
  

Materials 2019, 12, x; doi: FOR PEER REVIEW www.mdpi.com/journal/materials 

Article 

Numerical Modelling of The Ultrasonic Treatment of 
Aluminium Melts: An Overview of Recent Advances 

Bruno Lebon 1,*, Iakovos Tzanakis 2, Koulis Pericleous 3 and Dmitry Eskin 4 

1 Brunel Centre for Advanced Solidification Technology, Brunel University London, Kingston Lane, 

Uxbridge UB8 3PH, UK; Bruno.Lebon@brunel.ac.uk 
2 Oxford Brookes University, Wheatley Campus, Oxford OX33 1HX, UK; itzanakis@brookes.ac.uk 
3 Computational Science and Engineering Group, University of Greenwich, 30 Park Row, London SE10 9LS, 

UK; K.Pericleous@greenwich.ac.uk 
4 Brunel Centre for Advanced Solidification Technology, Brunel University London, Kingston Lane, 

Uxbridge UB8 3PH, UK; Dmitry.Eskin@brunel.ac.uk 

* Correspondence: Bruno.Lebon@brunel.ac.uk 

Received: 17 September 2019; Accepted: 03 October 2019; Published: date 

Abstract: The prediction of the acoustic pressure field and associated streaming is of paramount 

importance to ultrasonic melt processing. Hence, the last decade has witnessed the emergence of 

various numerical models for predicting acoustic pressures and velocity fields in liquid metals 

subject to ultrasonic excitation at large amplitudes. This paper summarizes recent research, 

arguably the state of the art, and suggests best practice guidelines in acoustic cavitation modelling 

as applied to aluminium melts. We also present the remaining challenges that are to be addressed 

to pave the way for a reliable and complete working numerical package that can assist in scaling up 

this promising technology. 
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1. Introduction 

Process design has the potential to provide strategic competitive advantage with regards to 

customer appeal, product cost, and innovation [1,2]. A key element of process innovation involves a 

fundamental understanding of how materials and process interactions determine manufacturing 

performance [2]. 

A continuous mode of production is often more desirable than batch production: advantages of 

continuous operations include cheaper unit costs of production, energy savings, and homogenization 

in the quality of the product. However, converting batch processes to continuous modes is not 

straight-forward [3]. In the past 6 years, the authors have been researching how to upscale the 

promising technology of ultrasonic melt processing by moving applications from batch mode to 

inline mode [4]. 

Ultrasonic melt processing (USP) is an effective method for degassing, filtration, and grain 

refinement of light metal alloys on the industrial scale [5–7]. The beneficial effects of USP are 

attributed to acoustic cavitation: the violent pulsation and collapse of gas bubbles under the influence 

of a strong acoustic pressure field [8,9], and acoustic streaming: the fluid motion that results from the 

attenuation of the acoustic pressure wave as it propagates in the liquid [10]. While USP works well 

in batch degassing or grain refining of a single cast billet or ingot in direct-chill (DC) casting [11], it 

does not scale up very well for continuous processing, unless multiple ultrasound sources are used 

[4]. Current research is now focusing on upscaling this promising technology and achieving high 
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efficiency when treating large melt volumes in continuous mode and with a minimum number of 

ultrasound sources. 

To optimize USP, recirculation patterns and mass exchanges between the cavitation zone and 

the rest of the liquid bulk need to be adequately quantified. In addition, melt recirculation reduces 

temperature gradients and promotes a preferred equiaxed grain structure [12]. In DC casting, 

acoustic streaming improves chemical homogeneity and promotes grain refinement through 

deagglomeration of clusters, wetting of inclusions, dispersion of substrates, and solid phase 

fragmentation [7,13,14]. However, it is challenging to visualize acoustic streaming in liquid 

aluminium due to its opaqueness and high operating temperature. Therefore, studies of acoustic 

streaming must include modelling in conjunction with X-ray imaging [15–18] to predict the 

generation of cavitation bubbles, their transport, and acoustic propagation in the presence of 

attenuation. 

