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Abstract This paper revisits the fundamental structural dynamic systems with regard to the effect of gravity,
and thus self-weight, on their dynamic characteristics and response. Far frombeing a purely theoretical exercise,
as would have been the case in the past, this study is a first step in structural dynamics inspired by—and
anticipating—the potential of building under extraterrestrial conditions. More specifically, five basic structural
models are considered: (a) the simple pendulum (SP), (b) the rigid inverted pendulum (RIP), (c) the flexural
inverted pendulum (FIP), (d) the rigid rocking block (RRB), and (e) the flexural rocking block (FRB). The
focus is to identify patterns and regions where low gravity can have a beneficial or detrimental role on the
structural response. The paper initially presents the effect of low gravity on the dynamic characteristics of each
system and then proceeds with highlighting their self-similar response, along with the differences in response
due to low gravity. It is proved that low gravity is detrimental for the SP, while it is beneficial for the RIP and
FIP models. Nevertheless, the effect can be both beneficial and detrimental for the RRB and FRB, depending
on their parameters as revealed from this investigation. Finally, the main dynamic characteristics of the five
cases studied, factorized by the gravitational multiplier (α), are quantified and summarized in the form of a
representative table.

Keywords Dynamic response · Simple pendulum (SP) · Rigid inverted pendulum (RIP) · Flexural inverted
pendulum (FIP) · Rigid rocking block (RRB) · Flexural rocking block (FRB) · Gravitational multiplier (α)

1 Introduction and background

In an effort to simulate the behavior of different types of structures under dynamic excitations, many studies in
the past have developed different fundamental structural dynamic models. The simplest and most fundamental
model is the single-degree-of-freedom (SDOF) system that consists of a mass connected to a spring and a
dashpot (Chopra [1], Clough and Penzien [2] among others). The beneficial role of the spring is due to the
restoring forces from the structural elements that provide a positive stiffness and allows the system to vibrate
during and after the excitation. However, several decades ago and especially after the 1995 Kobe earthquake,
it was obvious that the conventional structural design should adopt a more holistic view of the structure,
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including the superstructure, foundation and the soil (soil–structure interaction, SSI) [3–6]. Therefore, there
was a transition from the SDOF cantilever systems to inverted pendulum-like models since the fixity at the base
was replaced by a rotational spring accounting for the SSI. Thus, for structures where either the dissipation of
energy takes place mainly at the base of a single building element or the main mass (over than 50%) is in the
upper third of its height, the dynamic system can be considered as an inverted pendulum [7]. [8] andHousner [9]
were pioneers in introducing structures that exhibited an inverted pendulum-like behavior, characterized later
on as rocking behavior. The transition from inverted pendulum to rocking systems occurs with the addition of
the element’s width (thus introducing slenderness) and the differentiation of pivot points at each rocking cycle.
This paper focuses on the clear distinction between the aforementioned models and elucidate their dynamic
responses’ differences whenmoving from positive (inverted pendulum) to negative stiffness systems (rocking).

There is considerable ongoing research on rocking structures, whether for the purpose of investigating
the seismic resilience of ancient monuments such as ancient temples or arches [10–13] or as an alternative
technique for seismic isolation, in order to decrease the forces transferred to the foundation [13–17]. However,
the observation of large, slender elements (wind-turbines, industrial chimneys, piers in valley bridges, etc.)
that exhibit rocking behavior led to the coupling of flexural vibrations with rocking response, and therefore
introduced the so-called flexural rocking models [18–22]. Nevertheless, the role of self-weight on the dynamic
response of the different systems has not been thoroughly investigated until now, with the exception of the
second-order (P−Δ) effects in flexible cantilever systems [23,24]. The objective of this study is to investigate
the role of weight on the dynamic characteristics and on the response of the different fundamental structural
dynamic systems pertaining to civil engineering structures; fundamental dynamic systems exhibiting chaotic
behavior (such as the Duffing oscillator) that can be of interest from a mechanical engineering perspective are
not included in this study.

Themotivation behind this objective is notmerely academic but stemsmostly from the enormous streamline
of investments from various industrial firms and federal agencies (NASA, SpaceX, Boeing, Virgin Galactic,
ESA, etc.) to expand civil engineering in extraterrestrial conditions, be it for the development of Lunar and
Martian outposts or for Space tourism. Although some preliminary steps toward the conceptualization of
extraterrestrial structures have already been made [25–30], the effect of low gravity on a wide range of
structures (with or without the consideration of foundations/SSI) is not yet fully understood.

