly of lamellar crys-16

tallites (typically 20% to 80% by volume) embedded within a matrix of amorphous macro-17

molecular system. The crystalline system act as tie molecules and bind the amorphous phase18

together. Also, there exists a third phase called the rigid amorphous fraction, which shows19

kinetics distinct from the crystalline or amorphous phases [13]. Stacks of layered lamellae20

are typically the basic building blocks of spherulites. These units link with one another21

to form a hierarchical superstructure of the semicrystalline polymer [14]. Therefore, the22

constitutive behaviour of semicrystalline polymers is intrinsically linked to the viscoelastic23

behaviour of the underlying microstructure. Understanding the deformation mechanisms24

of these in relation to their observed macroscale deformation kinetics is central to reliable25

prediction of the constitutive behaviour of semicrystalline polymers.26

27

The earliest models to exploit the principle described above were pioneered by works of28

such authors as Hay and Keller[15], Peterlin[16, 17], Schultz [18], and Galeski et al. [19],29

amongst others. These pioneers opined that the plastic deformation of semicrystalline poly-30

mers involves several mechanics of deformation of the crystalline and amorphous phases31

for example: slip along certain crystallographic planes, twinning, martensite transforma-32

tions, interlamellar sliding and even lamellar separation [20]. The limitations from these33

microstructure-based models lie in the fact that they tend to only predict deformations34

along simple loading paths, and cannot quantitatively describe stress-strain curves arising35

from complex loading conditions (e.g. load-unload) as well as the microstructural transfor-36

mations induced by the deformations of the different phases [21]. To date, there remains37

the research gap of developing a holistic constitutive model for SCPs capable of capturing38

complex loading history and microstructural transformations arising from the distinct mech-39

anisms of the individual phases of SCPs across a wide range of strain rates, temperature40

regimes and post-yield mechanics.41

42

In the last two decades, several research efforts have been directed towards constitutive43

modelling of semicrystalline polymers. The existing constitutive models can be classed in44

three dominant categories: the composite-mechanics models [22]; the lamella-[23, 24, 25] and45
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crystal-plasticity models [26]; and finally, the polymer macromolecular deformation models1

[27, 28, 29, 30, 31, 32]. The composite-mechanics models apply the modelling principles of2

composite materials to describe constitutive models for SCPs. The amorphous polymer is3

described as the matrix system while the crystalline phases are considered as reinforcing4

inclusions. Such models are known to predict reliably linear viscoelastic behaviour of SCPs,5

but at finite strains and post-yield deformation, the models fail to capture the complex6

nonlinear responses of semicrystalline polymers.7

8

Also, the lamella- and crystal-plasticity models focus on describing deformation of the9

complex microstructure of semicrystalline polymers, using metal plasticity arguments. They10

also are quite good at predicting small-strain, quasi-static responses of these polymers how-11

ever, as the microstructure evolves under load following breakup of the spherulitic structure12

of the SCPs, these models fail to capture the observed mechanical response.13

14

The third modelling category is the most promising and exploits the polymer macro-15

molecular deformation kinetics. Quite a lot of publications already exist for monophasic16

(amorphous) systems and such models can be adapted to capture the unique features of17

SCPs. Here, we consider a few of these models. Bardenhagen and co-workers [33] proposed18

a 3D finite deformation viscoplastic model by the addition of stresses which relates to vis-19

coelastic and elastic-plastic constitutive model components. The model has been used by20

Hasanpour and Ziaei-Rad [34] to describe the nonlinear material behaviour of polytetraflu-21

oroethylene (PTFE).22

23

Hong and co-workers [35, 36] also proposed a tensile-deformation-only three-component24

model of SCPs. The authors postulated that the cumulative tensile deformation response25

of SCPs can be divided into three constituent quasi-static stresses arising from: a relax-26

ing stress, σr; a crystal block stress, σc; and a network stress, σn. The model was vali-27

dated reliably using experiments carried out on ultra-high molecular weight polyethylene28

(UHMWPE). This modelling approach is motivated by the need to address the structural29

complexity of SCPs.30

31

Also, another model that has found wide application in describing the plastic deforma-32

tion of semicrystalline polymers is the so-called interpenetration network model [37, 38, 14].33

The model is suitable for describing the constitutive behaviour of melt-crystallized semicrys-34

talline polymers made by quenching, for example. According to the model, the polymer is35

composed of a rigid crystal network that penetrates a soft crystallite of enhanced amorphous36

matrix network [39, 38]. The crystal block is formed by a small portion of crystallites which37

adhere to one another through a network of intercrystalline links [40]. The crystal network38

deformation (during necking) is governed by a Takayanagi tie molecule model [41] while the39

deformation of the amorphous network follows an affine deformation provided the elongation40

temperature (TE) is above the glass transition temperature (Tg) of the amorphous phase [38].41

The interpenetrating model is essentially a network model in which the macromolecular net-42

work strands of the amorphous phase have their ends anchored by either entanglements or43

stacks of rigid crystallites. The interpenetrating network model therefore derives its name44

from such interpenetrated networks of crystalline and amorphous networks. Unfortunately,45
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this model has neglected the contributions of the rigid amorphous fraction to SCPs response.1

2

A promising approach used to describe deformation of amorphous polymers over a wide3

range of strain-rates is based on the viscoelastic relaxations of polymers. Mulliken and4

Boyce [7] used this approach to model the nonlinear viscoelasticity of polycarbonate and5

poly(methyl methacrylate) across a wide range of strain rates. The approach uses the Ree-6

Eyring multi-process relaxation kinetics to model the mechanical behaviour of the polymer.7

Here, we posit that a similar approach can be applied to semicrystalline polymers. In fact,8

Jourdan et al. [42] showed that the β−relaxation of SCPs is related to the glass-transition9

of the wholly amorphous segment. The mechanical response of this segment shows high10

rubbery plateau in the shear modulus: an indication of a high cross-linking effect.11

12

The α−relaxation has been shown experimentally to originate within the crystalline13

phase and associated constrained amorphous layers [43, 44], with the later commonly de-14

scribed in literature as the rigid amorphous fraction [13, 45]. The strain-hardening response15

is dominated by the rubbery response of stretched amorphous segment and so not neces-16

sarily a function of the crystallinity of the polymer. Therefore, there exists a link between17

the viscoelastic relaxations and the holistic mechanical behaviour of SCPs. This observation18

will be exploited in development of the two-process constitutive model for SCPs.19

20

Most of the existing constitutive models for SCPs were validated using polyethylene as21

test composite. Studies involving use of polypropylene as test case for the proposed pre-22

dictive models are quite few. One of such is the work of Sweeney and co-workers[46] who23

proposed a constitutive model for prediction of large deformation of polypropylene under24

multiaxial loading and processing conditions. The model assumes a mechanical analogue of25

two parallel arms : the first, a single Eyring process in series with an Edwards-Vilgis network26

and another second arm represented by entirely an Edwards-Vilgis network. Nevertheless,27

there remains a need for a holistic constitutive model for SCPs, capturing the distinctive28

features of polypropylene across a wide range of mechanical responses (linear viscoelasticity29

to post-yield), temperatures, strain rates and crystallinities. The aim of this paper is to30

suggest such a model. In order for the model to be able to encompass the highest strain31

rates, it is presented here in an adiabatic form.32

33

There are three clearly resolved viscoelastic relaxations associated with polypropylene34

namely: α-, β-, and γ-relaxations and a possible δ-relaxation have all been observed [47, 48].35

On a plot of tan δ versus temperature, the relaxations appear as α-, β-, and γ-loss peaks36

at temperatures of 50oC, 0oC and −70oC respectively[49]. McCrum, et al. [50] observed37

that the dominant relaxation for PP is the β-relaxation. This β-relaxation is associated38

with low temperatures or high strain rates experiments while the α-relaxation dominate39

high temperatures or low strain rates studies. Therefore, in the temperature window for40

room temperature (e.g. 20oC - 30oC), the polymer is in this window of dominant interaction41

between the α- and β-relaxations. Most practical uses of polypropylene are usually within42

this temperature window. As a result, this study aims to develop a constitutive model that43

describes the constitutive response of polypropylene across these two dominant relaxations.44

45
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This paper presents a holistic model for semicrystalline polymers using polypropylene1

as a test case. The proposed constitutive mathematics is based on the one-process Glass-2

rubber (GR) constitutive model [10] developed previously for amorphous polymers. In this3

communication, we propose extending the GR model into a two-process version capable4

of describing the constitutive responses of SCPs. The proposed adaptation is based on5

the well-documented evidence from Bauwens-Crowet[51] that the mechanical behaviour of6

many polymeric systems is a consequence of multiple processes linked to the viscoelastic7

relaxations within the material. The model has been validated against compression tests8

results of polypropylene obtained across a wide range of strain rates.9

10

2. Model formulation11

2.1. The proposed mechanical analogue12

A one-dimensional analogue of the isochoric portion of the proposed model for SCPs13

is shown in Figure 1. It consists of two viscoelastic arms (spring-dashpot arrangement)14

for the α- and β-relaxations as well as a rubbery network spring. The stress tensor, σ15

associated with the deformation is a parallel response of the three parts of the model.16

The first contribution results from the amorphous phase. Such assumption agrees with17

the conclusions of McCrum et al. [49], who described β-relaxation as associated with the18

amorphous phase.19

Contribution of mobile 

amorphous fraction

Contribution of entangled 

molecular network

Contribution of crystalline 

and rigid amorphous fractions

Figure 1: A three-arm one-dimensional mechanical analogue of the isochoric response of the proposed model.

