
The Compound Graph: a case study for Community
Visualisation in Social Networks

Chris Walshaw
Computing & Mathematical Sciences
University of Greenwich, London, UK

c.walshaw@gre.ac.uk

Abstract— This paper builds on previous work which aimed at
providing a graph-based visual exploration of melodic
relationships (tune families) within collections of traditional music.
Here, using a community detection algorithm, potential tune
families can be readily identified. However, the richer the
information contained in the graph, the more difficult it is for the
visualisation algorithms to operate successfully. Therefore, an
approach is proposed which uses modified versions of the graph
both to enhance the community detection results and, more
importantly, restructure the graph, by creating a compound graph,
to reveal the communities visually. Finally, the wider applicability
of the technique is considered.

Keywords—melodic similarity, network analysis, graph drawing

I. INTRODUCTION

This paper is a follow-on to the ideas presented at the
previous Conference on Information Visualization, [1], the aim
of which was to conduct a visual exploration of melodic
relationships within collections of traditional melodies. There,
by representing the relationships using a graph which was then
visualised it was possible to identify “tune families” (strongly
clustered groups of vertices). However, limitations of the
previous work were the observational approach to the results and
limits to the scalability and applicability of the techniques.
Whilst those limits still exist, in this paper ideas are presented
which both extend the robustness and scalability of the approach.

The common idea is that, given a collection of tunes and a
melodic similarity measure which can compute pairwise
similarity between tunes (e.g. [2]), it is possible to construct a
complete proximity graph of the corpus. In this corpus graph
each vertex represents a tune and edge weights represent
similarities between tunes: the greater the similarity the larger
the edge weight. If a similarity threshold is applied so that an
edge is only included in the graph if the two tunes it connects are
sufficiently similar then a sparse proximity graph can be induced
(the higher the threshold, the sparser the graph).

Next a community detection algorithm (not used in [1]) can
be applied to determine possible tune families and finally a graph
layout algorithm can be used to visualise the resulting graph with
the communities superimposed.

In the previous paper, [1], although many tune families were
readily identifiable visually, a significant limitation was that the
richer in information (and therefore denser) the graphs become,
the more difficult it is to visualise them. Here a technique is
proposed which uses the results of the community detection
algorithm to manipulate/simplify the graph. This allows the
visualisation of far denser graphs than previously.

In the following, Section II outlines the three main
components of the procedure (A) graph construction; (B)
community detection; and (C) graph layout. Section III then
discusses the graph manipulations, including the construction of
the compound graph, that aid the process. Section IV presents
the results and extends the idea to benchmark graphs (unrelated
to music collections). Finally section V concludes the paper.

II. METHODOLOGY

A. Proximity graph: multilevel recursive alignment

To construct the graph, the melodic similarity measure used
is multilevel recursive sub-sequence alignment. Space precludes
a full description but it is discussed in [1] & [3].

The multilevel aspect refers to the fact that each tune is
coarsened by recursively removing non-stressed notes to create
a hierarchy of tune representations. When two tunes are
compared, the similarity is calculated at each level of the
hierarchy and then aggregated across the levels. This means that
tunes which may differ in minor details can still be considered
sufficiently similar, in terms of stressed notes (i.e. at a coarser
levels), to generate edges in the corpus graph. It also allows for
significant improvements in computational cost.

This multilevel similarity measure, S(X,Y), induces a
complete weighted graph on a dataset, where the edge weight
between each pair of melodies is given by the similarity.
Subsequently, when the graphs are displayed, edge thickness can
be shown in proportion to the weight with very similar vertices
joined by thick edges and not so similar ones by thin edges.

Since most edges in the graph will have very small weights
it makes sense to restrict the graph to include only edges for
tunes which are reasonably close matches. This restricted graph
is referred to henceforth as the corpus graph. It can be created
in a variety of ways but here it is assessed by a matching
threshold, T, and edges between melodies X and Y are only
included if they match across at least some proportion T of their
length. Specifically an edge between vertices Vx and Vy is only
included if

S(X,Y) ≥ average(length(X), length(Y)) * T

Following [3] values for T in the experiments are 1/4, 1/6 and
1/8: the former value considerably restricts the number of edges
since it requires tunes to match across at least a quarter of their
length (in fact, typically it is significantly more than a quarter
because of biasing towards longer aligned sub-sequences, [1]);
the latter threshold is fairly inclusive but can allow many false
positive matches.

