
Modeling Time in Java Programs for Automatic Error Detection

Giovanni Liva
Alpen-Adria-Universität

Klagenfurt, Austria

giovanni.liva@aau.at

Muhammad Taimoor Khan
Alpen-Adria-Universität

Klagenfurt, Austria

muhammad.khan@aau.at

Francesco Spegni
Universitá Politecnica delle Marche

Ancona, Italy

f.spegni@dii.univpm.it

Luca Spalazzi
Universitá Politecnica delle Marche

Ancona, Italy

l.spalazzi@dii.univpm.it

Andreas Bollin
Alpen-Adria-Universität

Klagenfurt, Austria

andreas.bollin@aau.at

Martin Pinzger
Alpen-Adria-Universität

Klagenfurt, Austria

martin.pinzger@aau.at

ABSTRACT

Modern programming languages, such as Java, represent time as

integer variables, called timestamps. Timestamps allow developers

to tacitly model incorrect time values resulting in a program failure

because any negative value or every positive value is not necessarily

a valid time representation. Current approaches to automatically

detect errors in programs, such as Randoop and FindBugs, cannot

detect such errors because they treat timestamps as normal integer

variables and test themwith random values verifying if the program

throws an exception. In this paper, we present an approach that

considers the time semantics of the Java language to systematically

detect time related errors in Java programs. With the formal time

semantics, our approach determines which integer variables handle

time and which statements use or alter their values. Based on this

information, it translates these statements into an SMTmodel that is

passed to an SMT solver. The solver formally verifies the correctness

of the model and reports the violations of time properties in that

program. For the evaluation, we have implemented our approach

in a prototype tool and applied it to the source code of 20 Java open

source projects. The results show that our approach is scalable and

it is capable of detecting time errors precisely enough allowing its

usability in real-world applications.

CCS CONCEPTS

• Software and its engineering→ Error handling and recov-

ery; • General and reference→ Verification; • Theory of com-

putation→ Program semantics; Abstraction;

1 INTRODUCTION

The majority of software failures are predictable and avoidable [8].

Typically, errors are detected through testing the software imple-

mentation. When the final version of the implementation passes

all tests, it could be marked as an accepted implementation of the

requirements. However, writing tests that cover all possible scenar-

ios in which the application is used, is impossible. Many tools have

been developed to aid developers to find and correct bugs before

they are released. For example FindBugs [17] performs a static anal-

ysis of the source code and based on some predefined syntactical

patterns, provides hints to the developers about locations of the

code that could suffer from errors. Modern approaches, such as

Randoop [19–22] and Agitator [6], can create automatically unit

tests for a project to stress the application with the purpose to dis-

cover errors and create a regression test suite. The tests it generates

are a random sequence of method and constructor invocations for

the class under test.

Identifying bugs in early stages of the development cycle is chal-

lenging, even more the one related to time. Modern programming

languages, such as Java and C#, allow developers to model time as

timestamps using integer variables. However, all of the aforemen-

tioned approaches fail to identify errors that are related to the usage

of time. Those approaches test methods with some random integer

values for the parameters and verify if they throw a runtime excep-

tion. For instance, an integer related exception can be thrown for

an illegal array index access (IndexOutOfBoundsException), when

a number is divided by zero (ArithmeticException) or when it is

malformed (NumberFormatException). Therefore, they miss to iden-

tify time related errors because no runtime exception is thrown as

the chosen parameters are legal integer values. In the timestamp

domain, only non-negative values are acceptable. Positive values

are more subtle because they represent a valid and legal value for

timestamps in principle, however operation between them could

result in an error due to an integer overflow.

Listing 1 shows an example taken from a bug of the Apache

Kafka project. Depending on the value of the input parameter,

the deadline variable, which stores a timestamp value, in line 3
can be assigned an illegal value. Since the parameter is defined as

long, some input values for the parameters will go un-noticed by
the tests but will result in a program failure at runtime. In fact,

deadline can be lower than now and this in turn prevents the body
of the while loop to be executed. This case can cause a failure in

the program because developers expect the deadline variable to

FormaliSE ’18, June 2, 2018, Gothenburg, Sweden

always be greater than now. In the description of the issue, the

Kafka developers state that they found the bug out of the box.

In this paper, we present an approach to automatically and sys-

tematically verify time related errors in Java programs. With a

formal time semantics, we determine which integer variables han-

dle time and which statements use or alter their values. Based on

this information, our approach analyzes this subset of the source

code and when it encounters a branching instruction it creates a

copy of the code to handle every path of the branch in order to ob-

tain a full path coverage. For each copy, it creates a set of constraints

that model the time behavior of the program. Finally, it passes the

set of constraints as input to the Z3 [2, 11] Satisfiability Modulo

Theories (SMT) solver. The SMT solver is the oracle that reports all

cases in which time properties cannot be held in the given model. A

formal semantics of the Java language was introduced by Bogdanas

et al. [5]. On top of their work, we presented [18] an extension that

specifies the time semantics of the Java 8 language that we use in

our approach.

We have implemented our approach in a prototype tool1 and we

performed an empirical study on 20 open source Java projects to

assess to which degree we can correctly identify time related errors.

On these 20 projects, we verified 939861 methods detecting 146

errors. We manually confirmed that these are due to real bugs in

the source code. We also observed 12 errors that are false positives.

The results also show that our tool is able to process on average a

method in 7.02 ms. Our studies show that our approach is fast and

precise allowing its applicability for finding bugs in practice.

The remainder of the paper is organized as follows: Section 2

presents the motivating example taken from a bug of the Apache

Kafka project. Section 3 presents the details of our approach for

verifying time related errors in Java programs. In Section 4 we

evaluate our approach and we discuss results and threats to validity

in Section 5. Section 6 gives an overview of related work and we

conclude the paper in Section 7.