In considering the viscoelastic relaxations of the different phases of the semicrystalline20

polymer, it would be ideal to distinguish precisely the contributions of the purely amorphous,21

the purely crystalline and the rigid amorphous fraction (RAF) phases. Although clear dis-22

tinction exists between the predominantly amorphous and predominantly crystalline phases,23

however, there is no published information, known to the authors, that clearly identifies the24

distinction between the RAF and the other phases. Also, the microstructure of the RAF25

is not clearly understood and it is difficult to classify it as either predominantly crystalline26
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or amorphous. This is because the RAF is a bridge between the amorphous and crystalline1

phases and results in a gradation of viscoelastic relaxation effects from dominant amorphous2

zone to a purely crystalline zone.3

4

Therefore, for the purpose of the proposed model, the crystalline contribution has been5

grouped together with the rigid amorphous fraction (RAF): both contributing to the α−relaxation6

dynamics. This is because published literature on recent fast scanning calorimetry data has7

shown the RAF viscoelastic relaxation to be closely associated with those of the crystalline8

fraction [45]. The approach used here has also been adopted by Brusselle-Dupend and9

Cangemi [27, 52]. The proposed constitutive model therefore integrates the contributions of10

these two predominant relaxations/processes and this is the basis for describing the model11

as a Two-process constitutive model.12

13

2.2. Kinematics considerations14

Consider a deforming polymer continuum B, such that Ω0 ⊂ R3 is defined as its natural15

reference configuration. Let x ∈ B denote the deformed position of a material particle of16

the body given its reference/undeformed position defined by X ∈ Ω0 . At a given time, t17

the two domains can be mapped according to x = χ(X) [53]. The displacement field is fully18

prescribed by a deformation gradient tensor, F(X) defined as:19

F = ∇x =
∂x

∂X
, (1)

where ∇ is the vector differential operator of x. The deformation gradient, F consists20

of volumetric and isochoric parts. The former contributes to volume change while the later21

to shape change.22

23

Let us define respectively, the volume ratio, J , the isochoric component, F, and mean24

stress, σm, according to Equation 2.25

J = detF, F = J−
1
3 F, and σm = K ln J (2)

where K = bulk modulus. The nonlinear finite deformation response of the polymer is26

contained within the isochoric part of the deformation gradient, F. This isochoric defor-27

mation gradient can be further expressed in terms of pure rotation, R and deviatoric left28

stretch, V.29

30

Finally, the corresponding isochoric components of deformation gradient, F, left Cauchy-31

Green tensor, B, velocity gradient, L and the latter’s symmetric and skew-symmetric parts32

are given in Equation 3. Note that D = isochoric component of the rate of deformation33

tensor.34

F = VR, L = Ḟ F
−1
, B = F F

T
,

W = skew
{
L
}

= 1
2

{
L− L

T}
and D = sym

{
L
}

= 1
2

{
L + L

T}
.

(3)

35

36
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2.3. The constitutive mathematics1

The proposed constitutive model consists of a set of simultaneous equations whose solu-2

tion gives the Cauchy stress, σ, in terms of the deformation gradient, F, and the isochoric3

rate of deformation, D. The Cauchy stress, σ, is decomposed into two components: devia-4

toric stress, S, and mean stress, σm. Therefore, the total stress acting on a polymer segment5

at any given time is expressible as:6

σ = S + σmI, where σm = 1
3
tr
(
σ
)
. (4)

To determine the expression for the deviatoric component of Cauchy stress, S the ar-7

guments posed in the glass-rubber (GR) model for amorphous polymers [10, 54, 55, 11, 12]8

have been adopted here. The authors postulated that the total deviatoric stress experienced9

by a given polymer results from two key stress contributions namely:10

◦ The bond-stretching deviatoric stress component, Sb, which arises from perturbation11

of inter-atomic potentials. This component relaxes by thermally activated flow of12

molecular segments. The flow mechanism is governed by the Eyring rate kinetics13

through a stress-dependent viscosity.14

◦ The conformational deviatoric stress component, Sc, which arises from entropy-elastic15

perturbation of molecular conformations. This component is defined in terms of iso-16

tropic hyperelasticity.17

The total stress experienced by the specimen, σ, according to the proposed model18

will comprise of an additive combination of the α−process, Sbα and β−process, Sbβ bond-19

stretching deviatoric stress tensors; the conformational deviatoric stress tensor, Sc, (Equa-20

tions 19 and 20), as well as the mean stress term, σm (see Equation 29). The total stress21

tensor is given in Equation 5,22

σ = Sbα + Sbβ + Sc + σmI (5)

where I = an identity matrix. For SCPs like polyethylene (PE), polypropylene (PP) and23

polyoxymethylene (POM), which show two relaxation processes, α and β, in the temper-24

ature/strain rate range of interest, we hereby propose a modification of the underlying25

constitutive mathematics of the glass-rubber model [10], for such biphasic multi-relaxation26

semicrystalline polymers. In the following sections, the model formulations for Sb and Sc27

deviatoric stress components are presented.28

29

2.3.1. The bond-stretching deviatoric stress component, Sb30

As stated previously, the relaxation of Sb is a combination of elastic bond-stretching and31

viscuous flow of polymer segments. Figiel and Buckley [56] have shown that for kinematic32

structuring of constitutive models of finite deforming systems, an additive decomposition of33

elastic and viscuous parts of the isochoric velocity gradients, L, is preferred to multiplicative34

decomposition of their deformation gradients. Also, Nemat-Nasser [57] has proposed that the35

deviatoric rate of deformation, D can be additively decomposed into elastic, e and viscous,36
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v components for the whole polymer. In line with the latter assumption, the additive1

decomposition of the total rate of deformation for the proposed model becomes:2

D = D
e

+ D
v
. (6)

Since semicrystalline polymers show nonlinear viscoelastic behaviour, let us assume that3

their rate of deformation can be described by linear elasticity and associative flow rule for4

the elastic and viscous parts respectively. Therefore, the total deviatoric rate of deformation5

becomes:6

D = D
e

+ D
v −→ D =

Ŝbj
2Gb

j

+
Sbj
µj

=
1

2Gb
j

{
Ŝbj +

Sbj
τj

}
(7)

where j ∈ {α, β} is the relevant viscoelastic relaxation process. The relaxation time, τj =7

µj
2Gb

j

for the j−th process is defined in terms of a generalized stress-dependent viscosity, µj8

and bond-stretching contribution to shear modulus, Gb
j. Also, Ŝbj is the Jaumann objective9

rate [58] of the bond-stretching deviatoric stress. Therefore, for a given j-process, the10

objective rate of Sb in the presence of a finite spin, W is expressed as Equation 8, where Ṡbj11

is the rate of change of Cauchy stress:12

Ŝbj = Ṡbj −WSbj + SbjW. (8)

For numerical predictions to fit experimental data accurately, each of the α- and β-13

processes require a spectrum of relaxations times, τj, reflecting the range of molecular pack-14

ing densities, and hence, activation barriers, where flow events occur in the polymer [12].15

Let us define an N tensor-valued deviatoric stress state variable for a given process as Sbj,i16

where i = 1, 2, . . . , N . Employing a spectral generalization of Equation 7, the internal stress17

at any instant can be expressed as:18

Sbj =
N∑
i=1

νj,iS
b
j,i, Ŝbj,i = 2Gb

jD−
Sbj,i
τj,i

, and
N∑
i=1

νj,i = 1. (9)

Here, νj,i(τj,i) is the normalized shear relaxation spectrum for a given j-process, at the in-19

stant concerned. Assuming the spectrum to represent a range of activation barriers, the νj,i20

can be considered to be the volume fraction of the i−th barrier height for the j-process.21

22

It has been shown by Wu and Buckley [12] that in the region of yield and post-yield23

of polymer deformation, the full relaxation spectrum collapses into a single relaxation time24

such that each α- or β-process corresponds to a geometric mean relaxation time i.e. τα and25

τβ. As proposed in the GR model, this relaxation time varies with: (a) temperature T , (b)26

structure of the material as expressed through Tool’s fictive temperature Tf , (c) mean stress,27

σm and (d) octahedral shear stress, τoct. For a viscoelastic model based on the Eyring flow28

process, the mean relaxation time, τj for j ∈ {α, β}, can be related to its reference value,29

τ ∗j,0 in a stress-free reference configuration.30

31

The resulting mean relaxation time for the j-process, under the effects of structure,32

temperature and stress shift factors, for SCPs can be expressed as:33

τ j = aT,jaS,jaσ,jτ
∗
j,0 for j ∈ {α, β}, (10)

8



where aT,j = temperature shift factor, aS,j = structure shift factor and aσ,j = stress shift1

factor, for the j-process. Given the bond-stretching deviatoric stress component for the2

j-process as, Sbj, the octahedral shear stress formulation for this j-process is:3

4

τoct,j =

√
1

3
Sbj : Sbj for j ∈ {α, β}. (11)

In the following, the formulations for the contributing shift factors in the context of the5

two-process constitutive model are presented.6

7

Temperature Shift Factor, aT,j: Temperature effects on the relaxation time are8

introduced through the Arrhenius equation, for the two j-processes, as:9

aT,j = exp

[
∆Hj

R

(
1

T
− 1

T ∗

)]
, for j ∈ {α, β}, (12)

where ∆Hj represents the enthalpic contribution to the activation free energy barrier asso-10

ciated with the j-process, and T ∗ is a reference temperature.11

12

Structure Shift Factor, aS,j: The formulation of the structural shift factor for both13

processes is amenable to the similar fictive temperature description as the GR model, hence:14

15

aS,j = exp

[
C

Tf,j − T∞
− C

T ∗f,j − T∞

]
, for j ∈ {α, β}, (13)

where C = Cohen-Turnbull constant; Tf,j = fictive temperature for the j-process; and T ∗f,j =16

corresponding reference fictive temperature; T∞ is the Vogel temperature (where τj →∞).17

18

In order to incorporate the significant post-yield strain-softening observed in high rate19

compression of polypropylene [59], we adopt the relationship of structural evolution (through20

fictive temperature, Tf ) with viscoplastic strain, strain rate and temperature, according to21

Equation 14. Accurate modeling of physical ageing requires a spectrum of Tf relaxation22

times. However, close to the glass transition, the following single mode representation was23

shown to be adequate by Lew and Buckley [60].24

Ṫf,j =
T − Tf,j
τS,j

+ κDv
j for j ∈ {α, β}. (14)

Here κ is a material parameter, Dv
j is the invariant of the viscoplastic rate of deformation25

for the j-process, and τS,j is the corresponding structural relaxation time associated with26

the j-process (assumed here to have the same intrinsic value as the stress relaxation time27

and the same dependence on temperature and structure). The expressions for Dv
j and τS,j28

are:29

Dv
j =

√
1

2
Dv : Dv where Dv = D−

Ŝbj
2Gb

j

and τS,j = aS,jaT,jτ
∗
0,j. (15)

