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School of Mathematics, Computer

Science and Engineering,
City University, London, UK

Email: Ivana.Tomic.1@city.ac.uk

Efstathios Milonidis
School of Mathematics, Computer

Science and Engineering,
City University, London, UK
Email: E.Milonidis@city.ac.uk

George D. Halikias
School of Mathematics, Computer

Science and Engineering,
City University, London, UK
Email: G.Halikias@city.ac.uk

Abstract—The paper presents a cooperative scheme for con-
trolling arbitrary formations of low speed experimental UAVs
based on a distributed LQR design methodology. Each UAV acts
as an independent agent in the formation and its dynamics are
described by a 6-DOF (degrees of freedom) nonlinear model,
linearized for control design purposes around an operating point
corresponding to straight flight conditions. It is shown that the
proposed controller stabilizes the overall formation and can
control effectively the nonlinear multi-agent system. Formation
control is extended to reference tracking by introducing integral
action in the controller. It is shown via numerous simulations
that the system is robust to environmental disturbances such as
nonuniform wind gusts acting on a formation of four UAVs and
to the loss of communication between two neighbouring UAVs.

I. INTRODUCTION

Cooperative control of multi-vehicle systems has been an
active research area in recent years due to its broad spectrum of
applications, such as surveillance and area exploration [1], load
transportation [2], intelligent highways [3], formation control
[4]-[6], etc. These systems are formed from a large number
of dynamical subsystems, such as unmanned aerial vehicles
(UAVs), unmanned ground vehicles (UGVs), unmanned un-
derwater vehicles (UUVs), satellites or mobile robots.

UAVs are autonomous flying vehicles equipped with sensing
devices that have many potential military and civil applica-
tions, but are also of great scientific significance in academic
research. The problem of coordinating a predefined multi-
vehicle formation while moving in space, known as formation
control, is a topic of considerable interest to the control com-
munity. This is mainly due to its advantages over conventional
systems, such as a reduction of system cost, an increase in the
efficiency and robustness of the system, etc., see e.g. [7].

Linear Quadratic Regulator (LQR) theory has been widely
used in multi-agent systems’ control due to its guaranteed
robustness properties, see e.g. [8]-[10]. Literature tends to
favour distributed LQR-based control designs, as centralized
solutions become infeasible as the number of subsystems and
the distance between them increases [11].

The problem of controlling a formation of interacting and
cooperating identical subsystems was first considered in [5];
in this work the communication topology of the network was
modelled using graph theory. Further, the formation stability
analysis for a given communication topology was proposed.

In [12] the framework was extended to the robust formation
control method for an arbitrary communication topology and
any number of subsystems, whereas previous design methods
were adequate only for undirected communication networks.
Also, the framework was used later in [13]-[15] to establish
different distributed LQR-based control designs for controlling
the formation.

In the present work we use the distributed LQR design
strategy for uncoupled continuous-time multi-agent systems
that has been introduced in [13] for controlling the multi-
agent formation. The authors proposed an approach which
leads to an elegant and powerful result: the synthesis of
stabilizing distributed control laws can be obtained by using
a simple local LQR problem whose size depends on the
maximum vertex degree of the graph. Compared to [13], where
the model with double-integrator dynamics was analyzed, we
consider a formation of N identical low-speed experimental
UAVs, known as X-RAE1, that can communicate with each
other to achieve the common goal. Individual subsystems are
described by 6-DOF (degrees of freedom) nonlinear model,
which is linearized at certain operating points for the straight
level flight dynamics. The graph-theory framework proposed
in [5] is used to model the communication network of the
subsystems. It is shown that the proposed controller stabilizes
the system. Also, it can be used to control effectively the
nonlinear multi-agent system for a standard set of initial
conditions. Formation control is extended to reference tracking
by introducing integral action in the controller. Further, it is
shown that both multi-agent systems, linear and nonlinear,
are robust to environmental disturbances such as nonuniform
wind profiles for a formation of UAVs and to the loss of
communication between any two agents.

The remainder of this paper is organized as follows. In
Section II, notation and brief preliminaries on algebraic graph
theory are presented. In Section III the nonlinear and linear
models of a single X-RAE1 are briefly described. Section IV
presents the procedure for modeling the multi-UAV system
together with the distributed controller design procedure for
this system. The proposed design is extended to accommo-
date integral action in the controller to achieve asymptotic
tracking to step commands and asymptotic rejection of im-
pulsive disturbances modeling wind gusts. Simulation results



are presented and discussed in Section V. Finally, the paper’s
conclusions appear in Section VI.

