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Abstract. This papempresents the findings of the workshop “New appreado evacuation
modelling”, which took place on the Mlof June 2017 in Lund (Sweden) within the
Symposium of the International Association for Faafety Science (IAFSS). The workshop
gathered international experts in the field of feeacuation modelling from 19 different
countries and was designed to build a dialogue dmtvihe fire evacuation modelling world
and experts in areas outside of fire safety engimgeThe contribution to fire evacuation
modelling of five topics within research disciplgeutside fire safety engineering (FSE) have
been discussed during the workshop, namely 1) BsygiwHuman Factors, 2) Sociology, 3)
Applied Mathematics, 4) Transportation, 5) DynarSitnulation and Biomechanics. The
benefits of exchanging information between these gwoups are here highlighted in light of
the topic areas discussed and the feedback recbivélte evacuation modelling community
during the workshop. This included the feasibilifydevelopment/application of modelling
methods based on fields other than FSE as well dsaussion on their implementation
strengths and limitations. Each subject area i® leiefly presented and its links to fire
evacuation modelling are discussed. The feedbamkiwed during the workshop is discussed
through a set of insights which might be useful ttoe future developments of evacuation
models for fire safety engineering.

Keywords. Evacuation modelling, Egress, Fire Safety, HuBahaviour, Emergency,
Pedestrian Dynamics, Smoke, Exit choice, Pre-evarua

Highlights:
* Findings of a workshop on new approaches to evaxuatodelling are presented.
» Five areas useful for evacuation modelling develepinare introduced.
* Feedback on the modelling ideas is reported

* Aroadmap for implementation of new approachesasted



1. Introduction
The developments of evacuation models for firetgadagineering applications have reached
a crossroads. An extensive list of sub-models @ayt available for the representation of the
behavioural and physical components of evacuaiog.,(pedestrian movement, evacuation
decisions, route choice, social influence, etcgné&hi and Nilsson, 2016). Model developers
face the choice of tuning parameters and variabfegxisting sub-models or to begin
incorporating new features based on insights fraiside the field of fire safety engineering.

Evacuation modelling for fire safety engineeringlagations is a multi-disciplinary research
areaper se since it combines both behavioural sciences (esygchology, sociology, etc.) for
the representation of human behaviour in fire a§ ageengineering and natural sciences (e.g.
computer science, physics, physiology, applied eratitics, etc.) for the development and
implementation of the models into simulation todlfiose tools are generally used in fire
safety engineering for the design of buildings amnansportation systems within the
performance-based design approach (Meacham, 1997).

To date, scientists from fields outside of fireetgfengineering have investigated behavioural
and physical issues associated with human behaindine, crowd dynamics and pedestrian
monitoring which may potentially be relevant to ewation modelling. The critical question
is iffhow such insights can be integrated into éxésting body of fire evacuation models.
Based on this starting point, a set of challengedrto be analysed concerning the possible
uses and suitability of such studies in the fief[dewacuation modelling for fire safety
engineering applications. These challenges incligientifying relevance (Is the research
relevant to human behaviour in fire?), maturity Wwell established are findings within
their discipline?), and applicability of researddo(v can we implement basic research
findings into an evacuation model?), but also figda common vocabulary and overcoming
jargon from within each discipline. In short, magleiethods, data, and theories from other
fields need to be assessed for their suitabilityefeacuation models. This process should run
in parallel with identifying and filling potenti&nowledge gaps in existing evacuation models
(Galea, 2012).

To facilitate this process, the workshdgelv approaches to evacuation modelling” was held

as part of the Symposium of the International Asdamn for Fire Safety Science (IAFSS)
hosted by Lund University in Lund (Sweden) on th® &f June 2017. The workshop brought
together a set of international experts from vagialisciplines outside of fire safety
engineering with invited evacuation modelling expén order to discuss new ideas for future
evacuation modelling developments. Researchersguatian model developers, users and
experts as well as fire safety practitioners anguleors took part in the workshop.
Participants came from 19 different countries, e@fhg the global relevance of the topic.
Another key motivation of the workshop was to stiate collaborations between specialists
of different disciplines and increase the visipildf fire safety engineers in areas outside of
their “usual” boundaries.

A set of disciplines were selected during the pragoan of the workshop and relevant experts
from each discipline were invited to form a panad @resent an overview of each subject and
discuss possible issues which might be relevanévacuation modelling for fire safety
engineering applications with the workshop audiefte reasons for the selection made by
the workshop organizers on the set of disciplinexu$sed included the following: 1)
potential of the domain findings to be implemeniteé@xisting evacuation modelling tools; 2)
estimated time for implementation of domain findin@.g., in a relatively short time, thus



excluding fields which are at a relatively earlgge of research; 3) time available within the
workshop to discuss the selected topics as orityited number of topics could be addressed
within the time available; 4) interest/availabilitf researchers working in an area different
than fire safety engineering to contribute to thmkghop. In order to achieve a constructive
dialogue during the workshop, it was critical temdify a domain expert willing to present the
topic and engage in the discussion with the fifetgaengineering community. The audience
consisted of a heterogeneous group of partiesestied in evacuation modelling, including
researchers, regulators (e.g. authorities havinmggdigtions and fire code developers),
practitioners, and students. The majority of thdience were researchers and/or students and
so the support for the suggested needs and proptseelopments presented here are
primarily driven by a researcher perception rathan an end-user perception.

Here, the main conclusions of the workshop as wsllthe five presentations and their
accompanying discussion are summarized. In addiiomadmap for the integration of the
advances in interdisciplinary research into fira@wation models is proposed. The final part
of this paper discusses the steps and actionsdliéd be taken to improve current evacuation
modelling tools for fire safety engineering applicas. More information about the
workshop, along with the full articles associatethveach presentation can be found in a
Lund University report associated with the worksii@pnchi et al., 2017).

2. Workshop structure
Five experts (the acronyms here refer to the Iisitiaf each paper author) from
psychology/human factors (MK, YS), sociology (EKgpplied mathematics (AC, FT),
transportation research (AP), and dynamic simuléiomechanics (PT, DM) presented their
work. Each presentation was followed by a questi@nanswers (Q&A) session with the
workshop panel moderated by two experts from theceation modelling community (ER,
EG). The Q&A session gave the opportunity to thdieuce to comment on potential issues
associated with the implementation of the propasethods/theories/data/ideas and discuss
strategies for improvement of current evacuatiome®based. The workshop closed with an
open discussion in which the workshop participduats the opportunity to present comments,
guestions and remarks directly to the presenteescfi disciplines and/or other experts from
the evacuation modelling community.

The next sections present an overview of the figeiplines presented during the workshop,
namely 1) psychology/human factors, 2) sociologya@@lied mathematics, 4) transportation,
5) dynamic simulation and biomechanics. The disogsl were selected after a review made
by the workshop organizers of the scientific ouspiat different subject areas which may be
potentially integrated into evacuation modellinglgofor fire safety engineering applications
Each presenter focussed on a sub-set of key sudnjeas within each discipline which could
be relevant for future evacuation model developsient

The selected subject areas presented and correspadhors/presenters were:
1) Psychology/Human factors: Visual Perception, Sdcifiience, and Emotional States
(Authors: Max Kinateder, Youssef Shiban)

! The organizers had to limit themselves to a selantber of fields which were deemed most relevadtia
which some previous work directly applicable to@wtion modeling had been published. Note, howehat,
many other disciplines could provide potential giié on human behavior in fire, for example
physiology/kinesiology, artificial intelligence/miaice learning, data scientists/big data, or gedgyyaf name a
few.