2 MOTIVATING EXAMPLE

This section presents an example to motivate why a semantic ap-

proach is necessary to identify a bigger spectrum of errors, such

as related to time. Modern programming languages, for instance

Java and C#, offer APIs to handle time related operations, e.g., the

java.time.Clock class. However, these APIs encode time values as
integer values from the domain of Z and allow developers to explic-

itly manipulate time as integer, e.g., with calls to System.current-
Millis(). We focus on this representation because time by mean-

ing of timestamps has a problem with their representation using

integer variables. Timestamps allow developers to tacitly model

incorrect time values resulting in a program failure since not every

value represent a correct time value. In the next paragraphs, we

present an example taken from a real world bug, namely KAFKA-

42902, where the manipulation of timestamps led to a critical error.

Listing 1 shows the source code of the method poll that is

responsible for the reported issue. If the method is called with

(i) any negative number or (ii) a number which is too large, its

execution will cause a failure in the program. The source of the

1https://github.com/rtse-project/automatic-error-detection
2https://issues.apache.org/jira/browse/KAFKA-4290

1 public void poll(long timeout) {
2 long now = time.milliseconds ();
3 long deadline = now + timeout;
4 while (now <= deadline) {
5 if (coordinatorUnknown ()) {
6 ensureCoordinatorReady ();
7 now = time.milliseconds ();
8 }
9 if (needRejoin ()) {
10 ensureActiveGroup ();
11 now = time.milliseconds ();
12 }
13 pollHeartbeat(now);
14 long remaining = Math.max(0,
15 deadline - now);
16 client.poll(Math.min(remaining ,

timeToNextHeartbeat(now)));
17 now = time.milliseconds ();
18 }
19 }

Listing 1: Source code of the method poll() from the class

WorkerCoordinator that caused the issue KAFKA-4290.

problem is at line 3, where the value for deadline is computed
by adding together the current time stored in variable now and

a timeout value stored in the parameter timeout. The parameter
specifies the maximum amount of time that the method should

require to terminate. However, it is a common practice to pass,

as parameter, a big enough value to enforce the normal method

termination without preemptively forcing it. Albeit a positive big

number is a valid parameter value, the sum at line 3 might result

in an integer overflow and the JVM neither throws and exception

nor gives an error. This operation will store a negative value in the

deadline variable and make it smaller than the variable now before
entering the while loop. The same problem arises if a negative

value is passed as parameter. The while loop will be never executed

contrary to the developers’ expectations and this causes a failure

in the program.

In the description of this issue, the developers state: "We hit this

case out of the box . . . ". This statement shows a limitation of the

testing approach in which the method is tested only for few values.

Unfortunately, we cannot write tests that cover all the possible

cases and check the correct behavior of a method for all possible

parameters. Modern techniques try to automatically create tests

that check the behavior of the system in different settings. Randoop

[19–22] is a well known example of such a test generation technique.

However, it has no knowledge of what is the intended program

behavior and therefore, it could only verify if, with some randomly

generated values for the input parameters, the method exhibits

an exception. Moreover, it considers timestamp values as normal

integer values and therefore it verifies that the program is safe

according to the integer properties that are not representative for

the timestamp domain. This is the gap that we aim to fill with our

approach.

Modeling Time in Java Programs for Automatic Error Detection

3 EXTRACTING THE TIME MODEL

In this section, we present our approach for detecting time errors

in the source code of Java programs. Figure 1 shows an overview of

our approach that consists of three steps. In the first step, the source

code of each method of a Java program is analyzed to determine

the variables that store time and statements that use or alter them.

We call these statements a time slice of a method (all the other

statements are filtered out). For each time slice, we next create

multiple copies of a method based on its branching instructions

that we call a path. Each path of the method is then translated

into an SMT model fed into an SMT solver. The solver verifies the

correctness of the program and reports the errors detected in it.

3.1 Time Slice

Based on the formal time semantics of Java [18], in this step we

create a slice of the original program composed of only those state-

ments that modify and use time. In our previous work, we presented

a formal time semantics for the Java language and a static analysis

approach to identify integer variables that hold time values as time

variables and statements that alter time as time statements. Our

approach is based on a categorization of Java 8 APIs methods into

three different categories:

(1) Return Time: The first category comprises methods that

return an integer value that represents time, e.g., the static

nanoTime() method of the System class returns the current
time in nanoseconds.

(2) Explicit Timeout: The second category comprises meth-

ods that accept as parameter a time value. An example is

the sleep method of the Thread class in which the parame-
ter specifies the maximum amount of time to suspend the

current thread.

(3) Explicit Wait: The last category comprises methods that

can potentially block the execution of a thread forever. An ex-

ample of such a method is the join()method of the Thread
class.

In this step, we apply our static analysis approach to detect

time variables, method calls that return time, and statements that

use or alter time variables. Based on this analysis, we translate the

identified time related statements into four basic types of statements

that implement time-related behavior in programs. We call this

sequence of statements a time slice. All the other statements in the

method are filtered out. We consider the following four statement

types as the main source to introduce time related errors:

(1) Assignment Statements:These statements change the value

of a time variable and might assign it a value conflicting the

time semantics, e.g., any negative value.

(2) Method Calls: Methods might be called with an invalid

time value and it might result in an incorrect data-flow.

(3) While Loops: The guard of a while loop referencing a time

variable in its condition might not be satisfied because of

an invalid time value and it could result in an unexpected

behavior of the loop. In our approach, the various types

of loop statements in Java, such as the for or do-while
loops are rewritten into a while loop without changing the
semantics of the original loop.

(4) Conditional Statements: They model the control-flow of

a program and distinct paths might result in different values

for the time variables. Note, switch-case statements are
rewritten into a sequence of if-statements.

We translate the four basic types of statements into correspond-

ing SMT constraints while preserving the time semantics of the Java

language. Thus, every property discovered with the SMT solver is

assured to be also valid for the given method of the program.

Listing 2 shows an example of the translation of the method

poll from Listing 1 into a time slice. The variables now, timeout,
deadline, and remaining are marked to be time variables and all
statements referencing them are considered time statements. In con-

trast, the method calls coordinatorUnknown() and needRejoin()
inside the two if conditions and the method calls to ensureCoordi-
natorReady() and ensureActiveGroup() are filtered since they
do not reference nor return a time variable. Note, since the bodies

of both if conditions contain a time statement, they are contained

by the time slice.

