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Social networks are the prime channel for the spreading of computer viruses. Yet the study of their propa-
gation neglects the temporal nature of social interactions and the heterogeneity of users’ susceptibility. Here,
we introduce a theoretical framework that captures both properties. We study two realistic types of viruses
propagating on temporal networks featuring Q categories of susceptibility and derive analytically the invasion
threshold. We found that the temporal coupling of categories might increase the fragility of the system to cyber
threats. Our results show that networks’ dynamics and their interplay with users features are crucial for the
spreading of computer viruses.

Alongside clear societal and economic benefits, modern
technology exposes us to serious challenges. In particular, the
spreading of malicious content online, often based on inge-
nious deception strategies, is one of the most pressing because
it poses serious threats to our privacy, finances, and safety [1].
Victims of a typical social engineering attack [2] may receive
a message containing a malicious link or file, appearing to
originate from a friend or other trusted entity. If opened, it
may compromise the computer, access personal information,
and spread the virus further unbeknownst to the victim. Re-
cent research has shown how the susceptibility of individuals
to such attacks is not homogenous and depends on several fea-
tures such as age, prior training, computer proficiency, famil-
iarity with social network platforms, among others [3–5]. Fur-
thermore, the properties of real networks are known to facili-
tate the propagation of such processes [6–15]. In particular,
the heterogeneity in contact patterns makes socio-technical
systems quite fragile to biological and digital threats.

The study of these phenomena has largely neglected the
complex temporal nature of online contact patterns in favor
of static and time-aggregated approaches [16, 17]. These ap-
proximations might be fitting. Indeed, in the past, computer
viruses would spread mainly via email networks, targeting the
address books of victims, which contain contacts lists [18].
However, not many people create such lists any more and ac-
cess to them is restricted [7]. In the context of social or bio-
logical contagions, neglecting the temporal nature of the net-
works where the processes unfold has been shown to induce
misrepresentations of their spreading potential. In fact, the
order and concurrency of connections is key [19–43]. To the
best of our knowledge, beside some early work on the spread-
ing of viruses via Bluetooth among mobile phones [44], the
study of the propagation of cyber threats considering the tem-
poral nature of social interactions is still missing. Further-
more, with few exceptions [45], the literature devoted to the
study of computer viruses unfolding on networks typically ne-
glects that the susceptibility of online users is not homoge-
nous. Conversely, the literature that studies the susceptibility
of users to cyber threats traditionally focuses on single users
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neglecting their connections.

To tackle these limitations, here we introduce a theoretical
framework to study the spreading of computer viruses, based
on social engineering deception strategies, on time-varying
networks. We model users’ interactions using a time-varying
network model and consider two types of viruses. The first
mimics threats that can propagate only via connections acti-
vated at each time step. The second, on the contrary, considers
viruses able to access also information about past connections.
We investigate the impact of different classes of susceptibil-
ity considering that they might also influence the link forma-
tion process. In all cases, we analytically derive the condi-
tions regulating the spreading of the virus. Interestingly, these
are defined by the interplay between the features of the cyber
threats, the categories of susceptibility and their time-varying
connectivity. Furthermore, in some scenarios, the temporal
coupling between categories creates a complex phenomenol-
ogy that favors the spreading of the virus. These results have
the potential to initiate future efforts aimed at describing more
realistically the spreading of computer viruses on online social
networks.

We consider a population of N online users which ex-
change messages in a time-varying network. Nodes are as-
signed to one ofQ categories describing their susceptibility to
cyber threats measured in terms of their gullibility and time
needed to recover from successful attacks. Since suscepti-
bility is linked to demographic features, we consider that the
membership to a category might influence the link creation
process. In fact, homophily is a strong social mechanism
known to affect the structure and organization of ties [46].
We model the contact patterns between users with a general-
ization of the activity-driven framework [21, 47–49]. Here,
nodes feature an activity a describing their propensity to initi-
ate communications. Activities are extracted from a distribu-
tion F (a) which, as observations in real systems have shown,
is typically heterogenous [21, 22, 48, 50]. We select power-
law distributions F (a) ∼ a−α with a ∈ [ε, 1] to avoid diver-
gences. At each time step nodes are active with probability
a∆t. Active nodes select m others and create directed (out-
going) links which mimic messages.

