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Abstract— This paper builds on previous work which aimed at 
providing a graph-based visual exploration of melodic 
relationships (tune families) within collections of traditional music. 
Here, using a community detection algorithm, potential tune 
families can be readily identified. However, the richer the 
information contained in the graph, the more difficult it is for the 
visualisation algorithms to operate successfully. Therefore, an 
approach is proposed which uses modified versions of the graph 
both to enhance the community detection results and, more 
importantly, restructure the graph, by creating a compound graph, 
to reveal the communities visually. Finally, the wider applicability 
of the technique is considered. 
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I. INTRODUCTION

This paper is a follow-on to the ideas presented at the 
previous Conference on Information Visualization, [1], the aim 
of which was to conduct a visual exploration of melodic 
relationships within collections of traditional melodies. There, 
by representing the relationships using a graph which was then 
visualised it was possible to identify “tune families” (strongly 
clustered groups of vertices). However, limitations of the 
previous work were the observational approach to the results and 
limits to the scalability and applicability of the techniques. 
Whilst those limits still exist, in this paper ideas are presented 
which both extend the robustness and scalability of the approach. 

The common idea is that, given a collection of tunes and a 
melodic similarity measure which can compute pairwise 
similarity between tunes (e.g. [2]), it is possible to construct a 
complete proximity graph of the corpus. In this corpus graph 
each vertex represents a tune and edge weights represent 
similarities between tunes: the greater the similarity the larger 
the edge weight. If a similarity threshold is applied so that an 
edge is only included in the graph if the two tunes it connects are 
sufficiently similar then a sparse proximity graph can be induced 
(the higher the threshold, the sparser the graph). 

Next a community detection algorithm (not used in [1]) can 
be applied to determine possible tune families and finally a graph 
layout algorithm can be used to visualise the resulting graph with 
the communities superimposed. 

In the previous paper, [1], although many tune families were 
readily identifiable visually, a significant limitation was that the 
richer in information (and therefore denser) the graphs become, 
the more difficult it is to visualise them. Here a technique is 
proposed which uses the results of the community detection 
algorithm to manipulate/simplify the graph. This allows the 
visualisation of far denser graphs than previously. 

In the following, Section II outlines the three main 
components of the procedure (A) graph construction; (B) 
community detection; and (C) graph layout. Section III then 
discusses the graph manipulations, including the construction of 
the compound graph, that aid the process. Section IV presents 
the results and extends the idea to benchmark graphs (unrelated 
to music collections). Finally section V concludes the paper. 

II. METHODOLOGY 

A. Proximity graph: multilevel recursive alignment

To construct the graph, the melodic similarity measure used
is multilevel recursive sub-sequence alignment. Space precludes 
a full description but it is discussed in [1] & [3]. 

The multilevel aspect refers to the fact that each tune is 
coarsened by recursively removing non-stressed notes to create 
a hierarchy of tune representations. When two tunes are 
compared, the similarity is calculated at each level of the 
hierarchy and then aggregated across the levels. This means that 
tunes which may differ in minor details can still be considered 
sufficiently similar, in terms of stressed notes (i.e. at a coarser 
levels), to generate edges in the corpus graph. It also allows for 
significant improvements in computational cost. 

This multilevel similarity measure, S(X,Y), induces a 
complete weighted graph on a dataset, where the edge weight 
between each pair of melodies is given by the similarity. 
Subsequently, when the graphs are displayed, edge thickness can 
be shown in proportion to the weight with very similar vertices 
joined by thick edges and not so similar ones by thin edges. 

Since most edges in the graph will have very small weights 
it makes sense to restrict the graph to include only edges for 
tunes which are reasonably close matches. This restricted graph 
is referred to henceforth as the corpus graph. It can be created 
in a variety of ways but here it is assessed by a matching 
threshold, T, and edges between melodies X and Y are only 
included if they match across at least some proportion T of their 
length. Specifically an edge between vertices Vx and Vy is only 
included if  

S(X,Y) ≥ average(length(X), length(Y)) * T 

Following [3] values for T in the experiments are 1/4, 1/6 and 
1/8: the former value considerably restricts the number of edges 
since it requires tunes to match across at least a quarter of their 
length (in fact, typically it is significantly more than a quarter 
because of biasing towards longer aligned sub-sequences, [1]); 
the latter threshold is fairly inclusive but can allow many false 
positive matches.  



