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Abstract This paper deals with the estimation of fragility functions for acceleration-sensitive components
of buildings subjected to earthquake action. It considers ideally coherent pulses as well as real non-pulselike
ground-motion records applied to continuous building models formed by a flexural beam and a shear beam
in tandem. The study advances the idea of acceleration-based dimensionless fragility functions and describes
the process of their formulation. It demonstrates that the mean period of the Fourier Spectrum, Tm, is
associated with the least dispersion in the predicted dimensionless mean demand. Likewise, peak ground
acceleration, PGA-, and peak ground velocity, PGV -based length scales are found to be almost equally
appropriate for obtaining efficient ’universal’ descriptions of maximum floor accelerations. Finally, this work
also shows that fragility functions formulated in terms of dimensionlessΠ-terms have a superior performance
in comparison with those based on conventional non-dimensionless terms (like peak or spectral acceleration
values). This improved efficiency is more evident for buildings dominated by global flexural type lateral
deformation over the whole intensity range and for large peak floor acceleration levels in structures with
shear-governed behaviour. The suggested dimensionless fragility functions can offer a ’universal’ description
of the fragility of acceleration-sensitive components and constitute an efficient tool for a rapid seismic
assessment of building contents in structures behaving at, or close to, yielding which form the biggest share
in large (regional) building stock evaluations.

Keywords Dimensional analysis · acceleration demands · fragility curves · non-structural damage ·
seismic response

1 Introduction

Recent earthquakes have highlighted the importance of quantifying the dynamic effects on non-structural
building components (Braga et al., 2011; Fierro et al., 2011). Besides being associated with the largest
portion of economic losses, non-structural component failure may also lead to the closure of facilities which
would have otherwise responded nearly elastically or with minor structural damage during a seismic event.5

Many of these components, including mechanical and electrical installations as well as furniture, equipment
and contents, are acceleration-sensitive, and represent the biggest investment in building projects (i.e. 70
to 90% of the total building cost (Miranda and Taghavi, 2005)).

Seismic damage to acceleration-sensitive contents is caused by the large inertia forces generated by floor10

accelerations. The mangnitudes of these floor accelerations exceed those of ground accelerations and are
commonly calculated by means of a direct amplification of the ground response spectra (Biggs and Roesset,
1970; Pan et al., 2017). Alternatively, response-history analyses can be carried out to compute the temporal
evolution of acceleration demands at a specific building location (Lin and Mahin, 1985; Medina et al., 2006).
However, when the uncertainty in structural modelling parameters is high or when large building stocks15

are considered, the advantages of using continuum building models can offset the merits offered by more
detailed finite element simulations (Eroglu and Akkar, 2011).
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Continuum building models have been extensively used in earthquake engineering (Khan and Sbarounis,
1964; Iwan, 1997; Chopra and Chintanapakdee, 2001). Khan and Sbarounis (1964) were among the first to20

use simple beam formulations to estimate earthquake-induced deformations in buildings while Iwan (1997)
and Chopra and Chintanapakdee (2001) employed shear beam models to approximate framed structures.
Taghavi and Miranda (2003) and Miranda and Akkar (2006) utilized continuum models to estimate the
behaviour of structures including higher mode effects. More recently, continuum beam models have been
extended to consider non-linear variations of stiffness along the height of buildings (Alonso-Rodriguez and25

Miranda, 2016) as well as structure-specific stiffness distributions that enable an accurate estimation of
inelastic capacity demands (Eroglu and Akkar, 2011) or shear plastic constitutive behaviour (Cennamo
et al., 2017) based on rigid-plastic approximations (Málaga-Chuquitaype et al., 2009). Importantly, the
type of models employed in this study have been validated against the recorded response of six tall in-
strumented buildings by Reinoso and Miranda (2005). Moreover, although structural damage is usually30

observed for drifts of 1% or more (Pagni and Lowe, 2003; Ramirez et al., 2012), non-structural damage can
be extensive for drifts well below that value (Charleson, 2007; Magenes et al., 2009). Therefore, the use of
simple low-order building models, such as those employed herein, is considered pertinent, particularly for
the estimation of acceleration-related damage in cases where minor or no yielding is expected.

35

Although the solutions to the partial differential equations governing the dynamic motion of continuous
systems are usually expressed in dimensionless terms, formal dimensional analysis has not been applied to
the seismic response assessment of these models, especially when acceleration response is concerned. This is
despite the significant advantages in terms of dispersion reduction and ’universal’ response formulation that
can be brought about by combining continuum models amenable to closed-form solutions with dimensional40

response analysis. Therefore, this paper seeks to apply dimensional principles to the fragility analysis of
acceleration demands in continuum building models.

The use of dimensional analysis for presenting the response of structures subjected to strong ground-
motion was first introduced Makris and Black (2004b,a). By expressing the displacement response of rigid-45

plastic, elastoplastic and bilinear single-degree-of-freedom (SDOF) systems in dimensionless Π-terms, they
showed that dimensionless deformations become independent of the intensity of the ground-motion and
follow a single ’master curve’. Dimensional analysis has also been applied for assessing the displacement
response of SDOF structures simulating multi-storey moment resisting steel frames subjected to pulse-like
ground-motions (Karavasilis et al., 2010), to the analysis of the earthquake-induced pounding between50

adjacent structures (Dimitrakopoulos et al., 2009b) and, more recently, to structures representing moment-
resisting, partially-restrained, and concentrically-braced frames under real non-pulselike earthquake actions
(Málaga-Chuquitaype, 2015).

While pulse-type excitations have the advantage of possessing clear time and length metrics (Vassiliou55

and Makris, 2011), the implementation of dimensional analysis for non-coherent earthquake action involves
the challenge of selecting an adequate set of ground-motion time and length scales (Dimitrakopoulos et al.,
2009a; Málaga-Chuquitaype, 2015). Although a comprehensive investigation on the merits of different time
and length scale was carried out in Málaga-Chuquitaype (2015), their study, like the vast majority of prior
research, focused on dimensionless deformation demands while dimensionless floor acceleration response60

remains largely unexplored. An investigation on the relevant literature yielded only one article related to
the dimensional analysis of peak floor accelerations, in the context of investigating the effect of pounding
on the seismic response of adjacent multi-degree-of-freedom (MDOF) buildings (Zhai et al., 2015). Accord-
ingly, there is no precedent for the application of dimensional analysis to fragility studies of acceleration
demands in buildings and the only related study examined the issue of overturning of rocking structures65

subjected to near-fault ground-motions (Dimitrakopoulos and Paraskeva, 2015).

This paper revisits the formulation of acceleration-based fragility functions with the help of dimensional
analysis and low order building models. A fragility function is a mathematical relationship that represent
the cumulative distribution function associated with the attainment of a certain limit state - such as the70

state of overturning in Dimitrakopoulos and Paraskeva (2015). Due to the high uncertainty involved in
the assessment of seismic demands, the expected level of damage is defined in a probabilistic way (Cornell,
1996). Hence, the mean annual frequency of exceedance of a decision variable (DV) can be obtained through
the total probability theorem as (Cornell and Krawinkler, 2000):

λ(DV ) =

∫∫∫
P (DV |DM)dP (DM |EDP )dP (EDP |IM)dλ(IM) (1)

The Engineering Demand Parameter, EDP, is computed through the structural analysis and is defined75

in terms of peak floor acceleration, peak floor displacement, interstorey drift ratio or any other structural
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performance measure. The intensity measure, IM , is linked to the ground motion characteristics, and
λ(IM) denotes the annual frequency of exceedance of the IM . The estimation of the conditional proba-
bility P (EDP≥edp|IM), where edp represents a rational demand threshold, is a major challenge for the
earthquake engineer (Mai et al., 2017). Is this conditional probability which is usually provided via fragility80

functions (Miranda and Akkar, 2006; Mai et al., 2017).