In the simplest version of activity-driven networks the se-
lection is random and memoryless [21]. Here, we propose
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a variation: with probability p each target is selected, at ran-
dom, among the group of nodes in the same category, and with
probability 1 − p among the nodes in any other category. In
other words, p tunes the homophily level in the network with
respect to susceptibility to cyber threats. At time t + ∆t all
edges are deleted and the process starts from the beginning.
Unless specified otherwise, links have a duration ∆t. With-
out loss of generality we set ∆t = 1. The model is clearly
a simplification of real interactions. However, it offers sim-
ple, yet non trivial, settings to study the effects of temporal
connectivity patterns on contagion processes unfolding at a
comparable time-scale with respect to the evolution of con-
nections [20, 21, 47, 51].

We describe the propagation of a computer virus adopting
the prototypical SIS model [13, 52]. At each time step t the
virus, unbeknownst to the victims, sends a message, with ma-
licious content, to all the nodes genuinely contacted at t (virus
type 1) or within t − τ time-steps (virus type 2). The focus
is not defining the optimal set of nodes to maximize/minimize
the damage. Thus, we select randomly a small percentage
(0.5%) of nodes as initial seeds. In these settings, suscepti-
ble nodes of class x ∈ [1, . . . , Q], that receive a malicious
message, become infectious with probability λx which defines
their gullibility. They recover and become susceptible again
with rate µx. In the literature of epidemic spreading on static
networks we find few studies that consider different classes
of infectiousness and/or recovery rates [53–55]. Interestingly,
this body of research highlights how heterogeneities in such
quantities, especially in case of correlations with topological
features such as the degree or in presence of large values of
clustering, induce no trivial phenomena that might speed up
or slow down the spreading. As shown below, our results con-
firm this picture. We assume that nodes with the same value
of activity and in the same category are statistically equiva-
lent, we group them according to the two features. At each
time step, we call Sxa and Ixa the number of nodes suscepti-
ble and infected in activity class a and category x. Clearly∫
daSxa = Sx,

∫
daIxa = Ix,

∑
x S

x = S, and
∑
x I

x = I .
Furthermore, Nx

a describes the number of nodes of activity
a in category x, thus

∫
daNx

a = Nx and
∑
xN

x = N . In
these settings, we can represent the variation of the number of
infected nodes of activity a in category x as:

dtI
x
a = −µIxa + λxmS

x
a ×p ∫ da′a′

Ixa′

Nx
+ (1− p)

∑
y 6=x

∫
da′a′

Iya′

N −Ny

 . (1)

The first term on the right hand side accounts for the recov-
ery process. The second and third terms capture susceptible
nodes that receive messages from active and infected vertices
in the same (second) or different (third) category, and get in-
fected as a result. With respect to the typical biological con-
tagion process, here transmission is asymmetric. Only nodes
receiving a message from an infected person might be exposed
to the virus. Thus, not only the order of connections, but
also their direction is a crucial ingredient for the spreading.
Since the links are created randomly, each node is selected
with a probability pm/Nx by nodes in the same category or

(1 − p)m/(N − Ny) by nodes in other categories. The total
number of nodes is constant thus Sxa = Nx

a − Ixa and at the
early stages of the spreading we can assume that the number
of infected nodes is very small: Sxa ∼ Nx

a . By integrating
across all activities Eq. 1 we get:

dtI
x = −µxIx+λxm

pθx + (1− p)Nx
∑
y 6=x

θy/(N −Ny)

 ,
where we define θx =

∫
daaIxa . By multiplying both sides of

Eq. 1 for a and integrating across all the activities we obtain

dtθ
x = −µxθx +

mλx〈a〉x

pθx + (1− p)Nx
∑
y 6=x

θy/(N −Ny)

 .
The virus is able to spread, if and only if the largest eigenvalue
of the Jacobian matrix of the system of differential equations
in Ix and θx is larger than zero [21]. As shown in details in
the Supplementary Material (SM) [56] this implies:

R0 =
p
∑
x βx + Ξ∑
x µx

> 1, (2)

where R0 is the basic reproductive number defined as the av-
erage number of infected nodes generated, in a fully suscepti-
ble population, by an infected individual [52], βx = mλx〈a〉x
and Ξ is a function of the interplay between the average acti-
vation, infection and recovery rate of each category as well as
of the mixing between categories.