II. PRELIMINARIES

A. Notation and Definitions

Let In denote the identity matrix of dimension n,
In ∈ Rn×n. Let MT and aT denote, respectively, the
transpose of matrix M and the transpose of column vector
a = [a1, . . . , an]T . A⊗B denotes the Kronecker product of
A and B. Let A ∈ Rm×n and B ∈ Rp×q , then:

A⊗B =

 a11B a12B . . . a1nB
...

...
. . .

...
am1B am2B . . . amnB

 ∈ Rmp×nq.

A matrix M ∈ Rn×n is called stable or Hurwitz if all its
eigenvalues have negative real part, i.e. S(M) ⊆ C .

B. Graph Theory Preliminaries

Let G = (V, E) be an undirected graph with the set of nodes
(or vertices), V = {1, 2, . . . , N}, and the set of edges E ⊆
V×V , E ⊆

{
(i, j) : i, j ∈ V, j 6= i

}
. If i, j ∈ V and (i, j) ∈ E ,

then i and j are said to be adjacent (or neighbors) which is
denoted as i ∼ j. For an undirected graph the communication
between two nodes (or agents) is bidirectional and we assume
that there is no edge from a node to itself (i.e. no self loops).
The number of neighboring nodes, di for i = 1, 2, . . . , N , is
called the degree or valency of a node. Let dmax(G) denote
the maximum node degree of the graph G. Any undirected
graph can be represented by its adjacency matrix, A(G). Let
Ai,j ∈ R be the (i, j) element of A(G), then Ai,i = 0, ∀i =
1, 2, . . . , N, and

Ai,j =

{
0 if (i, j) /∈ E ∀i, j = 1, 2, . . . , N, i 6= j,

1 if (i, j) ∈ E ∀i, j = 1, 2, . . . , N, i 6= j.

III. DYNAMICAL MODEL OF X-RAE1

A. Nonlinear Model

The 6-DOF equations of motion of X-RAE1 with respect
to the body-fixed axes are:
1) Translational equations of motion

U̇ =RV −QW − g sin Θ

+ [q̄S(CL sinα− CD cosα) + T ]/m

V̇ =PW −RU + g cos Θ sin Φ) + (q̄SCy)/m

Ẇ =QU − PV + g cos Θ cos Φ

+ [q̄S(−CL cosα− CD sinα)]/m

2) Rotational equations of motion

Ṗ Ix − ṘIxz =QR(Iy − Iz) + PQIxz + q̄SbCl

Q̇Iy =PR(Iz − Ix)− (P 2 −R2)Ixz + q̄ScCm+

q̄S(CL sinα− CD cosα)h0 + TeT

ṘIz − Ṗ Ixz =PQ(Ix − Iy) +QRIxz + q̄ScCn

where

• U , V , W are forward, side and downward velocities along
the x, y and z body axes, respectively;

• P , Q, R are roll, pitch and yaw angular velocities around
the x, y and z body axes, respectively;

• Φ, Θ, Ψ are roll, pitch and yaw angles;
• T is the thrust;
• CL, CD, Cy are lift, drag and side force coefficients;
• Cl, Cm, Cn are rolling, pitching and yawing moment

coefficients;
• Ix, Iy and Iz are moments of inertia about the corre-

sponding body axes;
• Ixz is the product of inertia. As the aircraft has the xz

plane as a plane of symmetry Ixy = Iyz = 0;
• α, q̄ are the angle of attack and the dynamic pressure;
• m, g, S, eT , h0, b and c are known parameters.
Additionally, we have three differential equations that are

used to relate the body system rates P , Q and R to the three
Euler rates Φ̇, Θ̇ and Ψ̇. These are:

Φ̇ = P +Q tan Θ sin Φ +R tan Θ cos Φ

Θ̇ = Q cos Φ−R sin θ

Ψ̇ = (R cos Φ +Q sin Φ)/ cos Θ.

For more details see [16].

B. Linearized Model

In order to design a linear controller, the nonlinear model is
linearized and decomposed into two motions, longitudinal and
lateral, by assuming small perturbations around the operating
point. For a straight, steady, symmetric and horizontal flight
at a constant velocity VT0

= 30 m/s, the following trimmed
values are considered:

U0 = VT0
cosα0, W0 = VT0

sinα0,

V0 = P0 = Q0 = R0 = 0,

Θ0 = α0 and Φ0 = Ψ0 = 0. (1)

Then, the state space longitudinal model

ẋi = Axi +Bui, xi(0) = xi0 (2)

where xi =
[
u w q θ

]T
, ui =

[
η δT

]T
are the

state and input vectors of the ith system at time t, respectively,
can be expressed as u̇