A recent review of acoustic pressure modelling presents the challenges facing acoustic cavitation 

modelling [19] and has been the starting point for the model that resulted from a joint collaboration 

between Brunel and Greenwich universities in the U.K. [4]. Since then, a novel ‘advanced’ model that 

incorporates acoustic streaming with cavitation dynamics has been made available [20], enabling 

more accurate predictions of processing simulations involving cavitation bubbles at an affordable 

computational cost. This recent progress is summarized in this overview giving readers a good 

starting point in ultrasonic process modelling. 

2. Existing models 

2.1. Acoustic Cavitation Model 

The theory is reproduced here as a comprehensive summary of acoustic cavitation treatment in 

modelling of ultrasonic melt processing. The starting point of acoustic cavitation modelling is the 

Caflisch equations [21]. Sound propagation in a liquid containing bubbles has been studied with a 

set of nonlinear equations postulated by van Wijngaarden in the 1960s [22], and then derived 

mathematically by Caflisch et al. [21] using Foldy’s method [23]: 

𝜕𝑝

𝜕𝑡
+ 𝜌𝑙𝑐𝑙
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, and (1) 
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where 𝑝 is the acoustic pressure, 𝒖 are the velocities, 𝜌𝑙 is the (pure) liquid density, 𝑐𝑙 is the speed 

of sound in pure liquid, 𝜙 = 𝑉𝑁 =
4

3
𝜋𝑁𝑅3 is the bubble phase fraction for a bubbly system with a 

bubble density of 𝑁 and consisting of identical bubbles each of radius 𝑅. 𝑉 denotes the volume of 

a single bubble. The bubble density is assumed to be given by a step function 

𝑁 = {
𝑁0 if |𝑃| > 𝑃𝐵

0  if |𝑃| ≤ 𝑃𝐵
, (3) 
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4
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 is the Blake threshold [24,25], with the dimensionless Laplace tension 𝑆 =

2𝜎
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, 𝜎 is the surface tension between the liquid and gas, 𝑝0 is the atmospheric pressure, and 𝑅0 is 

the equilibrium radius of the bubbles. The momentum source term 𝑭 can be used to prescribe 

acoustic velocity sources, e.g. due to the vibrating horn. 

The radius of a bubble is obtained by solving a second order ordinary differential equation 

(ODE). For an accurate bubble dynamics representation at high forcing pressures, compressibility 

has to be taken into account. For liquid metals, bubble dynamics can be represented by the Keller–

Miksis equation [26] 
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where 𝑝𝑣 is the vapour pressure of the gas in the bubble, 𝜇𝑙 is the dynamic viscosity of the pure 

liquid, 𝐴 is the normalized pressure amplitude (relative to 𝑝0), and 𝜔 is the angular frequency of 

the ultrasonic source. Taking into account the effect of heat transfer during bubble dynamics [27,28], 

the gas pressure 𝑝𝑔 is evaluated by solving the following ODE: 

𝑑𝑝𝑔

𝑑𝑡
=

3

𝑅
[(𝛾 − 1)𝑘

𝑑𝑇

𝑑𝑟
|

𝑟=𝑅
− 𝛾𝑝𝑔𝑅̇], (5) 

where 𝑘 is the thermal conductivity of the bubble gas, 𝑇 is the temperature inside the bubble, and 

𝛾 is the polytropic exponent. When assuming adiabatic bubble pulsation, the polytropic exponent is 

given by 𝛾 = 1.4. The temperature gradient at the bubble surface is approximated linearly following 

the method of Toegel et al. in water [29] 

𝑑𝑇

𝑑𝑟
|

𝑟=𝑅
=

𝑇−𝑇∞

√(𝑅𝐷)/{3(𝛾−1)𝑅̇}
, (6) 

where 𝑇∞ is the liquid bulk temperature and 𝐷 is the gas diffusivity. The bubble temperature is 

solved for by using another ODE expressing the first law of thermodynamics 

𝑐𝑣𝑇̇ = 4𝜋𝑅2𝑘
𝑇−𝑇∞

𝑙𝑡ℎ
− 𝑝𝑔𝑉̇, (7) 

where the thermal diffusion length 𝑙𝑡ℎ = min (
𝑅

𝜋
, √

𝑅𝐷

𝑅̇
) and 𝑐𝑣 is the specific heat capacity of the gas. 