B. Community detection

Algorithms for detecting clusters, or communities, of well-
connected vertices within a graph are an important topic in
network science and social network analysis. Although there are
no universally accepted procedures and even the definition of a
community is not well-defined, there has been considerable
progress in recent years and a comprehensive survey of the topic
can be found in Fortunato & Hric, [4].

Here a popular community detection algorithm due to
Blondel et al. is used, [5]. Coincidentally, but satisfyingly in a
paper where both melodic similarity and graph drawing use the
multilevel paradigm, Blondel’s method is also multilevel in
design.

The algorithm is a heuristic which aims to optimise the
modularity of the clustering, where modularity is a scalar value
between −1 and 1 that measures the density of internal
community links as compared to links between communities,
[5]. The algorithm is initialised by adding every vertex to its
own community (so that every vertex is in a community of 1)
and then iterating repeatedly through the vertices, moving them
to another community if that move increases the modularity.

When no further improvements can be made (i.e. the
clustering has reached a local maximum of the modularity
function), the vertices in each cluster are contracted to form a
single vertex in a coarsened version of the graph and then the
modularity optimisation is applied to this coarsened graph. This
procedure is then repeated recursively until a coarsened graph
is found where no improvement to the modularity is possible.

C. Visualisation: multilevel force-directed placement

Having constructed the connected corpus graph, it can be
visualised using multilevel force-directed placement (MLFDP),
a heuristic method for drawing graphs which uses a multilevel
framework combined with an FDP algorithm. FDP is a common
technique for computing a layout of graph vertices, e.g. [6],
which models edges as springs (that push / pull vertices apart)
and includes global repulsive forces to untangle the graph.

However, FDP is unable to untangle large-scale structures
and so is limited to graphs of a few hundred vertices. Hence
multilevel schemes were introduced both to accelerate the
computation and, more importantly, impart a global quality to
the drawing, [7]. The multilevel technique matches and
coalesces pairs of adjacent vertices to define a new graph and is
repeated recursively to create a hierarchy of increasingly coarse
graphs. The coarsest graph is then given an initial random layout
and the layout is refined iteratively with FDP and recursively
extended to all the graphs starting with the coarsest and ending
with the original. Since its introduction, the multilevel approach
has become widespread as a framework for improving graph
drawing algorithms, e.g. see [6] and the references therein.

III. GRAPH MANIPULATIONS

So far the work combines three (multilevel) technologies:
melodic similarity to build the proximity graph, community
detection to identify strongly connected clusters of vertices
(putative tune families) and force-directed placement to
visualise the graph. However, as the results will indicate, there
are still significant problems in viewing the denser graphs.

Although density is adjustable using the T parameter (section
II.A) there is a trade-off: if T is too large, the graph becomes
very sparse and disconnected (with a high proportion of isolated
vertices). Whilst easy to visualise, typically the community
detection indicates far more communities than the tune families
annotated manually. Furthermore, the sparsity misses out on
much information about weaker relationships between
melodies. Conversely, if T is reduced, the graph becomes much
richer in information, but also very dense, making it impossible
to visualise successfully (e.g. see the “hairball” in Fig. 3(left)).
Moreover, reducing T too far does not seem to add any useful
information: it just increases the number of false positive edges.

To address these issues, three manipulations are performed:
graph connection, edge scaling and use of the compound graph.

A. Graph connection

As will be seen, most of the graphs produced for the results
section comprise several disconnected components (subgraphs
that are not connected by any edges) and often large numbers of
isolated vertices (vertices with no incident edges – i.e. tunes that
are not similar to any other tune in the corpus). This presents a
problem for force-directed graph drawing techniques as, without
adapting either the algorithm or the graph, the components will
be repulsed far apart from each other (as attractive forces only
operate along edges).

Here, therefore, a simple scheme is proposed to connect the
graph (less computationally complex than that described in [1]):

1. The corpus graph G(V, E) is constructed as discussed,
with edges in E only included between pairs of vertices
if the corresponding tunes are sufficiently similar.

2. The connected components are evaluated and sorted in
order of increasing size.

3. Starting with the smallest component, all potential edges
from that component to other components are
calculated, and the edge with the heaviest weight is
added in to the graph, but with its weight set to zero.