To understand the dynamics, let us consider a particular
case in which the system is characterized by only two cate-
gories. Furthermore, let us consider, as first scenario, that all
nodes have the same recovery rate. In these settings we have
Ξ2 = p2(β1 + β2)2 + 4β1β2(1 − 2p). The condition for the
spreading, even with only two classes, is a non linear function
of the average activity of each category, the infection prob-
abilities per contact and the homophily. In the limit p = 0,
nodes in a category connects only with vertices in the other
and the expression reduces to R0 =

√
β1β2

µ . In the limit p = 1

instead, interactions are only between nodes in the same cate-
gory. The system is effectively split in two disconnected net-
works and there are two independent conditions Rx0 = βx/µ.
For a general p we found that these two values confine R0:
minxR

x
0 ≤ R0(p) ≤ maxxR

x
0 . In fact, any value of p < 1

will reduce the spreading power of the category characterized
with the largest Rx0 as some connections will be established
with nodes where the virus finds it harder to spread (see SM
for the proof).

In Fig. 1-A-C, we compare analytical predictions with nu-
merical simulations. We set λ2 = 0.2 and use Eq. 2 to esti-
mate the critical value of λ1 for which R0 ≡ 1. On the y-axis
we plot the lifetime of the process defined as the time that the
virus needs either to die out or to reach a fraction Y of the pop-
ulation [57]. The lifetime acts as the susceptibility of a second
order phase transition and allows a precise numerical estima-
tion of the threshold of SIS processes [57]. In panels A-B we
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FIG. 1. Lifetime of the SIS process (A-C) and contour plot of
R0(λ1, λ2) (D-F). In A-B-D-E nodes are randomly assigned to two
categories, in C-F instead in decreasing order of activity. We set
p = 0.9 (A-D), p = 0.4 (B-C-E-F). In A-C we fix N = 2 × 105,
m = 4, α = 2.1, µ1 = µ2 = 10−2, λ2 = 0.2, Y = 0.3, and 0.5%
of random initial seeds. We plot the median and 50% confidence in-
tervals in 102 simulations per point. The solid lines come from Eq. 2,
and the dashed lines are the analytical threshold in case of a single
category.

consider a scenario in which nodes are assigned randomly to
one of the two categories. Thus the average activity in the two
is the same and set p = 0.9 and p = 0.4 respectively. The
analytical value of the threshold (vertical solid line) perfectly
matches the numerical estimation. For p = 0.9 the threshold
is smaller than for p = 0.4 and closer to the threshold of a
system with a single category (dashed lines). For smaller val-
ues of homophily, instead, the critical conditions are driven by
the interplay between the activation rates and gullibility of the
two categories. Panels D-E show the analytical value of R0 as
a function of λ1 and λ2 for the two values of p. The grey re-
gions are sub-critical, i.e., the virus is not able to spread. Since
the average activity in the two categories is the same, the two
plots are symmetric. Interestingly, the region where the virus
is able to spread is larger for large values of p. This is due to
the fact that in these settings the virus will spread if above the
threshold in at least one category independently of the other.
In the opposite limit, on the contrary, the two categories get in-
tertwined and a small value of the infection probability in one
category should be associated to a progressively large value in
the other.

In panels C-F we consider that the first category contains
a fraction g of nodes selected in decreasing order of activ-
ity. Thus, this category contains the gN most active nodes,
while the other the (1 − g)N least active (see SM). To com-
pare with panel B, we set g = 0.5 and p = 0.4. First, the an-
alytical threshold nicely matches the numerical simulations.
Second, although the other parameters are the same used in

panel B, the critical value of the gullibility of the first class is
smaller. Thus, correlations between activity and gullibility fa-
cilitate the spreading. This is confirmed in panel F where the
active phase space features a region in which the spreading is
completely dominated by the category of most active nodes.
Overall, all the plots show the importance of distinguishing
nodes according to their gullibility. Indeed, neglecting the
presence of different classes of users might induce a strong
misrepresentation of the virus propagation (dashed lines).

