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Abstract 

This paper presents a Neural Network (NN) approach for displacement analysis with applications in 

modelling the seismic response of the UK’s Advanced Gas Cooled Reactors (AGRs). A quarter sized 

physical model of a reactor core was developed at the University of Bristol to provide experimental 

validation to the existing numerical models that support the seismic resilience assessments of the 

AGRs. The physical model outputs include displacement and acceleration datasets of considerable 

size and complexity,  collected for a range of seismic inputs and postulated component damage 

scenarios. Rich sets of displacement data were employed in training two NN models that can predict 

displacement at user-defined locations in the core physical model and can map the correlation 

between the component relative displacements. Understanding component displacements is 

particularly  important, as such displacements may affect the channel shapes and can cause local and 

general distortion of the core. This paper presents the development, testing and performance of the 

NN models. The NNs  yield predictions that compare well with the experimentally obtained 

parameters. As more experimental test data become available, the NN’s prediction capability will 

benefit from accumulated training. In the future, the NNs will be incorporated into a multi-layered 

framework for dynamic response prediction and analysis. 
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1 Introduction 

The aim of this paper is to test the validity of use of NNs as predictor tools for a complex multi-rigid 

body dynamics problem. Neural networks (NNs) are widely used in all areas of engineering and 

experimental research to model systems with numerous variables and complex non-linear response, 

and their role could be of pattern recognition, object classification or prediction (Beale and Jackson 

1990). NNs act as nonlinear modelling systems that consist of processing units or neurons 

interconnected by means of weights. The model is represented by the values of these weights, which 

are established during network training. How the strengths of the neuron connections are obtained 

during the training phase to achieve a desired overall behavior of the network is governed by the 

training algorithm (Beale and Jackson 1990, Beale et al 2016). Each neuron has an associated transfer 

function that relates its inputs to its output. Given a set of inputs, a NN can predict the outputs without 

the need for a priori assumptions with regards to the relationship between the inputs and the outputs. 

The different types of NN architecture, transfer functions and training algorithms in use today form a 

vast area of mathematical research (see, for example,  Beale and Jackson 1990, Heaton 2012 and 

Hagan et al 2014). 

In the nuclear industry, a plethora of computer systems based on object classification NNs have been 

proposed as diagnostic tools for the direct mapping of plant signals into components faults (see for 

example Uhrig 1991a, Uhrig 1991b, Bourguet and Antsaklis 1994,  Santosh et al 2007).  NNs have 

also been applied for the characterization of normal operating plant conditions and transient data  pre-

processing, and have been used in combination with other computer tools in hierarchical multi-level 

diagnostic systems (Cheon and Chang 1993, Ohga and Seki 1993, Bartal  et al 1995,  Santosh et al 

2007). Several NN-based systems have been proposed to deal with off-line nuclear power plant - 

related issues, such as fuel reload optimization, power and heat distribution in the fuel elements, fault 
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detection in fuel elements or steam header welds (Reifman et al,1994, Reifman et al 1996). Other 

more recent projects discuss the feasibility of using neural networks for modelling the plant 

thermodynamics and for the analysis of plant vibrations (Westwick D (ed) (2007)). In the UK, a novel 

approach to generate models of systems for real time monitoring in the nuclear industry has been 

developed using  tools based on binary neural networks and associative memory techniques (Cybula 

2016).The most widely used type of neural network, both for nuclear plant diagnostics and plant 

model identification, is the feedforward back propagation NN which consists of a layered 

arrangement of neurons. The information flows unidirectionally from the input layer of neurons to the 

output layer, while the error between the NN prediction and the values of the training set propagates 

backward through the network. This type of NN has been classified as an universal approximator 

(Hornik et al 1989). 
This paper presents the use of the NN approach in the context of physical modelling of an Advanced 
Gas Cooled Reactor (AGR) core. The AGRs are the second generation of British gas-cooled nuclear 
reactors, using graphite as the neutron moderator and carbon dioxide as the coolant. In the United 
Kingdom, there are seven AGR power stations, each with two identical reactors. Their cores comprise 
of a stacked array of hollow, prismatic graphite bricks and interlocking keys and are designed to fulfil 
three fundamental functions: provide neutron moderation, allow movement of fuel and control rods 
and allow gas flow for cooling. These functions must be maintained in normal operating conditions, 
but also during hazardous natural events, such as earthquakes. According to current international 
standards, a nuclear plant should be qualified against at least 0.1g peak ground acceleration, while the 
plant operators require that their AGRs can be safely shut down and held down in the case of a more 
severe seismic event with a probability of exceedance of 10-4 per annum.The  seismic capability of the 
AGRs is subject to continual examination by the operators as part of a strategy that involves the 
development of enhanced analytical methods and physical models for static and dynamic behaviour 
(Neighbour 2007, Neighbour 2013, Flewitt and Wickham 2015). The earliest  physical model for 
seismic behaviour included a simple 9x9 brick array, employed by the National Nuclear Corporation 
(NNC) in 1985  (Rogers 2012). Later on  between 2008-2012 a single layer 20-rings array model and 
a 4x4x8 array (‘the minicore’) were developed by the University of Bristol (UOB) to explore the basic 
mechanics of the core system and prepare the ground for a more sophisticated modelling tool (Dihoru 
et al 2016). 