B. Community detection

Algorithms for detecting clusters, or communities, of well-
connected vertices within a graph are an important topic in 
network science and social network analysis. Although there are 
no universally accepted procedures and even the definition of a 
community is not well-defined, there has been considerable 
progress in recent years and a comprehensive survey of the topic 
can be found in Fortunato & Hric, [4]. 

Here a popular community detection algorithm due to 
Blondel et al. is used,  [5]. Coincidentally, but satisfyingly in a 
paper where both melodic similarity and graph drawing use the 
multilevel paradigm, Blondel’s method is also multilevel in 
design.  

The algorithm is a heuristic which aims to optimise the 
modularity of the clustering, where modularity is a scalar value 
between −1 and 1 that measures the density of internal 
community links as compared to links between communities, 
[5]. The algorithm is initialised by adding every vertex to its 
own community (so that every vertex is in a community of 1) 
and then iterating repeatedly through the vertices, moving them 
to another community if that move increases the modularity. 

When no further improvements can be made (i.e. the 
clustering has reached a local maximum of the modularity 
function), the vertices in each cluster are contracted to form a 
single vertex in a coarsened version of the graph and then the 
modularity optimisation is applied to this coarsened graph. This 
procedure is then repeated recursively until a coarsened graph 
is found where no improvement to the modularity is possible. 

C. Visualisation: multilevel force-directed placement

Having constructed the connected corpus graph, it can be
visualised using multilevel force-directed placement (MLFDP), 
a heuristic method for drawing graphs which uses a multilevel 
framework combined with an FDP algorithm. FDP is a common 
technique for computing a layout of graph vertices, e.g. [6], 
which models edges as springs (that push / pull vertices apart) 
and includes global repulsive forces to untangle the graph. 

However, FDP is unable to untangle large-scale structures 
and so is limited to graphs of a few hundred vertices. Hence 
multilevel schemes were introduced both to accelerate the 
computation and, more importantly, impart a global quality to 
the drawing, [7]. The multilevel technique matches and 
coalesces pairs of adjacent vertices to define a new graph and is 
repeated recursively to create a hierarchy of increasingly coarse 
graphs. The coarsest graph is then given an initial random layout 
and the layout is refined iteratively with FDP and recursively 
extended to all the graphs starting with the coarsest and ending 
with the original. Since its introduction, the multilevel approach 
has become widespread as a framework for improving graph 
drawing algorithms, e.g. see [6] and the references therein. 

III. GRAPH MANIPULATIONS

So far the work combines three (multilevel) technologies:
melodic similarity to build the proximity graph, community 
detection to identify strongly connected clusters of vertices 
(putative tune families) and force-directed placement to 
visualise the graph. However, as the results will indicate, there 
are still significant problems in viewing the denser graphs.  

Although density is adjustable using the T parameter (section 
II.A) there is a trade-off: if T is too large, the graph becomes
very sparse and disconnected (with a high proportion of isolated
vertices). Whilst easy to visualise, typically the community
detection indicates far more communities than the tune families
annotated manually. Furthermore, the sparsity misses out on
much information about weaker relationships between
melodies. Conversely, if T is reduced, the graph becomes much
richer in information, but also very dense, making it impossible
to visualise successfully (e.g. see the “hairball” in Fig. 3(left)).
Moreover, reducing T too far does not seem to add any useful
information: it just increases the number of false positive edges.

To address these issues, three manipulations are performed: 
graph connection, edge scaling and use of the compound graph. 

A. Graph connection

As will be seen, most of the graphs produced for the results
section comprise several disconnected components (subgraphs 
that are not connected by any edges) and often large numbers of 
isolated vertices (vertices with no incident edges – i.e. tunes that 
are not similar to any other tune in the corpus). This presents a 
problem for force-directed graph drawing techniques as, without 
adapting either the algorithm or the graph, the components will 
be repulsed far apart from each other (as attractive forces only 
operate along edges). 