30

31

9



Stress Shift Factor, aσ,j: The stress shift factor term of the relaxation spectrum1

results from the combined effects of the mean stress and the octahedral shear stress of the2

deforming polymer. This applies for each of the α- and β-processes. Using Eyring rate3

kinetics, the stress shift factor for the j-process can be expressed as [12]:4

aσ,j =

Vs,jτ
b
oct,j

2RT

exp

{
Vp,jσm
RT

}
sinh

{
Vs,jτ

b
oct,j

2RT

} for j ∈ {α, β} (16)

where Vs,j and Vp,j are shear- and pressure-activation volumes respectively, for each of the5

processes.6

7

The evolution of the stress shift factor term with relaxation times and the octahedral8

shear stress term of the polymer results in the presence of two dominant stress regimes,9

herein called the high and the low stress regimes. Simplified expressions of aσ,j for these10

regimes are given in Equations 17 and 18.11

aσ,j

∣∣∣∣
high-stress

= 2
τ boct,j
ζ0,j

exp

[
− σm
η0,j
−
τ boct,j
ζ0,j

]
(17)

12

13

aσ,j

∣∣∣∣
low-stress

= 2
τ boct,j
ζ0,j

[
exp

{
τ boct,j
ζ0,j

}
− exp

{
−
τ boct,j
ζ0,j

}]−1
(18)

14

15

where ζ0,j =shear-activation ratio and η0,j =pressure-activation (see Equation C.1). De-16

tailed derivations and discussion of the stress shift factor term are given in Appendix Ap-17

pendix C. These stress regimes and their corresponding simplified expresses of aσ,j will sub-18

sequently be used in deriving the Ree-Eyring yield function for the proposed constitutive19

model.20

21

Combination of the α− and β− stress components : The model has assumed22

that the bond-stretching deviatoric stress components from the two processes will combine23

independently leading to the total bond-stretching stress, SbTotal of the model, thus:24

SbTotal = Sbα + Sbβ, (19)

where Sbα and Sbβ are the α- and β-process contributions to the deviatoric bond-stretching25

stress formulation. Similar approach of direct combination of the multi-process stress com-26

ponents for a semicrystalline polymer has been adopted by Caelers et al. [61, 62].27

28

The summation defined above is also different from the approach adopted in composite-29

mechanics-type constitutive models for SCPs in which authors use the degree of crystallinity30

property as a means of partitioning contributions from the crystalline and other phases of31

10



the semicrystalline polymer. In this work, we have assumed that such partition is redundant1

since the viscoelastic relaxations occur throughout the SCP microstructure albeit specific2

α−, β−, or γ− relaxations are more dominant in either of the mobile amorphous, crystalline3

or rigid amorphous fractions (consistent with evidence provided by Caelers et al. [61]). We4

also note that such assumption fits experimental data better.5

2.4. The conformational deviatoric stress component, Sc6

Having established a formulation for the bond-stretching component, here we focus on7

the conformational stress component. The conformational statistics of the polymer macro-8

molecules of the SCPs are defined using the isotropic hyper-elasticity proposed in the GR9

model. This accounts for the entropic elasticity of the polymer strands between entangle-10

ments as they stretch. It is assumed that a scalar free energy density function, Ac, exists11

which is used to derive the conformational stresses. In order to satisfy the requirement for12

objectivity, Ac must be independent of pure rotation, R, hence Ac is determined uniquely13

by the deviatoric left stretch, V.14

15

It is convenient to calculate the conformational deviatoric stress component, Sc directly16

by differentiating the conformational free energy density, Ac thus:17

Sc =
3∑
i

λi
∂Ac

∂λi
ui ⊗ ui − pI where p =

1

3
trace

[ 3∑
i

λi
∂Ac

∂λi
ui ⊗ ui

]
. (20)

In Equation 20, λi (i = 1, 2, 3) represents the eigenvalues of left stretch tensor, V, while18

ui are the unit eigenvectors of V. The definition of the conformational entropy free energy19

function, Ac, is derived from the physically based function proposed by Edwards and Vilgis20

[63] for a network of cross-linked and entangled freely jointed chains of finite length1.21

22

The Edwards-Vilgis formulation of Ac is preferred over competing polymer network mod-23

els as the Arruda-Boyce eight-chain model [64] and the Wu and van der Giessen full network24

model [65]. This is because Sweeney [66] has shown that the Edwards-Vilgis representation25

captures a broader range of material behaviour provided a finite extensibility of the chains is26

not approached too closely. For the purpose of a semicrystalline polymer here, the original27

Edwards-Vilgis formulation for Ac is reduced by assuming density of cross-links, Nc = 028

(true for thermoplastics), so that we obtain (ignoring cross-linking effect of crystals):29

Ac =
NskBT

2

(1− η)(1− α2
n)

1− α2
n

3∑
i=1

λ
2

i

3∑
i=1

λ
2

i

1 + λ
2

i

+
3∑
i=1

ln
(

1 + ηλ
2

i

)
+ ln

(
1− α2

n

3∑
i=1

λ
2

i

) .
(21)

1Here, we have made the assumption that Ac applies to the whole polymer i.e. the α− and β−phases.
It is not currently obvious that the α−phase when fully relaxed would be rubber-elastic (since it is at least
partially crystalline). We recognize therefore that this model is unlikely to be accurate at high temperatures
or extremely long times, because of uncertainty about what the response of α−phase would be under
those conditions. However, because the relative contribution of σc is so small (see Figure 9(c)), under the
conditions considered in the paper, the model predictions shown here are not sensitive to inaccuracy in it.
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Here, Ns, αn, η and kB are respectively, the number density of slip-links (representing en-1

tanglements), inextensibility of chains parameter, an index describing ease of entanglements2

movement and Boltzmann’s constant.3

4

2.5. Adiabatic heating considerations5

When polymers are subjected to impact/high strain rates of loading, a fraction of the6

plastic work is converted into heat. The heat generated does not have time to transfer to7

the surrounding, hence it is trapped within the material. This leads to thermal softening of8

the test material. It is an example of adiabatic heating, and it has been found to be strain9

and strain-rate dependent [67, 68, 69, 70]. For the proposed model to be applicable over a10

wide range of dynamic loading, we incorporate a correction for the adiabatic heating.11

12

For a polymer system subjected to dynamic loading, the instantaneous power balance13

equation (assuming negligible kinetic energy) is given as:14

∂(ρu)

∂t
= σ : D + ρr −∇(q), (22)

where ρ = density, u = specific internal energy, q = heat flux and r = specific internal power15

source [11]. The power source term, r accounts for the unrecoverable additional energy stored16

in bond-stretching due to structural change of the material, and r is expressed as:17

r = −∆cṪfh, (23)

where ∆c is the specific heat capacity step across the glass transition, and Tfh is the enthalpy18

fictive temperature of the polymer system.19

20

Neglecting any small changes in volume due to temperature rise and structural change21

of the polymer, Equation 22 for a single viscoelastic relaxation process system, becomes:22

ρcṪ + σb : De = σ : D− ρ∆cṪfh. (24)

In order to evaluate, rate of change of the enthalpy fictive temperature, Ṫfh we have to un-23

derstand the relationship between this value and the (structural change) mechanical fictive24

temperature of Equation 14 above. Buckley et al. [11] suggested that the two fictive tem-25

perature measures are related thus: Ṫfh = ϕṪf where ϕ is a unknown material parameter.26

Combining Equations 14 and 24 yields a single viscoelastic relaxation version of the rate of27

temperature rise under adiabatic heating conditions:28

Ṫ1−process =
1

ρc

[
σ : D− σb : De

]
− ϕ∆cṪf

c
. (25)

Extending Equation 25 for a two viscoelastic relaxation version as the SCPs under con-29

sideration here, we can re-write the equation as:30

Ṫ2−process =
1

ρc

[
σ : D− σbα : De

α − σbβ : De
β

]
︸ ︷︷ ︸

plastic energy term

− ϕα∆cṪf,α
c

− ϕβ∆cṪf,β
c︸ ︷︷ ︸

structural rejuvenation term

, (26)

12



where ϕj, Ṫf,j and σbj for j ∈ {α, β} in all cases, are respectively the material parameter, rate1

of change of fictive temperature and bond-stretching stress contributions of the j-processes.2

The applicable rate of deformation gradients are defined thus:3

De
α = D−Dv

α =⇒ De
α = D− Sbα

2Gb
ατα

, and (27)

De
β = D−Dv

β =⇒ De
β = D−

Sbβ
2Gb

βτβ
. (28)

3. Application to experimental data4

The proposed model will now be applied to experiments carried out on isotactic polypro-5

pylene (iPP). All model parameters were obtained from the results of many tests carried out6

on a grade of propathene polypropylene previously manufactured by ICI. Creep and tensile7

tests data reported by Okereke [71] were used to generate some of the model parameters.8

Also, compression tests data [59] generated across eight decades of strain rates, were used.9

Unlike the one-process GR model, the approach adopted here requires isolating the α- and10

β-process model parameters from linear viscoelasticity to post-yield regimes. For ease of11

reference, the data are presented in terms of bond-stretching and conformational model pa-12

rameters.13

14

3.0.1. Bond-stretching model parameters15

The shear, G, and bulk, K, moduli were deduced from Young’s modulus (E = 1.8 GPa,16

at quasi-static rates) and Poisson’s ratio (ν = 0.43)[72] during Hookean deformation in a17

tensile test, reported by Okereke [71]. The bulk modulus is introduced into the model via18

the total mean stress [10]:19

σm =
(
Kb +Kc

) 3∑
i=1

εi, (29)

where the bulk modulus, K = Kb +Kc, given that Kb and Kc are the bond-stretching and20

the conformational components of bulk moduli of the solid polymer. The conformation bulk21

modulus, Kc is quite small usually in order of magnitude (106 Pa) and when introduced into22

Equation 29 will be dominated by the Kb value hence Kc is neglected when evaluating the23

total means stress, thus: K ≡ Kb = E/[3(1 − 2ν)] = 4.29 GPa. Since the bulk modulus24

describes the hydrostatic response of the polymer, through the mean stress, σm, there was25

no need to distinguish between an α− and β− process bulk moduli.26

27

Similarly, for the shear modulus, Gb ≡ G = E/2 (1 + v) = 0.6294 GPa since Gb � Gc.28

Here, the Gb
α and Gb

β values were chosen to be both equal to the shear modulus, G of the29

bulk solid polymer. Consistent with the modelling philosophy proposed here, a priori, there30

should exist distinct values for both the α− and β− bond-stretching shear moduli. This31

requires performing extensive dynamic mechanical analysis (DMA) tests to extract the tem-32

perature and time dependence of at least two independent elastic constants (shear modulus,33

bulk modulus, poison ratio, etc). Subsequently, contributions from the α and β relaxations34