2) Sociology/Social Psychology: A Multi-disciplinaryeBpective on Representing
Human Behaviour in Evacuation Models (Author: Etadigowski)

3) Applied Mathematics: Overhead pedestrian trackarddrge scale real-life crowd
dynamics analyses (Authors: Alessandro Corbett@e@ Toschi)

4) Transportation: Evacuation Modelling in the fieldTeansport (Author: Adam Pel)

5) Dynamic simulation and biomechanics: An analysibuhan biomechanics and
motor control during evacuation movement (Auth@snise McGrath, Pete
Thompson)

3. Psychology/Human Factors: Visual Perception, Socidhfluence, and
Emotional States

The uses and effectiveness of evacuation modaésreh understanding human perception
and action in emergency situations. Recent devetopsnpushed the possibilities as to what
aspects of human behaviour in fire can be moddKadateder et al., 2014d; Kuligowski et
al., 2017). However, there seems to be a gap bathvasc research and model development.
This might be attributed to the difficulty in trdasng findings from a basic laboratory
experiment into valid predictions on how people ldoreact in a wide range of emergency
situations.

Aspects that influencendividual occupant evacuation behaviour were discussed and an
attempt to connect the existing approaches in etsou modelling was made. The key
guestion of this presentation were: What informaig@available to an evacuee at what time?
How is this information processed? And how doedfect behaviour? The presenter touched
on three exemplary aspects that are represenfativitbese questions. Firgterception, i.e.

the process of picking up the information that\aloan organism to successfully act in its
ecological niche. There are many aspects of parakpesearch that are relevant to fire
evacuation (e.g., vision, auditory perception, difan); the focus here was on visual motion
perception. The second aspect wsasal influence with a focus on low density scenarios (i.e.,
scenarios in which behaviour is not completelyreesed by physical forces). In the third
section, the influence of intense emotions sucHeas on spatial behaviour is discussed,
linking observation that evacuees “don’t panic’i{i&t al., 2012) to findings that show how
stress and fear bias decision-making.

The three examples illustrate how basic researchuoman behaviour can inform evacuation
model development. Perceptual processes could rbelated to inform agents about the
environment. This would have the benefit that agerduld navigate novel spaces with
incomplete knowledge of the environment. Perceppwatesses can be implemented with
varying granularity: for example, modellers coufgksify agents’ visual field, how agents
respond to dynamic changes in the environment &silility), or even complex interactions

between biomechanical constraints, eye-movementiyamment and behaviour. An even

more complex approach would be to model a wideearigperceptual abilities depending on
the agent profile expected in a given situatiog.(age or physical ability). Social influence
and fear could be implemented as a source of b@aseariance that change the probability
distributions of certain behaviours (e.g., the amhbty to select one egress route over
another) in one way or the other.

There are obvious limitations to the approach dised here. For instance, most basic
research results have been studied in controllddsamated settings. Although the strength of
the experimental method is its ability to identdgusal relationships between variables, it is



challenging to transform findings from lab studiet® predictions about human behaviour in
fire without further validating studies. Howevewaeuation models can only be improved if
the underlying psychological and physiological m®ses are sufficiently understood.
Evacuation models that conceptually simulate ocotgpaas agents embedded in a
sociotechnical system can benefit from a deepeenstahding of the psychological, social
and physical environment. Results from basic resegorovides surprisingly precise

descriptions about how humans could potentiallgtreafire emergencies.

3.1. Visual perception in fire emergencies
Evacuation models often base agent behaviour orn agents “see” in a given emergency
situation. In some models agents can all map the@mment in its entirety, i.e., they have a
complete knowledge of the layout of the buildingwhich they are (Ronchi and Nilsson,
2016). However, this might not accurately represefdrmation uptake and wayfinding
during evacuation. Other models attempt to addiéssssue by acknowledging that in many
scenarios, agents may only have knowledge of oriereuvte i.e. the way they entered.
However, in these cases agents are also providdd am ability to discover previously
unknown exit routes through the visual detection afd use of, emergency exit signage
(Filippidis et al., 2008; Xie et al., 2012). Theopess of human navigation based on visual
information is referred to as visually guided loamion and has been studied extensively
(Gibson, 2014; Warren, 2006; Warren Jr et al., 2@0M applied to pedestrian behaviour in
crowds (Warren, 2018) Vision is a crucial process of information uptadgring human
locomotion, and, for example, gaze behaviour (Where a person looks) while walking over
complex terrain is immediately connected to gahaweour and foot placement (Matthis and
Fajen, 2014; Matthis et al., 2018) Most evacuatiatels oversimplify visual perception and
thus risk misrepresenting how building occupantghthireact to an approaching fire. For
example, many evacuation models completely igngreuhic visual features such as smoke
or use the physical extinction coefficient (completractive index) to describe how far
people can see through smoke (Ronchi et al., 201&) example of smoke perception is used
here to illustrate how perceptual processes coeldbéiter conceptualized in evacuation
modelling.

One source of motion information during fire evacamight come from smoke and flames,
but what are the visual features of moving smok@préaching smoke is a visually rich
stimulus that provides the observer with a rangeaténtial motion cues and can be classified
as fluid non-rigidmotion (Aggarwal et al., 1997). As an object motl@®ugh an observers
visual field, it creates characteristic patternsnaftion vectors, often referred to as optic flow
(Gibson, 2014) that are accessible to the visustiegy. Several flow-based motion cues are
available to the observer, allowing to extract dar(e.g., speed and angle of moving contrast
gradients) to complex (e.g., looming of a smokermymotion patterns. Unlike rigid objects,
smoke continuously changes its shape and coniraist creates perceptual uncertainty, which
in turn might lead to bias in how humans speeda@rehtation of moving smoke. Studies on
motion perception in fog show that reducing contrasformly in the visual field reduces
perceived speed (Snowden and Hammett, 1998). Myeter, contrast is reduced non-
uniformly (decreased contrast with larger distanspged is overestimated, indicating that the
spatial distribution of contrast affect how spegedeing perceived (Pretto et al., 2012). Like
contrast, motion coherence can bias perceived speedmoving stimulus. In one study,
peripheral background noise (i.e. dots moving imeehtly) to a central coherently moving
set of dots biased participants to overestimatestimeulus speed as a function of noise level
(Chuang et al., 2016). Next to basic motion cules,\Misual system is able to identify more



complex visual motion patterns such as optical egjga (flow based) and the change in size
(not flow based) to specify approaching movemenh(&er et al., 2001).

Another question is how smoke impairs vision durirayigation. Some research indicates
that artificially impaired vision reduces navigatjovay-finding abilities and spatial learning

(Gauthier et al., 2008) as well as walking speedd@f et al., 2014). That is, occupants’

ability to detect exit signs and navigate egresge® depend not only on their knowledge of
the spatial layout but also on the visual inforrmatavailable in a given moment.

Although the current example uses perception of ingpwmoke and may appear overly
specific, it illustrates how visual information dduwuide agent behaviour. Many aspects of
the visual environment are known to the model deped given the information available to
him/her from other sources or models (e.g., thedayf the environment or the distribution
and movement of smoke from a fire model). Consetlyeagent behaviour could be
modelled based on the rules by which physical featin the environment are translated into
visual perception.

3.2. Social influence in low density crowd situations

Factors influencing agent decision-making and behavin low density situations are not
well understood as in ambiguous emergency situsitioacupants seek information and the
behaviour of other occupants may be considereduagfal source of information (Kinateder,
2013). There is evidence in the literature thatrdudangerous situations people influence
each other with regard to where to and how theyiga® e.g., (Kinateder et al., 2014a,
2014b; Nilsson, 2009). As this might be the casealfiooccupants in the situation, behavioural
uncertainty may lead to different (e.g. inadequatdayed or better) evacuation decisions
(Darley and Latane, 1968; Kinateder and Warren,620%ocial influence can potentially
affect pre-evacuation time (time from a first alacue onset to evacuation behaviour) and exit
choice (choice of evacuation destination) (Kinatezteal., 2018; McConnell et al., 2010) and
it has been object of several studies in recentsy@éinateder et al., 2014b; Koster et al.,
2011; Lovreglio et al., 2016; Riad et al., 1999).