In 2014, a quarter scale 8-layer-20-bricks-across AGR core model (“the Multi Layer Array (MLA) 
rig”) was commissioned at the UOB for the investigation of the seismic behaviour of these complex 
systems. The rig can generate brick displacements of sufficient magnitude to exceed current seismic 
assessment limits when simulating the effects of postulated component degradation (i.e. cracked 
bricks and/or failed keys) and increased brick-to-brick clearances arising from radiation shrinkage in 
the AGR cores. The MLA was tested on the earthquake simulator (‘shaking table’) at UOB. It 
provided useful insights into the dynamics of core arrays and feeds large amount of data into the 
existing numerical models (Kralj et al 2005, Koziara and Bićanić 2011) for validation.  

Nine MLA experimental configurations comprising ~42000 components and ~3200 measurement 
sensors generated ~7Tb of data. The physical model outputs include displacement and acceleration 
datasets of considerable size and complexity that feature all the challenges associated with ‘big data’ 
capture, storage, transfer, analysis, visualization, updating and information privacy. The vast amount 
of data that resulted from the tests are challenging in both handling and interpretation and require 
bespoke software for structuring and analysis. Besides the more conventional processing tools, a new 
neural network (NN) approach has been developed to predict the displacement of bricks in the top 
layer of the array, based on past response history.Such predictions are important in understanding the 
expected reponse for a user-defined seimic input and for recognizing the correlations between the 
individual component displacements at various locations in the array. Such displacements may reflect 
the local and the general core distortion, as well as being an indicator of the behaviour of the top of 
the control and fuel channels.The NN models and the details of NN training and testing are presented 
together with the NN simulation results. The NN’s prediction performance shows that the new models 
are efficient in dealing with highly non-linear, time-dependant displacement data and that they are 
capable of recognizing patterns of behaviour determined by both geometry and dynamic input. 

 

http://en.wikipedia.org/wiki/Generation_II_reactor
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http://en.wikipedia.org/wiki/Carbon_dioxide
https://en.wikipedia.org/wiki/Information_privacy
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2 MLA Experimental Rig 

The MLA consists of an 8-layer assembly of quarter scale model bricks and model keys made of a 

rigid engineering plastic (acetal). All of the AGR graphite component types are represented in the 

MLA, i.e. fuel (lattice) bricks, interstitial bricks, filler bricks, filler, spacer and loose bearing keys 

(Figure 1). The multi-layered array of components is octagonal in shape and has 20 bricks across its 

maximum cardinal direction, modelling the innermost 10 rings of the AGR core (Figure 2). The array 

is enclosed by a rigid support frame and confined at the bottom by a rigid arrangement of plastic 

plates that permit the required radial rocking and in which the bottom component of each vertical 

column is mounted (Figure 3). More details on the MLA’s design and mode of operation can be found 

in Dihoru et al 2011, Dihoru et al 2012,  Dihoru et al 2014, Dihoru et al 2016. 
 

 

 

 

 

 

 

 

 

a)                                                                      b) 

Figure 1 Arrangement of AGR core components (a) and MLA model components made of acetal (b) 

 

a)                                                                                 b) 

Figure 2 An AGR core (a), courtesy EDF Energy), the MLA rig (b), view from above. 

 

For dynamic testing, the MLA rig is secured by its base to the platform of an earthquake simulator 
(Figure 3a) and subjected to simulated seismic motions of various frequency and acceleration ranges 
applied in different directions in the horizontal plane. During testing, accelerations and displacements 
are recorded at relevant locations inside the array and on the top layer of the array by a variety of 
instruments (accelerometers, Hall effect sensors, infrared markers and high speed cameras). During a 
seismic event, the MLA behaves as an array of rigid bodies in which the relevant forces are the impact 
forces generated during the collisions between the components, the gravitational and the restoring 
forces. The energy loss after a brick-to-brick collision depends heavily on the actual layout of 
components in a zone of investigation (i.e. presence or absence of keys, locking of keys, etc). In 



4 

 

principle, the MLA’s  measurement systems target the local and the general distortion of the core, as 
well as the control and lattice channel shapes. 