4. Repeat from step 2 until the graph is fully connected.

It is easy to see that this scheme adds nothing to the total edge
weight in the graph, but increases the number of edges by |D| –
1 where |D| is the number of disconnected components in the
original proximity graph.

The purpose of working from smallest to largest component
is so that the graph doesn’t (necessarily) agglomerate around
what is the largest component initially. The purpose of picking
the heaviest edge is to focus on the strongest connections (even
though these edges will be relatively light as they have already
been excluded by the proximity graph threshold, T).

Setting zero edge weights is important for visualisation:
since edge weights influence vertex placement, a zero-weight
edge will have minimal impact on the graph layout but will mean
that the two insufficiently similar vertices that it connects are
positioned as close together as possible. Furthermore zero-
weight edges can be easily excluded in the visualisations.
Experiments were also tried with non-zero edge weights but
actually made the Variation of Information scores (see section
IV.B) much worse.

B. Edge scaling

Initial results indicated that reducing the threshold T to give
a richer, more expressive graph made the community detection
harder: when T is reduced from one value to another the
additional edges included should be lightly weighted (indicating
weaker relationships), but the sheer number of additional edges
overwhelms the community structure encapsulated in the
heavier edges. In the worst cases, for very small values of T, the
community detection algorithm was unable to find any
structures and returned the whole graph as the only community.

Another way to view this is that, if there is an optimal value
of the threshold, T* say, then additional edges included for
values of T < T* are likely to be inter-community edges rather
that intra-community. Therefore, weakening those additional
edges should help retain the community structure found for T*.

This is the basis of the edge scaling scheme, although rather
than weakening a set of edges introduced when T is reduced
from some unknown value T*, the procedure simply uses a step
function to reduce the weight of all edges beneath another
threshold, W, say. Thus if an edge weight is ≤ W, its weight is
reduced to 1 for the community detection phase. (A number of
other scaling schemes were also tested but the step function
works well and is simple to implement.)

Then, in order to choose an optimal value for W, the method
tests all values of W between 1 (i.e. no scaling) and some upper
limit WL (set at 50 in the experiments below) by running the
community detection algorithm repeatedly and choosing W* as
the value of W which results in the highest modularity.

C. The Compound Graph

The third and probably most valuable graph manipulation
technique is the use of a compound graph to aid with the
visualisation. Except for the larger values of T, many of the
graphs calculated for the results are not possible to visualise
using standard force directed placement techniques as they are
far too dense. The solution is to simplify/summarise some of the
information contained in the graph and the community structure
gives a means for doing that.

To motivate this, ultimately the aim is to provide a semi-
automated visual tool to help identify “families” of closely
related tunes. In the case of annotated datasets with known tune
families (ground truth), although difficult to match those
families exactly, it is possible to pick values of T where either:

(1) [for larger values of T] the number of automatically detected
communities exceeds the number of tune families and so for
datasets without ground truth it might be a case of manually
identifying and combining separate communities which are
in fact part of the same family;

(2) [for smaller values of T] the number of known families
typically exceeds the number of automatically detected
communities and so for datasets without ground truth the
researcher’s task is to split communities into families.

In the former case, it may be helpful to look at the overall
strength of relationships between communities (rather than
pairwise relationships between vertices); in the latter case it
could be argued that inter-community edges are a distraction.

The suggestion then, is to use the community structure to
illuminate the information presented in the graph. The use of
community structures has a long history in graph visualisation,
e.g. [8], where each community is laid out separately before
being composed to complete the layout, or [9], where
community structures are used to inform edge sparsification and
thus render visualisation tractable. Here the idea is to bundle
together all the edges between pairs of communities and use
additional vertices, one per community, as a link between inter-
community and intra-community edges. The approach is related
to techniques in [6], where edges are bundled together (using
splines, unlike here) and [10], where vertices of the quotient
graph, G′, are attached to those of the original graph, G.

The quotient graph is the result of applying a partition or
clustering, P, to the original G (so that G′ G/P). Each cluster
of vertices in G is represented as a single super-vertex in G′
and edges between two clusters are merged into a single edge
between the super-vertices representing those clusters. Edge
weights are summed so the total edge weight in the cluster graph
is ||EC||, where {EC} is the set of inter-cluster edges (or edges
cut by the clustering). This is essentially the same procedure as
creating a coarsened graph in the multilevel schemes.