13



would need to be decomposed from the resulting data. Unfortunately, the authors do not1

have these experimental data sets for polypropylene, or found any in published literature.2

We recognize that for completeness these tests need to be carried out, but at this stage of3

the work, we have not carried out this test. In lieu of this, we have carried out numerical4

simulations, and found that for the temperature window of the tests (at room temperature)5

the assumption of equal Gb values was sufficient to fit the experimental data well. A similar6

assumption was made by Mulliken et al. [7], where for Poisson ratio, ν, they assumed that7

να = νβ = ν. Also, the assumption of equal Gb for both α− and β− processes was informed8

by the fact that the shear modulus in the temperature window of the compression data9

considered here, describes the solid state (small strains) deformation of the polymer hence:10

Gb
α = Gb

β = G. In order to capture a wider range of temperatures, spanning the α− and β−11

viscoelastic relaxations, then a spectrum of relaxation times will have to be given, which12

consequently will lead to different shear moduli for α− and β−processes.13

14

The α- and β-processes activation enthalpies, (∆Hα and ∆Hβ) were obtained from creep15

tests reported by Okereke [71] and details of the derivations are given in Appendix A. The16

shear, Vs,j, and pressure, Vp,j, activation volumes for the j-processes were determined us-17

ing the compression data on polypropylene across a wide range of strain rates [59]. Eyring18

semi-log plots of σy/T versus true strain rates, λ̇/λ, were plotted based on the compression19

test data. The yield stress, σy, was taken as the peak in true stress and λ is the uniaxial20

stretch at yield.21

22

For quasi-static response of the test polymer, and within the region of yield, the flow23

behaviour of the SCP is modelled using the Eyring rate kinetics formulation given thus:24

σy,j =
6RT√

2Vs,j − 2Vp,j

[
ln(Aj) + ln

∣∣∣∣ λ̇λ
∣∣∣∣
]
, for Aj =

√
2Gb

jVs,jaS,jaT,jτ
∗
0,j

RT
, (30)

where τ ∗0 represents the reference relaxation time within the linear viscoelastic region. Recall25

that, τ ∗0,j =
µ∗0,j
2Gb

j

where µ∗0,j is the j-process reference relaxation viscosity. Full derivations26

of Equation 30 are given in Appendix B.27

28

The activation volume model parameters were determined based on the linear fits of the29

quasi-static and high-rate segments of the Eyring plot across the eight decades of time, as30

shown in Figure 2. The α-process slope, Mc,α is derived from linear fit of the low-rate seg-31

ment of the Eyring plot while the β-process slope, Mc,β is obtained as the difference between32

the slopes of the linear fits of the low-rate and high-rate segments i.e. Mc,β = Mc,α+β−Mc,α.33

Here, the linear fit at high rate is represented as a combination of the α- and β- processes34

since at high rates both processes are known to dominate the flow response.35

36

The critical strain rate, ε̇crit = 102.116 = 131 s−1 represents the strain rate at which37

there is a significant change in slope of the Eyring plot, from the α−process-dominant re-38

sponse to the combined α + β processes response. It is the basis used by some authors to39

describe the dependence of yield stress on strain rate as a bilinear response, for this type40

14



Figure 2: Eyring plot from compression test of iPP, showing slopes and intercept values for both α- and
β-processes.

of material. In this work, we have shown that this is not necessarily a bilinear response1

but a nonlinear response, whose mechanics is described by co-operative interactions of α-2

and β-process dominant responses, described according to Equations 30 and 36, respectively.3

4

Based on the Eyring rate kinetics formulation, it has been shown by Dooling et al. [55]5

that the relationship between the activation volumes and the slopes data from an Eyring6

plot is:7

Mc,j =
6R√

2Vs,j − 2Vp,j
, for j ∈ α, β (31)

where Mc,j is the slope of an Eyring plot of a compression test. These slopes were used to de-8

termine the j-process apparent activation volume, Vapp,j = 1
3

(
Vs,j
√

2− 2Vp,j
)
, according to9

Equation 31. The interdependence of Vs,j and Vp,j was based on the ratio: Vp,j/Vs,j = 0.071,10

for polypropylene, which was obtained previously by Joseph and Duckett [73]. Using this11

ratio, the activation volumes were determined and reported in Table 1.12

13

The intercepts, Cj (for each j-process) of the linear fit of the Eyring plot were used to14

determine the reference relaxation time, τ ∗0 . Also, according to Equation 32, deduced as well15

by Dooling et al. [55]:16

τ ∗0,j =

√
2RT

2GbVs,j
exp

(
Cc,j
Mc,j

)
. (32)

Using both Cc,j and Mc,j values of Figure 2, we obtained the reference relaxation times for17

both α- and β-processes.18

19
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The glass transition temperature of the test polymer, Tg = −3.2oC (269.95 K)[74]. The1

compression test was carried out at room temperature, T = 24.5oC (297.65 K). The ref-2

erence temperature, T ∗, was chosen to be the test temperature, T , for compression test3

results of Figures 4 to 7. As a consequence, the two fictive temperatures are equal to the4

test temperature.5

6

The rejuvenation parameter, κj, was found by matching the model prediction with the7

observed post-yield behaviour. The authors assumed that similar rejuvenation parameter8

applies for both α- and β-processes (i.e. κα = κβ). Further investigations need to be made to9

assess the suitability of this assumption. The Vogel limiting temperature, T∞, and Cohen-10

Turnbull constant, C, were derived from the work on atactic polypropylene by Santangelo11

and co-workers [75] and the same parameters were assumed applicable for the tested iPP.12

This is the best data that is available to the authors but further improvements of the model13

should involve using more reliable values of C and T∞
2.14

15

3.0.2. Conformational model parameters16

The entanglement molecular weight, Me of the iPP was chosen based on the work of17

Eckstein and colleagues [76]. The authors considered the onset of plateau zone of a polypro-18

pylene melt to represent the rubbery network elasticity hence: Me =
ρRT

G0
, where G0 = 0.42719

MPa is the plateau shear modulus. The experiment was carried out at T = 190oC and the20

density of iPP used in this work is ρ = 907.8 kg/m3 such that we obtain Me = 8.1838 kg/mol.21

22

The model assumes an idealized rubbery network for capturing the conformational prop-23

erties of the test polymer. Here, the polymer network is assumed to consist of several24

tetra-functional cross-links with physical entanglements. For the thermoplastic iPP under25

investigation, the entanglements/cross-links here were considered as temporary junctions26

called slip links. The number density of slip links, Ns for such network becomes [77]:27

Ns =
ρNA

Me

= 6.678× 1025 chains/m3 (33)

where NA = 6.02 × 1023 chains/mol is Avogadro’s constant, and density, ρ, and entangle-28

ment molecular weight, Me, are as described previously. The test polymer is temperature29

sensitive hence rubbery network entanglements will change with temperature. This implies30

that the mobility of the slip links of iPP will evolve from no sliding (solid) phase to a near31

perfect sliding (molten) phase. The condition of the polymer tested here is solid hence we32

assume a slip link mobility factor, η set to zero i.e. η = 0.33

34

2Note that Santangelo and colleagues [75] obtained the C and T∞ values by assuming that the
temperature-dependence is informed solely by the Vogel-Tamman-Fulcher equation (Equation 13). How-
ever, in our proposed model (for an amorphous polymer in equilibrium), we assumed that some of the
temperature-dependence comes from also an Arrhenius effect (see Equation 12). Therefore, we recognize
that using the C and T∞ above will predict too much temperature dependence.
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Consider the unit cell of a body-centered monoclinic crystalline structure of iPP, where1

the typical physical dimensions of the unit cell are: a = 6.65Å, c = 6.50Å, and b = 20.96Å2

[78]. For this unit cell, there are 4 of chains, 12 monomer groups and 6 C-C pairs. Also,3

the bond length, Lb of a polypropylene molecule is Lb = 1.544Å [78] and the character-4

istic ratio, C∞ = 5.7 [79]. Based on the unit cell, cosψ = c/6Lb = 0.7016 and number5

of bonds, Nb = 2M−1Me = 390 bonds, where M is the molar mass of a polypropylene6

monomer. Note that ψ = the angle between the C-C bond and the c-axis of the poly-7

mer unit cell. Substituting these values into Equation 34, we determine the inextensi-8

bility factor, αn = (1/ cosψ)
√

(C∞/Nb) = 0.1723, and the maximum stretch becomes:9

λmax = α−1n = 5.8038.10

11

Under the effect of a stress tensor, the polymer network finite extensibility is set by12

the function, λmax ∝
√
N where λmax is maximum stretch and N is the number of links13

in the polymer chain between junctions. The proposed model demands that we define a14

network inextensibility factor, αn which defines the limit of this finite extensibility where15

λmax = 1/αn. Here, the macromolecular configuration is also assumed to be represented by16

a freely-jointed virtual representation called a Kuhn segment which represents more than17

one chemical bond. For the iPP under investigation, the number of freely-jointed Kuhn18

segment, NK is obtained thus:19

NK =
cos2 ψ

C∞
Nb ≡ NK =

1

α2
(34)

where ψ is the chemical bond angle, Nb is number of bonds and C∞ is the characteristic20

ratio (usually greater than one) for the tested iPP.21

22

Table 1 presents the set of model parameters for the two-process model for the major23

divisions of the model namely: bond-stretching, conformational and adiabatic heating pa-24

rameters. References have been given for the source of model parameters that were not25

derived from experiments carried out by the authors. In the next section, we will explore26

the performance of the model as validation of its predictive fidelity.27

4. Numerical implementation of the model28

The model was implemented as a user-defined material model (UMAT) within the29

ABAQUS FE solver platform. An implicit version of the material sub-routine was developed30

and used for subsequent predictions of material responses reported in Section 5.31

17



Table 1: Model parameters of polypropylene

Property/Parameter Values Source3

Bond-stretching stress terms
Shear modulus , G [GPa] 0.510 [59]
Bulk Modulus, K [GPa] 3.71
Poisson ratio, ν 0.43 [72]
Alpha activation enthalpy, ∆Hα [kJ/mol] 397
Beta activation enthalpy, ∆Hβ [kJ/mol] 236 [49]
Alpha shear activation volume, Vs,α [×10−3 m3/mol] 5.470
Beta shear activation volume, Vs,β [×10−3 m3/mol] 0.801
Apparent activation volume ratio, Vp,j/Vs,j 0.071 [73]
Reference relaxation viscosity for α-process, µ∗0,α [Pa-s] 1.327× 1012