                                     a)                                                                                       b) 

Figure 3 The MLA‘s rigid restraint frame (a). Layer layout in the MLA rig (b). Layer 1 is an assembly 
of plastic plates. Layers 2-8 are active. Layer 3 is highlighted to show arrangement of bricks. 
(courtesy Atkins). 

The top layer of the MLA  is monitored via a 5-camera vision system that records the motion of the 
infrared (IR) passive markers attached to selected lattice bricks and to the MLA’s  restraint frame. 
(Figure 4). The infrared cameras work at a speed of 100 frames/second in conjunction with a tracking 
software that generates output files containing the X, Y, and Z coordinates of each IR marker. Each 
brick that is monitored contains three IR markers, hence its 3D position can be fully determined.  

 

 

 

 

 

 

 

 

a)                                                                        b) 

Figure 4 Infrared (IR) markers mounted on the MLA restraint frame (a), IR markers (A, B and C) 
mounted on the model fuel brick (b). 

 

The displacement measurement system for the MLA’s top layer has generated a vast amount of data 
stemming from testing nine array configurations in test schedules containing  ~400 tests each. The 
data reflect the non-linear and noise-contaminated response of the MLA. Data sets such as these are 
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typically well-suited for a NN modelling approach. The authors  have pursued this approach for 
predicting displacement in the top layer for a user-given seismic input. The details of the new NN 
tools are given in the following sections. 

 

3 Neural Networks for MLA Displacement Analysis  

3.1 Work Objectives  

The NN approach presented in this paper deals with an analysis of component displacement in the top 

layer of the MLA for user-defined seismic inputs. Displacement of  top layer components is an 

important model output that gives an indication of the local and general distortion of the core and also 

on the deformation at the top of the fuel and control channels. In the AGR cores, the channel shapes 

have to be kept within tightly controlled limits for the safe insertion of the control rods and the fuel 

stringers. It is important to explore the core displacements in the quarter scaled model (MLA) and 

translate the results to the prototype numerical models, for different array configurations and for 

arrays with different amounts of postulated damage (i.e. different distributions and levels of brick 

cracking). The top layer reponse may be a good indicator of  the way the effect of damage propagates  

inside  the array. In general, displacement prediction is not a trivial exercise: the dynamic behaviour 

of the MLA is the result of a highly complex set of factors of influence that are summarized below. 

a) Intricate pathway of dynamic force transmission: the seismic input is a displacement time 

history applied by the earthquake simulator at the base of the rig frame.  The MLA array 

consists of vertical columns rigidly fixed at the base and enclosed by the rigid rings of the 

frame. The keys connecting the bricks in the horizontal plane serve as a radial system of 

component-frame interaction. When the base seismic input is applied, a primary dynamic 

input is transmitted up the columns (which act as flexible beams) causing the brick to move 

horizontally thus engaging the radial keying system. When the radial keying system is 

engaged, a secondary force path is developed in the horizontal plane with the dynamic input 

being transmitted from the lateral wall of the frame to the array. The most important forces 

inside the array are the collision forces, the inertial forces and the gravitational forces. The 

collisions are  complicated due to their ‘spiky’ nature (high frequency content). Also, of a  

lesser significance for the overall response, but still important for the local response, are the 

friction forces at the key-to-brick and brick-to-brick interfaces.  These interactions are 

complicated to model analytically due to their non-linear and transient nature, the large 

number of degrees of freedom and the large number of component-to-component interfaces. 

b) Complex component geometrical layout: the MLA array consists of ~44000 components 

(bricks and keys) stacked vertically in columns and arranged in radially- distributed rings. 

The clearance between the vertical fuel columns is constant (4mm). Due to the gap 

accumulation effect, the components situated in the central area of the core are expected to 

move more that the ones in the vicinity of the rigid restraint frame. The model fuel bricks 

have end face features (‘rocking features’)  that cause them to rock preferentially in the array 

radial direction. Depending on the location of the brick in the horizontal plane, the ‘rocking 

feature’ direction changes and this contributes to components of motion that are not 

necessarily aligned with the seismic motion. An individual brick will tend to move on the 

direction of motion (as part of a column), but will translate and rotate relative to the brick 

belowin accordance with its end face feature. This combination of motions makes the relative 

displacements of a component difficult to predict using simple structural dynamic models. 

Given the complexity of the MLA’s dynamic response and the presence of a large amount of 

experimental data, a NN approach for modelling displacement was considered particularly suitable, as 

such an approach does not require an a priori assumption regarding the relationship between the input 

and the output variables. The proposed NN models are presented in Table 1.  