Here, therefore, a simple scheme is proposed to connect the 
graph (less computationally complex than that described in [1]): 

1. The corpus graph G(V, E) is constructed as discussed,
with edges in E only included between pairs of vertices
if the corresponding tunes are sufficiently similar.

2. The connected components are evaluated and sorted in
order of increasing size.

3. Starting with the smallest component, all potential edges
from that component to other components are
calculated, and the edge with the heaviest weight is
added in to the graph, but with its weight set to zero.

4. Repeat from step 2 until the graph is fully connected.

It is easy to see that this scheme adds nothing to the total edge
weight in the graph, but increases the number of edges by |D| – 
1 where |D| is the number of disconnected components in the 
original proximity graph. 

The purpose of working from smallest to largest component 
is so that the graph doesn’t (necessarily) agglomerate around 
what is the largest component initially. The purpose of picking 
the heaviest edge is to focus on the strongest connections (even 
though these edges will be relatively light as they have already 
been excluded by the proximity graph threshold, T). 

Setting zero edge weights is important for visualisation: 
since edge weights influence vertex placement, a zero-weight 
edge will have minimal impact on the graph layout but will mean 
that the two insufficiently similar vertices that it connects are 
positioned as close together as possible. Furthermore zero-
weight edges can be easily excluded in the visualisations. 
Experiments were also tried with non-zero edge weights but 
actually made the Variation of Information scores (see section 
IV.B) much worse.



B. Edge scaling

Initial results indicated that reducing the threshold T to give
a richer, more expressive graph made the community detection 
harder: when T is reduced from one value to another the 
additional edges included should be lightly weighted (indicating 
weaker relationships), but the sheer number of additional edges 
overwhelms the community structure encapsulated in the 
heavier edges. In the worst cases, for very small values of T, the 
community detection algorithm was unable to find any 
structures and returned the whole graph as the only community. 

Another way to view this is that, if there is an optimal value 
of the threshold, T* say, then additional edges included for 
values of T < T* are likely to be inter-community edges rather 
that intra-community. Therefore, weakening those additional 
edges should help retain the community structure found for T*. 

This is the basis of the edge scaling scheme, although rather 
than weakening a set of edges introduced when T is reduced 
from some unknown value T*, the procedure simply uses a step 
function to reduce the weight of all edges beneath another 
threshold, W, say. Thus if an edge weight is ≤ W, its weight is 
reduced to 1 for the community detection phase. (A number of 
other scaling schemes were also tested but the step function 
works well and is simple to implement.) 

Then, in order to choose an optimal value for W, the method 
tests all values of W between 1 (i.e. no scaling) and some upper 
limit WL (set at 50 in the experiments below) by running the 
community detection algorithm repeatedly and choosing W* as 
the value of W which results in the highest modularity. 

C. The Compound Graph

The third and probably most valuable graph manipulation
technique is the use of a compound graph to aid with the 
visualisation. Except for the larger values of T, many of the 
graphs calculated for the results are not possible to visualise 
using standard force directed placement techniques as they are 
far too dense. The solution is to simplify/summarise some of the 
information contained in the graph and the community structure 
gives a means for doing that. 

To motivate this, ultimately the aim is to provide a semi-
automated visual tool to help identify “families” of closely 
related tunes. In the case of annotated datasets with known tune 
families (ground truth), although difficult to match those 
families exactly, it is possible to pick values of T where either: 

(1) [for larger values of T] the number of automatically detected
communities exceeds the number of tune families and so for
datasets without ground truth it might be a case of manually
identifying and combining separate communities which are
in fact part of the same family;

(2) [for smaller values of T] the number of known families
typically exceeds the number of automatically detected
communities and so for datasets without ground truth the
researcher’s task is to split communities into families.

In the former case, it may be helpful to look at the overall
strength of relationships between communities (rather than 
pairwise relationships between vertices); in the latter case it 
could be argued that inter-community edges are a distraction. 