3.2 Path Generation

This step of our approach creates multiple versions of the extracted

time slice that represent the different execution paths of the method.

The time slice created could have a nondeterministic behavior for

branching statements. This can happen if their conditions are not

time related, e.g., line 4–6 in Listing 2. Therefore, it is necessary

to perform a linearization of the program considering all possible

branches to make it deterministic and translate it into a set of SMT

constraints.

We parse the time slice generated in the previous step into a

control flow graph. Then, for each possible execution path in the

control flow graph that contains a branching statement whose

condition is empty (because it is not time related), we create two

copies of the program, each is called a path of the program: one

in which the condition is evaluated to true and one in which it is

evaluated to false. In this manner, we have a full path coverage.

Referring to the example given in Listing 2, this step creates

the four different Paths a, b, c, and d of the program presented

in Figure 2. The first version, Path a, of the program does not

contain the statements of the bodies of both if statements since

both are evaluated to false. The second version, Path b, contains the

statement of the body of the first if statement since it is evaluated

to true. The third version, Path c, contains the statement of the

body of the second if statement. Finally, the fourth version, Path d,

contains the statements of both if statements. Note, the while loop

is contained in all versions since its conditional expression is time

related, i.e., not empty.

3.3 SMT Translation and Verification

The last step of our approach generates the constraints for the

SMT solver for each path of the program created in the previous

step, and incrementally verifies them as depicted by Algorithm 1.

For the verification, we use Z3 [4, 10] with its particular extension

called Z3opt [3], a state-of-the-art SMT solver that extends the Z3

language to solve linear integer problems.

The translation of a program into a Z3opt model is performed

according to the following set of rules:

Figure 1: Overview of our approach for detecting time property violations. Time Slice slices the program keeping only the

statements that alter and use time variables. Path Generation generates multiple execution paths of the slice based on its

control flow. SMT Translation translates each path into SMT constraints. Each model of SMT constraints is fed into an SMT

solver to check for violations of time properties in the source code.

1 now = time.milliseconds ();
2 deadline = now + timeout;
3 while (now <= deadline) {
4 if () {
5 now = time.milliseconds ();
6 }
7 if () {
8 now = time.milliseconds ();
9 }
10 pollHeartbeat(now);
11 remaining = Math.max(0, deadline - now);
12 client.poll(Math.min(remaining ,

timeToNextHeartbeat(now)));
13 now = time.milliseconds ();
14 }

Listing 2: Time slice of the source code of themethod poll()
of the issue KAFKA-4290. Statements that do not use or alter

time variables are filtered.

Time Variables. For each time variable encountered in the pro-

gram, our algorithm creates a corresponding SMT variable and

two constraints to bound its possible values to be inside the in-

teger domain of Java allowing overflows (lines 5–7 in Algorithm

1). An example of this translation for the time variable timeout is
presented in Listing 3 in the lines 9–11.

Assignment Statements. Each assignment statement is trans-

lated into an SMT assertion that fixes the left-hand-side variable

to be equal to the expression of its right-hand-side (line 9 in Al-

gorithm 1). Line 17 in Listing 3 shows the result of translating the

assignment statement deadline = now + timeout.
Conditional Statements/While Loops. Each condition remain-

ing in a program can be a guard in an if- or while-statement that

references time variables. They represent time constraints and there-

fore can be directly translated into an SMT assertion expressing

the condition. The translation of conditions is also handled by line

9 in Algorithm 1. In addition, whenever the condition belongs to a

while-loop statement, we obtain the list of time variables referenced

Algorithm 1: Incrementally translate a program P into an SMT
model and verify its correctness

1 VerifyProgram (P)
inputs :A program P to verify

output :A report to identify the error

2 V t ← дetTimeVariables (P);

3 St ← дetStatements (P);

4 C ← ∅;
5 foreach vt ∈ V t do

6 buildConstraint (C,vt);

7 end

8 foreach st ∈ St do
9 buildConstraint (C, st);

10 if isMethodCall (st) then
11 exprt ← дetTimeExpression(st);

12 foreach et ∈ exprt do
13 verify(C, et);

14 end

15 end

16 if isLoop (st) then
17 vart ← дetTimeGuardVars (st);

18 foreach vt ∈ vart do
19 verify(C,vt);

20 end

21 end

22 end

23 verify (C, expr)
inputs :An expression expr to maximize and minimize

with the set of constraints C
output :A report to identify the error

24 min ←minimize (C, expr);

25 max ←maximize (C, expr);

26 if min < 0 ∨max > MAX_VAL then
27 reportError (expr);

28 end

Modeling Time in Java Programs for Automatic Error Detection

Figure 2: The four different execution Paths a, b, c, and d of the method poll created during the Path Generation step. Each
path considers a different linearization of the method depending on the execution path taken. The code on the left represents

the time slice from Listing 2.

1 (declare−const max_val () Int)

2 (declare−const over_max_val () Int)

3 (declare−const min_val () Int)

4 (declare−fun milliseconds () Int)

5 (assert (= max_val 9223372036854775807))

6 (assert (= over_max_val 9223372036854775808))

7 (assert (= min_val (− 9223372036854775808)))

8 (assert (and (>= milliseconds 0) (<= milliseconds max_val)))

9 (declare−const timeout Int)

10 (assert (<= min_val timeout))

11 (assert (>= over_max_val timeout))

12 (declare−const now Int)

13 (assert (= now milliseconds))

14 (assert (<= now over_max_val))

15 (assert (>= now min_val))

16 (declare−const deadline Int)

17 (assert (= deadline (+ now timeout)))

18 (assert (<= deadline over_max_val))

19 (assert (>= deadline min_val))

20 (push)

21 (maximize now)

22 (check−sat)
23 (pop)

24 (push)

25 (minimize now)

26 (check−sat)
27 (pop)

28 (push)

29 (maximize deadline)

30 (check−sat)
31 (pop)

32 (push)

33 (minimize deadline)

34 (check−sat)
35 (pop)

36 . . .