To merge the original graph and quotient graph the simplest
way is to remove all the inter-community edges from the
original graph (now summarised in the quotient graph). Then an
extra vertex-to-cluster edge is added between every original
vertex and the super-vertex representing its cluster. Henceforth
this merged graph will be known as the compound graph, G′′

 G + G/P = G(1+1/P).

It is easy to see that the compound graph has |V| + |C|
vertices, where |V| is the number of vertices in the original and
|C| is the number of communities. The number of edges
decreases by |EC|, but also increases by |V|, as there is one edge
per vertex connecting the vertex to its cluster, and by |E′|, where
|E′| is the number of edges in the quotient graph. This gives a
total of |V| + |E′| – |EC| additional edges (where the total may
often be negative).

Total vertex and edge weight depend on how the super-
vertices and vertex-to-cluster edges are weighted. Typically in
the quotient graph each super-vertex is given the total weight of
the clustered vertices it represents (so ||G′||, the total weight of
vertices in G′, is the same as ||G||). However, when the
compound graph is visualised (using FDP) this has the effect of
adding a large weight at the centre of each cluster and repulsive
forces hollow out the cluster with original vertices pushed away
in a ring. However, this is easy to deal with by simply giving
each super-vertex zero weight. Thus, the total vertex weight of
the compound graph, ||G′′|| is the same as ||G|| and ||G′||.

Slightly trickier are the edge weights on vertex-to-cluster
edges. If they are set to a small value (e.g. 1) then the effect is
that the heavily weighted inter-cluster edges (which may
combine many original edges) dominate in the FDP drawing of
the compound graph: typically, all the super-vertices are pulled
into a tight structure in the centre with clusters of original
vertices pushed out to the periphery. Instead, it is preferable that
each super-vertex is tightly bound to the vertices in its cluster
and that the inter-cluster edges are then used to place the
clusters relative to each other.

To achieve this in the context of FDP each vertex-to-cluster
edge needs a relatively heavy weight, k, say. In fact, the melodic
similarity measure has an artificial but hard limit of 256 (so that
any melody matching with another by more than 256
consecutive notes is limited to a similarity score of 256).
Therefore, every vertex-to-cluster edge is given a weight of k =
256 and this seems to have the desired effect. Thus, the total
weight of edges in G′′ is given by ||E|| + k |V| where ||E|| is the
total weight of edges in the original graph. In the experiments k
= 256 but, provided it is large, the actual value is probably not
crucial (k = 128 also worked well).

IV. RESULTS

A. Datasets

The previous paper used two small, manually annotated
datasets of around 360 vertices each to validate the ideas. Since
then two further large datasets with ground truth have come to
light – one is a recently published and much larger version of
one of the original datasets; the other is a web-based collection
called TheSession.org – a large and growing collection of
~30,000 Irish traditional tunes hosted at a community website.

An important realisation about TheSession is that when
members publish a tune and that tune is a variant of one that
already exists on the website, the tune is published on the same
page as the first one. Assuming that members don’t
inadvertently miss an existing tune and don’t publish together
variants that are not really related, this means that each page
which contains more than one variant identifies the tunes on that
page as a ready-made, crowd-sourced tune family!

Furthermore, to get smaller collections which also have
ground truth, one simply has to take an ordered subset of tunes
(e.g. the first 5,000) from TheSession and the coherence of the
tune families is maintained. (The same is not true of the other
collections, where such an operation would be possible but
more involved).

In all six collections were tested in eight datasets (3 small
with ~360 tunes, 2 medium with ~5,000, and 3 large with ~10-
12,000 tunes). The collections, including those with no ground
truth (i.e. no known tune families), are as follows:

 MTC: The Annotated Corpus of the Meertens Tune
Collection1, version MTC-ANN-2.0.1, [11]. 360 tunes in
26 families.

 Morris: English morris dance tunes from the Morris Ring
website2, [1]. 368 tunes in 111 families.

 TS-*: TheSession.org3. Three different sized subsets were
used for comparison purposes:

o TS-360: 360 tunes in 177 families

o TS-5k: 5,000 tunes in 2,837 families

o TS-10k: 10,000 tunes in 6,017 families

1 http://www.liederenbank.nl/mtc/
2 https://themorrisring.org/music/handbook-morris-dances
3 https://thesession.org/

 VMP: The Village Music Project4, a website containing
English dance music from C18th/C19th manuscripts.
Currently the site hosts ~7,000 tunes but here a benchmark
subset, [1], is used. 5,638 tunes, no ground truth.