The objective of this paper is to put forward and assess the benefits of employing seismic floor accel-
eration fragility functions obtained through formal dimensional analysis and continuum building models.
In this respect, it is expected that the formal superiority of dimensionless fragilities in offering an approx-85

imate ’universal description’ of the phenomena (Dimitrakopoulos and Paraskeva, 2015) will be translated
into lower dispersion values and improved estimates. Therefore, comparisons are established in terms of
measures of dispersion like standard deviation and Coefficient of Variation (COV). The paper starts with
a brief introduction to the low-order structural representations and principles of dimensional analysis em-
ployed. This is followed by a discussion on the efficiency of alternative ground-motion length scales in terms90

of dispersion measures of acceleration response. To this end, a series of regression analyses are presented
and comparisons are established between dimensionless and non-dimensionless formulations. Finally, dimen-
sionless fragility functions at different acceleration levels corresponding to light and extensive component
damage are constructed and contrasted with their non-dimensionless counterparts. It is shown that the
suggested dimensionless fragility functions can offer a superior, ’universal’, description of the fragility of95

acceleration-sensitive components and the ranges over which these advantages are more clearly expressed
are identified. The fragility functions here proposed constitute an efficient tool for, among other applica-
tions, a rapid seismic assessment of building contents in structures behaving at (or close to) yielding which
form the biggest share in large (regional) building stock evaluations.

100

2 Low-order building models and ground-motion database

2.1 Low-order building models

The continuous model of Figure 1 can be used to approximate the seismic response of multi-storey buildings
(Taghavi and Miranda, 2003). It consists of a flexural and shear beams connected laterally by an infinite
number of pin-jointed axially-rigid links which enforce the same level of lateral deformation in both beams.105

The mass and stiffness are considered to be uniformly distributed along the height in this study. The vertical
evolution of lateral deformations is controlled by the dimensionless stiffness parameter, α (Miranda and
Taghavi, 2005):

α = H

√
GA

EI
(2)

where H is the height of the building, GA is the shear rigidity of the shear beam, and EI is the flexu-
ral rigidity of the flexural beam. The continuous model behaves as a Bernoulli beam when α = 0 and it110

approximates a pure shear beam when α → ∞. Typically, α takes values in the range of 0 ≤ α ≤ 30 for
conventional structures (Alonso-Rodriguez and Miranda, 2015; Miranda and Taghavi, 2005), with shear
walll systems presenting values of 0 < α < 2, dual structural systems of 2 < α < 5 , and moment-resisting
frames (MRF) having α values largely in the range of 5 < α < 20 (Alonso-Rodriguez and Miranda, 2015).

115

The amplitude of the building’s mode shape at a given dimensionless height x = (z/H) is defined by
(Miranda and Taghavi, 2005):

φi(x) = sin(γix)− γi
βi

sinh(βix)− ηi cos(γix) + ηi cosh(βix) (3)

where the dimensionless parameters ηi and βi are determined from:

βi =
√
α2 + γ2i (4)

ηi =
γ2i sin(γi) + γiβi sinh(βi)

γ2i cos(γi) + β2
i cosh(βi)

(5)

and γi is the eigenvalue of the i-th mode of vibration which can be estimated from the roots of the following
equation:
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Fig. 1: Simplified lower-order model.

2 +

(
2 +

a4

γ2i β
2
i

)
cos(γi) cosh(βi) +

a2

γiβi
sin(γi) sinh(βi) = 0 (6)

120

The complete definition of the model requires the definition of the fundamental structural period, T0,
and a modal damping ratio, ξ. The fundamental period is treated parametrically in this study (but can be
computed as a function of the lateral resisting system and geometry of the building by means of available
empirical expressions ). A constant damping ratio of ξ = 5% is assumed herein.

125

After computing the eigenvalue γi, the ratio between the period of the i-th mode and the fundamental
structural period can be estimated as:

Ti
T0

=
γ1
γi

√
γ21 + α2

γ2i + α2
(7)

Therefore, the definition of the dynamic characteristics of the buildings (i.e., periods and mode shapes)
rely only on the dimensionless stiffness parameter α. This allows the user to perform rapid and relatively
accurate parametric studies.130

The displacement response of a damped continuous system can be calculated by the superposition of its
modal responses. To this end, the total displacement response, u(x, t), at a specific dimensionless height,
x, can be expressed as:

u(x, t) =
∝∑

i=1

Γi φi(x)ui(t) (8)

where Γi is the modal participation factor of the i-th mode; φi(x) is the amplitude of the i-th mode at a135

dimensionless height x = z/H, and ui(t) is the displacement response of a damped SDOF system subjected
to an earthquake ground motion which can be obtained by solving the corresponding equation of motion
(üi(t)+2ξωiu̇i(t)+ω2

i ui(t) = −üg(t)). In the case of a beam with uniform mass along its height, the modal
participation factor is given by:

Γi =

∫ 1
0 φi(x) dx∫ 1
0 φ2

i (x) dx
(9)

140
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Importantly, Eq.(8) will yield an exact solution only if an infinite number of vibration modes with exact
modal shapes and participation factors are employed. Nevertheless, the response can be reasonably well
approximated by considering a lower number of modes, N , and approximate mode shapes of vibration
(Miranda and Taghavi, 2005):145

u(x, t) ∼=
N∑
i=1

Γi φi(x)ui(t) (10)

The response history of total accelerations at a specific dimensionless height of the building can be ob-
tained by differentiating Eq.(10) twice with respect to time and taking into account the absolute ground
acceleration such that:

ü(x, t) ∼= üg(t) +
N∑
i=1

Γi φi(x) üi(t) (11)

The number of modes, N , required for the accurate approximation of the response depends on the dy-
namic characteristics of the building. Miranda and Taghavi (2005) proposed that three modes of vibration150

are enough to obtain a relatively good approximation of the seismic response of conventional buildings,
whereas flexible tall buildings might require a larger number of modes to be considered. Alonso-Rodriguez
and Miranda (2015) investigated the influence of number of modes in the structural response due to ideal
pulses (Mavroeidis and Papageorgiou, 2003). They found that a single mode grossly underestimates the
response while 3 modes can approximate peak floor demands with an error of less than 5% compared to155

a seven-mode solution. Similarly, Miranda and Akkar (2006) found that 5 to 6 modes of vibration are
required to achieve a reasonable estimation of floor acceleration and drift demands for buildings subjected
to realistic earthquake records. This variation in recommendations reflect the influence of ground-motion
frequency content on the response estimation with the Mavroeidis and Papageorgiou pulses (Mavroeidis
and Papageorgiou, 2003) employed in (Alonso-Rodriguez and Miranda, 2015) involving fewer frequency160

components than real non-pulselike records and hence requiring a smaller number of modes to be consid-
ered. A total number of N = 7 is used in the present study in all cases, in light of the relatively minor
computational effort demanded by the simplified models.