3.3. Defensive behaviour and evacuation: the role of stss and fear

Fire evacuation models attempt to describe how Imsmeact in life threatening situations.
Surprisingly, the influence of emotional responsesh as fear or stress that occupants may
experience during evacuation only plays a minoge molevacuation modelling. Emotions are
directly linked to defensive behaviours and causalitptive shifts decision making and
behaviour to increase (or decrease) the chancergival. Established behavioural models
identified a cascade of defensive behaviour inettstages of how an organism’s autonomic
responses, protective reflexes, and brain resparsagye systematically depending on threat
proximity (Low et al., 2015).

The defense-cascade model describes three distages of defensive behaviour (Fanselow,
1994). In thepre-encounter stage, no threat has been detected yet but a threabéeas
previously experienced in similar situations legdio increased vigilance. Conceptually,
hearing a fire alarm could be classified into @tisge, as most people have experienced fire
alarms before, however mostly in non-threateningll dsituations. Individuals who
experienced a severe fire emergency in the paditrbg more vigilant when they hear a fire
alarm and prepare to engage in avoidance behavasusoon as a threat has been detected,
the organism moves on to tpest-encounter defense stage, in which attention is focussed on
threat cues, and physiological and behaviouralrdgfe responses are generated (Campbell



et al., 1997; Fanselow, 1994; Lang et al., 2000reMia2001; Morgan and Carrive, 2001).
Threat cues in fire emergencies could be perceifinegcues (flames, smoke) or observing
fearful behaviour in other occupants. Finally, hre tirca-strike stage the threat is most
imminent and the organism engages in active behealiostrategies accompanied with
increased physiological activation (Kim et al., 301LeDoux, 2012). In the case of a fire
evacuation, this would be an extreme situation tmctv threat of fire is imminent and
occupants are exposed to smoke and flames or tifeats. In this case, most occupants are
more susceptible to fear related biases in decisiaking. Each of the three stages may
appear during a fire evacuation and depending ers¢knario, different fear reactions can be
hypothesized. Although there is a lack of empiriealdence it is possible that in most
evacuation scenarios, occupants will find themseivethe pre-encounter or post-encounter
defense stage, as the most common evacuation rgigge fire alarms or initial fire cues
(Xiong et al., 2017).

Fear directly influences cognitive processes (eatention) relevant for evacuation
behaviour. Thus, basic research on fear procesagsheip to understand the role of fear in
evacuation. For instance, cognitive biases are dadumented in fearful situations and are
consistently found in highly fearful participantsidain patients suffering from specific
phobias such as pathological fear of heights. $¢wtudies have shown that fear influences
attention (e.g. by narrowing it) towards threatening obje@@ssler et al., 2007; Mogg and
Bradley, 2006; Ohman et al., 2001; Watts et al§6)9and that when experiencing strong
fear, attention is quickly engaged with the feadhject (Mogg and Bradley, 2006) and slow
to disengage (Fox et al., 2001, 2002). Furthernfea, inducing cues are hard to ignore and
can distract from the task at hand (Gerdes e2@08; Okon-Singer et al., 2010). Although,
not often documented in real cases, in an evaaquatienario this could explain why fearful
occupants might be more susceptible to “ignore’t signage when confronted with more
salient fire cues.

Furthermore, fear might shape spatial navigationtehrful behaviour, often manifested as
avoidance in humans, a fearful person tries tcemee the distance between feared stimulus or
situation. Interestingly, research on rodent betavhas shown that fearful rats exploring a
square field tend to avoid open spaces and stiokeclto walls compared to non-fearful
rodents (Simon et al., 1994). At least one studseoled similar effects in human exploration
behaviour (Walz, 2013).

Importantly, the fact that fear and stress can ei@suation behaviour is not in contrast to the
fact that so called “panic” rarely occurs duringaewation (Fahy et al., 2012). Humans are
able to engage in pro-social behaviour and makenatdecisions when they experience fear,
however, emotional states can introduce systeniafises in decision-making and spatial
behaviour (Kinsey et al., 2018). Understandin@nél how much fear is typically caused by
various aspects of fire evacuation scenarios, amd that fear is linked to evacuation
behaviour is still unclear and it can be subjectuinire research but bears the potential to
explain certain behavioural phenomena observedanuation.

4. Sociology/Social Psychology: a multi-disciplinary erspective on
representing human behaviour in evacuation models

Behavioural researchers in fire are still fightthg long-standing belief that human behaviour
during fires is just too complicated to predict.pkesent, evacuation models focus much more
on simulating, verifying, and validating timeovement of people through the entire building.



More specifically on the importance of tracking induals or crowds, their physical
movements, and their evacuation timing in the ewérat building fire (Gwynne et al., 1999;
Kuligowski, 2016).While these tools and their underlying calculatiechniques are crucial
to the engineering community and performance-basslyses, many are missing a key
component of building evacuation: the behavioumhponent. Because the movement and
behavioural components are highly coupled, an etamu modelling tool is incomplete
without proper representation of both components

The benefits and necessity of a comprehensive,eptnal model of human behaviour in fire
(HBiF) for incorporation into evacuation models wediscussed. Many of the current
evacuation modelling tools available today relytlo@ user to supply a significant amount of
information on behavioural representation. Thiginfation is required before a simulation is
run. Current models include different behaviousexts such as delay times or behavioural
itineraries. While existing behavioural approacheaee a positive step toward the
representation of human response within a simulateml, the problem is that they rely
primarily on the user to determine the populatiob&haviours before the simulation even
begins (i.e., representation rather than predigtidhis places a large burden on the model
user; requiring a significant amount of knowledgewat evacuation behaviour and theory, and
based on that knowledge, the pre-determinatioreb&biours that are likely to emerge during
the simulation.

Another method of behavioural representation isuph the inclusion of component theories,
either as defaults in the modelling tool, embedunhgualit options available for users, or user
configuration of the model set-up. In this contéitpmponent theories” are behavioural

findings from journal articles, authoritative retsrobservations, and/or studies on human
behaviour in fire and other emergencies. Each compibtheory focusses on a particular
aspect of the fire emergency and results in one tfpbehavioural outcome. Component
theories are often incorporated within modellinglsoas behavioural rules that link one

condition to one outcome (e.q., if X, then Y ocgurs

The benefits of a behavioural approach using comptheories is that it begins to reduce
the burden on the user; and instead, involves againa more refined level moving us closer
to producing genuinely new and unexpected resuhltsugh the generation of emergent
outcomes. Emergent outcomes are those that amse fhe model's simulation of the
evacuation scenarios, rather than outcomes prerdieesd completely by the user. It is
important to note that genuinely emergent outcopses only truly occur at a less refined
(higher) level than the pre-determined user intetio@ — and typically involve interactions
between simulated agents / objects. For instaridbeiuser determines that an agent will
definitely use a particular route, then the agense of the route is not emergent — no new
outcome is generated. The outcome is effectivelyatinbute of the agent. However, the
outcomes produced by the simulated population’safigkat route will be emergent (e.g. the
length of the queue formed); i.e. outcomes thainatean attribute of the agent. If the agent’s
route selection is reliant on external conditiong)(interaction with other agents, provision of
new information, interaction with smoke, etc.),rthbe agent’s action selection is emergent,
along with all of the population-level outcomesntied above (e.g. the number of agents
using the route, the congestion formed, etc.).

However, there is a problem with the behaviourgbrapch using component theories.
Typically, only a small subset of these compondm@oties is incorporated in any one
modelling tool, resulting in a piecemeal represemtaof HBIiF. Piecemeal representations



can result in inaccurate modelling results, quitessibly underestimating/overestimating
evacuation timing. Instead, it is desirable is t@ate and incorporate a more comprehensive
and inclusive representation of HBiF within evagaimodelling tools.

4.1. Improvements to Evacuation Modelling — Conceptual Mdelling
With current evacuation modelling tools, the userdaquired to set up the initial conditions
and the evacuee response (either via user-defimgdts or the selection of component
theories). A new conceptual model is envisioned aodld require user-input afnly the
initial conditions, which is often times difficuknough. During simulation, these inputs
would be used by the conceptual model of HBIF, edt internal motivations of agents
(i.e., risk perception), and in turn, agents’ acsi@nd associated delays.