The architecture details for the two NN models are presented in Section 4.2. In the future, the NNs 

can be incorporated into a multi-layer framework for dynamic system response that can fulfil four 

distinct roles:  

a) A pattern recognition tool that identifies patterns and irregularities in  response; 

b) A prediction tool that evaluates the response for previously unseen seismic inputs;  
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c) An experimental design tool that identifies relevant inputs to be employed in future 

experiments; 

d) A ‘big data’ investigation tool that identifies the most interesting tests for future data analysis, 

based on pre-defined selection criteria. 

This paper deals with the development of the pattern recognition and the prediction tools  (points a) 

and b)), while the experimental design tool and the ‘big data’ investigation tool will be covered in 

future publications. The ‘big data’ investigation framework  will build on the historic accumulation of 

knowledge facilitated by the previous tools and will include the following strands of work: data 

capture, data storage, data  analysis, data sharing and transfer, data visualization and data querying. In 

particular, the data analysis will benefit from navigation and interrogation tools meant to reveal 

certain patterns and trends based on pre-defined selection criteria. The ‘big data’ framework should be 

general and complex enough to be applicable to a wider set of AGR-related issues.  

 

Table 1 Proposed neural networks for displacement analysis 

 
ID Proposed Models Inputs Output 

NN1 NN for displacement 

prediction in top layer 

Applied 

seismic input 

and brick 

location 

Absolute displacement of bricks at selected 

locations in the top layer 

NN1 Objective: By cumulative training, the NN1 model can predict the response for a large number of 

seismic waves, substituting or complementing the experimental testing. If predictions show interesting 

features of response, then certain selected inputs can be used in physical experiments to measure response. 

 

NN2 NN for correlation maps  Displacement 

relative to the 

frame for the 

brick in 

central 

position 

Displacement relative to the frame for bricks at 

selected locations in the top layer. Regression 

coefficients measuring correlation of relative 

displacement between brick in central position 

and other bricks at selected locations in the top 

layer. 

NN2 Objective: Prediction of correlation between relative displacements of components in the top layer. 

This helps with understanding how the seismic input and/or the cracking in the lower layers affect  the 

dynamic response in the top layer.   

 

 

 

3.2 Work Planning 

One intact array and four cracked array configurations were selected for this investigation (they are 

identified by different IDs in Table 2). These configurations were employed in order to test the 

validity of the NN method for different study cases and also to seek features of response that may be 

specific for a certain type of array distribution. The chosen cracked arrays model postulated damage 

scenarios of an aged core containing doubly cracked bricks or singly cracked bricks. The cracked 

configurations were selected on purpose, as their displacement response is larger and has more variety 

across the array than an intact configuration. The pattern of cracking in MLA2, MLA3 and MLA4 

was computer generated, based on a random number distribution algorithm. Thus, the physical arrays 

MLA2, MLA3 and MLA4 contain layouts of cracking with an approximately uniform spatial 

distribution in layers 4-7. The MLA8 configuration included singly cracked bricks in a cluster situated 

in the north part of the array, while the rest of the array was intact.  

The NN training employed absolute and relative displacements recorded experimentally at 19 

locations in the array, for the model fuel bricks B1-B19 (Figure 5). The selection of the 19 locations 

was done so that each quadrant of the array is representatively covered in the analysis. Both the 

central and the boundary areas of the array are represented.  
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Table 2 Array configurations under investigation 

 
No. ID Top Layer 

(Layer 8) 

Damage Percentage in the Array 

(Layers 4-7) 

Damage Distribution 

1 MLA1 intact No damage (uncracked array)  

2 MLA2 intact 30 % doubly cracked bricks  Random (approx. uniform) 

3 MLA3 intact 30 % doubly cracked bricks  Random(approx. uniform) 

4 MLA4 intact 50 % doubly cracked bricks  Random(approx. uniform) 

5 MLA8 intact  5 %  singly cracked bricks arranged in a 

cluster on the north side of the array 

 Uneven  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 Mapping of model bricks in the top layer of the MLA array. The displacement records of 

Bricks 1-19 (as marked) were employed in training the neural networks.  

 
The NN assimilates data from bricks located in both central and border regions to encapsulate a wider  
displacement response. The absolute displacements are the brick displacements in the fixed infrared 
camera system of coordinates, while the relative dispalcements represent the brick displacements 
relative to the rig frame. 