The suggestion then, is to use the community structure to 
illuminate the information presented in the graph. The use of 
community structures has a long history in graph visualisation, 
e.g. [8], where each community is laid out separately before
being composed to complete the layout, or [9], where
community structures are used to inform edge sparsification and
thus render visualisation tractable. Here the idea is to bundle
together all the edges between pairs of communities and use
additional vertices, one per community, as a link between inter-
community and intra-community edges. The approach is related
to techniques in [6], where edges are bundled together (using
splines, unlike here) and [10], where vertices of the quotient
graph, G′, are attached to those of the original graph, G.

The quotient graph is the result of applying a partition or 
clustering, P, to the original G (so that G′  G/P). Each cluster 
of vertices in G is represented as a single super-vertex in G′ 
and edges between two clusters are merged into a single edge 
between the super-vertices representing those clusters. Edge 
weights are summed so the total edge weight in the cluster graph 
is ||EC||, where {EC} is the set of inter-cluster edges (or edges 
cut by the clustering). This is essentially the same procedure as 
creating a coarsened graph in the multilevel schemes. 

To merge the original graph and quotient graph the simplest 
way is to remove all the inter-community edges from the 
original graph (now summarised in the quotient graph). Then an 
extra vertex-to-cluster edge is added between every original 
vertex and the super-vertex representing its cluster. Henceforth 
this merged graph will be known as the compound graph, G′′ 

 G + G/P = G(1+1/P). 

It is easy to see that the compound graph has |V| + |C| 
vertices, where |V| is the number of vertices in the original and 
|C| is the number of communities. The number of edges 
decreases by |EC|, but also increases by |V|, as there is one edge 
per vertex connecting the vertex to its cluster, and by |E′|, where 
|E′| is the number of edges in the quotient graph. This gives a 
total of |V| + |E′| – |EC| additional edges (where the total may 
often be negative). 

Total vertex and edge weight depend on how the super-
vertices and vertex-to-cluster edges are weighted. Typically in 
the quotient graph each super-vertex is given the total weight of 
the clustered vertices it represents (so ||G′||, the total weight of 
vertices in G′, is the same as ||G||). However, when the 
compound graph is visualised (using FDP) this has the effect of 
adding a large weight at the centre of each cluster and repulsive 
forces hollow out the cluster with original vertices pushed away 
in a ring. However, this is easy to deal with by simply giving 
each super-vertex zero weight. Thus, the total vertex weight of 
the compound graph, ||G′′|| is the same as ||G|| and ||G′||. 

Slightly trickier are the edge weights on vertex-to-cluster 
edges. If they are set to a small value (e.g. 1) then the effect is 
that the heavily weighted inter-cluster edges (which may 
combine many original edges) dominate in the FDP drawing of 
the compound graph: typically, all the super-vertices are pulled 
into a tight structure in the centre with clusters of original 
vertices pushed out to the periphery. Instead, it is preferable that 
each super-vertex is tightly bound to the vertices in its cluster 
and that the inter-cluster edges are then used to place the 
clusters relative to each other.  



To achieve this in the context of FDP each vertex-to-cluster 
edge needs a relatively heavy weight, k, say. In fact, the melodic 
similarity measure has an artificial but hard limit of 256 (so that 
any melody matching with another by more than 256 
consecutive notes is limited to a similarity score of 256). 
Therefore, every vertex-to-cluster edge is given a weight of k = 
256 and this seems to have the desired effect. Thus, the total 
weight of edges in G′′ is given by ||E|| + k |V| where ||E|| is the 
total weight of edges in the original graph. In the experiments k 
= 256 but, provided it is large, the actual value is probably not 
crucial (k = 128 also worked well). 

IV. RESULTS

A. Datasets

The previous paper used two small, manually annotated
datasets of around 360 vertices each to validate the ideas. Since 
then two further large datasets with ground truth have come to 
light – one is a recently published and much larger version of 
one of the original datasets; the other is a web-based collection 
called TheSession.org – a large and growing collection of 
~30,000 Irish traditional tunes hosted at a community website.  