ẇ
q̇

θ̇

 =

 −0.142 −0.227 2.493 −9.771
−1.033 −4.476 28.639 0.837
−0.042 −2.744 −15.351 −0.134

0 0 1 0


 u
w
q
θ



+

 −1.136 1.444
−13.060 0
−137.157 −2.036

0 0

[ η
δT

]
(3)

where u, w, q and θ denote forward velocity, downward
velocity, pitch angular velocity and pitch angle, respectively,
while η and δT are elevator deflection and throttle setting,
respectively; the lower case notation denotes the deviation of
each motion quantity from the trim value, i.e. dU = u. For
more details see [16].



For simulation purposes the disturbance in system (3) is
introduced as an arbitrary impulse to the downward velocity
variable w, which is equivalent to the presence of environmen-
tal disturbances such as nonuniform wind for a collection of
agents.

IV. FORMATION MODELING AND CONTROLLER DESIGN

A. Modeling Multi-UAV System with LQR-based Control

The collective dynamics of N identical and decoupled
dynamical agents can be described as:

ẋ(t) = Aax +Bau, x(0) = x0 (4)

where x(t) = [xT
1 (t), . . . ,xT

N (t)]T and u(t) =
[uT

1 (t), . . . ,uT
N (t)]T are the vectors which collect the

states and inputs of the N systems, while Aa = IN ⊗ A and
Ba = IN ⊗B, where A and B are defined as in (3).

The LQR problem for the system (4) is described through
the cost function which contains terms for weighting the
difference between ith and jth system states, as well as the
ith system state and input:

J
(
u(t),x0

)
=

∫ ∞

0

( N∑
i=1

(
xi(t)

TQiixi(t) + ui(t)
TRiiui(t)

)
+

N∑
i=1

N∑
j=1
j>i

((
xi(t)− xj(t)

)T
Qij

(
xi(t)− xj(t)

)))
dt.

which can be rewritten using the more compact notation:

J
(
u(t),x0

)
=

∫ ∞
0

(
x(t)TQax(t) + u(t)TRau(t)

)
dt (5)

where the matrices Qa and Ra have the following structure:

Qa =

 Qa11 Qa12 . . . Qa1N

...
...

. . .
...

QaN1 QaN2 . . . QaNN

 , Ra = IN ⊗R, (6)

with Qaii =
∑N

k=1Qik for i = 1, . . . , N , Qaij = −Qij for
i, j = 1, . . . , N, i 6= j, and Rii = RT

ii > 0, ∀i. Further,
Qii = QT

ii ≥ 0, ∀i and Qij = QT
ij = Qji ≥ 0 ∀i 6= j.

We are assuming that the pairs (A,B), (Aa, Ba) are sta-
bilizable and the pairs (A,C), (Aa, Ca) are observable for
any Q = QT ≥ 0 and Qa as in (6) (where CTC = Q,
CT

a Ca = Qa).
Then, for the given initial conditions, x0, the control input

u = −R−1a BT
a Pax minimizes the cost function in (5) subject

to ẋ(t) = Aax+Bau, x(0) = x0. Also, Pa is the symmetric
positive definite stabilizing solution of the following (large-
scale) Algebraic Riccati Equation (ARE):

AT
a Pa + PaAa − PaBaR

−1
a BT

a Pa +Qa = 0. (7)

For Qaii = Q1 ∀i = 1, . . . , N , and Qaij = Q2 ∀i =
1, . . . , N , i 6= j Pa has the structure:

Pa =


Pa11 Pa12 . . . Pa12

Pa12 Pa11 . . . Pa12

...
...

. . .
...

Pa12 . . . . . . Pa11

 (8)

with Pa11
= P − (N − 1)Pa12

where P ∈ Rn×n is the
symmetric positive definite solution of the ARE:

ATP + PA− PBR−1BTP +Q1 = 0. (9)

Further, the same structure of diagonal and off-diagonal blocks
will be preserved in the gain matrix Ka, as Ka = R−1a BTPa.
For more details and proofs see [13].

B. Distributed Controller Design Approach

Consider the multi-agent system composed of Nd identical
and decoupled agents described as:

˙̃x(t) = Ãx̃ + B̃ũ, x̃(0) = x̃0 (10)

where x̃(t) and ũ(t) are the states and inputs of the Nd

systems, while Ã = INd
⊗ A and B̃ = INd

⊗ B, where
A and B are defined as in (3). Systems (4) and (10) differ
only in the number of subsystems. The distributed optimal
control problem is given in [13], but instead of solving NP-
hard problem, the suboptimal distributed design procedure is
given next.