The assessment of peak floor acceleration demands requires the determination of peak floor response165

values over a range of periods and for different locations along the building’s height. To this end, Figure
2a shows the peak floor acceleration (PFA) response in buildings with globally shear-dominated lateral
deformation (α = 20) for a constant damping ratio of ξ = 5%. The responses presented in Figure 2a cor-
respond to Mavroeidis and Papageorgiou (MP) velocity pulses (Mavroeidis and Papageorgiou, 2003) with
amplitudes, Ap, ranging from 0.7 to 1.3 m/s at 0.2 increments. When the peak floor acceleration (PFA) is170

normalized against the peak ground acceleration, (PGA), the response follows a single curve and becomes
independent of the velocity pulse amplitude (Figure 2b). This response symmetry is unsurprising given the
elastic nature of the model. More interesting, however, are the insights that this normalization allows. Figure
3 presents normalized peak floor acceleration PFA/PGA demands for buildings with flexural-dominated
response (like shear-walled structures, α = 0) and structures dominated by overall shear deformations (like175

moment resisting frames, α = 20). It is obvious from this figure that larger peak accelerations at the roof
are expected in flexural-dominated buildings compared to shear-governed buildings at low period ratios,
Tp/T0, corresponding to flexible structures or high frequency ground-motions. This is evidently due to the
higher-mode contribution (Figure 3 left) that affects more the peak floor acceleration at the roof of the
flexural-dominated structure (α = 0) compared to the shear-dominated structure (α = 20). This is a direct180

expression of Equation 3 which shows that the mode shapes of flexural structures are affected more by
resonance associated with each mode, since they are a function of only one frequency parameter (γ) that
controls the shape and thus the amplification; while the shear structures have more complex mode shapes
with both β and γ affecting their mode shape and thus they are not that sensitive to the resonance areas.
The latter observation leads to the general tendency of flexural structures to exhibit larger peak roof ac-185

celerations compared to shear structures for the whole period range.

2.2 Ground motion database

This paper makes use of coherent pulse idealizations of Mavroeidis and Papageorgiou (2003), referred to
above, together with a database of real non-pulselike earthquake acceleration histories. Both sets of ground-190

motions are described in this section. The analytical expressions developed in Mavroeidis and Papageorgiou
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Fig. 2: Peak accelerations along building height for MP pulses (α = 20 and ξ = 5%).
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Fig. 3: Peak floor acceleration master curves for different pulse frequencies. ξ = 5%.

(2003) for representing the ground velocity and acceleration histories of ideal near-field pulse-like ground
motions are presented in Eqs. 12 and 13, respectively:

u̇g(t) =
Ap

2

[
1 + cos

(
2πfp
gp

(t− t0)

)]
cos [2πfp (t− t0) + a] t0 −

gp
2fp
≤ t ≤ t0 +

gp
2fp

(12)

üg(t) =
Apπfp
gp


sin

(
2πfp
gp

(t− t0)

)
cos (2πfp(t− t0)− πgp + a)−

gp sin (2πfp(t− t0)− πgp + a)

[
1− cos

(
2πfp
gp

(t− t0)

)]
 t0−

gp
2fp
≤ t ≤ t0 +

gp
2fp

(13)

In these equations, the parameter Ap defines the velocity-pulse amplitude, a is the phase angle of the
harmonic excitation, fp(= 1/Tp) is the prevailing frequency of the pulse, gp determines the oscillatory195

character of the pulse, and t0 defines the peak of the of the excitation envelope. A graphical representation
of the MP pulse is shown in Figure 4. An important feature of the model is the determination of the pulse
duration according to the input parameters (i.e., pulse duration equals gp/fp). The relative simplicity of
Eqs. 12 and 13 together with the physically realizable nature of the motions, makes MP pulses ideal for
exploratory studies on the evolution of peak response demands in buildings under earthquakes.200

In addition to MP pulses, our analyses use two sets, A and B, of 20 strong-ground motions each, as
listed in Tables 1 and 2, respectively. Set A corresponds to the catalogue of human-induced earthquakes
proposed by Foulger et al. (2017). The acceleration series were collected from the Pacific Earthquake
Engineering Research Center (PEER) (2009) database, the European Engineering Strong Motion (ESM)205

(2009) database, and the Hellenic Accelogram Database (HEAD) (2009) database. The earthquake events
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Fig. 4: Acceleration history response for the MP pulse.

Table 1: Strong ground-motion record set A.

ID Event name Magnitude Year PGA [g] Tm [s] Dist. [km] Vs [m/s] LUF [Hz] ± Station

TH1 Polyphyto, Greece (Comp-1) 6.6 1995 0.09 0.23 3.1 (Rhypo) * * KOZ19501

TH2 Polyphyto,Greece (Comp-2) 6.6 1995 0.21 0.27 3.1 (Rhypo) * * KOZ19501

TH3 Sfakia, Greece (Comp-1) 5.3 1986 0.01 0.23 5.3 (Rhypo) * * EDE18601

TH4 Sfakia, Greece (Comp-2) 5.3 1986 0.01 0.37 5.3 (Rhypo) * * EDE18601

TH5 Pournari, Greece (Comp-1) 5.6 1981 0.02 0.39 3.9 (Rhypo) * * LEFA8101

TH6 Pournari, Greece (Comp-2) 5.6 1981 0.06 0.4 3.9 (Rhypo) * * LEFA8101

TH7 Asomata, Greece (Comp-1) 5.5 1984 0.01 0.17 2.4 (Rhypo) * * KOZ18401

TH8 Asomata, Greece (Comp-2) 5.5 1984 0.03 0.19 2.4 (Rhypo) * * KOZ18401

TH11 Salton Sea, California (Comp-1) 5.2 2005 0.03 0.26 16.1 (Rep) 208 Digital MRN

TH12 Salton Sea, California (Comp-2) 5.2 2005 0.03 0.31 16.1 (Rep) 208 Digital MRN

TH13 Montebello, California (Comp-1) 5.9 1987 0.32 0.22 58.45 (Rrup) 352 0.125 N Salton Sea 2

TH14 Montebello, California (Comp-2) 5.9 1987 0.23 0.31 58.45 (Rrup) 352 0.125 N Salton Sea 2

TH15 Gazli, Uzbekistan (Comp-1) 6.8 1976 0.86 0.39 14.73 (Rrup) 298.68 0.5 Whittier Narrows

TH16 Gazli, Uzbekistan (Comp-2) 6.8 1976 0.70 0.42 14.73 (Rrup) 298.68 0.5 Whittier Narrows

TH17 Cerro Prierto, Mexico (Comp-1) 6.53 1979 0.16 0.58 5.46 (Rrup) 259.59 0.25 Karakyr

TH18 Cerro Prierto, Mexico (Comp-2) 6.53 1979 0.17 0.39 5.46 (Rrup) 259.59 0.25 Karakyr

TH19 Coalinga, California (Comp-1) 6.36 1983 0.29 0.58 15.19 (Rrup) 471.53 0.1125 Cerro Prieto

TH20 Coalinga, California (Comp-2) 6.36 1983 0.23 0.7 15.19 (Rrup) 471.53 0.1125 Cerro Prieto

TH9 Mirandola, Italy (Comp-1) 6.1 2012 0.26 0.67 24.02 (Rrup) 274.73 0.1 C Creek Schoo

TH10 Mirandola,Italy (Comp-2) 6.1 2012 0.26 0.46 24.02 (Rrup) 274.73 0.1 C Creek School

±: Lowest usable frequency
∗: not available

Table 2: Strong ground-motion record set B.