The rig frame is rigidly attached to the shaking table platform. The rigid construction of its base plate 
and outer rings  means that the input of the shaking table is transmitted fully to the model array via the 
frame. In the following analysis, the seismic inputs applied to the array are collected via the  infrared 
markers rigidly attached to the top of the frame. A number of seismic inputs were employed in the 
investigation which  were derived from the hazard inputs and resulting responses predicted by the 
seismic assessments of the UK’s AGR stations (Principia Mechanica Limited 1981). They  were in 
the form of time histories generated from secondary response spectra at the core boundary for seismic 
events with a 10-4 probability of occurrence (labelled ‘HPB’).  In addition to those, a set of Eurocode 
required response spectra (RRS) compatible time histories (labelled ‘RRS’)   were also employed (see 
Figure 6). All inputs were applied by the earthquake simulator on a single axis (X or Y direction). For 
each configuration presented in Table 2, data from 10 tests on X direction and data from 10 tests on Y 
direction were employed in the analysis. Various amplitude amplification factors were applied to the 
input time histories. The maximum input displacement in tests varied beween 1-30 mm.       
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a)                                                                            b) 

Figure 6 Examples of displacement inputs as measured by infrared makers on the rig frame. Inputs 
employed in MLA2: a): HPB, b): RRS compatible. 

 

3.3 NN Architecture,  Mode of Operation and Results 

The neural network codes were written in Matlab , R2012a, Version 7.14, and the NN training and 
simulation used the Neural Network Toolbox associated with the same software package. 

3.3.1 NN1 – Model for Displacement Prediction 

Figure 7 presents the NN’s mode of operation. The  inputs of NN1  are the input displacement time 
history at the top of the frame and the  locations of  seven  selected bricks (B1-B7) in the top layer. 
NN1 presents  7 outputs which are the absolute displacements of bricks B1-B7. The displacement 
time histories employed in the analysis are experimental data measured  by the IR vision system at a 
speed of 100 frames per second. Hence, the time step of the data vectors is 0.01s.  The NN 
architecture was empirically selected to  include  3 hidden layers of 8 neurons each, an output layer of 
7 neurons and  ‘weights’ that are multipliers and ‘biases’ which are scalars added to the input signal to 
displace the curve of the neuron’s transfer function (Figure 8). The chosen architecture is a standard 
one and is not dependent on the variable characteristics. According to some authors, three layers of 
active units can represent any pattern classification (Beale and Jackson 1990). The NN’s mode of 
operation is based on the random  spliting of the experimental data  in two equal sets: the training set 
and the test set. The training set is employed for learning the pattern connecting the inputs to the 
outputs, while the test set is used in a post-training analysis (regression analysis) to evaluate the 
network’s performance. A typical sigmoid transfer function was employed in the internal layers  
(Equation 1). This has the advantage of  compressing a wide range of inputs into a finite range by 
transforming inputs that may have any value between plus and minus infinity into ones between 0 and 
1. This transfer function is commonly used in the backpropagation networks, in part because it is 
differentiable. 

f(x)=(1+e-x)-1                       (1) 

where  is the gain coefficient employed to control the slope of the transfer function. 

The training session took place in four stages: assembling the training data, creating the network 
object, training the network and simulating the NN response to new inputs. The NN uses the default 
performance function associated with the feedforward networks [Beale et al 2016]. The performance 
function is the mean square error between the outputs of the network and the target outputs from the 
experimental data set, defined by: 

Ek = 0.5 ∑ (ai-ti)
2                         (2) 

               i 

where Ek is the global network error after k training iterations (epochs of training), ai is the NN 
prediction of output i and ti is the target value of output i. 
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Structure

(MLA Rig)

NN

DE(k)

Trained NN

New Unseen Input

Loading Trained NN

New Prediction

Training the NN

Error Back-Propagation

Training Set

Seismic Input, Brick Location exp X1(k), exp X2(k),…exp X7(k)

sim X1(k), sim X2(k),…sim X7(k)

X1(k), X2(k),…X7(k)Seismic Input

The NN training employed the standard backpropagation with the gradient descent algorithm. This is 
a commonly used algorithm that involve passing the errors back down the network and adjusting  the 
weights between the neurons in the direction of the negative gradient of the performance function at 
each iteration (Equations 3 &4 ). At the beginning of training, the weights and biases are initialized 
with random values. Then the set of training inputs is shown to the network. During each training 
iteration (epoch), the network uses its transfer functions to approximate the relationship between the 
given inputs and the target outputs. At the end of each epoch the error between the NN outputs and 
the target outputs times the learning rate is used to adjust the weights of the network. The learning rate 
is a multiplier with values between 0 and 1 that determines the rate at which the NN converges 
towards a stable solution. 

w[i]
mn

[k]= w[i]
mn

[k-1] -  g[i]
mn

                        (3) 

g[i]
mn

 = ∂Ek / ∂ w[i]
mn

[k-1]                        (4) 

where w[i]
mn

[k]
 is the weight connecting neuron no. m from (i-1)th layer to neuron no. n from ith layer at 

the end of epoch no. k,  g[i]
mn

 
 is the current gradient of the error surface, is the learning rate and Ek 

is the global error between the NN output and the target output after k learning sessions.      