Theorem 4.1: [13] For the system in (10), with cost func-
tion:

J
(
ũ(t), x̃0

)
=

∫ ∞
0

(
x̃(t)T Q̃x̃(t) + ũ(t)T R̃ũ(t)

)
dt (11)

where Q̃ = Q̃T ≥ 0, R̃ = R̃T > 0 and Q̃ is structured
as: Q̃ii = Q̃1 for all i = 1, . . . , N and Q̃ij = Q̃2 for all
j = 1, . . . , N , i 6= j, the gain matrix can be constructed as

K̃ = INd
⊗R−1BTP −M ⊗R−1BTPa12 (12)

where P is the symmetric positive definite solution to the
single agent LQR problem in (9) and Pa12 represents the
off-diagonal blocks of the solution Pa in (7) for Nmin =
dmax(G) + 1 agents.

Matrix M reflects the structure of the graph G and is
given by M = aINd

− bA(G), b ≥ 0 where A(G) is the
adjacency matrix. Also, a and b have to satisfy a−bdmax ≥ 0
which follows from the gain margin properties of the proposed
design. Then, the closed loop system:

Ãcl = Ã− B̃K̃ = INd
⊗A+ (INd

⊗B)K̃ (13)

will be asymptotically stable and P̃ is the unique solution of
the following Lyapunov equation:

ÃT
clP̃ + P̃ Ãcl + Q̃+ K̃T R̃K̃ = 0. (14)

Proof 4.1.1: See [13]

C. Integral Control

The distributed LQR controller proposed in Section IV-B
provides good performance for regulation tasks (as shown in
Section V), but is not able to ensure the asymptotic tracking
of step references due to the absence of integral action in
the controller. To this end, the state-space system in (3) is



augmented by an error vector z ∈ Rp, such that ż = Cx.
Then, distributed system with integral action is given by

˙̃xI =ÃI x̃I + B̃I ũI , x̃I(0) = x̃I0

ỹI =C̃I x̃I (15)

where x̃I =
[
x z

]T
, ÃI =

[
A 0
C 0

]
, B̃I =

[
B
0

]
and

C̃I =
[
C 0

]
in which C is the output matrix. By solving

the (large-scale) ARE:

ÃT
I P̃I + P̃IÃI − P̃IB̃IR̃

−1
I B̃T

I P̃I + Q̃I = 0 (16)

for Q̃I =

[
Q̃ 0
0 γI

]
and R̃I = ρI , we get the stabilizing

solution P̃I (γ and ρ are given positive constants). Further-
more, by using the gain matrix K̃IC = R̃−1I B̃T

I P̃I we define
the control input as

ũI = −K̃IC x̃I =
[
KP KI

] [ x
z

]
(17)

where the matrices KP and KI are the proportional state
feedback gain and the integral output gain, respectively. The
block diagram of the augmented closed-loop system with the
integral control is given in Fig. 1.

ÃI , B̃I

KI

C

∫
x̃I

Kp

+

ũI ỹI

+

żz

ref

−
+

Fig. 1. Closed-loop distributed system with the integral control

V. SIMULATION RESULTS

Consider a network of four dynamically decoupled X-
RAE1s moving in a plane, whose individual dynamics is linear
and described in (3). The interconnection structure is depicted
in Figure 2.

agent1 agent2

agent3 agent4

Fig. 2. The interconnection structure

The maximum vertex degree of the interconnection graph
is 2, thus the size of LQR problem in (7) that has to be solved
to design a stabilizing distributed controller is Nmin = 3.

Then, we define the distributed LQR problem for a formation
in Figure 2 as

min
K̃

J̃
(
ũ(t), x̃0

)
subj. to ˙̃x = Ãx̃ + B̃ũ, x̃(0) = x̃0

where Ã = I3 ⊗ A and B̃ = I3 ⊗ B, and A and B
are as in (3). The cost function J̃

(
ũ(t), x̃0

)
is as in (11)

with the weighting matrices Q̃ and R̃, which are structured
as: Q̃ii = diag(0.3, 3, 0.15, 3) for i = 1, . . . , Nmin,
Q̃ij = diag(−0.1, −1, −0.05, −1) for i, j = 1, . . . , Nmin

and i 6= j, and R̃ = I3 ⊗R with R = 10I2.
The solution of the above minimum size LQR problem is

of the following structure:

Pa =

 Pa11 Pa12 Pa12

Pa12 Pa11 Pa12

Pa12 Pa12 Pa11

 . (18)