Hence, to take the first step in this direction, this paper revisits the fundamental structural dynamic systems
and focuses on the effect of low gravity on their dynamic characteristics and thus on their dynamic structural
response. The five systems considered herein are: (a) the simple pendulum (SP), (b) the rigid inverted pendulum
(RIP), (c) the flexural inverted pendulum (FIP), (d) the rigid rocking block (RRB), and (e) the flexural rocking
block (FRB), all of which are subjected to a simple harmonic excitation. The excitation was chosen as a
single-cycle sine pulse, as this is the simplest waveform that can be identified as a ‘dangerous’ component
of strong ground motion for structures [13]. The parameterization used is designed to reveal any self-similar
response and to identify critical combinations of parameters where low gravity becomes dominant (beneficially
or detrimentally) for structural behavior.

2 Fundamental structural dynamic systems

As mentioned above, the present work focuses on the effect of low gravity on the dynamic characteristics and
response of five fundamental structural dynamic systems, subjected to a single harmonic pulse. Inwhat follows,
one subsection is dedicated to each system: First, each system is described with the aim to reveal its geometric
and dynamic characteristics as a function of gravity, and then the study reveals any existing self-similarity,
focusing on the effect of low gravity for different values of gravitational acceleration (αg). The values of the
gravitational multiplier, α, considered in this study are set equal to 0.17, 0.38 and 1.00, as reference values
for the cases of the Moon, Mars and Earth respectively. Note that damping was not considered in any of the
models except FRB, because: (a) the aim is to highlight the effect of low gravity, and (b) there is not enough
evidence as to how low gravity can affect damping.

2.1 Simple pendulum (SP)

At first, the most fundamental dynamic system, the simple pendulum, is investigated herein, where a concen-
trated mass (m) is suspended from a pivot point via a massless thread, so that it can swing freely (Fig. 1a).
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Fig. 1 a Simple harmonic pendulum; b the influence of the gravitational acceleration α to the natural period of the system by
assuming zero damping

Although this systemusually does not explicitly represent structural behavior, except some specific applications
(tuned mass damper, friction pendulum bearing, etc.), it aims to serve as a reference case to illustrate critical
aspects of the effect of low gravity on its behavior. More specifically, gravity plays a stabilizing role here, since
it creates a restoring force that compels the mass to oscillate about the equilibrium point. By assuming zero
damping, the motion of the concentrated mass subjected to a linear sinusoidal excitation, can be described by
Eq. (1) as:

θ̈ + ag

L
sin(θ) = Ap

L
sin

(
2π

TP
t

)
sin θ≈ θ�⇒ θ̈ + ag

L
θ = Ap

L
sin

(
2π

TP
t

)
(1)

where g, L , α are the reference acceleration of gravity in earth, the length of the thread, and the gravitational
multiplier, respectively. θ̈ and θ are the rotational acceleration and chord rotation considered at the pivot point.
Ap, Tp are the amplitude and the pulse period of the linear excitation respectively. The maximum values
of total displacements (umax) and rotations (θmax) usually exhibited by civil engineering systems are very
small compared to the geometry of the structure and thus, the linearized equations of motions θ ≈ 0, sin θ ≈
θ, cos θ ≈ 1) are used herein to describe the dynamic response of the systems.

The exact expression of the natural period of a simple pendulum
(
T̂ ∗
0,SP

)
along with the corresponding

expression of the natural period obtained by a small-angle approximation
(
T ∗
0,SP

)
, are defined as follows:
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The effect of the gravitational multiplier, (α), on the natural period of the harmonic pendulum is shown in
Fig. 1b for the three distinct reference values of α (0.17, 0.38 and 1.00). T0,SP corresponds to the natural
period of a simple pendulum under the assumption that α = 1.00. Figure 1b shows how dominant low
gravity (i.e., low values of α) can become, as it increases the natural period of the SP significantly and with a
geometric rate. The response of the system is a function of five variables: θ = f

(
L , g, α, Tp, Ap

)
, involving

two fundamental dimensions. According to Buckingham’s theorem [31], the response can be described by
6 − 2 = 4 dimensionless parameters, which are shown below:

Πθ = θ, Πα = α, Πg = Ap

g
, ΠTSP = T0,SP

Tp
(3)

Thus, the response of the system is fully described by:

θ = ϕ

(
α,

Ap

g
,
T0,SP
Tp

)
(4)
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The self-similar response of the system, ΠθΠα

4π2Πg
, when subjected to a single sinusoidal pulse can be deduced

from the dimensionless master curve presented in Fig. 2a, which was computed by means of a small-angle

approximation and for a wide range of values of
ΠTSP√

Πα
= T ∗

0,SP/Tp.