ID Event Magnitude Year PGA [g] Tm [s] Dist. [km] Vs [m/s] LUF [Hz] ± Station

NTH1 Christchurch (Comp-1) 6.2 2011 0.16 1.087 18.480 (Rrup) 263.200 0.088 LINC

NTH2 Christchurch (Comp-2) 6.2 2011 0.088 0.708 18.480 (Rrup) 263.200 0.088 LINC

NTH3 Ellicot (Comp-1) 5.45 2007 0.016 0.725 54.280 (Rrup) 323.000 0.200 Ellicott

NTH4 Ellicot (Comp-2) 5.45 2007 0.012 0.667 54.280 (Rrup) 323.000 0.200 Ellicott

NTH5 Friuli (Comp-1) 6.5 1976 0.344 0.4 15.820 (Rrup) 505.230 0.163 Tolmezzo

NTH6 Friuli (Comp-2) 6.5 1976 0.315 0.507 15.820 (Rrup) 505.230 0.163 Tolmezzo

NTH7 L’Aquila (aftershock 2) (Comp-1) 5.4 2009 0.064 0.193 27.160 (Rrup) 357.910 0.125 Barisciano

NTH8 L’Aquila (aftershock 2) (Comp-2) 5.4 2009 0.065 0.168 27.160 (Rrup) 357.910 0.125 Barisciano

NTH9 L’Aquila (Comp-1) 6.3 2009 0.02 0.536 22.510 (Rrup) 525.950 0.038 Antrodoco

NTH10 L’Aquila (Comp-2) 6.3 2009 0.026 0.6 22.510 (Rrup) 525.950 0.038 Antrodoco

NTH11 Nahanni (Comp-1) 6.76 1985 0.187 0.158 5.320 (Rrup) 605.040 0.250 Site 3

NTH12 Nahanni (Comp-2) 6.76 1985 0.174 0.114 5.320 (Rrup) 605.040 0.250 Site 3

NTH13 Norcia (Comp-1) 5.9 1979 0.037 0.238 13.280 (Rrup) 535.240 1.125 Spoleto

NTH14 Norcia (Comp-2) 5.9 1979 0.043 0.227 13.280 (Rrup) 535.240 1.125 Spoleto

NTH15 Northridge-03 (Comp-1) 5.2 1994 0.107 0.442 9.350 (Rrup) 269.140 0.300 Newhall - FS

NTH16 Northridge-03 (Comp-2) 5.2 1994 0.205 0.541 9.350 (Rrup) 269.140 0.300 Newhall - FS

NTH17 Roermond (Comp-1) 5.3 1992 0.011 0.4 57.130 (Rrup) 445.660 0.500 GSH

NTH18 Roermond (Comp-2) 5.3 1992 0.013 0.375 57.130 (Rrup) 445.660 0.500 GSH

NTH19 Tottori (Comp-1) 6.61 2000 0.179 0.773 16.610 (Rrup) 138.760 0.050 SMN002

NTH20 Tottori (Comp-2) 6.61 2000 0.154 0.644 16.610 (Rrup) 138.760 0.050 SMN002

±: Lowest usable frequency

are associated with Moment Magnitudes, Mw, ranging between 5.2 and 6.8. Besides, their mean period,
Tm, calculated as the weighting average of the amplitudes of the Fourier Spectra, varies from 0.17 s to 0.67 s.

Set B, comprises of 20 acceleration records from the NGA-West2 Pacific Earthquake Engineering Re-210

search Center (PEER) (2009) database with similar seismological characteristics (e.g. magnitude, Mw, and
distance, Rrup) to that of Set A. This set is considered herein to highlight, albeit in a limited manner, the
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indistinct effects of human and naturally-induced earthquakes as well as to emphasize the scale invariance
of acceleration demands liberated from the ground-motion frequency content brought about by the self-
similar response that will be discussed later. To this end, the differences in statistical distributions of Tm215

and Tp between sets A and B is illustrated in Figures 5 and 6. The distributions of PGA and PGV values
in both sets are also presented in Figures 5 and 6 for completeness. It can be noted from these figures that,
the Tm distribution of record Set B ranges from 0.1 to 0.8 s and the largest bin population corresponds
to the 0.1 to 0.2 s and 0.5 to 0.6 s ranges, which contrasts with the corresponding values of record Set A.
Also, 30% of the records in Set B have Tp varying from 0.4 to 0.5 s whereas Tp varies from 0.1 to 0.8 s in220

Set A.
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Fig. 5: Statistical distribution of ground-motion parameters in Record Set A.
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Fig. 6: Statistical distribution of ground-motion parameters in Record Set B.

3 Physically-similar acceleration response to MP pulses

3.1 Dimensional response analysis

The maximum acceleration response, amax, of a structure of a given stiffness ration (α = constant) subjected
earthquake loading can be written as a function of its fundamental structural frequency, ωo, its damping225

ratio, ξ, and the ground motion time, ωg = 2π/Tg and length, Lg, scales. Here, ωg is a characteristic measure
that describes the frequency content of the ground motion and Lg is a measure of the ground shaking
persistence (Makris and Black, 2004b; Málaga-Chuquitaype, 2015). Therefore, the peak floor acceleration
at a given building height is a function of five characteristic variables:
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amax = f (ω0, ξ, Lg, ωg) (14)

Eq.(14) involves only 2 reference dimensions (i.e., length [L] and time [T ]) and 5 parameters. Therefore,230

according to Vaschy-Buckingham’s Π-theorem (Vaschy, 1892; Buckingham, 1915), only 5− 2 = 3 indepen-
dent dimensionless Π-terms are required to fully describe the response of this system. Therefore, Eq.(14)
can be re-written as a function of the independent Π-terms:

Π1 =
amax

Lgω2
g

(15)

Π2 =
ωo

ωg
(16)

Π3 = ξ (17)

such that:

Π1 = f (Π2, Π3) (18)

In the case of MP pulses, which have distinctive amplitude and duration parameters, the obvious235

candidates for time and length scales can be constructed from the prevailing frequency (fp) and peak
amplitude values of acceleration and velocity (PGA or PGV ), such that:

ωg = 1/fp (19)

and

Lg =
PGA

ω2
g
∨ Lg =

PGV

ωg
(20)

Alternatively, the mean period of the ground motion, Tm, which is a weighted average of the Fourier
spectrum (Rathje et al., 2004) can also be employed to construct a dimensionless temporal term, Π2240

when no distinct pulse can be identified in the ground-motion. The mean period was first used to predict
inelastic displacements by Dimitrakopoulos et al. (2009b) and has since been employed by other researches
(Málaga-Chuquitaype and Elghazouli, 2012; Hickey and Broderick, 2019) to improve the estimate of seismic
demands. This parameter is consistent with the dimensional space under consideration and liberates the
study from any reference to an equivalent structure, which will not be the case for any other response245

spectral quantity.