The benefits of such a model is that it could pedather than simply determine based upon
user input, human behaviour during fire eventssTdutcome alone would enable a user to
identify the behaviours that emerge as the firenage unfolds, removing significant burden
from the model user and increasing the accuracynodlel results. This sub-model, after
extensive validation, could be incorporated intoent and future evacuation modelling tools.

Examples of existing conceptual models of humarabielr in fire relevant to the goal of
predicting decisions and actions taken in a firemyancy are: 1) the general model of human
behaviour in fires developed by (Canter et al.,98) a conceptual model developed by
Kuligowski (Kuligowski, 2011) that focusses only pre-evacuation behaviour from a single
fire event - the 2001 World Trade Center Disastat &) a conceptual model developed by
compiling a series of component theories from uidisciplines into a cohesive platform to
predict whether an agent takes protection (or motd fire emergency (Kuligowski et al.,
2017).

At present, existing conceptual models scratch d@hé/ surface of the development of a

larger, comprehensive model of HBiF. These modedsige a path forward for the methods

that could be used in its eventual development. é@n there is much work still to be done

to improve our understanding of HBiF, and withohistunderstanding, a comprehensive
model is near impossible. For the field to redastgoal and develop a larger understanding of
human behaviour in fire, accurate, rigorous, andnmehensive research and theory
development must continue. There is still much tefunderstand, but the ultimate goal of a
comprehensive model is in our future.

Independent of the method used to create the ctualemodel, it will require validation
using different sets of data from emergency evémsluding fires in different types of
structures and with different populations, as vaslifrom analysis of other types of disasters,
not limited to building fires) — to ensure that ghinodel is sufficiently generalized to
accommodate all types of fire scenarios.

Once a validated conceptual model is developedensite work will be required to

implement it into current or future evacuation med&wynne (Gwynne, 2012) has already
begun to consider requirements of the agent-bagaduation modelling tools such that a
conceptual model of HBIF could be represented, wlwas extended in (Kuligowski et al.,

2017). The authors first describe a simplified betnaral theory of HBIiF, and then outline the
model functionality required to represent the tlyeancluding external cues and conditions,
cue processing, a roles/social network, spatial ,nem@nt map, threat perception, agent



attributes, and a response or action generatory €hd by providing an example of how the
evacuee decision-making process can be represieyimu agent-based modelling tool.

After development and implementation, the next tjaesthat arises is when and where a
conceptual model of HBIF is needed. Evacuation rhoslers would benefit from guidance on
its usage for different types of projects and pro@bjectives. It is likely that the development
of this conceptual model will be expensive, anddfae, the use of such a model may be
expensive as well. There are certain instances, @gnarios, projects, purposes, etc.) where
the inclusion of a conceptual behavioural sub-madéhin an evacuation computer model
would be more beneficial than others.

First, there are certain types of fire evacuaticensrios where the use of a conceptual model
matters. A conceptual model of HBiF would be mas#ful in scenarios where most or all of
the evacuation timing can be spent in the decisi@king process. The domestic setting is a
prime example of this phenomenon. In domesticrggdtithe time to movement from “Point
A” to safety (i.e., outside of the residence in tase of a building fire) can be insignificant,
especially when compared to the time often spesgitisg information, deciding to evacuate,
and preparing. Therefore, a conceptual model maymbee applicable when modelling
evacuation from dwelling fires.

With that said, a conceptual model may be benéfesian in scenarios that are dominated by
people movement and flow, e.g., stadia evacuatidhat is, if the user wishes to explore

more than just the evacuation timing of the firemv Without a conceptual model, the user
may superficially treat the evacuation as lamidawf By doing so, he/she is potentially

ignoring the impact of social clusters and groumaiyics on evacuation performance. In
other words, if a user wishes to study individugberiences of groups/evacuees (at lower
levels) during the stadium evacuation, in ordebétter understand locations of ‘turbulent’

flow throughout the building or structure, the wdeonceptual model is desirable.

Second, there may be certain types of project tibgsc(over others) that require the use of a
conceptual model. In projects where the evacuatiodel is being used to simulate agents
strictly adhering to a specific procedure, the ligmef a conceptual model are limited. An
example of this is exploring the results of a pchoe whereby the building population
evacuates immediately and uses the main exit. iShaslegitimate use of current modelling
tools, given that the evacuation model used isldapat capturing the outcomes of the agents.
In this project, the benefits of a conceptual maatel limited because the “behaviour of the
occupants” in the modelling scenario can be sfity pre-defined by the user. Projects
where a conceptual model is of most benefit aregheshere the user is required to answer
“what could happen if....” questions. Essentiallyggb projects require the model to explore
what agents would do, given only a series of ihitanditions. In these projects, a model’s
ability to simulate emergent behaviours and outefne., those not completely pre-defined
by the user) is crucial, and only possible throtighinclusion of a refined and comprehensive
conceptual model of HBIF.

At the moment, it is up to the model user to decloslesed upon project requirements, the
capabilities of the evacuation modelling tool(sjuieed for the job, and in turn, select the
correct/appropriate tool to use. The same wouldrbe when/if a conceptual model was
available. Currently, we do not have the capabgitof a conceptual model of HBIF in any of
the current evacuation modelling tools. In the fejuf these capabilities are made available
to model users (either within certain modellinglsoor as a sub-model to accompany current



tools), users would benefit from a guide that wolhédp them decide when, and for which
projects/scenarios, a conceptual model would befimzal.

5. Applied mathematics: overhead pedestrian tracking dr large scale
real-life crowd dynamics analyses

Pedestrian monitoring, and in particular the obaons of pedestrian trajectories are of key
importance for the understanding of pedestrian @at@n behaviour. This contribution
discussed a novel technique for pedestrian mongoras it allows unprecedented,
unsupervised, 24/7, months-long, pedestrian meamunecampaigns that provided millions
of individual trajectories, allowing novel statisdl insights. The tracking technique leverages
overhead depth-sensors, such as Microsoft Kinactanged in grids, and ad hoc pedestrian
localization algorithms.

Over time measurement techniques evolved: manuasunements for flux-density relation
estimates (e.g. (Seyfried et al., 2007)) has bespiaced by increasingly automatized
individual(-head) tracking (Boltes and Seyfried,130 Zanlungo et al., 2014). Crowd
dynamics experiments in real-life conditions areeréing increasing attention, e.g. (Helbing
et al.,, 2007; Zanlungo et al., 2014) as they comalternatives of laboratory-based, “in
vitro”, pedestrian data acquisition campaigns, ihich experimenters involve groups of
voluntaries, that possibly wearing special clothiogaid tracking, take part to crowd flows
scenarios. Real-life measurements present two @dwantages over laboratory approach:
first, they involve pedestrians unaware of beingt md a scientific experiment. While in
laboratory the measured dynamics is orchestrakes, inavoidably more or less biased by
the experimenter instructions, in real-life pedastrflows respond to the free will of the
randomly involved individuals, allowing to truly pase the stochasticity of pedestrian
motion. Secondly, real-life pedestrian measurengamhpaigns can span over potentially
limitless time intervals; therefore, they allow leation of thousands or millions of
trajectories. Such a large amount of unbiased datppssible to collect in a laboratory
framework, enables to measure the motion beyondvtage quantities and estimate its
fluctuations and its characteristic rare events.

Real-life measurements, when targeting the acequisiof thousands of trajectories, must
occur in an unsupervised manner, demanding a stemgological effort for robustness and
accuracy. For instance, unaware participants caar wey sort of clothing or headgear, that
the tracking algorithmic must be able to deal walso, in laboratory, the experimenter can
fully define “control parameters” for their expeemt (e.g. number of individuals involved,
crowd density, directionality), while in real-lifiney are subjected to the randomness of the
crowd flow (Corbetta et al., 2017a). In real-lifenclitions, privacy of the involved crowd is
also a crucial issue, as individuals must consepatticipate to experiments, especially if not
anonymous (e.g. in case tracked individuals remetngnizable in the recorded data).