 MTC2: The Meertens Folk Song Collection1, version
MTC-FS-INST-2.0, [12]. This contains 18,618 melodies
with 12,762 annotated as belonging to 5,297 tune families.
Neglecting the ~6,000 unannotated tunes and a few where
the multilevel parsing was not possible (see [3] for
limitations) this leaves 12,322 tunes in 5,092 families.

 Essen: An abc version of the Essen Folk Song Database5,
containing European and Chinese folk songs. 10,186
tunes, no ground truth.

Table I shows the results for all eight datasets using matching
threshold values, T = 1/4, 1/6 and 1/8. The table shows |E|, the
number of edges; |D|, the number of disconnected components;
|C|, the number of communities detected; Q, the optimal
modularity; and VI, the variation of information score. In
datasets with ground truth the VI indicates how closely the
communities match the families, with 0 being an exact match, so
the best (smallest) values are highlighted (see below for details).

Characteristics for the compound graphs, G′′, are not shown
but can be partially derived. Thus the number of vertices in the
compound graph, |V′′|, is given by |V| + |C| (the |V| values are
not in the table but are listed above).

TABLE I. DATASET CHARACTERISTICS

Dataset T |E| |D| |C| Q VI
MTC 1/4 556 148 152 0.925 0.219
MTC 1/6 2,079 30 52 0.898 0.179
MTC 1/8 16,311 2 18 0.594 0.280
Morris 1/4 200 267 269 0.960 0.196
Morris 1/6 518 153 163 0.958 0.150
Morris 1/8 2,518 24 49 0.844 0.330
TS-360 1/4 166 246 246 0.947 0.072
TS-360 1/6 260 217 217 0.934 0.056
TS-360 1/8 388 172 178 0.937 0.100
TS-5K 1/4 1,812 3,744 3,744 0.996 0.049
TS-5K 1/6 3,239 3,135 3,149 0.996 0.044
TS-5K 1/8 13,816 1,702 1,879 0.972 0.219
VMP 1/4 3,156 4,187 4,187 0.991 n/a
VMP 1/6 5,895 3,225 3,287 0.990 n/a
VMP 1/8 69,425 914 1,102 0.867 n/a
TS-10k 1/4 3,511 7,565 7,567 0.998 0.042
TS-10k 1/6 6,979 6,224 6,264 0.997 0.058
TS-10k 1/8 57,828 2,980 3,314 0.939 0.279
MTC2 1/4 14,085 7,100 7,161 0.994 0.131
MTC2 1/6 318,682 2,461 2,819 0.790 0.395
MTC2 1/8 5,373,920 387 518 0.379 0.681
Essen 1/4 11,470 6,338 6,411 0.960 n/a
Essen 1/6 746,865 1,180 1,317 0.479 n/a
Essen 1/8 8,649,146 175 199 0.367 n/a

B. Metrics

The question of how to evaluate the techniques is not an easy
one to resolve. However, for collections where tune families are
already known (as a ground truth), one obvious answer is to

4 http://www.village-music-project.org.uk/
5 https://ifdo.ca/~seymour/runabc/esac/esacdatabase.html

compare the communities identified with the known families to
see how well they match. Even this is not straightforward as
there is no universally agreed measure which can compare the
similarity of two clusterings (partitions), [4]. Nonetheless in
that paper Fortunato & Hric recommend the Variation of
Information (VI) metric proposed by Meilă, [13], and that is the
partition similarity measure used above. Note the values in
Table I have all been scaled to lie between 0 and 1 (where 0
indicates a perfect match) but VI is not directly comparable for
different size graphs as the maximum value is log |V|, where |V|
is the number of vertices in the graph.

For collections with no ground truth another option might be
to use the maximum modularity, Q, found by the community
detection algorithm, for example to choose an appropriate value
for T. However, this is not necessarily helpful; see for example
the two compound graphs shown in Fig. 2, with T values set to
1/4 and 1/6 respectively. The left hand one looks to correspond
to case (1) in section III.C – communities will need to be
merged into families, whilst the right hand one may be case (2),
the converse. However, for both the modularity is almost
identical, 0.990 as compared with 0.991. So it may simply be a
case of trying different values of T to produce a suitable graph.