3.2 Peak floor acceleration response

In order to generate a dataset of acceleration responses, MP pulses with parameters covering expected
ranges proposed in the literature (Mavroeidis and Papageorgiou, 2003) were employed together with the
structural model described above. To this end, the velocity pulse amplitude was varied from 0 to 1.3 m/s250

at increments of 0.1 while the prevailing pulse frequency ranged from 0.1 to 1.0 Hz at 0.1 intervals. The
phase angle of the pulse, a, and the parameter gp that defines the oscillatory character of the pulse were
assumed to remain constant throughout the first set of analyses, as they do not have a significant influence
over the intensity of the pulse or the peak acceleration response (Alonso-Rodriguez and Miranda, 2015).
Also, the effect of the duration of the pulse (duration = gp/fp) was not examined since there is a con-255

sensus that duration is not a main factor affecting peak response values (Hancock and Bommer, 2006, 2007).

Figure 7a plots the self-similar peak floor acceleration demand for pulses with prevailing frequency
fp = 0.5 Hz, and buildings with dimensionless stiffness parameter α=12. The total peak floor acceleration
are calculated at a dimensionless height z/H = 1.0. When expressed in the adequate dimensionless terms,260

the dimensionless demand parameters are independent of the intensity of the pulse and follow a single curve
(master curve - Figure 7b). Figures 7c and 7d show the dimensionless peak floor acceleration demands when
the mean period, Tm, and the prevailing frequency of the pulses, Tp, are used, respectively. It is clear that
in the case of MP pulses, both Tp and Tm are able to unleash a self-similar response. In fact, complete
similarity is also observed when any of the individual harmonics of the MP pulse are employed, as shown265

in Figures 7e and 7f. Figure 7c presents acceleration master curves for frequencies ranging from 0.1 to 1.0
Hz at 0.1 intervals when Tm is used as the ground-motion time scale. It can be seen that dimensionless
peak floor accelerations (Π1) are mainly influenced by the first two modes of vibration.
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frequencies for Tg = Tm, α = 12, Π3 = 0.05.
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(d) Acceleration master curves for different pulse
frequencies for Tg = Tp, α = 12, Π3 = 0.05.
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Fig. 7: Acceleration response under MP pulses.

The proposed master curves are relatively simple and can offer a universal description of the response270

along the whole range of Π1, Π2 values. To stress this fact, Figure 8 presents peak floor acceleration spectra
normalized by the peak ground acceleration PGA and the spectral acceleration at the fundamental struc-
tural period Sa(T0) as well as in full dimensionless terms. The results of multi-linear regression analyses
are included in this figure for illustrative purposes. The benefits of a universal description (master curve)
of the response brought about by the application of dimensional analysis are evident in Figure 8 where the275

self-similarity of the response identified previously leads to significant improvements in the coefficient of
determination, R2, that is increased from 0.18 when non-dimensionless parameters are employed to 0.99
when expressed in terms of the dimensionless Π-terms. The previously noted observation that shear-wall
type structures (α = 0) appear to exhibit higher peak accelerations with respect to the first mode when
Tp/T0 = 1 (resonance) is also confirmed by Figure 8c.280
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Fig. 8: Regression analysis for MP Pulses.

A crucial aspect that enabled the emergence of the type of symmetry in the response scaling observed
in Figures 7 and 8, is the unequivocal relationship between the phase angle of the different harmonic
components of the MP pulse and the other pulse parameters leading to the relative independence of the
oscillatory character of the pulse from its intensity (Alonso-Rodriguez and Miranda, 2015). In fact, if the285

phase of the different harmonics was not set up in such a predefined manner, by keeping a constant, an
additional phase parameter, φ, would have to be included in our previous analysis (Equation 14). This
is explored here with reference to Figure 9 that presents the dimensional analysis for the case of a pulse
composed of two harmonics of amplitude 1 m/s2, fp = 1 Hz where the second harmonic has a varying
phase angle φ. The pulse motion has always a Tm = 1 s and results for structures with flexural type lateral290

deformation (α = 0) as well as shear-governed behaviour (α = 20) are analysed. The phase difference of
the second harmonic, φ, can be considered as a fourth dimensionless Π−term equal to Π4 = φ/π, since the
phase angle, φ, is actually a dimensionless-orientationless parameter. It is clear from the ’master surfaces’
depicted in Figure 9, that, beyond the self-similarity observed with respect to amplitude, the surfaces (and
contour plots) show a very non-symmetric and complex evolution that complicates their representation.295

The minimum response, valley, observed at Π4 = 1 corresponds to the case where both harmonics act
completely out of phase. In reality, the path dependency of the spectral contribution of real acceleration
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(a) Self-similar peak floor acceleration response, α = 0. (b) Dimensionless acceleration contour plot (master sur-
face), α = 0.

(c) Self-similar peak floor acceleration response, α = 20. (d) Dimensionless acceleration contour plot (master sur-
face), α = 20.

Fig. 9: Acceleration response under two harmonic pulses with different phases (φ), Π3 = 0.05.

records, will give rise to a rich phase distribution that will prevent the observation of full similarity in the
acceleration response in the Π1−Π2 plane projection, even for the simplified structures considered herein.
Nevertheless, significant improvements in the reduction of dispersion would still be possible by following a300

dimensional approach as will be discussed in the following sections.

4 Acceleration response and regression analysis for real records

4.1 Alternative time and length scales for real records

A number of recent studies have investigated the challenging issue of selecting appropriate time and length305

scales for earthquake response analysis (Dimitrakopoulos and Paraskeva, 2015; Málaga-Chuquitaype, 2015;
Málaga-Chuquitaype and Bougatsas, 2017). This selection is relatively straightforward in the case of pulse-
like ground-motions due to the clear and distinguishable time and length scales of a pulse. However, these
features are not obvious in non-pulselike ground motions and the efficiency of different time and length
scales needs to be carefully evaluated.310

In this study, seven ground-motion parameters of non-pulselike accelerograms were examined, including:
the mean period, Tm, and the predominant period, Tp, as time-scales; and the peak ground acceleration,
PGA, the peak ground velocity PGV , root mean square acceleration, aRMS , and root mean square ve-
locity vRMS , as basis for the construction of length-scales. An extensive parametric study on more than315

250 simplified building models representing different stiffness distributions with α = {0, 4, 8, 12, 16, 20} was
performed to analyse the effects of different parameters on the amplitude and the shape of floor response
spectra. A total of 8000 and 7000 peak floor demand analyses were carried out for buildings subjected to
real earthquake records and synthetic MP ground motions, respectively.

320
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Table 3: Efficiency of alternative ground-motion scales.

Time - Length Scales
Record Set A Record Set B

R2 β R2 β

Tm − PGA/ω2
g 0.609 0.151 0.612 0.304

Tm − PGV/ωg 0.344 0.234 0.600 0.269

Tm − aRMS/ω
2
g 0.272 0.284 0.414 0.680

Tm − vRMS/ωg 0.180 0.319 0.299 0.321

The previous section offered an insight into the height-wise variation of acceleration demands in different
building-types. It was observed that the peak roof acceleration demand (at z/H = 1) offers a reasonable
estimation of maximum demands along the height in a good number of cases. Therefore, the ordinates of
the floor response spectra as obtained at the top of the building are discussed in this section. The Newmark-
beta method with a constant acceleration scheme (γ=0.5 and η=0.25) was employed for the analyses in325

light of its unconditionally stability.