Our control objective is to stabilize each individual agent
moving on a plane by using the distributed gain matrix

K̃ = I4 ⊗R−1BTP −M ⊗R−1BTPa12 (19)

where P = Pa11
+ 2Pa12

and M = 2I4 −A(G). Further, the
adjacency matrix representing the graph is given by

A(G) =

 0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

 . (20)

Therefore, the first set of results is produced for a formation
control by using the distributed controller in (19). Then, the
model is extended to accommodate the reference tracking
by using the distributed controller with integral control as

described in Section IV-C with Q̃I =

[
Q̃ 0
0 I

]
and

R̃I = 10I .
In order to validate these two different control approaches

a simulation environment is created for both models, linear
and nonlinear, by using Matlab® and Simulink® [17]. Agents’
movement is illustrated by examining the deviation from
nominal velocity VT0 = 30 m/s, which is the horizontal speed
at which the model has been linearized. Further, the individual
agents’ vertical positions (i.e. heights) are depicted for both
controllers.

The first simulation illustrates the height responses (i.e.
deviation from the nominal height) of the each agent in
Figure 2 in the presence of environmental disturbances for
the case of linear dynamics. The disturbances are introduced
as arbitrary impulses to the downward velocities of the four
agents. Results are reproduced for two different controllers
used to control the linear system, distributed LQR without
integral action and distributed LQR with integral action and
depicted in Figure 3. Similarly, Figure 4 depicts the deviation
of each agent’s velocity from the nominal velocity of 30 m/s
in the presence of environmental disturbances for the case of
linear dynamics.

Figure 3 and Figure 4 demonstrate that both distributed
controllers stabilize the formation. However, distributed con-
troller without integral action was unable to ensure trajectory



Fig. 3. Height responses of the linear LQR system controlled by the
distributed controller with and without integral action in the presence of the
impulse disturbance

Fig. 4. Velocity responses of the linear LQR system controlled by the
distributed controller with and without integral action in the presence of the
impulse disturbance

tracking in the presence of external disturbances. The forma-
tion structure is lost as agents stabilize on different vertical
positions. By incorporating integral action in the controller
asymptotic tracking of step hight demands is achieved despite
the presence of the impulsive disturbances on the downward
velocity variables. Therefore, in the case of linear model agents
were able to stabilize at requested locations with respect to
their vertical positions. Please note that the formation structure
is lost with respect to the horizontal agents’ positions. This

can be prevented, if required, by introducing integral action
for horizontal regulation via the introduction of an additional
state variable. Results are omitted due to space restrictions.

Next, the same set of results are reproduced for the nonlinear
system using identical simulation parameters. These are given
in Figure 5 and Figure 6. Despite strong nonlinearity in the

Fig. 5. Height responses of the nonlinear LQR system controlled by the
distributed controller with and without integral action in the presence of the
impulse disturbance

Fig. 6. Velocity responses of the nonlinear LQR system controlled by the
distributed controller with and without integral action in the presence of the
impulse disturbance

model, the controller was able to reproduce results that are
closely related to those obtained in the linear case. However,
the small deviation from the nominal velocity can be observed



in Figure 6 for agent 2 and agent 4. The tracking of the
reference signal is achieved only when distributed controller
with integral action is used.

Finally, we considered the case when the communication
between two agents is lost shortly after a disturbance impulse
was applied. We assume the impulse disturbance to agent 1
at t = 9 s which is followed by the failure of link com-
munication between agent 1 and agent 2 (in both directions)
at t = 9.2 s. Results are produced only for agent 1 in the
case of nonlinear dynamics with integral action as this can
be considered as the most critical case for the stability of the
formation. Thus, the height and velocity responses of agent 1
are depicted in Figure 7.

Fig. 7. Height and velocity responses of the nonlinear LQR system controlled
by the distributed controller with integral action in the presence of an
impulsive disturbance to agent 1 followed by the communication failure
between agent 1 and agent 2

It can be seen that system stabilizes even in the case
of link failure in the presence of disturbance as long as
connectivity of network is preserved. These can be considered
as the preliminary results that can be extended along various
directions. Future work will investigate the size of disturbances
that can be rejected, as well as the minimum time that system
needs to recover from a communications failure before the
next disturbance happens.

VI. CONCLUSIONS

The paper has described a cooperative scheme for con-
trolling a formation of low speed experimental UAVs based
on distributed LQR control. The simulation results presented
demonstrate the effectiveness of the method in dealing with
nonlinear model dynamics, partial loss of communication be-
tween agents, rejection of external disturbances and asymptotic
tracking requirements to step hight demands.
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