Listing 3: Excerpt of the SMT Model generated from the poll()method as presented in Path a of Figure 2.

in the condition (line 17 in Algorithm 1) and for each one, the verify

function is called (lines 18–20 in Algorithm 1).

Method Calls. The translation of method calls, of which at

least one argument represents a time expression, is performed in

lines 9–15 of Algorithm 1. The algorithm collects each time-related

argument (line 11 in Algorithm 1) and for each one, it executes the

verify function to check whether the method is called with valid

time values.

SMT Expressions. The buildConstraint function in line 9 of
Algorithm 1 is responsible for translating Java statements into SMT

constraints. Other than the previous statements, this function has to

handle also the different Java expressions that manipulate the time

variables. Those expressions denote method calls or mathematical

expressions that return or alter time. Mathematical expressions

and functions supported by Java are translated one-to-one into the

corresponding function provided by the Z3 language. Furthermore,

eachmethod call that returns time is translated into a corresponding

function in Z3. For instance, the call to the return time category

method time.milliseconds() in line 1 of Listing 2 is translated
into the milliseconds() Z3 function in line 4 of Listing 3. For each
Z3 function created, our algorithm adds SMT assertion statements

to bound its result to be a valid time value, i.e., a value between 0

and the maximum value of a positive integer in the Java language

(max_val defined in line 5 of Listing 3), modeling the behavior

exported by such methods. Line 13 in Listing 3 shows the result of

translating the expression in line 2 of Listing 2, in which the return

value of the call to method time.milliseconds() is assigned to
the variable now.
Verify Function. Lines 23–29 of Algorithm 1 present the verify

function that checks the existence of errors in the constructed

model. The function is called only when time variables are used
in a while loop condition or a method call is performed with some
time related arguments. In both cases, the function veri es that
the time variable or the expression cannot overflow or be negative.
For this, the algorithm commands the SMT solver to maximize
and minimize the speci c time expression given the current set of
translated constraints (see lines 24 and 25 in Algorithm 1). If the
SMT solver shows that the expression reaches an overflow value or
becomes negative (line 26), it records that there is at least one case
in which the program can enter in a state where the time semantic
cannot be held. If such a violation is detected, the algorithm reports
the class, method, time variable, and line of the method call or while
loop in which the error occurs.
Listing 3 shows an excerpt of the SMT model created by our

approach for the rst couple of lines of code of Listing 2. Using the
rules above on the rst two code lines, our algorithm outputs the
lines 1–19 in Listing 3. Next, our algorithm processes the while loop
in line 3 of Listing 2. Since it is a while loop, our algorithm calls the
verify function for each variable referenced in its guard expression.
Lines 20–27 in Listing 3 show the output for the now variable. Since it
stores the timestamp returned by the call to time.milliseconds(),
the SMT solver veri es it to be correct. On the contrary, in line
29 of Listing 3 the maximization of the time variable deadline
detects an overflow error caused by the sum of now and timeout.
Our algorithm stops here and reports, that method poll() in class
WorkerCoordinator contains an overflow error which makes vari-
able deadline in line 4 to store an invalid time value.

4 EXPERIMENTS

In this section, we present the experiments we have performed to
evaluate our approach. We use two empirical experiments to mea-
sure the precision and runtime performance of our implemented
approach using 20 Java open source projects. In summary, our
evaluation aims to answer the following two research questions:

• RQ1: What is the precision of our approach in detecting time

related errors in source code?

• RQ2: What is the run time that our approach requires for

producing the results?

4.1 Experimental Setup

We design an empirical experiment in RQ1 and RQ2 with 20 open

source Java projects. We selected Java projects that use multi-

threading and distributed components to maximize the presence

of statements that deal with time. The selected projects also differ

in vendor, size, domain of use, and coding convention adopted to

maintain and develop them. We also considered projects that are

stand-alone applications and projects that are frameworks used to

develop applications. Using these criteria resulted in the set of 20

Java projects listed in Table 1. In sum, they comprise 90,908 source

files implementing 125,130 classes containing 939,861 methods and

more than 9.5M SLOCs. We conducted the experiments on a com-

puter with a 2.5GHz Intel CPU with 16GB of physical memory

running macOs 10.12.6.

Table 1: List of Java projects used for the evaluation together

with their number of files, number of classes, number of

methods, and Source Lines of Code (SLOC).

Name Files Classes Methods SLOC

activemq 4,434 4,981 41,212 415,976

Activiti 2,002 2,103 15,358 139,672

airavata 1,621 9,320 70,843 711,587

alluxio 1,319 3,364 24,859 233,897

atmosphere 348 500 4,043 35,843

aws-sdk-java 26,416 27,208 205,202 1,795,234

beam 1,696 3,844 20,477 210,960

camel 17,205 20,024 114,938 1,065,292

elastic-job 571 611 2,493 26,418

flume 642 995 6,627 85,750

hadoop 8,063 12,605 99,343 1,271,230

hazelcast 5,696 7,663 58,405 649,789

hbase 3,638 9,535 127,061 1,201,149

jetty.project 2,567 3,781 24,907 342,602

kafka 1,315 1,896 13,669 149,644

lens 845 1,036 8,063 99,523

nanohttpd 87 124 710 7,532

neo4j 6,681 9,158 60,378 680,986

sling 5,336 5,964 36,969 427,779

twitter4j 426 418 4,304 32,436

Overall 90,908 125,130 939,861 9,583,299

4.2 RQ1: What is the precision of our approach
in detecting time related errors in source
code?

The first experiment aims to evaluate the precision of our approach

in detecting the usages of time variables in statements that can

store invalid time values. For this, we ran our prototype tool on

the source code of each Java project and collected the reports of

all detected errors. Next, we manually analyzed all the reports and

verified in the source code the reasons that led to the reported error.