C. Discussion

Table I shows how rapidly the connectivity grows as T is
reduced (as exemplified by |E| and |D|). None of the graphs listed
is fully connected (|D| = 1), but several are close. Unsurprisingly
the number of communities detected, |C|, is closely correlated
with the number of components, |D|, particularly for the TS-*
datasets, but they can differ widely, especially when T = 1/8.
Likewise the modularity, Q, is very high in very disconnected
graphs, but can drop off rapidly as T is reduced. Nonetheless, the
best values of VI, i.e. the best matches with ground truth, do not
always match the highest modularity values.

In terms of VI, the optimal values consistently occur for T =
1/6 for the small and medium sized graphs and for T = 1/4 for
the larger graphs. Indeed they are startlingly good for the TS-*
datasets although this may just indicate that the crowd-sourced
tune families are quite conservative. In other words, it is likely
that members of the website only publish very closely related
tune variants on the same page (this would also help to explain
the high correlation of |D| with |C|).

Space precludes any detailed discussion of the edge scaling
results (section III.B) but the technique doesn’t always have a
dramatic effect (for example when the modularity is already
high, T = 1/4). However, as an illustration of its effectiveness,
for the Essen dataset with T = 1/6 (Fig. 3), using a value of W*
= 23 increased the modularity from 0.279 to 0.479 and the
number of communities detected from 1,239 to 1,317.

Turning to the visualisations, benefits of the compound
graphs are readily apparent. Fig. 1(left) & 3(left) both show the
original corpus graph with no manipulations (other than being
connected). The communities are superimposed but are still
difficult to decipher fully for the small MTC dataset (Fig.1) and
impossible for the Essen dataset (Fig. 3). However, when the
compound graph is constructed and is then used to drive the

6 https://snap.stanford.edu/data/p2p-Gnutella06.html

layout calculated by the MLFDP algorithm, the communities are
easily visible, Fig. 1(right) & Fig. 3(right), even though they may
need work to manually separate out larger communities.

Fig. 2, meanwhile, shows compound graphs for the medium
sized VMP dataset at two different values of T, which most
likely illustrate the two cases described in section Error!
Reference source not found.

D. Wider applicability of the compound graph

The original intention of this paper was to discuss the
construction and, in particular, visualisation of proximity
graphs derived from melodic similarity measures. Typically
these graphs are very sparse with many disconnected
components. However, when tried with denser graphs (Fig 3.)
the compound graph was found to be very helpful in visualising
the underlying structure. Accordingly the technique was tried
on a number of benchmark graphs taken from the literature.

A full evaluation goes well beyond the scope of this paper,
but two sample pictures are shown in Fig. 4. On the left is a
compound graph visualisation of the Gnutella06 peer-to-peer
network6, with 8,717 vertices and 31,525 edges, [14]; on the
right is the Smith607 network from the Facebook100 dataset
with 2,970 vertices and 97,133 edges, [15] (a visualisation of
this graph also appears in [9], Fig. 11).

In both cases MLFDP visualisations of the original graph
(not shown) produce “hairballs”, similar but more compressed,
to that in Fig 3(left). However, the compound graphs, Fig. 4,
clearly able to separate out the communities and elucidate the
structure. Obviously the communities themselves can be further
explored by zooming in and even at this level some intra-
community structure is evident.

Note that in these pictures the thick inter-cluster edges are
rendered as semi-transparent, so as not to obscure details of the
communities they originate from. Also, and as above, the
vertex-to-super-vertex edges are weighted with k = 256. In fact
the visualisation seems to be relatively insensitive to this
parameter – it just needs to be large enough to keep super-
vertices at the centre of their cluster. However, these edges are
not shown in any of the Figures as they do not add any useful
information.

The communities in these cases were detected using
Blondel’s modularity optimisation algorithm (section II.B) but
without edge scaling (section III.B) as the original graph edges
are not weighted. However, in principle any community
detection method could be used.

Of course, this compound graph visualisation is very
dependent on the success of the community detection
algorithm; if no communities are detected the compound graph
is meaningless and changes to the detected community structure
could dramatically change the visualisation. Nonetheless, it
seems a promising technique and could even be used
hierarchically, in the same way that community detection
algorithms are sometimes employed.