Reference relaxation viscosity for β-process, µ∗0,β [Pa-s] 6.235× 10−2

Initial fictive temperature for j-process, T 0
f,j [K] 297.65

Reference fictive temperature for j-process, T ∗f,j [K] 297.65
Rejuvenation parameter for j-process, κj[Ks] 45.0
Vogel limiting temperature, T∞ [K] 234 [75]
Cohen-Turnbull constant, C [K] 1021 [75]
Reference temperature T ∗ [K] 297.65

Conformational stress terms
Density of slip links, Ns [atoms/mol] 6.678× 1025

Network inextensibility factor, αn 0.1723
Slip link mobility factor, η 0
Entanglement molecular weight, Me [kg/mol] @ 463 K 8.184 [80]
Characteristic ratio, C∞ 5.7 [81]

Adiabatic heating terms
Density, ρ [kg/m3] 908
Specific heat capacity, c [JK1kg1] 1667-1905 [82]
Effective specific heat difference for α-process, ϕα∆cα [J/kgK] 4000
Effective specific heat difference for β-process, ϕβ∆cβ [J/kgK] 1000

5. Discussions: Performance of the model1

In this section, we assess the performance of the model by comparing model predictions2

to experimental data drawn from: (a) compression testing of polypropylene across a wide3

range of strain rates; and, (b) quasi-static tensile test of polypropylene across a range of4

temperatures from room temperature (T = 25oC) to onset of flow (T = 150oC). We will5

also provide further parametric studies of the Two-process model to assess the validity of6

model assumptions with respect to known experimental response for the class of polymer7

presented here.8

3All values without references were either calculated or derived from experiments in this work.
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Figure 3: The model flow chart for the Two-process model.
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5.1. Strain rate dependence1

Compression test data were generated on a virgin homopolymer of polypropylene, and the2

experimental data for the ICIW grade of polypropylene has been reported by Okereke and3

co-workers [59]. The test data were generated across an unusual wide range of strain rates4

drawn from quasi-static (QS), to medium rate (MR) and high rate (HR) strain rates. The5

Two-process model was used to generate model predictions and the comparisons between6

model and experiment are shown in Figure 4. Note that the model as employed here is7

adiabatic, in order to capture response at the highest rates of deformation.8

[M
Pa
]

Figure 4: Comparison of experimental and model predictions for a compression test of an isotactic polypro-
pylene test material. Test temperature is 25oC.

The experimental data reveal that with increasing strain rate, the Young’s Modulus of9

the test material also increases. This trend is also captured by the model4. The yield and10

post-yield responses have also been reliably predicted using the model. However, shape11

of the region preceding yield is much sharper than the actual experimental data. This is12

because, in the current model prediction, the relaxation of the bond-stretching component13

of both α− and β−processes is far too localized in the time domain, as a result of use of14

a single relaxation time of the spring-dashpot. It is known that for quantitative fit to be15

achieved, especially in the region preceding yield, a spectrum of relaxation times should be16

used instead [10, 83]. Other authors have observed similar sharp pre-yield regions [7, 84, 85].17

4For a reliable prediction of the rate-dependence of Young’s Modulus as well as the exact shape of the
yield region, the model need to incorporate a spectrum of relaxation times. Although the model formulation
includes a spectrum of relaxation time (see Equation 9), the adjustment of model to experimental data has
assumed a single relaxation time.
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5.2. Rate-dependence of yield stress1

The experimental data of Figure 4 show the well-known feature of plastic deformation of2

polymeric solids: the pronounced rate-sensitivity of yield stress with increasing strain rate.3

Previously, in the model adjustment section, this rate-sensitivity, at moderate strain rates,4

was modelled according to the well-known Eyring theory of stress-biased thermal activation5

[86], and at small strain rates, the relationship between yield and strain rate is given in6

Equation 30.7

8

There is literature evidence of nonlinear dependence of yield stress on strain rate (espe-9

cially for the wide range of strain rates considered here). This is contradictory to classic10

Eyring theory [87, 88, 7], which describes a linear dependence. However, Bauwens has shown11

that the nonlinearity seen in PP data reported here, is consistent with the two viscoelastic12

relaxation processes contribution to the plastic flow, with activation volumes [87]. In such13

cases, the resulting plot of yield stress versus logarithm of strain rate is described as a Ree-14

Eyring plot, in honour of the seminal work of Ree and Eyring [89], who observed the influence15

of multiple processes to relaxation of condensed systems. The nonlinear Ree-Eyring plot of16

polypropylene, shown in Figure 5, is a consequence of the α− and β−processes, where each17

process has a corresponding activation volume (i.e. Vs,α, Vs,β for shear activation volumes18

and Vp,α, Vp,β for pressure activation volumes, of both processes).19

20

Mathematically, we now re-define dependence of yield stress on strain rate in terms of21

the activation volumes for a multiple viscoelastic relaxation processes. We identify two22

dominant processes, which act co-operatively, to describe the total yield stress for a given23

strain rate. The first process, hereafter called process 1, is dominant at low strain rates and24

is described according to Equation 30. The second process, called process 2, is vanishingly25

small at low rates until the critical strain rate, ε̇crit is approached, beyond which it rises26

dramatically. At these quasi-static strain rate, the α contribution is dominant because the27

macromolecular response of the polymer is dominated by the restricted rotation and trans-28

lation of the main chain within the crystalline region [7]. However, β is vanishingly small at29

quasi-static strain rates because the mobility of the polymer’s side groups, in the amorphous30

region, is not significantly restricted. Beyond the critical strain rate threshold (or activation31

temperature), mobility of the side groups of the main chain in the amorphous zone become32

restricted, resulting in the manifestation of the secondary β relaxation.33

34

The expressions of yield stress with respect to strain rate for both processes are de-35

scribed according to Equations 35 and 36. Detailed derivations of these two Ree-Eyring36

rate-dependent yield function (adapted for the proposed constitutive model) are given in37

Appendix B (see Equations B.15 and B.21).38

39

σy,α =
6RT

Vs,α
√

2− 2Vp,α

[
ln |Aα|+ ln

(
λ̇

λ

)]
(35)

40

41

σy,β =
6RT√
2Vs,β

ln

{
Aβ
2

λ̇

λ
+

√(
Aβ
2

λ̇

λ

)2

+ 1

}
(36)
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1

In these equations, R = gas constant, and T = temperature. Aj, (where j ∈ α, β), is a2

material property defined in Equation 30; and Vs,j and Vp,j are respectively, the shear and3

pressure activation volumes for each j− viscoelastic relaxation. The predicted total yield4

stress, resulting from the multiple processes, becomes:5

σy = σy,α + σy,β (37)

6

Figure 5 shows the comparison between experimental yield data and model predictions ac-7

cording to the proposed Two process model. The results show a good fit between the two8

with the total yield stress identified as σy, Model predictions, and results from Equation 37. In9

line with the underlying multiple-processes viscoelastic relaxation, the total yield stress re-10

sults from a contribution of the α−process dominant (process 1) and β−process dominant11

(process 2) viscoelastic relaxations. Figure 5 also shows the linear relationship of process12

1 according to Equation 35 as well as the nonlinear relationship of process 2 (see Equation13

36). We conclude here that the Two process model correctly predicts the dependence of14

yield stress on strain rate of polypropylene across the wide range of strain rate tested. As a15

result, the model will be useful for impact rates studies, as reported by Okereke et al. [90].16

17

Figure 5: A Ree-Eyring plot of polypropylene test material at 25 oC. Plot shows the comparison model
prediction and experimental data for the rate-dependent yielding of polypropylene. The plot also shows the
linear α−process plot and the nonlinear β−process.

5.3. Adiabatic heating effects18

The Two-process model presented here exhibits adiabatic heating effects. To assess the19

effect of adiabatic heating to the compression test results, we undertook parametric studies20

22



in which the adiabatic heating feature was switched off (see Figure 6(a)) and secondly,1

the adiabatic heating effect was included with the model prediction; however, the effect2

of structural change in adiabatic heating was switched off (see Figure 6(b)). Finally, both3

adiabatic heating and structural change effects were allowed to act cooperatively during the4

model prediction, as shown in Figure 4.5

(a) (b)

Figure 6: Comparison of experimental and model predictions for a polypropylene test material at 25 oC,
showing: (a) no adiabatic heating effect and no structural effect and (b) adiabatic heating without structural
effect.

6

Immediately, we notice that when adiabatic heating and structural change are excluded7

from the analysis (see Figure 6(a)), then the significant strain softening seen in high strain8

rates studies is not captured by the model. Again, if the implemented adiabatic heating9

formulation is included in model predictions (see Figure 6(b)), the model seems to over-10

predict when compared with experiments. As a result, too much adiabatic heat is flowing into11

the material leading to more strain softening than that seen in the experiment. Therefore,12

in line with Equation 26, we must also allow for structural change effects as well as adiabatic13

heating. The resulting prediction matches experiment as shown in Figure 4.14

15

Finally, the evolution of adiabatic heating with respect to strain rate is shown in Figure 7.16

This shows that even at small strain rate of ε̇ = 0.001 s−1, there is a 10oC rise in temperature,17

because the model assumes perfect thermal insulation – i.e. adiabatic conditions. At the18

highest strain rate, ε̇ = 11000 s−1, the polypropylene experiences a 25o rise in temperature19

and this is entirely due to adiabatic heating effects. This is why it is essential to incorporate20

adiabatic heating formulation within any constitutive model required for predicting impact21

rates behaviour of such a material.22

5.4. Temperature dependent effects23

We show the effect of temperature dependence on the stress-strain profile, and the flow24

stress, σf , of the test polymer. The experimental data is compared with model predictions25

based on the Two-process model, and the results are given in Figure 8. These results are26

23



Figure 7: Model predictions of the strain-rate dependent evolution of adiabatic heating effects in the tested
polypropylene material. Test temperature is 24.5oC.

for quasi-static tests, with strain rate, ε̇ = 0.001 s−1, across a temperature, T range of1

30oC ≤ T ≤ 150o. However, similar conclusions can be drawn when considering medium2

and high rate tests, whilst accounting for the adiabatic heating and structural change effects3

on the significant strain softening after yield.4

5

The experimental data showed a brittle response at temperatures around room temper-6

ature while at temperatures near the melting point of polypropylene (i.e. melting point,7