For each reported time variable, we manually analyzed its dataflow

and we verified if there is a possibility that the variable could store

an invalid time value when it is used. We computed the precision

by counting the number of correct errors manually found over the

total number of errors reported by our approach. Note, we did not

verify if the reported error results in a true failure of the program,

because we do not have the full set of specifications. We mark an

error as true positive if there is a case in which the variable could

store an invalid time value, while false positives are errors reported

by our tool which are not real errors because developers handle

them in a different section of the program. For each verified report,

we open an issue on the respective project’s issue tracker.

Table 2 presents the results of our evaluation. Over all projects,

the prototype tool analyzed 939,861 distinct Java methods, out of

which 466,218 contain at least one statement that deals with time.

On average, almost half (49.6%) of the methods deal with time

resulting in a total of 690,008 paths to analyze. In two projects,

Modeling Time in Java Programs for Automatic Error Detection

Table 2: Results of the error detection for the 20 Java projects showing number of analyzed methods (#Methods), number of

methods dealing with time (#T. Methods), number of paths created from time slices (#Paths), number of SLOC for the paths

generated, percentage of SLOC generated compared to the project SLOC (% SLOC), number of detected time related errors

(#Detected), number of real errors (#TP), number of false positive errors (#FP), and the precision computed by #TP/(#TP+#FP).

Name #Methods #T. Methods #Paths SLOC % SLOC #Detected #TP #FP Precision

activemq 41,212 12,583 (30.5%) 16,447 38,430 9.24% 16 13 3 81.250%

Activiti 15,358 6,034 (39.3%) 7,885 15,798 11.31% 0 0 0 -

airavata 70,843 39,858 (56.3%) 70,015 646,626 90.87% 0 0 0 -

alluxio 24,859 13,570 (54.6%) 19,706 84,268 36.03% 0 0 0 -

atmosphere 4,043 1,626 (40.2%) 2,237 3,875 10.81% 1 1 0 100.000%

aws-sdk-java 205,202 150,932 (73.6%) 247,855 2,227,270 124.07% 1 1 0 100.000%

beam 20,477 7,832 (38.2%) 9,489 8,125 3.85% 0 0 0 -

camel 114,938 34,760 (30.2%) 44,960 87,985 8.26% 4 4 0 100.000%

elastic-job 2,493 637 (25.6%) 783 559 2.12% 0 0 0 -

flume 6,627 2,429 (36.7%) 3,614 9,771 11.39% 3 3 0 100.000%

hadoop 99,343 40,173 (40.4%) 54,819 121,523 9.56% 27 26 1 96.296%

hazelcast 58,405 20,741 (35.5%) 25,488 36,626 5.64% 17 14 3 82.353%

hbase 127,061 81,747 (64.3%) 111,069 175,268 145.92% 24 22 2 91.667%

jetty.project 24,907 8,057 (32.3%) 12,779 37,794 11.03% 14 13 1 92.857%

kafka 13,669 5,158 (37.7%) 7,196 13,616 9.10% 13 13 0 100.000%

lens 8,063 3,917 (48.6%) 5,265 10,450 10.50% 0 0 0 -

nanohttpd 710 205 (28.9%) 294 659 8.75% 0 0 0 -

neo4j 60,378 18,595 (30.8%) 24,435 35,425 5.20% 5 4 1 80.000%

sling 36,969 15,489 (41.9%) 23,111 57,342 13.40% 21 20 1 95.238%

twitter4j 4,304 1,875 (43.6%) 2,561 12,663 39.01% 0 0 0 -

Overall 939,861 466,218 (49.6%) 690,008 3,624,073 28.30% 146 134 12 91.781%

aws-sdk-java (127.07%) and hbase (145.92%), the Path Generation
step creates more lines of code to analyze compared to the original

project size. On all the other projects, except airavata (90.87%),
alluxio (36.03%), and twitter4j (39.01%), the number of lines of
code to analyze is smaller than 13.40% of the original project size.

In this set of methods, our approach discovered 146 time related

errors. The three projects with most of the errors are hadoop (27),
hbase (24), and sling (21). In 8 out of the 20 projects, our approach
could not detect any errors. In two projects, namely atmonsphere
and aws-sdk-java, our approach detected only one error.
We manually analyzed the source code of each error and con-

firmed 134 of the 146 as real errors. For instance for hadoop, we
confirmed 26 out of the 27 detected time related errors. Overall,

only 12 errors reported by our approach were found to be false

positives. This results in a precision of 91.781% on average. For

only three projects, namely: activemq, hazelcast, and neo4j we
obtained a precision below 91%.

Through the manual analysis of the errors in the source code, we

discovered cases in which developers added a comment to the code

stating that they know that the time properties are not preserved

and they justified why they think that it is not a problem. An

example of such a justification is that they check the correctness

of the time variable later on in the program. In cases where the

developers did not provide an explanation in the source code, we

filed a corresponding bug report in the issue tracker of the project.

For one such bug report, a developer answered with the comment:

"Setting a negative initialDelayTime is an error so an exception

should be thrown indicating this so the value can be fixed". While this

response shows that the developer is aware of the potential error, it

also confirms that our approach is capable of detecting these errors.

4.3 RQ2: What is the run time that our
approach requires for producing the
results?

In addition to the low rate of false positives, it is also important for

the usability of our approach in practice that it returns the results

within a reasonable amount of time. We envision our approach to

be integrated into build environments so that the detection of errors

can be performed in the build and testing stage, or, if performance

allows, even within development environments. In the latter case,

the response time of our approach should be within 60 seconds,

and ideally even within 10 seconds [23].

In our approach, we use the SMT solver Z3 as oracle to formally

verify the correctness of time properties in Java methods. It is well

known that SMT solvers can consume a lot of resources and time

to perform the verification since a huge state space needs to be

explored and usually a timeout is enforced. In our experiments, all

the models that are created do not specify any timeout. In addition,

our approach performs the verification of multiple copies of the

source code generated from a time slice of the program. This means

on the one hand, verifications are performed with a reduced state

space but on the other hand multiple verification runs need to be

performed to cover all possible paths of the program execution.