Solving the Caflisch equations coupled with the above ODEs is very computationally intensive. 

In general, the acoustic pressure 𝑝  is required to compute the momentum source term that 

corresponds to acoustic streaming. To optimize the computational procedure and reduce its time cost, 

the following approximation is used in recent works. 

ℜ(𝑃𝑒𝑖𝜔𝑡) denotes the harmonic part of the acoustic pressure 𝑝. A nonlinear extension [25,30] of 

the linear Helmholtz equation originally derived by Commander and Prosperetti [31] from the 

Caflisch equations approximately describes the complex amplitude 𝑃 as 

∇2𝑃 + 𝐾2𝑃 = 0. (8) 

Commander and Prosperetti defined the complex wave number 𝐾 using 

𝐾2 =
𝜔2
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where 𝜔0 is the resonant frequency of the bubbles, 𝑗 is the complex number satisfying 𝑗2 = −1, and 

𝑏 is the damping factor defined elsewhere [31]. Louisnard [25] generalized this linear model while 

keeping realistic values for dissipation of energy in inertial cavitation, resulting in a nonlinear model. 

However, this model suffers from two deficiencies: 1) the real part of 𝐾2 was taken to approach that 

of Commander and Prosperetti, and 2) the Helmholtz equation used by the model comes from the 

linear theory. To address these issues, the real and imaginary parts of the coefficient 𝐾2 have been 

rigorously re-derived by Trujillo [30] as 
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where the non-dimensional time 𝜏 is within one period, i.e. [0, 2𝜋]. The boundary conditions for the 

nonlinear Helmholtz equation are generally defined as: 

 ∇𝑃 ⋅ 𝒏 = 0 for infinitely hard boundaries (such as crucible walls), 

 𝑃 = 𝐴𝑃0 at the surface of the sonotrode, and 

 Setting 𝑃 = 0 in the cell layer above the liquid level to approximate the 𝜋 phase shift that 

occurs upon reflection from the free surface [32]. 

This nonlinear Helmholtz equation is rather simple to solve using the Finite Element Method 

(FEM), thereby facilitating the numerical evaluation of the acoustic field in the presence of cavitation 

bubbles [19,20,25,30] in commercial packages such as COMSOL Multiphysics. Solution of this 

equation using the Finite Volume Method (FVM) is trickier and requires special preconditioning [32]; 

however, the flow equations are simpler to solve in the FVM framework. 

2.2. Macroscopic Flow Model 

Acoustic streaming models in the literature generally follow the work of Eckart [33] by 

incorporating the streaming force 𝒇 as 

𝒇 = −∇(𝜌𝑙𝒗⨂𝒗̅̅ ̅̅ ̅̅ ), (16) 

(where 𝒗 is the acoustic velocity) to the continuity and momentum conservation equations, leading 

to 

0 = ∇ ⋅ (𝜌𝑙𝒖) + ∇ ⋅ (𝜌𝑣𝒗̅̅ ̅̅ ̅), (17) 

0 = 𝒇 − ∇𝑝 + 𝜇𝑙∇
2𝒖, (18) 

where 𝜌𝑣 is the density variation that is caused by the primary acoustic field. However, equation 

(18) is the momentum equation of a creeping flow driven by the acoustic streaming and is therefore 

applicable to Reynolds numbers much smaller than 1 [20]. Since acoustic cavitation processes would 

involve much larger Reynolds numbers, the streaming velocity should instead be calculated from a 

full steady state Navier–Stokes equation [34] 

∇(𝜌𝑙𝒖⨂𝒖) = 𝒇 − ∇𝑝 + 𝜇𝑙∇
2𝒖. (19) 

However, the solution of equation (19) is difficult since the streaming flow observed 

experimentally is turbulent [35] and resolving small-scale eddies with the Navier–Stokes equation is 

not trivial [20]. Instead of solving for streaming directly, the latest papers follow the approach of 

Louisnard [20] by computing the streaming force from the solution of the nonlinear Helmholtz 

equation (8) and injecting the result into the momentum equation. This approach has been validated 

in recent works describing acoustic streaming [20,35–37] and has also been applied to DC casting [38]. 