Tm = 165 oC), a ductile response was observed. The flow stress, σf is the stress at which8

thermal activation of the polymer macromolecular segments initiate a flow response. It is9

herein chosen as the maximum stress on a given stress-strain graph. Figure 8(b) shows that10

the proposed model captures this flow stress reliably, due to the Arrhenius function formu-11

lation (see Equation 12) incorporated in the model’s constitutive mathematics.12

13

However, Figure 8(a) has revealed that in the region of small strains, the model did not14

capture quantitatively the nonlinear plastic deformation. Experimental data show that with15

increasing temperature, the Young’s Modulus of the test material continues to decrease, due16

to the softening of the polypropylene. Therefore, to quantitatively fit experiment to model,17

we need to incorporate within the model a spectrum of relaxation times which spreads across18

the solid-state (room-temperature) and flow-state (high-temperature) loading regimes. As19

already argued for strain-rate dependent predictions, the choice here of a single relaxation20

time for the model, is too localized in time domain, and this is evident in the poor fit within21

the small strain predictions. Future improvements of the model should incorporate a spec-22

trum of relaxation times for both quantitative and qualitative fit of the model to experiments.23

24

5.5. Interaction of the contributory stress components derived from the model25

In order to demonstrate the performance of the model in line with underlying assumption26

of two-process formulation, we will now explore the multiple-process contributory stresses27

that feed into the total stress prediction of the model. Figure 9 shows the rate-dependent28

24



(a) (b)

Figure 8: Temperature dependence effects for isotactic polypropylene showing comparison of experiments
and model predictions for: (a) quasi-static uniaxial tensile test (for ε̇ = 0.001 s−1); and, (b) flow stress, σf
(with flow stress identified as the maximum stress for a given stress-strain graph).

evolution of each of these contributory stresses (i.e. Sbα,S
b
β,S

c, and σm) across the range of1

strain rates tested. Figure 9(a) shows that Sbα evolves with increasing strain rate with the2

yield stress (maximum stress) spanning from 28 MPa at quasi-static strain rate, ε̇ = 0.00013

s−1 to 57 MPa at high strain rate, ε̇ = 11, 000 s−1. The influence of strain rate on yield stress4

is much more dominant at the quasi-static rates while at the high strain rates, the difference5

in the yield stresses is very minimal. Also, we notice that across the strain rates tested, the6

Young’s Modulus is independent of strain rate. This is in line with the model implementa-7

tion of Equation 7 where the shear modulus, Gb (which determines the Young’s Modulus) is8

specified as a rate-independent parameter. We can also observe that the maximum post-yield9

strain softening across the strain rates, seen at ε̇ = 11, 000 s−1, is ∆σsoftening,α ≈ 8 MPa.10

This suggests that the adiabatic heating and structural rejuvenation effects, that cause sig-11

nificant post-yield strain softening, is minimal in Sbα.12

13

Also, Figure 9(b) shows that the β-process bond-stretching deviatoric stress, Sbβ are van-14

ishingly small at quasi-static strain rates (see explanation in Section 5.2), but are dominant15

at medium and high strain rates. This is consistent with model principle, which establishes16

that in the low-strain rate (high temperature regime), the β-process deviatoric stress is in-17

significant. This continues until the critical strain rate is reached, after which, there is a18

sudden rise of the β-process stress (see Figure 2 and Equation 36).19

20

We also notice that in the immediate post-yield region of the β-stress curve, there is21

a visible dip in the yield stress: a form of localized strain softening. This dip appears22

at medium rates, but increases moderately with increasing strain rates. However, at the23

highest strain rates, the dip just about vanishes. The authors investigated this by under-24

taking parametric studies of the features of adiabatic heating and structural rejuvenation,25

expected to influence the post-yield behaviour. The study revealed that the dip results from26

a non-intuitive interaction between the adiabatic heating and structural rejuvenation effects.27

25
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Figure 9: Effect on strain rates on the different contributory stresses, as predicted by the Two-process model,
showing, bond-stretching deviatoric stresses for: (a) α-process, Sbα, and (b) β-process, Sbβ ; as well as (c)
conformational deviatoric stress, Sc; and, (d) mean stress, σmean.

Initially, for medium rates, there was a sudden release of heat into the system arising from1

adiabatic heating effects. As structural rejuvenation begins to dominate at higher strain2

rates (∼ 11000 s−1), the adiabatic-heating-initiated dip is overwhelmed by structural reju-3

venation effects and thus vanishes.4

5

The β-process deviatoric stress, at strain rate, ε̇ = 11, 000 s−1, also shows significant post-6

yield strain softening, ∆σsoftening,β ≈ 24 MPa. This is three-times the strain softening due7

to the α-process. This piece of evidence suggests that the β−process viscoelastic relaxation,8

arising from the amorphous phase of the semicrystalline polymer, contributes significantly9

to the adiabatic heating and structural rejuvenation effects: both processes that lead to10

significant post-yield softening of the test polymer. Finally, we can also conclude that at11

small strains, the contribution to modulus is rate-independent for both α- and β-stresses,12

because both processes are approximated in the model as single relaxation time processes.13

14
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The plot of Figure 9(c) shows that the conformational deviatoric stress contribution to1

the model is quite minimal, with the highest stress at the highest strain rate being ∼ 0.242

MPa. Within the strain rates, temperature and strain size of the experiments reported here3

for the polypropylene, the rubbery network effect of the polymer macromolecules is negligi-4

ble. We also observe that the rubbery network effect is rate-independent.5

6

Furthermore, Figure 9(d) shows the contribution of mean stress5. According to Equation7

4, the predicted mean stress contribution is simply one-third of the stress shown in Figure8

4. It plays a significant role in α- and β-processes via the pressure activation volumes. For9

example, at the highest strain rate, ε̇ = 11, 000 s−1, the maximum mean stress is 47 MPa.10

This is significantly larger than the maximum stresses of the β-process and just lower than11

those of the α-process. The hydrostatic effect, based on the mean stress, contributes to the12

observed rate-dependence of Young’s Modulus seen in the total stress prediction of Figure 4.13

This is in spite of the Young’s Modulus, via the bond-stretching shear modulus, Gb, being14

a rate-independent quantity.15

16

6. Conclusion17

The constitutive modelling of semicrystalline polymers continues to prove a challeng-18

ing task to material scientists. This is due in part to the multi-phasic, multi-component,19

hierarchical microstructure. As a result, several approaches have been used for modelling20

this type of polymer. In this work, we have proposed a constitutive model for semicrys-21

talline polymers based on the underlying multi-process viscoelastic relaxations associated22

with the different phases that make up the polymer. The constitutive mathematics here23

represents a two-process extension of the Glass-Rubber constitutive model. Model predic-24

tions were compared with experimental data generated from compression tests on normal25

grade isotactic polypropylene across a wide range of strain rates (i.e. 10−4s−1 ≤ ε̇ ≤ 104 s−1).26

27

The model predictions have captured the major trends seen in the nonlinear viscoelas-28

tic responses of the chosen polymer namely: (a) rate-dependent yielding (b) temperature-29

dependence (c) adiabatic heating effects at high rates, and, (d) strain-induced rejuvenation.30

We have also shown the capability of the model to serve as a useful design and research tool31

in exploring the underlying rate-dependent relaxation processes that drive the constitutive32

behaviour of the semicrystalline polymer shown. The model can also be used to simulate33

semicrystalline polymers during solid-state processing at temperatures nearer the melting34

region, because it incorporates rubber-like entropic elasticity from the entangled molecular35

network, more prominent under those conditions. The model should serve as a significant36

analysis tool for design engineers, melt processing simulations as well as for academic re-37

search in the multi-process mechanics of the different phases of this type of semicrystalline38

polymer.39

5The model has assumed that the contribution of conformation bulk modulus, Kc is negligible in com-
parison with the bond-stretching bulk modulus, Kb, which also dominates the overall bulk modulus, K (see
Equation 29).
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Appendix A. Activation Enthalpy, ∆Ha
0,j of the Arrhenius Equation1

According to the formulation of the proposed model, temperature-dependence is intro-2

duced into the model formulation from a combined effect of an Arrhenius-style effect and a3

structural-evolution effect due to fictive temperature. As part of the adjusting of the model4

to experimental data, we have used creep test results carried out within the α-relaxation5

temperature range from which ∆H0,α was determined for the polypropylene grade used in6

this work. We need to extract the Arrhenius-style-only activation enthalpy from the creep7

test data, without the influence of structural-evolution-only effect.8

9

In line with the model formulation, the time-dependent shift factor, at,j used in con-10

structing a creep master curve is a combined effect of structure, aS,j and Arrhenius-effect11

shift factors, aT,j for a given j-process. Hence:12

at,j = aS,jaT,j ⇒ ln at,j = ln aS,j + ln aT,j. (A.1)

Taking the derivative of both sides with respect to the reciprocal of temperature:13

d ln at,j

d
(
1
T

) =
d ln aS,j

d
(
1
T

) +
d ln aT,j

d
(
1
T

) =⇒ mt,j = mS,j +mT,j, (A.2)

where the m-terms are the slopes of plots of shift factors against inverse of temperature.14

We can obtain the mt,j-term from a typical creep test where temperature is varied as shown15

in Figure A.10. The mS,j-term can be obtained by taking the logarithmic expression for16

the Vogel-Talman-Fulcher formulation of a j-process shown in Equation 13 and the result17

becomes:18

ln aS,j =

[
C

Tf − T∞
− C

T ∗f − T∞

]
(A.3)

where C, Tf , T
∗
f , T∞ are material constants defined in Table 1 for the tested polymer.19

Taking the derivative of Equation A.3 with respective to
1

Tf
becomes:20

d ln aS,j

d
(

1
Tf

) =
CT 2

f

(Tf − T∞)2
(A.4)

Finally, the mT,j-term can likewise be derived by evaluating the derivative with respect21

to inverse of temperature of the natural logarithm of Equation 12.22

ln aT,j =
∆H0,j

R

[
1

T
− 1

T ∗

]
(A.5)

where ∆H0,j is the temperature-only enthalpic contribution to the activation free energy23

barrier of the j-process. Equation A.5 is a linear plot of ln aT,j with respect to inverse of24

temperature. The linear plot will have a slope:25

mT,j =
d(R ln aT,j)

d

(
1

T

) =⇒ mT,j = ∆H0,j. (A.6)
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The value of ∆H0,j can therefore be determined based on Equations A.2 and A.4 thus:1

mj,T = mt,j −mt,S =⇒ ∆H0,j = mt,j −

(
CT 2

f

(Tf − T∞)2

)
. (A.7)

Appendix A.1. Determination of α-process activation enthalpy,∆H0,α2

For the polypropylene grade tested in creep in this work, a typical creep compliance plot3

is shown in Figure 10(a) and the resulting Arrhenius function plot of same data following4

a time-temperature shifting (to generate a master curve) is given in Figure 10(b). Since5

the temperature range in which the creep test was undertaken was in the α-viscoelastic6

relaxation range 200C ≤ T ≤ 1000C, the applicable process is j = α [91].