Let us next consider a second scenario where categories dif-
ferentiate also for the time needed to recover from a successful
attack. For two categories, we can write Ξ2 = (µ1 − µ2)2 +
p2(β1 + β2)2 + 2p(µ2 − µ1)(β1 − β2) + 4β1β2(1 − 2p).
Interestingly, we have the same terms that appeared in the
first scenario, plus two that feature the difference between
the recovery rates and βs of the two categories. Thus R0 is
a function of the interplay between the activities, gullibili-
ties and recovery rates. In the limit p = 0, each category
only connects with nodes in the other, the two groups are cou-

pled and the threshold reads R0 =

√
(µ1−µ2)2+4β1β2

µ1+µ2
. In the

limit p = 1 instead, the two categories are completely de-
coupled and the threshold becomes, as before, R0 = βx/µx.
As shown in Fig. 2-A-B, for a general value of p the repro-
ductive number is not bounded, as before, by the values of Rx0
computed in the two classes separately (see SM). In Fig. 2-
A, we assign nodes randomly to each category, fix βx and
µx and compute R0 as a function of p. In the shaded area
minxR

x
0 ≤ R0(p) ≤ maxxR

x
0 . Interestingly, after a p∗ (ver-

tical dashed line), which as shown in the SM can be computed
analytically, we enter in a regime where R0(p) > maxxR

x
0 .

Thus, only specific values of the coupling between categories
might induce the virus to spread faster in the combined sys-
tem than in each single category in isolation. However, this
non linear effect is found only in a small fraction of the phase
space see Fig. 2-B. The necessary, but not sufficient condition,
is that two categories differentiate both for gullibility and re-
covery rates in such a way that one is more gullible and re-
covers faster than the other. In this regime, the right mixing
between the two might create a feedback loop that makes the
system more fragile.

Fig. 3-A-C shows a good match between the analytical
(solid vertical lines) and numerical thresholds in case of nodes
are assigned at random (A-B) or in decreasing order of activ-
ity (C) to the two categories. We fix two different recovery
rates, λ2, and use λ1 as order parameter. Panels A-B-C dif-
fer in the value of the homophily p. We set p = 0.9 in A,
while p = 0.4 in B-C. The presence of a category of nodes
characterized by a smaller value of recovery rate pushes the
threshold to smaller values with respect to the first scenarios
(Fig. 1). As before, the value of the threshold estimated con-
sidering only a single category, characterized by the average
recovery rate of the two, (dashed lines) leads to a misrepre-
sentation of the spreading power of the virus, especially for
smaller values of homophily (see panel B).

The effect of p on the critical value of λ1 is similar to the
first scenario. In fact, even when categories differentiate by
the recovery rates, high values of homophily push the critical
point to smaller values. However, here the difference between
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FIG. 2. In A we plot the analytical value of R0 as function of p.
The shaded area describes the region where minx βx/µx ≤ R0 ≤
maxx βx/µx. The dashed vertical line describes the analytical value
of p above which R0 > maxx βx/µx. We set µ1 = 10−2 and
µ2 = 5 × 10−3. In B we plot p∗ as function of µ1 and µ2. In both
plots, we set m = 4, λ1 = 0.9, λ2 = 0.2, and randomly assign
nodes to two categories.

the two is less significant than in Fig. 1. In Fig. 3-D-E, we
show the analytical value of R0 as function of µ1 and µ2. In-
terestingly, the sub-critical region, for p = 0.4, is smaller than
for p = 0.9. This is in contrast to what was observed in the
corresponding plots for the first scenario and highlights once
again the complex phenomenology introduced by the inter-
play of different recovery rates. In Fig. 3-C-F we investigate
a scenario where nodes are assigned to categories of suscep-
tibility in decreasing order of activity. In case the most active
nodes are able to recover quickly from the attack, the virus
is able to spread only if the gullibility of such users is higher
than in the corresponding case in which nodes are assigned to
categories randomly (panel B). This is confirmed in panel F,
where we see that partitioning nodes according to their activi-
ties significantly change the region where the threat is able to
spread.