A novel pedestrian tracking approach was discussetl exemplified with data collection

campaigns held respectively in a building of Einddro University of Technology (years

2013-2014, about 200000 trajectories collected, sge (Corbetta et al., 2014) and at
Eindhoven train station (years 2014-2015, abouilbom trajectories collected, see (Corbetta
et al., 2017b), cf. Figure 1), analysed the pedesidynamics with high statistic resolution,
targeting motion fluctuations and rare events.
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Figure 1. (top) Crowd tracking experiment at thetdfierum Building, Eindhoven University
of Technology; setup sketch, example of collectefbttories and related depth maps (figure
from (Corbetta et al., 2017b). (bottom) Crowd tiagkexperiment at Eindhoven train station
with four Kinect sensors: snapshot and sample daagh with trajectories. In both cases
depth maps have grayscale colorization (figure f(Qorbetta et al., 2016)).

5.1. Measurements via overhead depth sensors
The grounds of the measurement technique emploggd heen firstly and independently
posed in (BrScic et al., 2013; Seer et al., 2043, leverage depth field signals, acquired via
depth sensors, for pedestrian localization. Thattksthe usage of depth map signals
pedestrians remain unrecognizable, thus fully puasg the individual privacy.

Depth sensors return distance-field maps, or dembs. While an ordinary digital image
reports pixel-by-pixel colour information (RGB, .i.éhree channels), a digital depth map
reports the distance between each pixel and thersaplane. This is a single channel (scalar)
information, usually encoded in grayscale imagesfafly extended selection of depth
sensors is currently available on the market diftgiin resolution, depth reach, acquisition
frequencies and prices (Brscic et al., 2013; Stoyaet al., 2011). Since the early 2010s,
depth sensors entered the consumer market witltefews Microsoft Kinett which along
with a standard colour camera, is equipped witinémared structured-light sensor (Stoyanov
et al.,, 2011)and, via an embedded system, it delivers an esimfathe depth map of the
scene at VGA resolution (640x480 px) and at 30Hresh rate. Microsoft Kinect sensors

2 Certain commercial entities, equipment, or matenmay be identified in this document in order teatibe an
experimental procedure or concept adequately. Blactiification is not intended to imply recommeridator
endorsement by the National Institute of StandargdsTechnology, nor is it intended to imply thag #ntities,
materials, or equipment are necessarily the besladie for the purpose.



provide the raw depth images of pedestrians abéisés of the tracking technique considered
in this paper.

In the campaigns discussed in (Corbetta et al.62R@17b) either one or four sensors were
employed roughly at 4 meters above the ground.efeetive spatial coverage provided by a
single sensor is about 2m x 2.2m, i.e. within @niea heads of subjects up to 1.8m tall are
observable without cuts. Sensors are juxtaposedway that a continuous coverage of such
effective area is provided. Throughout real-lifepestmental campaigns, it is possible to
collect hundreds of thousands of pedestrian trajexst aiming at unveiling statistic signatures
of the pedestrian motion. While the paths of indiil people may be less relevant to
evacuation modelling for fire safety engineeringlagations, a statistical analysis of the
aggregated individual paths from the entire poputatwould be useful to design for
evacuation safety. During the design stage, thenmdtion on the individual paths also allows
the identification of most common behaviour, fludions, rare events, which are all
potentially useful to identify credible scenarid$ie analysis of real-life measurements comes
with an intrinsic complexity, determined by the damness with which different crowding
conditions follow one another. In a train statiendiluted flow composed of one or few
people can, in a matter of seconds, turn into aselesrowd, e.g. after the arrival of a
commuter train. In this sense, data acquired ihliffeacampaigns come from a (random)
sequence of experiments and should undergo angaigne phase preliminary to the analyses
(see Figure 2).
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Figure 2. Walking speed distribution and band efgred positions for pedestrians walking
in the landing in Figure 1(top), respectively te tbft (left panel, descending direction) and to
the right (right panel, ascending direction). Feginom (Corbetta et al., 2016).

A pedestrian tracking algorithm based on overheggtdimaging data enables real-life data
collection of pedestrian trajectories with high @exy. In this context, high statistics
measurements enable unprecedented insights in ps#tgens. These are relevant toward the
comprehension and the quantitative modelling ofdtv@plex motion of crowds. Finally, the
localization algorithm exploits simple geometricncepts identifying pedestrians as cluster
within the foreground of an overhead depth cloutke §eometric simplicity of this algorithm
is the key for its execution speed and the higtalleation accuracy in moderately dense
conditions (up to 1.5peoplefin The algorithm performance, in fact, decreasesoas as the
correspondence between point clusters and pedesti@shes. This occurs at high densities
or in presence of foreground elements which arepedestrians (strollers, bikes, removable
obstacles and so on), that are unavoidably markedadking individuals. To address such



richer scenarios, more complex localization al¢oné are necessary, which effectively
analyse the frames and classify each element foz. tYnly for the element classified as
pedestrians they further estimate the locationseReadvancements in machine intelligence
and, in particular, in deep learning (LeCun et 2015), showed impressive performance at
such recognition and localization tasks, making efignt candidates for algorithmic
improvements.

6. Transportation: evacuation modelling in the field d transport

In this section, we consider evacuation beyondcth@ines of a physical structure such as a
building or vehicle or otherwise more confined araad expand the discussion to consider
the case of large-scale urban or regional evaaquatm example as a result of a natural
disaster such as a wildfire (Veeraswamy et al.3201 a tsunami (Urata and Pel, 2018)(Urata
and Pel, 2018). As a result, it is also necessarjook beyond the level of individual
pedestrians and crowds, and consider how peoples makous travel decisions and how
these collectively result in traffic flows, possildcross multiple modes of transport (e.g. car,
public transit, etc.).Thus, evacuation modellindha field of transport pertains to developing
models that: (1) can predict the spatial-tempawfit conditions in case of an evacuation,
(2) are conditional on situational factors suchdasaster dynamics and human response
behaviour, and (3) conditional on strategic factaush as the dissemination of evacuation
information and instructions and the deploymentraffic control measures. Such transport
models are then used, for example, to assess #wai@on capability of a region, to assess
the strengths and weaknesses of an evacuatioregstrabr to adopt a model-predictive
framework in order to design optimal evacuatioatsgies. Furthermore, models can be used
for theory testing; by developing a model baseddbehavioural) theory, the theory can be
tested by verifying the model predictions agaimspeical data.

A transport modelling framework generally consisfsfive sub-models (Barceld, 2010;
Bayram, 2016; Intini et al., 2018; Murray-Tuite awwblshon, 2013), where the first four sub-
models describe the travel choice behaviour andiftilesub-model describes the (resulting)
traffic flows in the transport network. The traweioice behaviour sub-models attempt to
predict the decisions that people make both paateparture and during their trip, and what
the collective of these individual decisions yieldsterms of travel patterns. These sub-
models thus relate to,

1. Trip generation: how many people will evacuate angthat time they will do so,

2. Trip distribution: where they will evacuate to,

3. Modal split: by what mode they will evacuate (egr, public transit, etc.),

4. Traffic assignment: by what route they will evaeuat

However, in changing scales from building to comitynt is important to understand that
additional factors can influence household decisi@king processes and subsequent
evacuation behaviour in community-wide disasterem@unity-wide evacuation is often
complicated by existing household vulnerabilitiesg., financial constraints, access to a
vehicle, age, disabilities, etc. (Cutter et al.Q20Lindell and Perry, 2012; Wong et al., 2018)
and/or potentially aided by existing social tiesl aalationships within the community (also
known as social capital) (Aldrich and Meyer, 2015).