Using the data from the 20 Java open source projects, we eval-

uated the response time of our approach. For each project, we

Table 3: Runtime of our approach in seconds for parsing the
939,861 methods of the 20 Java projects and detecting errors.

Time spent in seconds (s)

Name Total Parsing Detecting ms/method

activemq 243.8 226.5 17.3 5.92

Activiti 137.6 131.4 6.2 8.96

airavata 505.6 460.5 45.1 7.14

alluxio 149.4 130.1 19.2 6.01

atmosphere 24.5 22.3 2.3 6.06

aws-sdk-java 4,515.4 4373.5 141.9 22.00

beam 131.5 125.4 6.1 6.42

camel 1,361.2 1333.1 28.2 4.84

elastic-job 11.5 10.8 0.7 4.62

flume 22.8 20.1 2.7 3.44

hadoop 598.7 542.3 56.4 6.03

hazelcast 281.3 266.3 15.0 4.82

hbase 1,014.0 923.6 90.4 7.98

jetty.project 168.9 158.7 10.2 6.78

kafka 62.1 55.0 7.1 4.55

lens 36.6 32.9 3.7 4.54

nanohttpd 3.7 3.1 0.6 5.25

neo4j 264.4 247.6 16.8 4.38

sling 282.3 268.1 14.2 7.64

twitter4j 26.1 24.3 1.8 6.07

Overall 9,841.4 9,355.6 485.8 (AVG) 7.02

measured (i) the time required to parse the source code, and (ii)

the time to detect methods that deal with time and analyze them

with respect to the correct usage of timestamps (i.e., the defined

semantics of time in Java 8).

The time for parsing the source code comprises the time that our

approach needs to construct the abstract syntax tree (AST) using the

Eclipse JDT library. The time for detecting the errors comprises the

various steps of our approach to create the time slice, the creation

of the paths, the translation of each path into an Z3opt model,

the incremental verification of these models, and the report of the

results. Table 3 summarizes the results of running our approach

on the 20 projects. The results show that the experiment in total

required 9, 841.4 seconds (∼2.73 hours) to process all the 939,861
Java methods. Overall, the parsing required 9, 355.6 seconds while

the detection only took 485.8 seconds. As expected, the largest

projects, namely aws-sdk-java (4,373.5) and camel (1,333.1), took
the longest to parse. A large extent of the time for the parsing

is dedicated to the resolution of the binding information of the

method calls in Eclipse JDT.

The performance of the steps to detect errors of time properties

is remarkably fast. For instance, it took our approach 141.9 seconds

to detect errors in 205,202 methods of the aws-sdk-java project
which is on average 22.00 ms per method. Over all projects, the

detection takes on average 7.02 ms per method. One reason is

that time slices are only created for methods that contain time

statements which are 49.6% of the methods (see Table 2). Another

reason is that, even though we generate multiple copies of the time

slice, the total number of SLOC to analyze is just 28% of the total

SLOC of the projects source code.

5 DISCUSSION & THREATS TO VALIDITY

This section discusses the results of our study and limitations of

our current approach. Furthermore, we discuss potential threats to

validity in our experiments.

5.1 Discussion

In this section, first we present the theoretical foundation of our

technique and second, we discuss the results obtained with our

experiments.

From a theoretical point of view, our approach is sound but not

complete. The theoretical foundation of our approach is rooted in

the formal time semantics of Java 8. The soundness of our approach

assures that every detected error is indeed an error w.r.t. our def-

inition of the formal semantics of timestamps as integer values

in Java. The soundness proof is essentially a structural induction

proof on the structure of time related Java statements based on the

operational semantics of Java [5] and formal semantics of time [18].

In fact, the time slice extracted by our approach from a Java method

preserves the time semantics of the original source code. Moreover,

the aforementioned semantics are preserved by the translation of

the time slice into the SMT model. However, the further details of

the proof are beyond the scope of this paper.

The completeness of our approach cannot be established mainly

because of the following two reasons. First, our approach may

extract a weak model since we do not consider the full specification

of the program. Second, for extracting the SMTmodels our approach

only considers calls to methods of the category Return Time, while

still the method calls belonging to other categories may alter the

value of a class attribute that represents time. Therefore, we cannot

assure the absence of false positives.

To complement the theoretical foundation of our approach, we

have investigated the precision (computed with the standard for-

mula of true positives over the sum of true positives and false

positives) of our technique with an empirical study. With our eval-

uation we show that we could not reach a perfect precision which

confirms that our approach is not complete. The small amount of

false positives that we found, as we described in Section 4.2, are due

to the light-weight dataflow analysis performed by our approach.

Notwithstanding, we achieved roughly 91.78% of correct detec-

tion of time related errors with only 12 false positives, therefore

we can provide developers with an automatic tool for effectively

identifying time-related errors in Java programs. Furthermore, at

the moment of writing, developers indicated the usefulness of our

tool. They confirmed the existence of an error that was discovered

with our approach. The other bug reports are still pending to be

verified by the developers of the projects. We did not find errors

in every project because many of those have a long history of de-

velopment and therefore, the critical sections, such as time related

functionalities, are well implemented and mature.

In addition, we want to provide an approach that can be inte-

grated into a development environment. Therefore, the approach

should be scalable and produce the results in a reasonable amount

of time. The construction of the slices of a Java program with only

Modeling Time in Java Programs for Automatic Error Detection

time related statements paid off in performance. In fact, our ap-

proach needs to process on average only 28.30% of the source code.

This enables our approach to process a large amount of methods

per second. The prototype tool spent 95% of the time in parsing

the source code and constructing the abstract syntax tree with the

Eclipse JDT library. Only 5% of the time was used to construct the

model of the code and to verify the time constraints with the SMT

solver. The construction of the AST is necessary to every static

analysis technique and we cannot skip this part. Without a process-

able representation of the source code we cannot provide any kind

of analysis of it. Despite this overhead, our approach detects errors

with high degree of rigor requiring on average only 7.02 ms to pro-

cess a method, which other automated error detecting approaches,

such as Randoop, cannot yet achieve, even given indefinite time.