Finally, we turn our attention to a second type of virus
able to access also past contacts of infected users within a
time window τ . As before, the virus propagates via active
infected nodes, but at each time t active users might infect
their contacts in a time-window (t− τ, t]. Within a mean-field
approximation, we can adopt the same equations described
above and change the probability that a node in each activ-
ity class receives a message by active and infected nodes. In
this case, the out-degree of each active node is not m, but a
function of τ : kout(a) = m

[
a+ (τ − 1)a2

]
(see SM). To

grasp the derivation, consider the simplest scenario in which
τ = 2. In this case, active nodes might have either m
or 2m contacts in two time steps. The first class describes
nodes that are active at time t but were not active at time
t − 1; whereas the second, nodes that were active in both
time steps. Thus the out-degree of these nodes, on average, is
kout(a) = ma(1− a) + 2ma2. As shown in the SM, the con-
dition for the spreading has the same structure of Eq. 2 where,
however, the value of βs are changed with the following trans-
formation m → m

[
〈a〉+ (τ − 1)〈a2〉

]
. Thus, the larger the

visibility of past connections, from the virus point of view, the
larger R0. Intuitively this is due to the fact that the virus, for
large values of τ , is able to access more contacts, which results
in a larger spreading potential. This observation nicely shows
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FIG. 3. Lifetime of the process (A-C), R0(µ1, µ2) (D-F). In A-B-
D-E nodes are randomly assigned to two categories, in C-F instead
in decreasing order of activity. We set p = 0.9 (A-D), p = 0.4
(B-C-E-F). In panels A-C we set N = 2 × 105, m = 4, α = 2.1,
µ1 = 10−2, µ2 = 5 × 10−3, λ2 = 0.2, Y = 0.3, and 0.5%
randomly selected seeds. We plot the median and 50% confidence
intervals in 102 simulations per point. The solid lines come from
Eq. 2. The dashed lines are the analytical threshold in case of a single
category of recovery rate characterized by the average value of the
recovery rates. In the contour plot we set λ1 = 0.485 and λ2 = 0.2.

how neglecting the temporal nature of connectivity patterns in
favor of static (or time integrated) approximations might lead
to a poor description of the propagation of viruses that do not
have access to contacts lists or past connections. In Fig. 4 we
show the comparison between analytical (solid lines) and nu-
merical values of the threshold for different values of τ . To
isolate the effect of τ we considered two categories, a single
recovery rate, and set p = 0.5. The analytical value is a good
approximation only for small values of τ . The mean-field ap-
proximation becomes less accurate as more connections from
past time-steps are kept in memory. Thus, the analytical esti-
mation provides only a lower bound, which together with the
solution for τ = 1 (dashed lines) −that constitutes an upper
bound−, marks the region containing the epidemic threshold
(red regions). In other words, for a general value of τ , the
threshold will be lower than the analytical value computed for
τ = 1, and larger than the corresponding value computed at
τ .

Overall our results highlight how the spreading of computer
viruses based on social engineering is critically affected by
the temporal nature of our interactions and different suscep-
tibilities to cyber threats. Our findings show that networks’
dynamics and their interplay with the characteristics of users
have to be considered in order to avoid misrepresentation of
the spreading power of computer viruses in social networks.
We have also quantified the extent to which the previous mis-
match is important for three plausible scenarios. We, how-
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FIG. 4. Lifetime of the SIS process for τ = 2, 3, 10 (A,B,C) for two
categories to which nodes are assigned randomly. Simulations are
done setting N = 2 × 105, m = 4, α = 2.1, Y = 0.3, µ = 10−2,
λ2 = 0.3, p = 0.5, and 0.5% random initial seeds. We plot the
median and 50% confidence intervals in 102 simulations per point.

ever, note that we have studied a simple network model that
neglects a range of properties of real social networks such as
the presence of weak and strong ties, high order correlations,
and community structures. The study of the impact of these
features on the unfolding of computer viruses calls for addi-
tional research.
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