6.1. Existing modelling approaches
Trip generation models (Pel et al., 2012; Wilmad &tei, 2004) predict the number of people



who will evacuate and when these people will deplidte that contrary to a building
evacuation where the evacuation compliance ratgisally close to 100 percent, in a larger-
scale evacuation of a region aspects of complidgineeof those under risk, how many will
evacuate) and shadow evacuation (i.e. of thoseuroently directly under threat, how many
will still evacuate) are important considerationgol approaches can be distinguished: two-
step static models, and integrated recursive modlelsvo-step static models, two separate
models are estimated: the first model describes etvecuation participation (either the
probability for an individual, or the percentage # population), while the second model
describes the evacuation departure time (eithencs likely time window for an individual,
or as response rate for a population). Then comditihe models predictions yields the
number of evacuees departing at any specific tifthese models are static in the sense that
the trip generation is predicted prior to simulgtthe evacuation, and hence any time-varying
changes in the conditions that may influence the ¢eneration is not accounted for.
Typically, simplistic statistical distributions arased here, as opposed to explanatory
econometric models. This two-step model is commoafplied, likely due to the
mathematical simplicity of the approach and the taat relatively little situation-specific
data is required. A main drawback of this two-st&gtic modelling approach is the lack of a
behavioural theory underlining the model. In intggd recursive models, integrating the
evacuation participation and timing decisions retarmany of these limitations. This is done
by recursively predicting the evacuation departdoeshat specific time. Here typically, an
econometric model is repeatedly used, which prediceé share of people who decide to
evacuate and depart presently, or postpone theidedio evacuate. The econometric model
simulates this binary decision based on the diffigsé utility associated with evacuating
(compared to not evacuating) as a function of tineenit or expected conditions. As these
conditions change over time, so can the evacudggoision, as the incident evolves.

Trip distribution models (Murray-Tuite and Wolsho2013; Pel et al., 2012) predict
individuals’ destination choice. This sub-modebidy included in case of an evacuation with
some minimal notice time, such that evacuees grabta of consciously deciding on their
evacuation destination. In case of an evacuatidh ktile to no notice, a common modelling
assumption is that the evacuation destination isaotively chosen, but instead a result of the
chosen (presumably most familiar or fastest) evmuaoute. That is, the model assumes that
evacuees will choose the route that leads themobuhe threatened region as soon as
possible, and once safe may continue their triphtor final destination. Trip distribution
models are almost without an exception always aon@wetric discrete choice model
comprising of two components. The first componesiineates the type of location that an
individual evacuates to, thereby distinguishingnifg and friends, public accommodation
(e.g. hotels), and dedicated evacuation sheltez. SHtond component estimates the specific
destination, conditional to the type of locationheT destination decision depends on
characteristics of the available alternatives (eagts, capacity, perceived safety) and the
travel resistance to reach the destination (eagetrdistance, travel time).

Modal split models (Intini et al., 2018) predicetmode of transport that evacuees will use.
Transport modelling tends to focus on evacuatingudas and regions where evacuation
distances require some form of motorised transpbrtthe same time, many empirical

examples (of evacuations due to wildfires, hurresrflooding, and storms) have shown that
when a car is available, it is the preferred maoidieamsport for evacuation. This is ascribed to
the fact that evacuating by car enables securiagsétfety of the car as an asset while also
enabling evacuees to bring along other personalsitend assets (potentially making it easier
for a household to evacuate together). Therefoie,seldom that a modal split model will be



estimated. Instead, more commonly, census datacaadl expert knowledge/judgement is
used to estimate the population share who havesatoea car and the population share who
will rely on public transport and dedicated evamrmatbus) services. The multimodality of
public transport travel (i.e. using busses, traangl trains) as well as the interaction with cars
on the road can be modelled using a multimodakpart model (Van der Gun et al., 2015).

Traffic assignment models (Barceld, 2010; Intiniagét 2018; Pel et al., 2012) predict the
route that evacuees will follow. Although the vasdjority of evacuation models do explicitly
include a traffic assignment sub-model, there areumber of ways to sidestep this sub-
model. One way is to simply insert pre-defined enxadion routes, thus simulating mandatory
prescribed routes to test various evacuation reuggegies. This, however, does assume full
compliance of the population to those routes, wiscimost certainly too strict an assumption
to make. Another way to sidestep this sub-modéb isimply estimate the ratio between the
total spatially distributed travel demand (i.e. ren of travellers) and the capacity
bottlenecks in the road network (i.e. number ofgtiers that can pass per unit of time),
which then together with some correction terms gv#irst guess’ on the minimum time
required for the complete evacuation. Apart from tjuestionable validity of this approach,
more importantly, this method does not provideghsiinto: the dynamic evacuation traffic
conditions, the underlying (success and failurejdiss that determine the evacuation process,
and the benefits of deploying control measures.

In pre-trip traffic assignment models, evacueesagseimed to choose their route from origin
to destination upon departure, and to not switchta® while travelling. Route choice

behaviour is predicted using an econometric discatoice model that is based on the
currently prevailing or expected route conditiofibe pre-trip route choice paradigm may
appear inappropriate to model route decisions uegacuation conditions. This is because
the sub-model is adopted from other transport nsofiel long-term planning studies. There,
the pre-trip route choice model is embedded in temative procedure mimicking how

travellers build up experiences (from one iterattonthe next) leading to well-informed

expectations about what traffic conditions to expdious iteratively updating their route

choice until a steady (equilibrium) state has beeached. In on-trip traffic assignment

models, the assumption that evacuees cannot ddvate their (pre-trip) chosen route is

relaxed. Here, evacuees observe the prevailingitomsl and make route choice decisions
accordingly. In hybrid traffic assignment modelsttb pre-trip and on-trip decisions are
modelled. This way, evacuees are assumed to clwosaitial route upon departure, after
which they may adapt their route during their tiijney might do so when prevailing traffic

conditions are such that they are better off (ovehthe feeling of being better off) by

deviating to another route. This type of model Isbaused to evaluate varying degrees of
compliance towards dedicated evacuation routesefRl, 2010).

Traffic flow models (Leutzbach, 2012) predict hoehicles drive through the infrastructure
network and interact with other traffic, therebymgmuting travel times and congestion
dynamics. The majority of traffic flow models argndmic, in the sense that they use
simulation to compute the time-varying traffic cdimahs. Traffic flow models are best
categorised along two axes; the first being theegggion level for traffic representation and
propagation; the second being whether flows aredas queueing theory or kinematic wave
theory (Hoogendoorn and Bovy, 2001). Traffic flowodels can be microscopic (they
represent individual agents), macroscopic (thepatadistinguish individuals), or mesoscopic
(considering agents as individuals, but descriltimegr behaviour as aggregated relationships)
depending on the combination of traffic represenmaand propagation. The level of detail in



the microscopic models is ideal for studying drgzipehaviour under evacuation conditions.
For sake of computation time and model complexitgcroscopic and mesoscopic models are
preferred in evacuation studies for larger regions.

6.2. Model applications and challenges
In evacuation modelling in the field of transparnipdels are used (1) to assess the evacuation
capability of a region, (2) to assess the strengtitsweaknesses of an evacuation strategy, or
(3) to adopt a model-predictive framework in ortiedesign optimal evacuation strategies.

The essence of a safe and efficient evacuatioridiéise balance between the travel demand
(i.,e. number of evacuees) and the network capgcky sustainable exit flow). Hence,
likewise models are used to investigate demandcapdcity strategies that aim to facilitate
the evacuation. Demand-side evacuation strategmetude 1) Phased evacuation, 2)
Sheltering-in-place or close by, 3) Reducing shadeacuation and background traffic, and
4) Prescribed evacuation routes. Capacity-side uatemn strategies include instead 1)
Contraflow, 2) Crossing elimination (i.e., prohibit of certain turning), 3) Special signal
timings, 4) Dedicated public transport services] &hUse of hard shoulders (i.e., emergency
lanes). The use of these strategies in the trataor modelling domain can be a useful
starting point for comparison with existing and uiwt building evacuation modelling
applications.