An important realisation about TheSession is that when 
members publish a tune and that tune is a variant of one that 
already exists on the website, the tune is published on the same 
page as the first one. Assuming that members don’t 
inadvertently miss an existing tune and don’t publish together 
variants that are not really related, this means that each page 
which contains more than one variant identifies the tunes on that 
page as a ready-made, crowd-sourced tune family! 

Furthermore, to get smaller collections which also have 
ground truth, one simply has to take an ordered subset of tunes 
(e.g. the first 5,000) from TheSession and the coherence of the 
tune families is maintained. (The same is not true of the other 
collections, where such an operation would be possible but 
more involved). 

In all six collections were tested in eight datasets (3 small 
with ~360 tunes, 2 medium with ~5,000, and 3 large with ~10-
12,000 tunes). The collections, including those with no ground 
truth (i.e. no known tune families), are as follows: 

 MTC: The Annotated Corpus of the Meertens Tune
Collection1, version MTC-ANN-2.0.1, [11]. 360 tunes in
26 families.

 Morris: English morris dance tunes from the Morris Ring
website2, [1]. 368 tunes in 111 families.

 TS-*: TheSession.org3. Three different sized subsets were
used for comparison purposes:

o TS-360: 360 tunes in 177 families

o TS-5k: 5,000 tunes in 2,837 families

o TS-10k: 10,000 tunes in 6,017 families

1 http://www.liederenbank.nl/mtc/ 
2 https://themorrisring.org/music/handbook-morris-dances 
3 https://thesession.org/ 

 VMP: The Village Music Project4, a website containing
English dance music from C18th/C19th manuscripts.
Currently the site hosts ~7,000 tunes but here a benchmark
subset, [1], is used. 5,638 tunes, no ground truth.

 MTC2: The Meertens Folk Song Collection1, version
MTC-FS-INST-2.0, [12]. This contains 18,618 melodies
with 12,762 annotated as belonging to 5,297 tune families.
Neglecting the ~6,000 unannotated tunes and a few where
the multilevel parsing was not possible (see [3] for
limitations) this leaves 12,322 tunes in 5,092 families.

 Essen: An abc version of the Essen Folk Song Database5,
containing European and Chinese folk songs. 10,186
tunes, no ground truth.

Table I shows the results for all eight datasets using matching 
threshold values, T = 1/4, 1/6 and 1/8. The table shows |E|, the 
number of edges; |D|, the number of disconnected components; 
|C|, the number of communities detected; Q, the optimal 
modularity; and VI, the variation of information score. In 
datasets with ground truth the VI indicates how closely the 
communities match the families, with 0 being an exact match, so 
the best (smallest) values are highlighted (see below for details).  

Characteristics for the compound graphs, G′′, are not shown 
but can be partially derived. Thus the number of vertices in the 
compound graph, |V′′|, is given by |V| + |C| (the |V| values are 
not in the table but are listed above). 

TABLE I. DATASET CHARACTERISTICS 

Dataset T |E| |D| |C| Q VI 
MTC 1/4 556 148 152 0.925 0.219 
MTC 1/6 2,079 30 52 0.898 0.179 
MTC 1/8 16,311 2 18 0.594 0.280 
Morris 1/4 200 267 269 0.960 0.196 
Morris 1/6 518 153 163 0.958 0.150 
Morris 1/8 2,518 24 49 0.844 0.330 
TS-360 1/4 166 246 246 0.947 0.072 
TS-360 1/6 260 217 217 0.934 0.056 
TS-360 1/8 388 172 178 0.937 0.100 
TS-5K 1/4 1,812 3,744 3,744 0.996 0.049 
TS-5K 1/6 3,239 3,135 3,149 0.996 0.044 
TS-5K 1/8 13,816 1,702 1,879 0.972 0.219 
VMP 1/4 3,156 4,187 4,187 0.991 n/a 
VMP 1/6 5,895 3,225 3,287 0.990 n/a 
VMP 1/8 69,425 914 1,102 0.867 n/a 
TS-10k 1/4 3,511 7,565 7,567 0.998 0.042 
TS-10k 1/6 6,979 6,224 6,264 0.997 0.058 
TS-10k 1/8 57,828 2,980 3,314 0.939 0.279 
MTC2 1/4 14,085 7,100 7,161 0.994 0.131 
MTC2 1/6 318,682 2,461 2,819 0.790 0.395 
MTC2 1/8 5,373,920 387 518 0.379 0.681 
Essen 1/4 11,470 6,338 6,411 0.960 n/a 
Essen 1/6 746,865 1,180 1,317 0.479 n/a 
Essen 1/8 8,649,146 175 199 0.367 n/a 