7 http://networkrepository.com/socfb-Smith60.php

V. CONCLUSIONS

This paper uses a community detection algorithm both to
help identify tune families and to aid with the visualisation of
those families. Although it does not seem possible to
automatically calculate these families, the technique presented
here does seem to offer a useful and (in principle) interactive tool
to music researchers.

Perhaps more importantly, the results indicate that not only
can the visualisation expose communities (as previously), but
also that using the community structure to drive the visualisation
can significantly enhance the visibility of the communities. In
particular, the use of the compound graph, can allow exploration
of previously un-visualisable graphs – potentially an interesting
technique with much wider applications.

In that respect it should be stressed that the ideas discussed
here are generic, both in terms of the case study (in principle,
any pairwise melodic similarity measure could be used) and also
in terms of the graph drawing problem: the technique as a whole
can be applied to any proximity graph, the edge scaling to any
graph with weighted edges and the compound graph
construction to any graph where communities are detectable.

ACKNOWLEDGMENTS

The author would like to thank Doron Goldfarb for
suggestions leading to the development of this paper and the
authors of Gephi, Open Graph Viz Platform8, for their software.

REFERENCES
[1] C. Walshaw, “A Visual Exploration of Melodic Relationships within

Traditional Music Collections,” in 22nd Intl Conf. Information
Visualisation, 2018, pp. 478–483.

[2] B. Janssen, P. van Kranenburg, and A. Volk, “Finding occurrences
of melodic segments in folk songs employing symbolic similarity
measures,” J. New Music Res., p. (to appear), 2017.

8 https://gephi.org/

[3] C. Walshaw, “Constructing Proximity Graphs To Explore
Similarities in Large-Scale Melodic Datasets,” in 6th Intl Workshop
on Folk Music Analysis, 2016.

[4] S. Fortunato and D. Hric, “Community detection in networks: A
user guide,” Phys. Rep., vol. 659, pp. 1–44, 2016.

[5] V. D. Blondel, J. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” J. Stat. Mech., vol. 10,
p. P10008, 2008.

[6] E. R. Gansner, Y. Hu, S. North, and C. Scheidegger, “Multilevel
Agglomerative Edge Bundling for Visualizing Large Graphs,” in
IEEE Pacific Visualization Symposium, 2011, pp. 187–194.

[7] C. Walshaw, “A multilevel algorithm for force-directed graph-
drawing,” J. Graph Algorithms Appl., vol. 7, no. 3, 2003.

[8] X. Wang and I. Miyamoto, “Generating customized layouts,” in
Graph Drawing, 1996, pp. 504–515.

[9] A. Nocaj, M. Ortmann, and U. Brandes, “Adaptive Disentanglement
Based on Local Clustering in Small-World Network Visualization,”
IEEE Trans. Vis. Comput. Graph., vol. 22, no. 6, pp. 1662–1671,
2016.

[10] C. Walshaw, “Variable partition inertia: graph repartitioning and
load-balancing for adaptive meshes,” in Advanced Computational
Infrastructures for Parallel and Distributed Adaptive Applications,
S. Chandra and et al, Eds. Wiley, New York, 2010, pp. 357–380.

[11] P. van Kranenburg, B. Janssen, and A. Volk, “The Meertens Tune
Collections : The Annotated Corpus (MTC-ANN) Versions 1.1 and
2.0.1,” 2016.

[12] P. van Kranenburg and M. de Bruin, “The Meertens Tune
Collections: MTC-FS-INST 2.0,” 2019.

[13] M. Meila, “Comparing clusterings — an information based
distance,” J. Multivar. Res., vol. 98, no. 5, pp. 873–895, 2007.

[14] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford Large
Network Dataset Collection,” 2014. [Online]. Available:
http://snap.stanford.edu/data.

[15] A. L. Traud, P. J. Mucha, and M. A. Porter, “Social structure of
Facebook networks,” Phys. A Stat. Mech. its Appl., vol. 391, no. 16,
pp. 4165–4180, 2012.

Fig. 1. Small corpus graphs for the MTC collection with T = 1/6, showing the original graph (left) & compound graph (right)

Fig. 4. Compound graphs for benchmark networks taken from the literature, showing Gnutella06 (left) and Smith60 (right)

Fig. 3. Large corpus graphs for the Essen collection with T = 1/6, showing the original graph (left) & compound graph (right)

Fig. 2. Medium sized compound corpus graphs for the VMP dataset with T = 1/4 (left) and T = 1/6 (right)