 

 

 

 

 

 

 

 

 

 

 

   

 

 

Figure 7 Dataflow diagram showing the rig data (‘exp’) for training the NN, the NN simulated data 

(‘sim’) and the propagation of error back to the NN. The trained NN is then employed for a new 

prediction. 

 

The algorithm of gradient descent was implemented in batch mode, i.e. all the inputs were applied to 

the NN before the weights were updated. Training times varying between 5000 and 50000 epochs 

were used. 
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Figure 8 Architecture of neural network (NN1) with 8 inputs (‘i’), 7 outputs (‘a’), 3 internal layers of 
neurons and 1 output layer of neurons. 

Figure 9 presents the evolution of the network’s performance function at two times during training. 
The mean square error between the NN’s predicted outputs and the target outputs decreases with the 
number of training iterations. 

 

 

 

 

 

 

 

a)                                                                                b) 

Figure 9 Evolution of NN performance during training after 15000 epochs (a) and after 30000 epochs 
(b).  

Figure 10 presents the NN’s performance after 50000epochs with no failed validation checks. 
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Figure 10 NN performance after 50000 epochs (top) and plot of failed validation checks (bottom). 

 

Each simulation was followed by a regression analysis to compare the simulated displacements with 
the experimental values belonging to the test set. The regression analysis returned the following 
equation relating the NN simulated data (O=Output) to the test set of experimental data (T=Target): 

O= mT + b                                                                                                                          (5) 

where m and b correspond to the slope and the  y-intercept of the best linear regression relating 
targets to the network outputs.  The slope of the fitted line is equal to the correlation between the 
Output and the Target corrected by the ratio of standard deviations of these variables. The regression 
coefficient (R) was chosen as a measure of NN performance (Equation 6). 

R = covariance (Output, Target) /  [SD (Output) x SD (Target)]                                                         (6) 

where SD is the standard deviation of the mentioned variable.The NN prediction results for Brick no.1 
can be found in Figure 11. 
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 c) 

Figure 11  Experimental data (test data) and NN simulated data for Brick 1 displacement for 10 
seismic tests, after 50000 epochs of training (a and b). Regression analysis between NN prediction 
(O=Output) and experimentally masured target data (T=Target) for Brick 1(c).  

 

The regression analysis results for Bricks 2-7 are shown in Figure 12. 
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Figure 12 Regression analysis between NN prediction (Output) and experimental target data (Target) 
for displacement of Bricks 2, 3, 4, 5, 6 and 7 for 10 seismic tests, after 50000 epochs of training, for 
MLA2. 

 

The NN predicts the displacement well for the selected locations, with all the regression coefficients 
‘R’ greater than 0.96. In Figure 13 which shows the NN performance versus brick location, the least 
accurate prediction (R=0.97)  is for Brick 1 which is situated in the centre of the array and the most 
accurate predictions (R=0.99) are for Brick 3, 5 and 7 which are situated closer to the rigid array 
boundary. The bricks in the central part of the array have more freedom to move due to the 
accumulated clearance between the bricks. Their predominantly uniaxial movement is also affected by  
rotation and small vibrations on directions other than the direction of input application. The latter are 
associated with the specific design of the end face of the brick that presents a ‘feature’ with a 
prefential direction of rocking.  
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Figure 13 NN performance vs. brick location for Bricks 1, 2, 3, 4, 5, 6 and 7 (noted B1 to B7) , for 10 
seismic tests, after 50000 epochs of training.  

 

In order to test the prediction capabilities of the NN1 model, a new set of 10 seismic waves was 
presented to the network. The NN prediction for Brick 1 displacement compares well with the 
experimentally measured displacement (Figure 14). In order to assess the uncertainty of the NN 
prediction compared to the experimental results, the mean squared error (MSE) was calculated 
between the NN predicted values and the target values from the experimental set. The MSE plot 
(Figure 14 bottom) describes the evolution of the average of the squares of the errors as a function of 
the number of epochs of training. After 50000 epochs of training, the MSE reaches a value of 
3.9628e-05, which was considered to be a satisfactory predicting performance for the neural network. 
The NN’s performance appears satisfactory for this previously unseen set of inputs, increasing the 
confidence in the method.The NN1 model is a dynamic model, i.e. its prediction capabilities can be 
enriched by training when more data are fed into it. As the shaking table programme of testing  
progresses more, more experimental data will become available to train and increase the NN 
precision.  
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       c) 

Figure 14  NN predicted displacement for Brick 1 for a new set of 10 seismic inputs (a: general view, 
b: detail, c: mean squared error of prediction).  