B. Metrics

The question of how to evaluate the techniques is not an easy
one to resolve. However, for collections where tune families are 
already known (as a ground truth), one obvious answer is to 

4 http://www.village-music-project.org.uk/ 
5 https://ifdo.ca/~seymour/runabc/esac/esacdatabase.html 



compare the communities identified with the known families to 
see how well they match. Even this is not straightforward as 
there is no universally agreed measure which can compare the 
similarity of two clusterings (partitions), [4]. Nonetheless in 
that paper Fortunato & Hric recommend the Variation of 
Information (VI) metric proposed by Meilă, [13], and that is the 
partition similarity measure used above. Note the values in 
Table I have all been scaled to lie between 0 and 1 (where 0 
indicates a perfect match) but VI is not directly comparable for 
different size graphs as the maximum value is log |V|, where |V| 
is the number of vertices in the graph. 

For collections with no ground truth another option might be 
to use the maximum modularity, Q, found by the community 
detection algorithm, for example to choose an appropriate value 
for T. However, this is not necessarily helpful; see for example 
the two compound graphs shown in Fig. 2, with T values set to 
1/4 and 1/6 respectively. The left hand one looks to correspond 
to case (1) in section III.C – communities will need to be 
merged into families, whilst the right hand one may be case (2), 
the converse. However, for both the modularity is almost 
identical, 0.990 as compared with 0.991. So it may simply be a 
case of trying different values of T to produce a suitable graph. 

C. Discussion

Table I shows how rapidly the connectivity grows as T is
reduced (as exemplified by |E| and |D|). None of the graphs listed 
is fully connected (|D| = 1), but several are close. Unsurprisingly 
the number of communities detected, |C|, is closely correlated 
with the number of components, |D|, particularly for the TS-* 
datasets, but they can differ widely, especially when T = 1/8. 
Likewise the modularity, Q, is very high in very disconnected 
graphs, but can drop off rapidly as T is reduced. Nonetheless, the 
best values of VI, i.e. the best matches with ground truth, do not 
always match the highest modularity values. 

In terms of VI, the optimal values consistently occur for T = 
1/6 for the small and medium sized graphs and for T = 1/4 for 
the larger graphs. Indeed they are startlingly good for the TS-* 
datasets although this may just indicate that the crowd-sourced 
tune families are quite conservative. In other words, it is likely 
that members of the website only publish very closely related 
tune variants on the same page (this would also help to explain 
the high correlation of |D| with |C|). 

Space precludes any detailed discussion of the edge scaling 
results (section III.B) but the technique doesn’t always have a 
dramatic effect (for example when the modularity is already 
high, T = 1/4). However, as an illustration of its effectiveness, 
for the Essen dataset with T = 1/6 (Fig. 3), using a value of W* 
= 23 increased the modularity from 0.279 to 0.479 and the 
number of communities detected from 1,239 to 1,317. 

Turning to the visualisations, benefits of the compound 
graphs are readily apparent. Fig. 1(left) & 3(left) both show the 
original corpus graph with no manipulations (other than being 
connected). The communities are superimposed but are still 
difficult to decipher fully for the small MTC dataset (Fig.1) and 
impossible for the Essen dataset (Fig. 3). However, when the 
compound graph is constructed and is then used to drive the 

6 https://snap.stanford.edu/data/p2p-Gnutella06.html 

layout calculated by the MLFDP algorithm, the communities are 
easily visible, Fig. 1(right) & Fig. 3(right), even though they may 
need work to manually separate out larger communities. 