3. Numerical Simulations of the Acoustic Field in Crucibles, Moulds and Launders 

There is a dearth of contributions in the literature regarding the specific modelling of ultrasonic 

melt processing. This is not surprising since accurate measurements of acoustic pressures in 

aluminium have only recently been made available [39,40]. Some of the first modelling contributions 

are those of Nastac [41–43] who presented two approaches for modelling grain refinement of an A356 

alloy. A similar approach is followed by other authors to model nanoparticle dispersion [44] and the 

distribution of acoustic pressure in a launder [45]. The first method consists of solving the RANS 

equations using a classical hydrodynamic cavitation model [46] that is implemented in commercial 

CFD packages. The essence of this method can be summarized as follows. The liquid–bubble mass 

transfer is governed by a bubble transport equation in the following form 

𝐷(𝜌𝑏𝜙)

𝐷𝑡
= 𝑅𝐺 − 𝑅𝐶, (20) 
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where 𝜌𝑏 is the bubble density, and the source terms 𝑅𝐺 and 𝑅𝐶 account for bubble growth and 

collapse, respectively. These source terms are calculated using the growth of a single spherical bubble 

based on a bubble dynamics model (e.g. Rayleigh–Plesset [47], Keller–Miksis [26], Neppiras–

Noltingk [48]). This equation is coupled with the flow conservation equations, together with a 

suitable closure for turbulence. However, as beautifully presented by Louisnard [20], this model is 

restricted to bubbly liquids containing vapour bubbles only. With the vapour pressure of aluminium 

at the melting point being negligible [49], it is unlikely that aluminium vapour bubbles would form 

in the melt bulk [50] with gas, hydrogen-filled bubbles, forming instead. This therefore prohibits the 

use of any hydrodynamic cavitation models for the inertial acoustic cavitation bubbles that are 

present in liquid aluminium treatment. 

The second approach in Nastac’s contribution is, however, more appropriate and is a precursor 

to the method highlighted in this overview. In this indirect method, the acoustic field is solved for by 

using a linear Helmholtz equation, closed with the Neppiras–Noltingk model [48]. However, as 

argued in the previous section, this method suffers from various deficiencies: the linear Helmholtz 

model is inadequate in the presence of cavitation bubbles, since pressure propagation is nonlinear in 

this regime. The Neppiras–Noltingk model does not account for acoustic radiation, which is crucial 

at high forcing pressures. Other authors also used a linear acoustic propagation model to study the 

treatment of AlSi7Mg alloy melt in sand casting, even though pressures larger than 2 MPa have been 

predicted [51]. A linear model was also employed to compute the acoustic pressure field in a SCN-1 

wt% camphor alloy, which is often used as a transparent analogue to aluminium melt [13,52]. 

Another attempt to obtain an accurate prediction of the acoustic pressure field was through the 

solution of the Caflisch equations (1–2) [38]. In this approach, Lebon et al. directly computed the 

acoustic field using the nonlinear equations governing sound propagation in bubble liquids [21,53,54] 

and validated the model using experimental data from the literature, as shown in Figure 1. 

 

Figure 1. Validation of Caflisch approach to computing acoustic pressures [54] using experimental 

data from Campos-Pozuelo et al. [10]. 

Adequate pressures were predicted as compared with the measurements using a calibrated 

cavitometer [39,40] enabling the extension of the model to account for nanoparticle deagglomeration 

[55], fragmentation of dendrites [56], the erosion of thermally-sprayed splats [57], or contactless 

-2.0E+5

-1.0E+5

0.0E+0

1.0E+5

2.0E+5

3.0E+5

4.0E+5

5.0E+5

6.0E+5

7.0E+5

0.0E+0 1.0E-4 2.0E-4 3.0E-4 4.0E-4 5.0E-4 6.0E-4 7.0E-4 8.0E-4 9.0E-4 1.0E-3

P
re

ss
u

re
 (

P
a)