Table 3 presents the calculated coefficient of determination, R2, and standard deviation, β, associated
with the different ground-motion sets employed. It can be appreciated from Table 3 that a higher R2

value is not necessarily associated with a lower dispersions (β). In general, the length scales constructed330

on the basis of PGA and PGV appear to perform better than their alternatives. This, in addition to the
widespread familiarity of the engineering community with PGA lends support to the use of the pair Tm
- PGA/ω2 as time and length scales for acceleration response analyses. Therefore, PGA is employed in
subsequent sections of this paper.

335

4.2 Dimensional response analysis

The self-similar acceleration responses due to earthquake records TH4, TH5 and TH9 are shown in Figure
10. The convention for record nomenclature followed is provided in Table 1. A total of 200 floor response
spectra were analysed in this way for each record set (A and B), respectively, and the results will be dis-
cussed in later sections of this paper. It can be seen that the peak dimensionless amplitude in Figure 10340

tends to occur when the fundamental period coincides with the mean period of the ground motion. In gen-
eral, the mean period is able to adequately explain the maximum amplification of peak ground acceleration
and to reduce the dispersion of the whole dataset. Some distinct peaks on the dimensionless acceleration
amplitude are observed for Π2 > 1 in Figure 10b. These peaks represent the contribution of the higher
modes of vibration and depend strongly on the frequency content of the ground motion. A general trend is345

manifest in Figure 10b whereby peak dimensionless acceleration values in the order of Π1 ≈ 8 are obtained
for Π2 ≈ 1, decreasing steadily at largerΠ1s. Such consistency on the trends is not apparent when the
response is presented in terms of acceleration, amax, and structural period, T , in Figure 10a.

It follows from the previous discussion that, besides the building configuration (α), a good portion of350

the high variability in peak floor accelerations is influenced by the frequency content of the ground motion,
in terms of both amplitude and phase. Before discussing the formulation of time-scale-normalized fragility
functions, this section presents and discusses a series of regression studies performed on dimensionless and
non-dimensionless terms by means of the linear least square approach. To this end, the transformation of
the responses into the logarithmic space was observed to reduce the dispersion in the response data and,355

most importantly, to reveal a tendency in peak acceleration values which is hidden in the normal space
and which can be well described by simple linear regression models. In order to facilitate the discussion of
the proposed functional forms and the effect of various parameters in the response, only the analyses of
the most efficient time- and length-scales are presented herein. Also, the discussion is centred around the
two stiffness-bounding cases of α = 0 and α = 20. Our studies found that these values of dimensionless360

stiffnesses are also associated with the worse and most efficient functional form performance, respectively, as
will be argued later in this paper with reference to Table 8 and Figure 15. A feature that can be explained by
the lesser or greater propensity to higher-mode effects. Figures 11 and 12 show sample results of the linear
regressions analyses performed for record sets A and B of real ground-motions, respectively while Tables
4 and 5 summarise the main results. Some results are also expressed in terms of the spectral acceleration365

at the initial period of the building, Sa(T0). These results are included for completeness but it should be
noted, that the use of spectral acceleration values is discouraged in formal dimensional response analysis
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due to their dependency on equivalent oscillators in contrast with peak ground-motion characteristics (like
PGA or PGV ) which are intrinsic to the acceleration series.

370

The following expressions can be employed for approximating the dimensionless peak floor acceleration
demands in buildings subjected to real earthquake records.

lnΠ1 =

{
ln c1 + c2(− lnΠ2 + c3) lnΠ2 ≤ c3

ln c1 + (c2 + c4)(lnΠ2 − c3) lnΠ2 ≥ c3

}
(21)

The proposed expression was found adequate to fully describe the accelerations floor demands. Tables375

4 and 5 summarize the regression results, while Table 6 presents the obtained coefficients of the proposed
expressions for dimensionless stiffness parameters of α = 0 and α = 20. Two distinct trends can be iden-
tified in Figures 11 and 12. This means that irrespectively of the ground motion intensity, the demand
steadily increases up until resonance (i.e., for lnΠ2 = 0 or Tm/T0 = 1). After this point a linear decrease is
observed. It is worth noting that as the dimensionless period parameter decreases, the gradient of the slope380

for lnΠ2 ≤ 0 decreases as well (Figure 11d). Therefore, for lnΠ2 ≤ 0 acceleration-sensitive non-structural
components attached to buildings with flexural lateral shape of deformation are expected to have the same
or slightly different level of damage. This is not necessarily the case for framed structures (Figures 11d and
12d). This difference from Figure 3 (response to MP pulse excitations) is directly linked to the non-coherent
part of the input ground motions that excite the higher modes of the structures and thus the peak floor385

accelerations of the more sensitive-to-resonance flexural structures (α = 0). Furthermore, the increase of
dispersion for small values of dimensionless period parameter confirms that higher mode effects are more
significant for buildings with flexural lateral shape of deformation.

It is important to measure the level of dispersion around the predicted mean value. A high value of the390

coefficient of determination indicates that most of the variation of the data set is accounted by the regres-
sion. Similarly, the standard deviation of lnΠ1, provides a good estimate of the level of variability in the
estimation. This measure is especially accurate when the set of data is lognormally distributed. In addition,
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(d) Dimensionless terms Π1 = amax/PGA, Π2 = ω0/ωg = Tm/T0

Fig. 11: Regression analysis for Record Set A.

linear regression analysis is based on the assumptions that (i) the residuals are normally distributed and the
variance is constant, and (ii) the residuals are independent of each other (Nathabandu and Rosso, 1996).395

In this regard, the aforesaid statistical measures have been used to evaluate the adequacy of the functional
models proposed in Tables 4 and 5. Even though the dispersion measures may be reduced further at the
cost of using more complicated non-linear regression functions, the proposed equations are judged appro-
priate for the comparisons established in this study. To this end, it is important to note that the regression
analyses presented herein are not intended to provide precise values to be used in practice but rather they400

are employed as a tool to enable comparisons between calculations made on the basis of dimensional and
dimensionless terms. This generality of purpose is reflected in the simple functional forms employed. It is
expected that, given that consistency in methods and models is maintained, the general conclusions based
on the relative performance of dimensional and dimensionless formulations presented herein should hold
for more complex physically-motivated and case-specific scenarios. Likewise, the choice of the only avail-405
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(c) Non-dimensional terms normalized to Sa(T0) and Tm.