In summary, we showed that our approach can effectively dis-

cover time errors transforming the time semantics of Java programs

into a set of SMT constraints. Furthermore, our approach can be

integrated into other state of the art tools for error discovery, such

as Randoop [19], Agitator [6], or SMACK [7].

5.2 Threats To Validity

In the following section, we discuss threats to the internal and

external validity of our evaluation and how we addressed them in

our experiments.

Internal Validity. The internal validity threat indicates the re-

liability of our prototype implementation and experiments.

One limitation of our approach is the approximated model of the

program, i.e., it may not correctly handle loops because it translate

the execution for a single iteration only. Our experiment with the

20 Java open source projects shows that this approximation works

well since we managed to discover multiple errors in loops. This

limitation can be removed by identifying the invariants that control

the number of loop iterations. The identification of invariants with

static analysis is, however, a hard problem. Therefore, we made a

trade-off between time/space complexity and completeness con-

sidering a single iteration only. Future works will be devoted to

address this problem, employing dynamic analysis to discover likely

invariants or asking developers to provide them.

Furthermore, our approach currently supports only time APIs of

the Java 8 standard library. We do not consider other Java libraries

providing time APIs, such as Joda-Time.3 However this threat is mit-

igated by our findings, since in our study with the 20 Java projects,

we discovered that none of them uses external libraries for han-

dling time. In addition, with JSR310,4 Java 8 added better date and

time APIs, and most likely, Java developers will stop using external

libraries for implementing time behavior in their programs.

In the second research question, we studied the impact of the

static analysis approach on the runtime of our prototype tool. We

found that in particular the parsing of the source code required 95%

of the time which might have been due to using the parsing library

Eclipse JDT. In future work, we plan to address this threat by using

also other parsing libraries for implementing our approach, such

as Java Parser.5

3http://www.joda.org/joda-time/
4https://jcp.org/en/jsr/detail?id=310
5https://javaparser.org/

External Validity. The external validity threat concerns the

generalization of the results to other software projects in two di-

mensions: (i) the effect of application of our methodology to new

datasets and (ii) the extendibility of the approach to other languages.

The results of our evaluation can be easily generalized to other

Java projects because our approach is sound with the respect to

the time semantics of the Java programming language. However,

our presented technique is not complete and we mitigated this

threat investigating how much this affects the precision of our

approach. We applied the implementation of approach to 20 open

source Java projects that differ in vendor, size, domain of use, and

coding convention adopted to maintain and develop the system.

Moreover, we considered projects that are stand-alone applications

and also frameworks used to develop other applications.

The implementation of our approach in a prototype tool can

be further applied to other Java projects to extend our study and

validate our findings. Furthermore, our approach can be adapted to

other programming languages, such as C#, that use similar mecha-

nisms to implement timestamps as used by the Java programming

language. This would mainly require the adaptation of our defini-

tion of semantics for time and the change of our parsing library to

support parsing of source code written in other languages.

6 RELATEDWORK

A wide spectrum of related work in literature addresses automated

error detection in programs. They can be divided into three different

approaches: static analysis, testing, and verification.

Static Analysis. Several static analysis tools for various pro-

gramming languages have been developed. Basically, they analyze

the source code of a project and apply specific syntactical rules to

detect problems that could lead to errors. For instance, FindBugs

[17] and PMD [9] are two well know examples that analyze the

source code to find common programming flaws, such as unused

variables, empty catch blocks, and unnecessary object creation.

Similarly, JLint [1] analyzes Java code to detect synchronization

problems.

Testing. Several approaches to automate the generation of (unit)

test cases for (object-oriented) programming languages have been

investigated. Instead of looking for specific patterns in the source

code, those techniques try to identify unexpected behavior of a

given method. For instance, Randoop [19–22] is a well known tool

that, given a program, can be used to find bugs in it and to create

regression tests to warn developers about erroneous changes of the

program behavior. Randoop generates unit tests using feedback-

directed random test generation to create sequences of method/con-

structor invocations for the classes under test. Havrikov et al. [14]

consider the specific domain of XML Schema definition for which

they can create a set of unit tests to achieve high test coverage.

Other commercial tools, such as Agitator [6], first, use dynamic

analysis to discover invariants in the program and then, they cre-

ate unit tests that assert those invariants reaching a coverage of

around 80%. However, all these approaches cannot detect time re-

lated errors because they do not consider the specific semantics of

the language and they lack of a sound verification background. In

fact, although test coverage is a good metric for the likelihood to

have tested the code in different scenarios, it does not provide any
guarantee that a program has no errors.
Verification. Many approaches exist that verify source code

to detect errors in programs, however, only few of them address
time properties. Most of the existing work is on discovering race
conditions and synchronization problems, looking at the timing
on which different memory accesses occur during the execution
of a program. Java Pathfinder [13] is a tool developed by NASA.
It executes the bytecode of a given program in a special virtual
machine that is capable of verifying properties of the bytecode with
a focus on race conditions. Similarly, Bandera [12] extracts a formal
representation from Java bytecode that is converted into the SPIN
model checker [16] to verify that the time sequence of actions in the
program execution respects the given specification. Walkinshaw
et al. [24] present an extension of state machine inference from
a program execution that accounts for temporal properties of the
system. The work of Henzinger et al. [15] provides a technique
to verify temporal events, such as the correct execution order of
the mutex API. All these existing approaches have in common that
they address time as ordered sequence of events that occur in the
program execution. In contrast, in our work, we address time as
domain that can be altered by statements in the program and not
as sequence of events.