Time (s)

Campos-Pozuelo et al. [9]

Lebon et al. [54]



Materials 2019 6 of 12 

 

ultrasound due to Lorentz forces from an electromagnetic coil [58]. However, this method suffers 

from various drawbacks. A bubble dynamics ODE must be solved in each computational cell of the 

domain, with the use of an adaptive time stepping scheme to stabilize the solution procedure for each 

computational cell. The method is also prone to numerical diffusion and requires the use of high-

order discretization schemes in space and time, and a special staggering scheme [59]. These issues 

prohibit the application of the model to complex 3D geometries due to the extreme computational 

requirements. 

More recently, nonlinear models of pressure propagation have been used in the context of melt 

processing. Nonlinear models are required to more adequately capture the attenuation of pressure 

due to the presence of cavitating bubbles, as shown in Figure 2. Huang et al. [60] used an improved 

nonlinear Helmholtz model [61] to predict the cavitation depth in sonication of an Al-Cu melt. Lebon 

et al. used Louisnard’s model to compute acoustic pressures in water and aluminium vessels [35]. 

This model was adapted and improved to model acoustic pressures in DC casting [38]. The same 

approach has also been used by Yamamoto and Komarov [37]. The last two studies are conducted in 

conjunction with acoustic streaming and are discussed in the next section. 

 

Figure 2. Difference in predicted acoustic pressures between linear and nonlinear models. The 

nonlinear model includes the attenuating effect of cavitating bubbles below the sonotrode. The dash-

dotted line denotes the Blake threshold for hydrogen bubbles in aluminium, with 𝑅0 = 3 µm. 

4. Effect of Acoustic Streaming 

The numerical study of acoustic streaming in melt processing is even sparser in the literature. A 

prediction of ultrasonic DC clad casting using the Navier–Stokes equations only has been recently 

published [62]. Acoustic streaming is implemented by a direct solution of the sonotrode motion in 

ANSYS Fluent and applying the transient effects in steady state equations, although the 

implementation details of the process are not described. The model does not include the effect of 

cavitation bubbles, so acoustic shielding is not considered. As reported in [63], this method does not 

appear to capture the flow reversal observed at certain irradiation powers. 

Other significant contributions, however, employ acoustic streaming models computing the 

acoustic streaming force as per equation (16). Simulation of convective flow for an Al-2% Cu alloy 

has been performed by Wang et al. [12,64,65] using the Lighthill approach [34]. This approach predicts 

a fast velocity jet below the sonotrode, and comparison with a corresponding experiment reveals that 

the fast streaming flattens the temperature gradient and promotes an equiaxed grain structure. 

Another approach involved the use of the Ffowcs Williams and Hawkings (FW—H) equation 

generally used to compute the propagation of aerodynamic noise to model the acoustic pressure in 

Fluent [66,67]. Another commercial CFD software package, Flow3D, has been used to model acoustic 

streaming during the treatment of an A356 alloy melt without detailing the modelling procedure [68]. 

Inspired by Louisnard’s nonlinear model coupled with acoustic streaming, Lebon et al. [35] 

validated an acoustic streaming model using results from a Particle Image Velocimetry (PIV) 

experiment using a TSI system [63], as shown in Figure 3. While the model offers only qualitative 

agreement with the experiment, this progress is encouraging because: 
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1. Despite simulating the problem in two dimensions, the correct order of magnitude of acoustic 

streaming is recovered. 

2. The net flow reversal below the sonotrode observed at low operating powers is predicted by the 

model. 

3. The comparison holds for a time-averaged analysis of transient results, which mimics the way 

velocities are recorded by PIV. 

4. The model is tractable since the Helmholtz equation is easier to solve than a system of ODEs 

representing bubble dynamics. 

 

Figure 3. Comparison between measured velocities using Particle Image Velocimetry (PIV) [63] in 

water and predictions of acoustic streaming using the numerical model described in [35]. The 

velocities are in m s-1. The grey bar at the top of each contour represents the vibrating surface. The 

dataset used to reproduce these results is available elsewhere [69]. 