-3 -1 1 3

-1

0

1

2

3

4

-3 -1 1 3

-1

0

1

2

3

4

(d) Dimensionless terms Π1 = amax/PGA, Π2 = ω0/ωg = Tm/T0

Fig. 12: Regression analysis for Record Set B.

able catalogue of human-induced earthquakes should not be understood as a desire to prove any difference
between these records and records coming from non-human induced events, quite the contrary, the limited
results here presented should confirm that, given their common tectonic nature, the structural response
to two datasets of relatively different mean time-scales (Tm), when normalized by means of dimensional
analysis, should yield broadly similar and consistent results.410

It has also been highlighted above, that the relative efficiency of the dimensionless peak floor accel-
eration equations is reduced for buildings with flexural-type deformation in comparison with the use of
spectral acceleration values (Sa(T0)) for the normalization. This reduction in the efficiency arises from the
importance of higher modes in walled structures. Also, in those cases, the response tends to associate with415

higher variabilities at or near to frequency tuning. Interestingly, the regression analyses on record sets A
and B yield reasonably close results when expressed in terms of dimensionless Π-terms, highlighting the
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Table 4: Regression analysis for Record Set A

Building dimensionless stiffness parameter α 0 4 8 12 16 20

Regression in terms of: Π1 −Π2
R2 0.143 0.301 0.412 0.497 0.562 0.608

β 0.203 0.157 0.152 0.150 0.150 0.151

Regression in terms of: amax − 1/T0
R2 0.028 0.003 0.004 0.006 0.008 0.009

β 1.474 1.461 1.459 1.461 1.465 1.469

Regression in terms of: amax/PGA− 1/T0
R2 0.150 0.090 0.180 0.252 0.310 0.350

β 0.203 0.164 0.167 0.174 0.182 0.189

Regression in terms of: amax/Sa(T0) − 1/T0
R2 0.684 0.685 0.652 0.614 0.574 0.538

β 0.235 0.185 0.185 0.186 0.188 0.190

Regression in terms of: amax/Sa(T0) − Tm/T0
R2 0.743 0.766 0.754 0.746 0.736 0.727

β 0.212 0.159 0.156 0.151 0.148 0.146

Table 5: Regression analysis for Record Set B

Building dimensionless stiffness parameter α 0 4 8 12 16 20

Regression in terms of: Π1 −Π2
R2 0.283 0.295 0.319 0.405 0.484 0.600

β 0.193 0.169 0.166 0.166 0.167 0.163

Regression in terms of: amax − 1/T0
R2 0.001 0.004 0.005 0.006 0.008 0.011

β 1.362 1.235 1.222 1.211 1.208 1.205

Regression in terms of: amax/PGA− 1/T0
R2 0.183 0.115 0.141 0.175 0.210 0.239

β 0.206 0.178 0.190 0.204 0.214 0.222

Regression in terms of: amax/Sa(T0) − 1/T0
R2 0.567 0.520 0.464 0.401 0.350 0.312

β 0.278 0.231 0.237 0.242 0.245 0.246

Regression in terms of: amax/Sa(T0) − Tm/T0
R2 0.749 0.735 0.728 0.729 0.732 0.735

β 0.212 0.171 0.169 0.163 0.157 0.152

Table 6: Linear regression analyses coefficients for Π1 −Π2.

Excitation α a1 a2 a3 a4

Record Set A
0 7.23 0.28 0.00 -0.36

20 6.81 -0.24 0.00 -0.25

Record Set B
0 6.40 0.06 0.00 -0.38

20 6.20 -0.23 0.00 -0.23

advantages of the application of formal dimensional response analysis.

Figure 13a presents the histograms of residuals from the regression in terms of dimensionless terms for420

Record Set A. Similar results were observed for Record Set B. It can be seen from Figure 13a that the resid-
uals are normally distributed. Likewise, Figure 13b. depicts the plot of the residuals versus the estimated
fitted response values. In general, Figure 13 offers sufficient indication that the residuals are symmetrically
distributed with tendency to cluster at the middle of the plot. No clear pattern was identified and the
constant and the linear model is considered adequate for representing the set of data.425

It follows from the results presented in Tables 4 and 5 and Figures 11 and 12 that there is a signifi-
cant benefit in employing dimensionless terms for presenting the structural response parameters. For both
record sets dimensionalization of the response results in lower levels of dispersion. However, more definite
and discrete comparisons can be established with reference to the CDF at given performance levels. The430

procurement of such functions will be the subject of the next section.
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(a) Histogram of residuals of dimensionless accelerations for α = 0 (left) and α = 20 (right).
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Fig. 13: Residual analysis for regression in terms of dimensionless terms. Record Set B.

Table 7: Damage states of acceleration-sensitive non-structural components.

Damage States

Component Suspended Acoustical Tile Roof Concrete Tile

DS1a DS2a DS1b DS2b

Peak Floor Acceleration light damage extensive damage requires repair replacement

PFA [g] 0.55 1.00 1.50 1.90

5 Dimensionless fragility analysis

This section is devoted to the computation of the conditional probability of exceedance peak floor ac-
celerations for acceleration sensitive non-structural components. To this end, a set of damage states for435

non-structural components are considered in accordance with current guidelines for seismic performance
assessment of buildings (FEMA, 2000). Both sets of real earthquake records previously described are em-
ployed. In order to facilitate the discussion, focus will be placed on the damage states for non-structural
elements as presented in Table 7.

440

Since the analysis of the individual clusters (divided according to the regression analysis results presented
above) involve a limited number of observations and do not allow a direct calculation of the probability of
exceedance in an efficient manner, a Maximum Likelihood Estimation (MLE) is applied herein to define
fragility functions. To this end, the parameters of the fragility function (i.e., its median µ and standard
deviation β) required in Eq.(22), can be calculated by maximizing the likelihood function (Dimitrakopoulos445

and Paraskeva, 2015; Málaga-Chuquitaype and Bougatsas, 2017). For a N number of ground motions, the
likelihood function can be written as:

L =
m∏

j=1

(
nj

zj

)
Φ

(
lnΠi − µ

β

)zj
(

1− Φ
(

lnΠi − µ
β

))nj−zj

(22)



Dimensionless fragility analysis of seismic acceleration demands through low-order building models 19

where nj is the number of independent observations of ’failure’ or ’no failure’ and zj is a Binomial distri-
bution which gives the total number of ’failures’ for a given analysis. The parameters µ and β are then
obtained by maximizing the likelihood function through numerical optimization, such that:450

{µ, β} = argmax
m∏

j=1

(
nj

zj

)
Φ

(
lnΠi − µ

β

)zj
(

1− Φ
(

lnΠi − µ
β

))nj−zj

(23)

It should be noted that fragilities are routinely defined either as the probability of exceedance of thresh-
old for a given IM or the probability of exceedance of a threshold for a given EDP . In our case, Πi would
correspond to either a dependent or an independent dimensionless Π-term. To this end, normalized damage455

states of the following form are employed to represent the damage thresholds:

DSs =
DSi

PGA
(24)

Fragility functions in terms of a dimensionless EDP and a dimensionless IM were derived for the
database of MP pulses and earthquake records described above. Figure 14 presents typical fragility func-460

tions obtained considering dimensionless univariate IM and EDP s while the full range of estimated fragility
parameters is presented in Table 8. Dimensionless fragilities are illustrated for a DS1a damage state and
for both flexion and shear-dominated structures in Figure 14 . Importantly, the base data is also presented
in Figure 14 in the form of compact binned box-plots. These box-plots depict the median as well as the
25th and 75th percentiles in each data bin without making any assumption of the underlying statistical465

distribution and thus showing the quality of the fragility fits within the constraints of the data employed. In
order to facilitate the comparison, the Coefficient of Variation (COV) is also presented in Table 8 together
with the mean and standard deviation values. The largest (italics) and lowest (bold) normalized disper-
sion (COV) values are identified in this table. Besides, Figure 15 shows the ratios of dimensionless versus
non-dimensionless COVs for the fragility analysis performed. A ratio of less than 1 in Figure 15 denotes a470

reduction in the dispersion of the data and a corresponding improvement in the quality of the estimation.