Fig. 2, meanwhile, shows compound graphs for the medium 
sized VMP dataset at two different values of T, which most 
likely illustrate the two cases described in section Error! 
Reference source not found. 

D. Wider applicability of the compound graph

The original intention of this paper was to discuss the
construction and, in particular, visualisation of proximity 
graphs derived from melodic similarity measures. Typically 
these graphs are very sparse with many disconnected 
components. However, when tried with denser graphs (Fig 3.) 
the compound graph was found to be very helpful in visualising 
the underlying structure. Accordingly the technique was tried 
on a number of benchmark graphs taken from the literature. 

A full evaluation goes well beyond the scope of this paper, 
but two sample pictures are shown in Fig. 4. On the left is a 
compound graph visualisation of the Gnutella06 peer-to-peer 
network6, with 8,717 vertices and 31,525 edges, [14]; on the 
right is the Smith607 network from the Facebook100 dataset 
with 2,970 vertices and 97,133 edges, [15] (a visualisation of 
this graph also appears in [9], Fig. 11). 

In both cases MLFDP visualisations of the original graph 
(not shown) produce “hairballs”, similar but more compressed, 
to that in Fig 3(left). However, the compound graphs, Fig. 4, 
clearly able to separate out the communities and elucidate the 
structure. Obviously the communities themselves can be further 
explored by zooming in and even at this level some intra-
community structure is evident. 

Note that in these pictures the thick inter-cluster edges are 
rendered as semi-transparent, so as not to obscure details of the 
communities they originate from. Also, and as above, the 
vertex-to-super-vertex edges are weighted with k = 256. In fact 
the visualisation seems to be relatively insensitive to this 
parameter – it just needs to be large enough to keep super-
vertices at the centre of their cluster. However, these edges are 
not shown in any of the Figures as they do not add any useful 
information.  

The communities in these cases were detected using 
Blondel’s modularity optimisation algorithm (section II.B) but 
without edge scaling (section III.B) as the original graph edges 
are not weighted. However, in principle any community 
detection method could be used.  

Of course, this compound graph visualisation is very 
dependent on the success of the community detection 
algorithm; if no communities are detected the compound graph 
is meaningless and changes to the detected community structure 
could dramatically change the visualisation. Nonetheless, it 
seems a promising technique and could even be used 
hierarchically, in the same way that community detection 
algorithms are sometimes employed. 

7 http://networkrepository.com/socfb-Smith60.php 



V. CONCLUSIONS 

This paper uses a community detection algorithm both to
help identify tune families and to aid with the visualisation of 
those families. Although it does not seem possible to 
automatically calculate these families, the technique presented 
here does seem to offer a useful and (in principle) interactive tool 
to music researchers.  

Perhaps more importantly, the results indicate that not only 
can the visualisation expose communities (as previously), but 
also that using the community structure to drive the visualisation 
can significantly enhance the visibility of the communities. In 
particular, the use of the compound graph, can allow exploration 
of previously un-visualisable graphs – potentially an interesting 
technique with much wider applications. 

In that respect it should be stressed that the ideas discussed 
here are generic, both in terms of the case study (in principle, 
any pairwise melodic similarity measure could be used) and also 
in terms of the graph drawing problem: the technique as a whole 
can be applied to any proximity graph, the edge scaling to any 
graph with weighted edges and the compound graph 
construction to any graph where communities are detectable. 
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Fig. 1. Small corpus graphs for the MTC collection with T = 1/6, showing the original graph (left) & compound graph (right) 



Fig. 4. Compound graphs for benchmark networks taken from the literature, showing Gnutella06 (left) and Smith60 (right) 

Fig. 3. Large corpus graphs for the Essen collection with T = 1/6, showing the original graph (left) & compound graph (right) 

Fig. 2. Medium sized compound corpus graphs for the VMP dataset with T = 1/4 (left) and T = 1/6 (right) 