 

3.3.2 NN2 – Model for Relative Displacement Correlation Mapping 
The NN2 architecture is similar to the architecture employed by the NN1. The NN2 input is the 
experimentally-measured relative displacement of Brick 1, situated close to the centre of the array. 
The NN2 outputs are the relative displacement of eighteen selected bricks in the top layer (B2-B19) 
(as marked in Figure 5).The regression coefficients between the relative displacement of Brick 1 and 
the other selected bricks in the top layer are a result of the NN post-processing routine. The NN2’s 
architecture presents 3 hidden layers of 8 neurons each and an output layer of 1 neuron. Its modus 
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operandi is similar to the one employed by the NN1 (see Figure 7). Figure 15 presents the 
experimental and the NN-predicted relative displacement correlation maps for the top layer in the 
MLA1 (intact array), in the MLA4 (50% cracked array) and in the MLA8 (cracked brick cluster), for 
a sequence of 10 seismic inputs. The results are presented for tests conducted on X direction. The 
patterns of correlation shown in the experimental and the NN-predicted maps are similar, confirming 
the validity of the NN method as a powerful tool of pattern recognition and prediction. The relative 
displacement response of the bricks situated in the central area is better correlated to the reference 
brick (Brick 1) displacement, while the boundary bricks present a lower degree of coupling with the 
central brick. The boundary brick response is governed mainly by the input, while the bricks in the 
central area are also affected by a combination of geometrical effects such as brick-to-brick gap 
accumulation and end-face rocking features and clearances. It is important to note that, in spite of a 
big difference of cracking percentage between the MLA1(intact) and the MLA4 (50% cracked), the 
top layer appears to have an ‘anchoring’ effect on displacement and its response maps seem 
insensitive to the cracking in the layers below. The cracking in the MLA4 was randomly distributed 
across the array, while that in the MLA8 was randomly concentrated in a few columns close to each 
other: the MLA8 contained a cluster of 58 cracked bricks in the north part of the array, while the rest 
of the array consisted mainly of intact bricks. The correlation map between displacements show 
similar patters for the MLA4 and the MLA8 (Figure 15), demonstrating again that the top layer is 
insensitive to the level and the distribution of cracking inside the array. 

Additional displacement correlation maps are shown for MLA3 (30% cracked) and MLA4 (50% 
cracked) in order to assess the influence of input direction on the top layer response (Figure 16). The 
correlation maps are given for tests conducted on X and Y direction, as shown in Figure 16. It is 
important to observe that the correlation maps bear the mark of the input direction, exhibiting an 
elongated shape in the direction of shaking. The experimental and the NN-predicted maps show 
similar patterns, with enhanced correlation in the central area of the array and lower correlation at the 
boundary. The level of cracking, again, was seen not to affect the response of the top layer. Overall, 
the NN2 results presented in Figures 15 and 16 increase the confidence in the NN method. All the NN 
predictions described in Figures 15 and 16 presented prediction errors smaller than 4e10-5 after 50000 
epochs of training.   As the programme of testing continues, several other array configurations will be 
subject of scrutiny via the NN method. 
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a)                                                                        b) 

Figure 15  Correlation between relative displacement of Brick ‘n’ and relative displacement of Brick 1 
in the top layer in MLA1 (intact), MLA4 (50% cracked) and MLA8 (5% cracked with brick cluster) 
for 10 seismic tests: a: experimental correlation maps . b: NN predicted correlation maps, after 20000 
epochs of training. Seismic input applied on X direction. 
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a)                                                                                      b) 

Figure 16  Correlation between relative displacement of Brick ‘n’ and relative displacement of Brick 1 
in MLA3 (30% cracked) and MLA4 (50% cracked), for 10 seismic tests: a): experimental correlation 
maps, b):NN predicted correlation maps, after 20000 epochs of training.  



19 

 

 

E 

w 



tan =dE/dw 

w

      

E 

w 



w

1

w

2

w

3

w

4

3.4 Neural Network Performance 

The NN performance was investigated with respect to the parameters employed in training. In 

general, the learning rate and the number of training iterations are problem dependent. A larger and 

noisier data set would require a smaller learning rate and a larger number of epochs of training (Chan 

et al 1995, Eaton and Olivier 1992). The above simulations employed between 1000 and 50000 

training iterations. It was found that the NNs reached a stable solution after a number of epochs 

varying between 1000-20000 epochs of training, depending on the brick location. For example, the 

NN2 model dealing with relative displacement prediction is converging with more difficulty for the 

bricks situated in the central area than for the bricks situated near the boundary. Therefore, the 

maximum iteration number (20000) was used in further simulations with varying learning rate. 