It is generally observed from Figures 14 and 15 and Table 8 that in comparison with non-dimensionless
fragilities, the acceleration dimensionless fragility formulation is associated with less dispersion for real
earthquake records and shear-wall type buildings at all damage threshold levels here analysed, with COV475

reductions in the order of 15% to 35%. On the other hand, when global shear deformations dominate the
overall building response, the dimensionless formulation is more efficient only at larger demand levels (i.e.
DS2a for Record Set B and DS2b for Record Set A) and the dispersion improvement is now reduced to the
range of 10% to 20%. Perhaps more important is the fact that the widely adopted assumption of lognor-
mal distribution (Limpert et al., 2001) in failure points (i.e. observations in which exceedance of a DSs is480

observed) is more accurate when the dimensionless EDP is employed (Figure 14). On the other hand, the
failure points are not strictly log-normally distributed when a dimensional IM is used. It should be noted
that despite formal tests indicating that drifts are not always log-normally distributed (Buratti et al.,
2010), no similar results exist yet for acceleration demands and hence the common practice of assuming
lognormality was followed in this paper.485

The greater proneness to experience larger floor accelerations at their upper levels of shear-wall type
buildings (flexural-dominated structures), discussed before, is also appreciated from the results and fragili-
ties presented in Figures 14 and Table 8. It is important to note that the dimensionless fragilities presented
in Figures 14 denote the probability of exceedance of a given value of amax, which for the case of DS1a490

is amax = 0.55 g (Table 7). Therefore, a larger mean, µ, implies the need for a lower PGA to attain the
same mean probability of exceeding the DS1a damage level or for a given probability of exceedance DS1a,
the flexural-dominated structures (α = 0) correspond to higher Π1 values and therefore lower PGA values
compared to the shear-dominated structure (α = 20). This higher susceptibility to acceleration damage
observed for flexural (shear-wall buildings) in comparison with buildings with shear-dominated response495

(e.g. MRF) is consistent with the findings discussed before with reference to Figures 3, 8, 11 and 12.

6 Conclusions

A study has been performed on the estimation of acceleration demands in building structures by means
of dimensional analysis principles and low-order continuum models with a view to assessing the fragility
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Fig. 14: Dimensionless fragility curves as a function of dimensionless EDP and IM corresponding to damage
state DS1a and buildings with α = 0 and α = 20.
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Fig. 15: Dimensionless fragilities relative COV for different damage states.

of non-structural contents in structures behaving linearly or at the verge of yielding. To this end, ideal500

pulselike ground-motions and real records are employed. The mean period of the Fourier Spectrum, Tm,
is adopted as an appropriate time-scale, although its ability to adequately describe the frequency content
of the ground-motion is observed to decrease as the prevailing pulse frequency increases. Similarly, peak
ground acceleration and peak ground velocity based length scales are found to be equally adequate for nor-
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Table 8: Fragility analysis.

Excitation
Terms Damage state α = 0 α = 20

µ β COV µ β COV

Record Set A

Π1 - Π2

DS1a 1.985 0.244 0.123 1.576 0.187 0.119
DS1b 2.663 0.221 0.083 2.209 0.191 0.086
DS2a 3.357 0.233 0.069 2.751 0.200 0.073
DS2b 3.717 0.207 0.056 3.008 0.175 0.058

amax/Sa(T0) - Tm/T0

DS1a 1.568 0.171 0.109 1.382 0.132 0.096
DS1b 2.061 0.198 0.096 1.817 0.128 0.070
DS2a 2.522 0.201 0.080 2.25 0.165 0.073
DS2b 2.848 0.214 0.075 2.56 0.166 0.065

amax/Sa(T0) - 1/T0

DS1a 1.568 0.171 0.109 1.382 0.132 0.096
DS1b 2.061 0.198 0.096 1.817 0.128 0.070
DS2a 2.522 0.201 0.080 2.25 0.165 0.073
DS2b 2.848 0.214 0.075 2.56 0.166 0.065

Record Set B

Π1 - Π2

DS1a 1.985 0.215 0.108 1.547 0.191 0.123
DS1b 2.743 0.188 0.069 2.000 0.158 0.079
DS2a 3.281 0.150 0.046 2.527 0.168 0.066
DS2b 3.7 0.151 0.041 2.879 0.169 0.059

amax/Sa(T0) - Tm/T0

DS1a 1.551 0.212 0.137 1.355 0.147 0.108
DS1b 2.22 0.202 0.091 1.706 0.121 0.071
DS2a 2.627 0.185 0.070 2.138 0.171 0.080
DS2b 2.811 0.177 0.063 2.411 0.137 0.057

amax/Sa(T0) - 1/T0

DS1a 1.551 0.212 0.137 1.355 0.147 0.108
DS1b 2.22 0.202 0.091 1.706 0.121 0.071
DS2a 2.627 0.185 0.070 2.138 0.171 0.080
DS2b 2.811 0.177 0.063 2.411 0.137 0.057

malizing the peak floor acceleration values and create dimensionless Π-terms. Furthermore, it is observed505

that flexural-dominated structures (shear-wall type buildings, α = 0) are more sensitive to resonance with
the first and higher-modes leading to larger acceleration amplification effects in comparison with shear-
dominated structures (moment resisting frames, α = 20). These increased peak floor accelerations are
closely linked to the non-coherent components of the ground-motion and are more noticeable at the roof of
flexural-dominated structures with period ratios in the range of Tm/T0 = 1 and Tm/T0 < 0.5.510

A large database of peak acceleration responses was created for different levels of ground-motion inten-
sity and various combinations of flexural-shear building stiffness contributions. The transformation of the
response dataset into the log -log space unveiled tendencies in the response which were otherwise hidden in
the normal space. To this end, a bi-linear regression model was found adequate for describing the evolution515

of dimensionless acceleration demands caused by real earthquake records. Besides, dimensionless functions
for the assessment of acceleration fragilities in buildings were obtained by means of maximum likelihood
estimations. These dimensionless fragility functions can offer a universal ’description’ of the fragility of
acceleration sensitive components invariantly from the intensity and mean period of the ground motion.

520

It is shown that fragility functions formulated in terms of dimensionless Π-terms have a superior per-
formance in comparison with those based on conventional non-dimensionless terms (like peak or spectral
acceleration values) for structures dominated by global flexural type lateral deformation over the whole
intensity range and for large peak floor acceleration levels in structures with shear-governed deformations.
The dimensionless fragility curves formulated support the observation that flexural-dominated structures525

are more susceptible to damage (for all damage states) than shear-controlled structures. Likewise, both
the regression and the fragility analyses, yielded comparatively lower dispersion values for shear-dominated
buildings (α = 20). These observations can be used as a macroscopic criterion for the preliminary assess-
ment of such buildings.

530

Although the ground-motion datasets employed have not been defined with a particular hazard scenario
in mind, a consideration that can be included in future studies, the results presented confirm that the
use of datasets of relatively different mean time-scale distribution, but common tectonic origin, yields
remarkably similar response results when expressed in dimensionless terms. Further studies are under way
to evaluate the relative contributions of coherent and non-coherent ground-motion components to peak535

floor accelerations and other response quantities using the tools proposed in this study. The insights and
dimensionless fragilities offered can be employed for the future development of a more rational approach
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for practical initial rapid seismic assessment of building contents in regular structures behaving at, or close
to, yielding during large building stock evaluations.
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