Next to evaluating the expected effects of evaonastrategies, the sensitivity of these
strategies is tested using model sensitivity amalySuch sensitivity analyses are conducted
by a controlled varying of a part of the model (&0 input, model assumptions/sub-models,
or model parameters) to test how this leads togésm model output. Common analyses are
to test the impact of 1) Spatial-temporal disastgramics, 2) Failure of transport network
components, 3) Population characteristics and betgv4) Failure to deploy control
measures, and 5) Modelling simplifications.

A set of challenges have been identified startimgmf the modelling capabilities and
applications. Model calibration of evacuation tr@am$ models remains an issue. Choice
models are calibrated using data from stated pmebéer surveys and post-disaster
guestionnaires, while the traffic flow models asdilirated using data from empirical traffic
counts and driving simulator experiments. This amiaf empirical data is growing, giving
insight into evacuees’ activity-travel patternsg tinformation that they had at hand at the
time, and the resulting traffic flows in the regiddowever, there are very few modelling
studies that investigate in what way these calargsub-)models can be applied to other
regions, in a different cultural context, and pblysother disaster dynamics.

The second research challenge is to embed evacuasifiic models into decision support
tools used in disaster management. Evidently,rédgsires an interdisciplinary approach with
social scientists, structural engineers, transpargineers, and researchers from fields
specifically related to the disaster type; possdigo incorporating the fields of humanitarian
logistics and disaster relief operations. Besitiespractical relevance of disaster management
decision support tools, such an interdisciplinappraach can lead to greater holistic
understanding of evacuations, and aid in refiniagevacuation (transport) models.

The third research challenge is to model how nehirtelogies are utilised. This can pertain
to information dissemination via social media, n®ldevices and in-vehicle devices, with
real-time information on disaster, infrastructuemd traffic conditions. It is currently



insufficiently understood how this may affect eveesi behaviour (across all sub-models)
and how this can be incorporated in evacuationsprart models. Furthermore, this is also
relevant for data collection methods, for exampdéying on GSM (global system for mobile
communication) and GPS (global positioning satelliystem) traces. How such data can be
used real-time in evacuation management strateggesvell as used post-disaster in model
development and calibration, is a challenge faureiresearch.

7. Dynamic simulation and biomechanics: An analysis diuman
biomechanics and motor control during evacuation meement.

Biomechanics and closely related fields can deeckdéy elements of locomotion that are
employed in the process of walking in congesteccaspi order to understand how these
fields can interface with the discipline of crowddaevacuation modelling, we should
consider the following areas of study:

a. The study of biomechanics evaluates the motionlnfirag organism and the effect of
force on a living organism (Hamill et al., 2015)

b. The study of motor control: an area of natural rsoge exploring how the central
nervous system (CNS) produces purposeful, coomlihatovements in its interaction
with the rest of the body and with the environment.

These fields of study are inextricably linked te firocess of evacuation, particularly in terms
of how humans move in relation to each other. Toldective movement of individuals is
encapsulated (in fire and life safety) as crowdwfloThe flow metric emerges from
aggregating the sum movement of the escaping ithaavs. However the design guides,
research and computer modelling for life and faes/ have largely ignored the key aspects
of biomechanics and motor control. An improved ustiding of the fundamental
biomechanical processes of human motion can beaulusefimprove predictions of crowd
movement. This is particularly important in evalngtthe impact of changing demographics,
Crowd movement of the future will be impacted by aging population, an increasingly
obese population with higher proportions of disdbfeeople in the workshop thanks to
modern equality, diversity and inclusion policieattare changing this landscape (Spearpoint
and MacLennan, 2012). Thus, a deeper understanfliogomotion mechanisms is required.

The field of evacuation modelling for fire safetpgineering applications should aim at
removing “rule of thumb” approximations of crowdW and lead to much more rigorous
assessments of safety based on biomechanics. Tés lanited Nations report on World
Population Ageing (United Nations, 2015), statex tietween 2015 and 2030, the number of
people in the world aged 60 years or over is ptege¢o grow by 56 per cent, from 901
million to 1.4 billion, and by 2050, the global pdation of older persons is projected to more
than double its size in 2015, reaching nearly 2libb. Preparing for the economic and social
shifts associated with an ageing population is #gssential and simple flow aggregate values
need to be replaced. The effects of ageing anditltyaon gait velocity, step width, step
length, coefficient of friction, horizontal swaydperception of personal space must logically
impact on how heterogeneous crowds move in confgpates, both in an emergency and
normal situation. However, we currently have lirditenderstanding on the fundamentals of
how - and the extent to which - this does impactvct flow.

7.1. Biomechanical processes



There are many aspects of locomotion biomechahiascén be considered by Fire Safety
Engineers, such as, 1) walking, 2) running (whiles iaccepted that in most fire engineering
designs people are assumed to be walking, unddistarrunning mechanisms could provide
useful insight into walking behaviours), 3) assigtiothers, 4) reacting to stimuli, 5)
accelerating, decelerating, turning, 6) passingugh openings, 7) adapting gait to confined
space, 8) preserving one’s own personal spacefispethers’ personal space, 9) walking
with encumbrances/disabilities, and 10) transiignbetween multiple phases of the above
processes.

Many aspects of the above processes have beerstwdied in the biomechanics and motor

control disciplines, particularly in the fields sport and exercise science, sports medicine,
health sciences and public health. How these assuned, analysed, calculated or simulated
can be of interest to Fire Safety Engineers. Opipgdres for a more integrated approach

across disciplines in advancing an important femin human movement analysis are

explored, i.e. how interactive movement in a compénvironment can be measured,

understood and modelled.

Gait analysis of walking is usually expressed imte of spatial parameters e.g. step width,
stride length or joint range of motion, and temp@arameters; e.g. stride time, swing time,
and step time. The gait cycle, or gait stride, lsarbroken down in two broad phases: stance
and swing (Perry and Burnfield, 2010). The time elsions of the walking cycle includes
single and double support time, i.e. the time wbely one limbor two limbs are touching the
ground, respectively. These are important paramedsrthe time spent in double support
changes with age and disability, giving an indwatof the level of stability that is being
exploited within a person. Spatial parameters sichtride length and step width also give an
indication of the limits of stability in the antertposterior direction and lateral body sway.

Another commonly used variable in gait analysigag speed. It is a reliable, valid, sensitive
and specific measure that correlates with functiaadality and balance confidence and
predicts future health status, functional declidischarge location and mortality (Fritz and
Lusardi, 2009).

Concerning running, the use of a deterministic nhallews the understanding of the basic
biomechanics of running. The deterministic mode& immodelling paradigm that determines
the relationships between a movement outcome measwdt the biomechanical factors that
produce such a measure (Hay, 1994). First, the hieaeade up of mechanical quantities or
appropriate combinations of mechanical quantitgecondly, all the factors included at one
level of the model must completely determine thades included at the next highest level,
hence the term deterministic. This is a potentgiraach that could be used to investigate the
important factors that determine movement in a drovihe first level would start with “gait
speed in a crowd”, and the next level may inclutteles time/stride frequency and stride
length.

The key elements of walking in congested spaceidec(see Figure 3).
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Figure 3. (a) Relationship between velocity andmpterson distance (Thompson et al., 2015).

Early assessments of individual movements in cdedespace (Thompson and Marchant,
1995) have involved the assessment of inter-pelgiance and walking spedd.addition to
the relationship between distance and speed, tleesty studies used the general
approximation of acceleration and deceleration(® df unimpeded walking speed over 0.1
seconds, and also 10 degrees for rotational badgt’tlimitation over the same time period.
When these parameters were implemented in the demmodel Simulex (Thompson and
Marchant, 1995) then it reproduced flow rates @41people/m/s for a nominal ‘commuter’
population type, using databases available at itne {Fruin, 1987; Predtechenskii and
Milinskii, 1978).

Many commonly encountered computer models use ggtge relationships for the speed
and flow curves (Fruin, 1987; Predtechenskii antingkii, 1978). Similar correlations exist
for movement on staircases (Burghardt et al., 2048)vever, these curves take no account
of population demographic differences, i.e., nooact is taken of physical anthropology of
the people.