(a) (b)

Figure A.10: Creep test results of iPP tested across varying temperature showing: (a) Creep compliance
plot and (b) Arrhenius function plot where at is the time-dependent shift factor, R is the gas constant, and
T0 = 200C is the reference (ambient) temperature.

7

The slope of the creep curve mt,α = 422 kJ/mol, and this is equal to ∆H0,α (note ∆H0,α=8

overall activation enthalpy incorporating both structural and temperature relaxation effects).9

Parameters for the structural shift factor, aS,j equation were obtained from the work on atac-10

tic polypropylene by Santangelo and co-workers [75] in which they determined the following11

material constants6 of the Vogel-Tamman-Fulcher equation: C = 1021, T∞ = 233.5K. Same12

values will be used for the polymer under investigation here. In adjusting model to experi-13

mental data (see Section 3), we assumed that the polypropylene is in structural equilibrium14

hence T = Tf . Similarly, for evaluating the activation enthalpy for the α-process, we assume15

also that the fictive temperature in Equation A.8, to be equal to the current test temperature16

for each creep test. Hence, we can now evaluate the temperature-only activation enthalpy17

for the tested polypropylene thus:18

∆H0,α = mt,α −
CT 2

f

(Tf − T∞)2

= 4.22× 105 − 1021× 293.152

(293.15− 233.5)2
= 3.9734× 105 J/mol

∆H0,α = 397 kJ/mol.

(A.8)

6See footnote 2, on the implication of use of these VTF constants in our proposed model.
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Appendix A.2. Determination of β-process temperature-only activation enthalpy,∆H0,β,T1

In the β-viscoelastic relaxation range for isotactic polypropylene, the applicable temper-2

ature range is: −400C ≤ T ≤ 00C [91]. We will need to carry out viscoelastic tests (like3

creep or stress relaxation) within this temperature range to determine the β-process activa-4

tion enthalpy. Since the authors did not carry out such tests, we use the results of McCrum5

[49] based on polypropylene. McCrum used a process he described as thermal sampling to6

determine different activations values based on two test methods for temperature range of7

−16.1oC ≤ T ≤ −27.3oC. Since the peak on a tan δ versus temperature, T plot of polypro-8

pylene is at about −10oC, we therefore choose the activation energy values closest to this9

i.e. T = −16.1oC. Therefore the activation enthalpy for the β-process becomes:10

∆H0,β,T = 56.4 kcal/mol =⇒ ∆H0,β,T = 236 kJ/mol. (A.9)
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Appendix B. Derivations of Ree-Eyring rate-dependent yield formulations1

In order to compare model predictions with compression test data from Okereke et al.2

[59], we need to derive the Ree-Eyring yield functions for such a compression test. Consider3

a typical cylindrical specimen with three bases vectors (ei, for i = 1, 2, 3), as shown in Figure4

B.11.5

σ

1e

3e 2e

Figure B.11: A schematic diagram of a compression test specimen, subjected to a stress tensor, σ.

6

The specimen is subjected to a stress tensor, σ which results in a strain tensor, ε and7

strain rate, ε̇. For such a uniaxial compression specimen, σ11 = σ, σ22 = σ33 = 0 and8

τ12 = τ23 = τ13 = 0, where σ is the magnitude of the uniaxial compressive load imposed on9

the specimen. Therefore, the mapping expressions between material (xi) and spatial (Xi)10

coordinate systems, are given as:11

x1 = X1(1 − ε̇t) (B.1)

x2 = X2(1 + ε̇t) (B.2)

x3 = X3(1 + ε̇t) (B.3)

The deformation gradient tensor, F and the rate of change of deformation gradient, Ḟ ,12

can be expressed thus:13

F =
∂x

∂X
=

1− ε̇t 0 0
0 1 + ε̇t 0
0 0 1 + ε̇t

 and Ḟ =
∂x

∂t
=

−ε̇ 0 0
0 ε̇ 0
0 0 ε̇

 (B.4)

Therefore, the volume ratio, J , becomes:14

J = detF =
(
1− εt

)(
1 + εt

)2
(B.5)

Using J , we describe expressions for deviatoric deformation gradient, F̄ , the velocity gradient15

tensor, F̄ , and deviatoric rate of deformation gradient, D̄ become:16

F̄ = J−
1
3F , L̄ = Ḟ F−1, and D̄ = 1

2

(
L̄+ L̄T

)
(B.6)

37



Let us also define the stress tensor, σ for a uniaxial compression test and the mean/hydrostatic1

stress thus:2

σ =

σ 0 0
0 0 0
0 0 0

 and σm = tr(σ) = 1
3
σ (B.7)

Hence the deviatoric stress tensor, S̄, for a uniaxial compression test defined by Equation3

B.7 becomes:4

S̄ = σ − σmI −→ S̄ =

2
3
σ 0 0
0 −1

3
σ 0

0 0 −1
3
σ

 (B.8)

Material reference objectivity is introduced to the Two-process model by converting the5

bond-stretching form of the deviatoric stress tensor into its Jaumann objective rate form, Ŝb,6

in accordance with Equation 8, defined previously. For the compression test under consider-7

ation, the spin W = 0, hence Ŝb = Ṡbj , where Ṡbj is the rate of change of the bond-stretching8

Cauchy stress tensor, for a j−process.9

10

Also, in the region of yield, Ṡbj = 0 and Scj = 0, such that based on Equation 9, without11

the spectral generalization (i.e. no relaxation spectrum), we obtain:12

Ŝbj = 2Gb
jD̄ −

Sbj
τj

−→ Sbj = 2Gb
jD̄τj = S since Ŝb = Ṡbj = 0 (B.9)

Equation B.9 is the desired constitutive equation that has to be solved and implemented13

for the compression test under investigation. Through the relaxation time, τj, the nonlin-14

ear viscoelasticity associated with the polymer response is introduced into the constitutive15

equation. The τj term is dependent on the stress shift factor of Equation 16. We will now16

expand the constitutive equation for the specific cases of high or low stress regimes.17

• Case A: Compression at yield for the high stress regime : In this regime,18

we will re-define the constitutive equation of Equation B.9, especially in the region19

around yield for the compression test specimen.20

21

For the compression test specimen, and as shown previously: σ(1, 1) = σ, Sbj(1, 1) =22

S(1, 1) = 2
3
σ, and, the rate of change of deformation gradient, D̄ = ε̇11 where ε̇11 is the23

dominant strain rate of the compression test, and 1 is test direction is the test direction24

(see Figure B.11) . Applying these and Equation 10, to the constitutive equation of25

Equation B.9, for only the 1−axis test direction yields:26

Sbj = 2Gb
jτjD̄

2
3
σj = 2Gb

jτj
∣∣ε̇11∣∣

2
3
σj = 2Gb

jaS,jaT,jaσ,jτ
∗
0,j

∣∣ε̇11∣∣
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Substituting the expression for the high stress regime shift factor (see Equation C.5)1

into the above becomes:2

2

3
σj = 2

{
2
τ boct,j
ζ0,j

exp

[
− σm
η0,j
−
τ boct,j
ζ0,j

]}
Gb
jaS,jaT,jτ

∗
0,j

∣∣ε̇11∣∣ (B.10)

However, the bond-stretching octahedral shear stress, τ boct can be expressed in terms3

of the uniaxial stress, σ for the compression test as:4

τ boct,j =
√

1
3
Sbj : S̄bj =

√
1
3
S̄ : S̄ −→ τ boct,j =

√
2

3
σ (B.11)

Applying Equation B.11 into Equation B.10 results in:5

2

3
σj = 2

{
2

(√
2

3

σj
ζ0,j

)
exp

[
− σm
η0,j
−
√

2

3

σj
ζ0,j

]}
Gb
jaS,jaT,jτ

∗
0,j

∣∣ε̇11∣∣
1 = exp

[
− σm
η0,j
−
√

2

3

σj
ζ0,j

]
2
√

2Gb
jaS,jaT,jτ

∗
0,j

ζ0,j

∣∣ε̇11∣∣
Re-arranging the equation:6

exp

[
σm
η0,j

+

√
2

3

σj
ζ0,j

]
=

2
√

2Gb
jaS,jaT,jτ

∗
0,j

ζ0,j

∣∣ε̇11∣∣
Taking the natural log of both sides gives:7

σm
η0,j

+

√
2

3

σj
ζ0,j

= ln

[
2
√

2Gb
jaS,jaT,jτ

∗
0,j

ζ0,j

]
+ ln

∣∣ε̇11∣∣
Multiply across by ζ0,j, thus we obtain:8

σm
ζ0,j
η0,j

+

√
2

3
σj = ζ0,j ln

[
2
√

2Gb
jaS,jaT,jτ

∗
0,j

ζ0,j

]
+ ζ0,j ln

∣∣ε̇11∣∣
Note that in the region around yield, σm,j = −1

3
σy,j where σy,j is the yield stress for9

the j−process. Also, note that all stress measures become equal to the yield stress i.e.10

σj ≡ σy,j in the region of yield. Using these, we obtain:11 [√
2− ζ0,j

η0,j

]
σy,j = 3ζ0,j ln

[
2
√

2Gb
jaS,jaT,jτ

∗
0,j

ζ0,j

]
+ 3ζ0,j ln

∣∣ε̇11∣∣
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Finally, we make σy,j the subject of the formula:1

σy,j =
3η0,jζ0,j√
2η0,j − ζ0,j

{
ln

[
2
√

2Gb
jaS,jaT,jτ

∗
0,j

ζ0,j

]
+ ln

∣∣ε̇11∣∣} (B.12)