Theoretically, if the rate at which the weights are adjusted () is progressively decreased during 

training, then the network will be able to avoid the danger of overshooting while moving its outputs 

closer to targets. For example, the high frequency minor oscillations that are not predicted well by the 

neural network (see Figure 14b) are believed to be missed because the learning rate is not sufficiently 

small. Within the gradient descent algorithm, a large learning rate () means large steps across the 

weight and error space. This could cause the NN to oscillate about the minimum of the error surface ( 

Figure 17).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17 Oscillations about the global minimum of the error function, when the learning rate is not  

small enough (E global error after k sessions of training, w weight between two neurons in the 

network, the gradient of the error function, wk the increment of weight w after k epochs) 

(Veleenturf 1995). 

 

When the learning rate is not suitably small there is also a danger of the system settling in a stable 

solution of local minima that slows down or stops the convergence process and that does not 

necessarily provide the correct output. When the NN gets stuck in local minima of the error surface,its 

performance hits a level that cannot be improved by increasing the number of iterations. In order to 

help the NN to find the deeper minima of the error surface, many authors recommend choosing very 

small learning rates to begin with (Beale & Jackson 1990 , Ellison 1992 , Miller et. Al 1990 ), in spite 

of increasing the allocated time for training. In addition to using a small learning rate, another 

technique to help the NN to find the global minimum of the error function involves the repetition of 

the learning process several times with different initializations of the weight vector. The NN is then 

able to determine whether the final solution is a local minimum or the final global minimum. Even 

with random initializations, it is possible that different initial weight vectors give almost the same 

solution after training. In order to avoid this situation, the authors chose initial weight vectors that 

were equally-spaced over the weight space. It was then straightforward to guarantee that the 



20 

 

W11 

W12 

W13 

W14 

W15 

W16 

W17 

W18 

subsequent initializations were different. Figure 18 shows an example of the initial distribution of the 

weight vector associated with the first input and the eight neurons in the first layer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 18 Example of the initial distribution of the weight vector ‘w1i’ (i=1:8). 

 

When the learning process was repeated for the second time, the set of initial weight vectors were 

turned through a specified angle (e.g. 30o). The same procedure was applied for the subsequent 

initializations. In this manner, the NN was able to find the deepest minimum of the error surface. 

Figure 19 shows the performance function of the NN2 model predicting the correlation between the 

relative displacement of Brick 2 and Brick 1. It appears that the performance function is almost 

reaching a plateau after only 1000 epochs (Figure 19b). However, the continuation of training is 

necessary up to 20000 epochs, when the performance function is reaching its goal(Figure 19a). 
 

 

 

a)                                                                              b) 

Figure 19 Error function during training. Correlation of relative displacement for Brick 2 and Brick 1, 
in MLA3 array, for 10 inputs on  X direction. a: best NN performance, b: detail- performance function 
after 1000 epochs. 

The present results are considered encouraging. Future work may involve an exploration into how a 
change of the training algorithm can enhance the prediction performance of the models.  

 

 

4. Concluding Remarks 
This paper presents an NN approach for displacement analysis in a complex multi-body assembly 

subjected to seismic loading. Component displacement has a crucial impact on the local distortion and 

on the channel shapes of the AGR model. The NNs can predict component displacements and 
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displacement correlation maps for user-defined dynamic inputs and the predictions compare well with 

the experimentally obtained parameters. Such predictions are very important in understanding the 

interaction pattern within the MLA array, as the response can be mapped for new seismic inputs.   

The advantages of the NN models are: 

a) NNs do not need any given assumption regarding the relation between inputs and outputs and 

are capable to recognize patterns and generalize. They can be trained with a large number of 

seismic waves to test the response for a wider case. 

b) NNs could play a role in the design of experimental programmes: if the NN predictions reveal 

peculiarities for certain seismic inputs, then those inputs could be employed in the physical 

experiment to measure the response.  

c) NNs are general purpose in nature, being capable to adapt to a wide variety of test and array 

configuration scenarios. 

d) NNs have the ability to train from the given tests, even if data may be sparse, incomplete or 

noisy.  

 

The limitations of the NN models are: 

a) A large amount of experimental data is required, which takes long to assemble. The NN 

training is time consuming and architecture dependent. 

b) NNs lack explanation facilities and behave as ‘blind’ systems during training. 

c) NNs need a wide enough range of training scenarios, as insufficiently rich datasets may lead 

to wrong predictions and decisions. 

 

This paper presents a first foray into modelling the MLA data via neural networks. The authors take 

heart from this first set of NN models which can be dynamically trained to accumulate more data and 

enhance their precision, as the shaking table programme of testing continues. A similar approach will 

be explored for predicting the channel shapes under seismic loading and a combination of neural 

networks with other associative memory techniques may also be pursued for experimental design and 

‘big data’ investigation. 
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