The biomechanics and motor control literature aldguwith movement data that has been
recorded using an array of technologies. The fiéldhovement analysis originated with the
advent of moving pictures, resulting in playbackiliaes that enabled the analysis of the
quality of the movement. However, the vast majodfyquantitative analysis of kinematic

data has been carried out on individual researbjests (Kontaxis et al., 2009). Development
of techniques specifically for the accurate, highalution analysis of movement of people in
crowds is a frontier in the field of movement asaythat will very much impact a number of
fields of study; e.g. psychology, ageing, secuaitgd crowd flow in evacuation.

The next step in the interdisciplinary researchdfief crowd biomechanics is to develop a
fundamental understanding of movement of heterogene populations. Potential
biomechanical parameters that may influence ind@idmovement and interaction in



populated spaces needs to be assessed in a desgorapproach similar to Hay’'s models
(Hay, 1994). Finally, there is a need to explooa Iphysiological, social, psychological and
environmental factors influence the identified fantental biomechanical parameters, across
a range of populations.

8. Discussion: Quo vadis evacuation modelling?

The presentations of the panellists generated akedecussions concerning possible future
directions for evacuation modelling. It should beted, however, that each panellists’
presentation related to their research area, tlaugiscussions reflected these predispositions.
Overall, the discussion can be summarized as fogusi two key issues for prioritization: 1)
tuning parameters of existing sub-models or 2) npomting new features into current
models. A general discussion with the entire wookslaudience also took place after all
panellists’ presentations were given. During thespntations and the discussion, two
rapporteurs recorded the main issues identifiechduhe workshop. Individual contributions
are also accounted for in this section.

The first topic of discussion concerned the chaiésnwith using data-sets derived from
different methodologies, as a set of different radthwere proposed by various panellists.
The workshop panellists agreed that the assessvheritat can be considered representative
data-sets should be done for any type of reseasthads. The trade-offs between different
methods (e.g., ecological validity vs. experimem@htrol) should be assessed case-by-case
rather than analysing the validity of a single noethThere was agreement on avoiding the
direct use of virtual reality (VR) data for modelji purposes without a careful evaluation of
their validity because at least to date, these taise not been used to extract absolute
parameter values of, for example, walking speec 3pecific strength of the experimental
approach in VR over uncontrolled observations & pbssibility to test specific hypotheses
and draw causal inferences on human behaviour {(&dlea et al., 2014c). Similar trade-offs
might be observed while using behavioural intentignestionnaires to assist model
development. Limitations have to be identified & types of research methods, and data
need to be interpreted for the context of applocati

The presentation concerning psychology/human facked to a discussion concerning the
applicability of data obtained from controlled pBgphysical experiments in the fire safety
engineering context. For example, while in mostceation scenarios occupants would not be
directly exposed to approaching smoke, psychophlysxperiments provide basic research
insights that can be used to evaluate not onlyagmghing smoke but also smoke changing its
density, thus making it useful to evaluate behavaiypeople immersed in smoke.

Another important point discussed related to thecereaning of validation in the context of
evacuation modelling, as this was a point raiseddameral presentations. Questions were
asked on whether the concept should relate to titeome of an evacuation, e.g., the
precision at which ASET [intended here as life gafsychological limits] and RSET can be
predicted) or how accurately a model describesueatamn behaviour itself. The need for the
definition of an overarching concept of behaviowmswdentified along with the need for a
common set of references for validation of each mmment of behaviour. Although a
comprehensive, validated conceptual model wouldceese the credibility of the field and the
use of models, it is important to identify solutsogiven the current state of the art in which
such a comprehensive model does not exist. Thaughgm regarding conceptual models
mostly focused on agent-based modelling, as thisk&dy the most feasible solution to



perform such enhancements. Alternative (and gdgesiahpler) approaches are also currently
used to represent evacuation (e.g. hydraulic mo@&gynne and Rosenbaum, 2016) and
cellular automata (Pelechano and Malkawi, 2008pwéver, these approaches were not
discussed since they present several limitatiorterims of their ability to represent complex
behaviours. In this context, recent efforts havenb®cussing on providing guidance on the
development and use of evacuation models givemxtisting state of research (Gwynne et al.,
2015; Kuligowski et al., 2017). The conclusion this particular discussion was that future
research should focus on both the developmentooingprehensive human behaviour in fire
model and ways to enhance current models, in jgarall

Another solution to the current lack of a compredines, validated model is the collection and
use of big pedestrian movement data as the basigldeelopment and evaluation of
evacuation models. Novel methodologies for autoch&tcking of hundreds of thousands of
trajectories (Corbetta et al., 2016) were discussedhey open up for a completely new
approach for development and validation of moddigkrelies on high level statistics rather
than fundamental properties of each individual. isyes would be in this case the clustering
of homogenous data. An important challenge is #edlrfor pedestrian monitoring techniques
able to allow understanding of the characteristicthe population observed at a microscopic
level for the extrapolation of findings to new sagns.

The big data approach is somehow complementary th¢gh approach discussed in the
presentation on biomechanics and dynamics simual@sthe suggestion was here instead to
look at the fundamental biomechanics variablesumhdn motion. The main advantage is the
possibility of the latter approach to extend prédit to aging populations. The main
drawback is the sheer size and number of the @dsatisat would need to be collected. This
issue led to a discussion on the assessment ofvdhdity of some of the data-sets
implemented in evacuation models, which are in sosi@ances collected decades ago (Fruin,
1987; Predtechenskii and Milinskii, 1978). For arste, in case of significant levels of
congestion, average speeds may be comparable letiese data-sets and more recent data
(Galea et al., 2012).

The level at which it is necessary to study crowdceation dynamics was also discussed in
light of current research performed in the traffiodelling domain. In fact, similar issues take
place in the transport field on the preferable nlodgapproach (macroscopic, microscopic,
mesoscopic). This discussion led to the considarahat the assessment of the phenomenon
of interest and subsequent model application is fitet step for identifying the most
appropriate modelling approach to use. Following,tthe trade-off between computational
time and complexity should be the considered whemosing the appropriate method of
analysis. In this context, the use of hybrid mod=ls be a good solution to adopt the most
suitable approach for different conditions (i.e. hpdifying the modelling scale within the
same model in relation to the variables of intgr@&Shooramun et al., 2012, 2017).

The final discussion focussed on the next stepslatedor the definition of a common

framework for components that evacuation modelérd developers should consider. The
point of view of regulators was considered herethasfirst important step identified was the
need for bridging existing literature and reseandth day-to-day use. Following this, an

important challenge to consider is that the evacnadesign is often developed once for the
lifetime of a building. This means that designergsintake into consideration the potential
uses of buildings and population demographics thay be present in the future. For this
reason, future models and research efforts in ibld Should start from the premise of



assessing the applicability of their models to pbét populations and building uses in the
future.

The key actions required to develop and implememtaaimap for the evacuation modelling
field in the fire engineering domain are listeddvel
1) Identification of lessons learned from model depetents in other fields, i.e. what
can we learn from other fields? What data can v What modelling approaches
can be adopted?
2) ldentification of the key data gaps concerning eeacmovement and behaviour, i.e.
what do we know, what do we not know and how shaddcollect these data?
3) ldentification of the key modelling gaps, i.e., wh@nceptual and computational
models and sub-models need to be developed/impPoved
4) Development of a robust and internationally recpgdi verification and validation
standard testing procedure for evacuation modeld usfire safety engineering.

9. Conclusion

The workshopNew approaches to evacuation modelling within the IAFSS Symposium has
been a great opportunity to gather experts outsidiee field of fire safety engineering related
to evacuation modelling. The benefits of exchangifgrmation between these two groups
were made evident during the workshop given theessgful exchange of ideas. Suggestions
towards developments and improvements of evacuatiotels based on a multi-disciplinary
premise were provided, analysing the advantagesieamlbacks of different approaches and
providing suggestions for future research in thaklf
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