For adjusting model to experimental data, it important to express the yield stress in2

terms of temperature, T , ideal gas constant, R and the shear and pressure activation3

volumes i.e. Vs,j and Vp,j, respectively. Let us substitute expressions for ζ0,j and η0,j4

from Equation C.1 into Equation B.12 to get:5

σy,j =
6RT√

2Vs,j − 2Vp,j

{
ln
∣∣ε̇11∣∣+ ln

[√
2Vs,jG

b
jaS,jaT,jτ

∗
0,j

RT

]}
(B.13)

It is convenient to write a contracted form of Equation B.13 by setting:6

Aj =

√
2Vs,jG

b
jaS,jaT,jτ

∗
0,j

RT
and ε̇11 =

λ̇

λ
(B.14)

where λ = stretch in 1-test direction and λ̇ = rate of change of stretch.7

8

Although the expression of Equation B.13 was derived based on a compression test,9

a similar relationship will apply for a tensile test, except that the denominator of the10

slope term becomes:
√

2Vs,j + 2Vp,j. The ‘+’ sign comes from the mean stress for a11

tensile test, expressed as: σm,j = +1
3
σy,j, in the vicinity of yield. Therefore, the general12

form of the yield stress, for a j−process in the high stress regime becomes:13

σy,j

∣∣∣∣∣
high−stress

=
6RT√

2Vs,j ± 2Vp,j

[
ln

∣∣∣∣ λ̇λ
∣∣∣∣+ lnAj

]
(B.15)

The above is the same as Equation 30. The resulting equation of yield stress in the
high octahedral shear stress (ratio) regime has a linear dependence with strain rate.
The straight line is defined by a slope, Mj and intercept, Cj, for each j−process, where:

Mj =
6RT√

2Vs,j ± 2Vp,j
and Cj =

6RT√
2Vs,j ± 2Vp,j

lnAj

14

15

• Case B: Compression at yield for the low stress regime : Similar to the ap-16

proach used for the high stress regime, here, we start the derivation of the dependence17

of yield stress on strain rate using the constitutive formulation of Equation B.9. Hence:18

2
3
σj = 2Gb

jaS,jaT,jaσ,jτ
∗
0,j

∣∣ε̇11∣∣ (B.16)
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Now we substitute the stress-shift factor equation for the low τ boct,j/ζ0,j ratio (i.e.1

Equation C.8), into Equation B.17 such that we obtain:2

2

3
σj = 2


2
τ boct,j
ζ0,j

exp

{
τ boct,j
ζ0,j

}
− exp

{
−
τ boct,j
ζ0,j

}
Gb

jaS,jaT,jτ
∗
0,j

∣∣ε̇11∣∣ (B.17)

We will now substitute Equation B.11 into Equation B.17 and cancel out common3

terms in both sides of the equation.4

2

3
σj = 2


2

3

√
2
σj
ζ0,j

exp

{√
2

3

σj
ζ0,j

}
− exp

{
−
√

2

3

σj
ζ0,j

}
Gb

jaS,jaT,jτ
∗
0,j

∣∣ε̇11∣∣

The resulting expression becomes:5

1 =
2
√

2Gb
jaS,jaT,jτ

∗
0,jζ

−1
0,j

exp

{√
2

3

σj
ζ0,j

}
− exp

{
−
√

2

3

σj
ζ0,j

}∣∣ε̇11∣∣

Taking the natural logarithm of both sides results, and re-arranging the equation6

results in:7

ln

[
exp

{√
2

3

σj
ζ0,j

}
− exp

{
−
√

2

3

σj
ζ0,j

}]
= ln

[
2
√

2Gb
jaS,jaT,jτ

∗
0,j

ζ0,j

]
+ ln

∣∣ε̇11∣∣
Assume Wj =

√
2
3

σj
ζ0,j

and Aj is same given in Equation B.14. Applying these to above8

equation gives:9

ln
(

exp(Wj)− exp(−Wj)
)

= lnAj + ln
∣∣ε̇11∣∣

ln
(
eWj − e−Wj

)
= ln

∣∣Aj ε̇11∣∣
eWj − e−Wj = Aj ˙ε11

e2Wj − Aj ˙ε11e
Wj − 1 = 0

The above is a quadratic equation in terms of eWj . We obtain the roots of the quadratic10

equation thus:11
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eWj =
Aj ˙ε11

2
±

√(
Aj ˙ε11

2

)2

+ 1 (B.18)

Taking the natural logarithm of both parts of Equation B.18 results in:1

Wj = ln

Aj ˙ε11
2
±

√(
Aj ˙ε11

2

)2

+ 1

 ≡
√

2

3

σj
ζ0,j

(B.19)

Finally, in the region around yield, σj ≡ σy,j, therefore, Equation B.19 can be re-2

written such that we can obtain below, the relationship between yield stress and strain3

rate in the low-stress regime:4

σy,j

∣∣∣∣
low−stress

=
3ζ0,j√

2
ln

Aj ˙ε11
2
±

√(
Aj ˙ε11

2

)2

+ 1

 (B.20)

Of the two roots of the quadratic equation in Equation B.18, the experimentally real-5

istic root for the quadratic equation will be that with a ‘+’ as increasing strain rate,6

according to Eyring rate kinetics, should lead to increasing yield stress rather than7

reduction. Also, we re-write the ζ0,j in terms of R, T and Vs,j, as well as ε11 in terms8

of stretch, λ. The result becomes:9

σy,j

∣∣∣∣
low−stress

=
6RT√
2Vs,j

ln

Aj
2

λ̇

λ
+

√√√√(Aj
2

λ̇

λ

)2

+ 1

 (B.21)
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Appendix C. The evolution of stress shift factor with relaxation time1

In order to understand the evolution of the stress shift factor on the relaxation times,2

let us define the following shear-activation, ζ0,j and pressure-activation, η0,j terms:3

4

ζ0,j =
2RT

Vs,j
and η0,j =

RT

Vp,j
for j ∈ {α, β}. (C.1)

Incorporating the terms of Equation C.1 into Equation 16 results in:5

aσ,j =

τ boct,j
ζ0,j

exp

{
σm
η0,j

}
sinh

{
τ boct,j
ζ0,j

} , for j ∈ {α, β} (C.2)

6

7

Equation C.2 is a nonlinear function of the bond-stretching octahedral shear stress ratio,8

τ boct/ζ0 and the mean stress ratio, σm/η0. Based on this nonlinear profile of the stress shift9

factor (see Equation C.2), we can isolate two asymptotes to the stress shift profile, and these10

correspond to high and low stress (bond-stretching octahedral shear stress ratio) asymptotes11

which hereafter are referred to as the high stress and low stress regimes respectively. The12

regimes are demarcated by the upper and lower bounds of the bond-stretching octahedral13

shear stress ratio. We will explore these regimes in more detail such that we can deduce14

simplified expressions of Equation C.2 that are applicable at these extreme stress regimes.15

16

Figure C.12: The evolution of the stress shift factor, aσ, with octahedral shear stress ratio, τ boct/ζ0 and mean
stress ratio, σm/η0. Notice the two asymptotes that correspond to high and low stress regimes.
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High stress regime: In the high octahedral shear stress, τ boct,j, regime, the following in-1

equality is true:2

τ boct,j
ζ0,j

� 1 for j ∈ {α, β}. (C.3)

The expression of the hyperbolic sine function, in terms of exponentials for a variable, x3

is: sinhx = 1
2
(ex − ex). Using this expression with Equation C.2 results in:4

aσ,j

∣∣∣∣
high-stress

= 2
τ boct,j
ζ0,j

exp

{
− σm
η0,j

}
exp

{
τoct,j
ζ0,j

}
− exp

{
− τoct,j

ζ0,j

} (C.4)

Note that if
τ boct,j
ζ0,j

� 1, then exp

{
− τoct,j

ζ0,j

}
→ 0. Therefore, the stress shift factor (for5

the high stress regime) becomes:6

aσ,j

∣∣∣∣
high-stress

= 2
τ boct,j
ζ0,j

exp

[
− σm
η0,j
−
τ boct,j
ζ0,j

]
(C.5)

Low stress regime: In the low octahedral shear stress, τ boct,j, regime, the following in-7

equality is true:8

τ boct,j
ζ0,j

� 1 for j ∈ {α, β}. (C.6)

Using similar exponential representation of the hyperbolic sine, and:9

for Vp,j � Vs,j, then exp

{
− σm
η0,j

}
→ 1, (C.7)

the resulting expression for the low-stress regime stress shift factor becomes:10

aσ,j

∣∣∣∣
low-stress

= 2
τ boct,j
ζ0,j

[
exp

{
τ boct,j
ζ0,j

}
− exp

{
−
τ boct,j
ζ0,j

}]−1
(C.8)

11

12

These asymptotic representations of the effect of the stress shift factor on relaxation13

times has been used to derive the Ree-Eyring yield function formulation (for the proposed14

constitutive model). The details of this derivation are given in Appendix B.15

16

Also, note that the high stress regime stress shift factor expression tends to describe17

the low strain rate or high temperature viscoelastic relaxation of the polymer while the low18

stress regime stress shift factor formulation defines the viscoelastic relaxation of the high19

strain rates or low temperature mechanical behaviour of the test polymer.20

21
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Highlights 

- 3D physically-based constitutive model for semicrystalline polymers 

- The model is particularly suitable to melt-crystallized semicrystalline polymers 

- The model is based on two-process viscoelastic relaxations of polymer’s phases 

- The model captures rate effects, adiabatic heating, structural rejuvenation  

- The model is applicable for impact dynamics investigations 


	JPOL_121818.pdf
	Introduction
	Model formulation
	The proposed mechanical analogue
	Kinematics considerations
	The constitutive mathematics
	The bond-stretching deviatoric stress component, Sb

	The conformational deviatoric stress component, Sc
	Adiabatic heating considerations

	Application to experimental data
	Bond-stretching model parameters
	Conformational model parameters


	Numerical implementation of the model
	Discussions: Performance of the model
	Strain rate dependence
	Rate-dependence of yield stress
	Adiabatic heating effects
	Temperature dependent effects
	Interaction of the contributory stress components derived from the model

	Conclusion
	Activation Enthalpy, Ha0,j of the Arrhenius Equation
	Determination of -process activation enthalpy,H0,
	Determination of -process temperature-only activation enthalpy,H0,,T

	Derivations of Ree-Eyring rate-dependent yield formulations
	The evolution of stress shift factor with relaxation time