7 CONCLUSION

In this paper, we presented an approach to detect time related errors
in Java programs. We showed the problem through a bug taken
from an open-source Apache project and we also showed how
existing tools fail to detect it, mainly because they do not consider
the semantics of time.
We presented an approach that automatically identifies time

related errors in Java methods. Our approach uses the formal time
semantics of Java version 8 to identify time related statements and
variables in a Java method. These statements and variables are
translated into a set of SMT constraints that then are formally veri-
fied by an SMT solver which detects and reports errors according
to the given time semantics.
We performed two experiments to evaluate the precision and

runtime performances of our approach on 20 open source Java
projects. Our results show a low rate of false positives and appropri-
ate scalability. Our approach benefits developers with an automatic
verification technique that helps them to identify time related prob-
lems. With our study, we show that it is able to correctly identify
time related errors with a precision of 91.781% with only 12 false
positives. Moreover, the implementation of our approach and data
used in our experiments are publicly available.1
Future work will be performed in two directions. First, we plan

to add dynamic analysis to our approach to discover likely invari-
ants. This way, we can better model loop statements. We also plan
to improve our inter-procedural data flow analysis to reduce the
number of false positives detected by our approach. Second, we
plan to integrate our approach into a development environment
and extend our study to other programming languages that use a
time semantics similar to Java.

ACKNOWLEDGMENT

This research is funded by the Austrian Research Promotion Agency
FFG within the FFG Bridge 1 program, grant no. 850757.

REFERENCES
[1] C Artho. 2006. JLint – Find Bugs in Java Programs. (2006). http://jlint.sourceforge.

net/.
[2] Clark Barrett, Aaron Stump, Cesare Tinelli, et al. 2010. The smt-lib standard:

Version 2.0. In Proceedings of the 8th International Workshop on Satisfiability
Modulo Theories (Edinburgh, England), Vol. 13. 14.

[3] Nikolaj Bjørner and Anh-Dung Phan. 2014. νZ-Maximal Satisfaction with Z3..
In In Proceedings of the 6th International Symposium on Symbolic Computation in
Software Science (SCSS), Vol. 30. 1–9.

[4] Nikolaj Bjørner, Anh-Dung Phan, and Lars Fleckenstein. 2015. νZ-An Optimizing
SMT Solver.. In Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), Vol. 15. Springer, 194–199.

[5] Denis Bogdanas and Grigore Roşu. 2015. K-Java: A Complete Semantics of Java. In
Proceedings of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL). ACM, 445–456.

[6] Marat Boshernitsan, Roongko Doong, and Alberto Savoia. 2006. From Daikon
to Agitator: lessons and challenges in building a commercial tool for developer
testing. In Proceedings of the 2006 international symposium on Software testing
and analysis (ISSTA). ACM, 169–180.

[7] Montgomery Carter, Shaobo He, Jonathan Whitaker, Zvonimir Rakamarić, and
Michael Emmi. 2016. SMACK software verification toolchain. In Proceedings of
the 38th International Conference on Software Engineering (ICSE). ACM, 589–592.

[8] Robert N Charette. 2005. Why software fails. IEEE spectrum 42, 9 (2005), 36.
[9] Tom Copeland. 2005. PMD Applied. Centennial Books.
[10] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver.

In Tools and Algorithms for the Construction and Analysis of Systems (TACAS).
Springer, 337–340.

[11] David Deharbe, Pascal Fontaine, and Bruno Woltzenlogel Paleo. 2011. Quantifier
inference rules for SMT proofs. In First International Workshop on Proof eXchange
for Theorem Proving (PxTP).

[12] John Hatcliff and Matthew Dwyer. 2001. Using the Bandera tool set to model-
check properties of concurrent Java software. In International Conference on
Concurrency Theory (CONCUR). Springer, 39–58.

[13] Klaus Havelund and Thomas Pressburger. 2000. Model checking java programs
using java pathfinder. International Journal on Software Tools for Technology
Transfer (STTT) 2, 4 (2000), 366–381.

[14] Nikolas Havrikov, Alessio Gambi, Andreas Zeller, Andrea Arcuri, and Juan Pablo
Galeotti. 2017. Generating unit tests with structured system interactions. In
Proceedings of the 12th International Workshop on Automation of Software Testing
(AST). IEEE Press, 30–33.

[15] Thomas A Henzinger, George C Necula, Ranjit Jhala, Gregoire Sutre, Rupak
Majumdar, and Westley Weimer. 2002. Temporal-safety proofs for systems code.
In International Conference on Computer Aided Verification (CAV). Springer, 526–
538.

[16] Gerard J. Holzmann. 1997. The model checker SPIN. IEEE Transactions on software
engineering 23, 5 (1997), 279–295.

[17] David Hovemeyer and William Pugh. 2004. Finding bugs is easy. ACM Sigplan
Notices 39, 12 (2004), 92–106.

[18] Giovanni Liva, Muhammad Taimoor Khan, and Martin Pinzger. 2017. Extract-
ing timed automata from Java methods. In Proceedings of the 17th International
Working Conference on Source Code Analysis and Manipulation (SCAM). IEEE,
91–100.

[19] Carlos Pacheco and Michael D Ernst. 2005. Eclat: Automatic generation and
classification of test inputs. In Proceedings of the 19th European conference on
Object-Oriented Programming (ECOOP). Springer-Verlag, 504–527.

[20] Carlos Pacheco and Michael D Ernst. 2007. Randoop: feedback-directed random
testing for Java. In Companion to the 22nd ACM SIGPLAN conference on Object-
oriented programming systems and applications companion (OOPSLA). ACM, 815–
816.

[21] Carlos Pacheco, Shuvendu K Lahiri, and Thomas Ball. 2008. Finding errors in. net
with feedback-directed random testing. In Proceedings of the 2008 international
symposium on Software testing and analysis (ISSTA). ACM, 87–96.

[22] Carlos Pacheco, Shuvendu K Lahiri, Michael D Ernst, and Thomas Ball. 2007.
Feedback-directed random test generation. In Proceedings of the 29th international
conference on Software Engineering (ICSE). IEEE Computer Society, 75–84.

[23] Steven C. Seow. 2008. Designing and Engineering Time: The Psychology of Time
Perception in Software (1 ed.). Addison-Wesley Professional.

[24] Neil Walkinshaw and Kirill Bogdanov. 2008. Inferring finite-state models with
temporal constraints. In Proceedings of the IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 248–257.