However, a remaining challenge is the suitable choice of the bubble number density as a 

parameter for the simulation. This study of acoustic streaming in water revealed that the predicted 

flow field is sensitive to the assumed bubble volume fraction, and therefore of bubble density by 

extension. The bubble density can also vary spatially, although a step function such as the one 

described by equation (3) helps in limiting the presence of bubbles in regions below the Blake 

threshold. Semi-empirical values in the range 109–1012 m-3 have been reported to lead to acceptable 

results [32,35,54,70–72]. Aside the difficulties in choosing the appropriate bubble density for a 

particular simulation, variation in bubble density due to differences in melt quality, presence of 

impurities and agglomerates, or variation in degassing times presents further challenges. 

This model was further improved using Trujillo’s mathematically rigorous derivation of the 

complex wavenumber (9) and was then applied to DC casting using a continuum model [38]. Figure 

4 shows the results of a numerical model of ultrasonic processing in DC casting. The predicted sump 

profile is altered by the fast streaming jet of hot liquid aluminium down the axis of the billet, thereby 

shortening the transition region at the centre of the billet. Observed grain orientations at the centre 

of cast billets confirm this prediction [38]. The model also predicts a slightly increased rate of porosity 

defects at the centre of billet cast with ultrasonic processing, as shown by the increased Niyama 

criterion at the centre of the domain (Figure 5). However, any experimental observation of increased 

porosity has not been reported so far. 
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Figure 4. Comparison of sump profiles between conventional DC casting (left) and ultrasonic assisted 

DC casting (right). 𝑓𝑠 is the solid fraction using the casting conditions defined in [38]. Arrows are 

shown for the scale of the velocity field. The red dash-dotted line represents the liquidus temperature 

and the blue dash-dotted line denotes the coherency temperature (solid packing fraction). The dataset 

used to reproduce these results is available elsewhere [73]. 

 

Figure 5. Comparison using the Niyama criterion between conventional DC casting (left) and 

ultrasonically assisted DC casting (right) using the casting conditions defined in [38]. The larger 

values upon sonication indicate an increased probability of porosity defects at the centre of the cast 

billet. 

Another research group independently used the same acoustic pressure formulation: Yamamoto 

and Komarov applied a similar model to aluminium [37] to reveal that attenuation of ultrasound and 

wave numbers are larger in the molten aluminium than in water, and that acoustic streaming flow is 

slower in the aluminium melt as compared with water. This is in agreement with our experimental 

study in [40] where shielding and acoustic damping were found to be more pronounced in liquid 

aluminium compare to water, obstructing the wave propagation into the bulk.  

5. Current Challenges and Future Outlook 
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This summary has highlighted the requirement of considering the appropriate physics when 

modelling the complex phenomenon of ultrasonic melt treatment. However, more effort is required 

for an accurate prediction of actual treatment conditions. Aside from a recent contribution studying 

resonance in crucibles [58], the boundary conditions used in the models encountered in USP 

modelling so far are basic and do not take into account the vibration of the solid walls of a sonoreactor 

or reflection off real, rough crucible walls. Crevices in the walls could also act as seeds for nucleating 

bubbles and these are not taken into account by any model encountered so far. This is crucial in 

situations where resonance is required and both the changing bubbly media and imperfect container 

walls affect the resonant frequency of the system [58,74]. 

The stability of the heat balance solver upon mesh deformation and solidification front motion 

is still an issue for accurate modelling of ultrasonic processing in the presence of solidification. This 

limits the accuracy of casting simulations and need to be addressed for more accurate sump profile 

predictions. There is also an uncertainty on the effect of the entrained cavitating bubbles and acoustic 

streaming jet on the packing fraction in the semi-solid region of a casting domain, and therefore on 

the delimitation between slurry and mushy zones. These need to be quantified accurately for more 

reliable predictions. 

Since acoustic streaming modifies the grain morphology of the billet, the coherency temperature 

is expected to vary locally in the sump. Further study is required to determine the dependency of this 

parameter on the flow. However, an accurate a priori prediction is rendered difficult since the 

knowledge of the grain size and morphology is required before choosing the correct solid packing 

fraction. 
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