On the other hand, Fig 2b shows the dimensionless response, Πθmax
4π2Πg

, of the nonlinear SP system against the

“nonlinear” dimensionless period ratio, T̂ ∗
0,SP/Tp, subjected to one-pulse sinusoidal excitations. θ0 is defined

as the max
{
max |θ | for a certain T̂ ∗

0,SP/Tp

}
. The influence of large angles is illustrated in Fig. 2b, where

higher discrepancy between the small-angle approximation (Fig. 2a—master curve) and the exact nonlinear
response is observed for higher response angles due to either the effect of low gravity (e.g., for α = 0.17), or
due to higher excitation amplitudes; both these factors result to higher dimensionless response values, Πθmax

4π2Πg
.

Given the self-similar response and the master curve of Fig. 2a, the low-gravity effect can be illustrated
when the dimensional response, Πθmax

4π2Πg
, is presented against the dimensionless periodΠTSP for the three distinct

values of the gravitational multiplier, Πα . Therefore, Fig 3 depicts dimensionless response spectra curves for
the cases of α = 0.17, 0.38 and 1.00. The purpose of this figure is to illustrate the response of different SPs
with known values of natural periods on Earth (T0,SP) when subjected to given harmonic excitations (Tp) at
different gravitational fields (α). By observing Fig. 3, it is evident that lower values of gravity, α, lead to higher
dimensionless response values Πθmax

4π2Πg
and the resonance intervals shift toward smaller ΠTSP values.

Fig. 2 a Dimensionless response spectrum of an SP subjected to a one-cycle sinusoidal pulse, exhibiting self-similar behavior
for a large range of dimensionless periods, T ∗

0,SP/Tp , obtained by considering a small-angle approximation; b the influence of
the angular response in the dimensionless response spectrum of an SP, subjected to a one-cycle sinusoidal pulse

Fig. 3 Dimensionless response spectra of the SP, Πθmax
4π2Πg

, against the dimensionless reference period, ΠTSP , for the three distinct

values of the gravitational multiplier, Πα , when subjected to a single sinusoidal pulse
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2.2 Rigid inverted pendulum (RIP)

A rigid inverted pendulum is defined as a concentrated mass which is connected with a rotational spring having
a finite rotational stiffness equal to Kr (Fig. 4a) through a rigid linear bar.

Contrary to SP, for the case of rigid inverted pendulum, the gravity plays a destabilizing role, while the
rotational stiffness of the spring prevents the system from acting like a mechanism. By observing the equation
of motion:

θ̈ + Kr

mL2 θ − ag

L
sin θ = A

L
sin

(
2π

TP
t

)
sin θ≈ θ�⇒ θ̈ +

(
Kr

mL2 − ag

L

)
θ = A

L
sin

(
2π

TP
t

)
, (5)

one can conclude that the gravitational force (self-weight) reduces the overall stiffness of the system. Further-

more, the physical constraint (positive stiffness),
(

Kr
mL2 − ag

L

)
> 0, allowing the system to vibrate, results in

strictly α < αcr, with αcr = Kr
mgL .

Figure 4b indicates that a decreasing value of α/αcr (that has to be less than unity), leads also to decrease
in the natural period of the system as:

T ∗
0,RIP = 2π

√
mL2

Kr − mαgL
= 2π

1√
Kr
mL2 − α

g
L

= 1√
αcr − α

T0,SP (6)

From Eqs. (2) and (6), it is evident that RIP becomes a stiffer configuration with lower gravity, compared to
the SP that becomes more flexible.

The response of the RIP is a function of seven parameters θ = f
(
m, Kr, L , g, α, Tp, Ap

)
with three

reference dimensions, and therefore by applying Buckingham’s theorem, we need 8 − 3 = 5 dimensionless
parameters. The five dimensionless parameters that can fully describe the response of the system are:

Πθ = θ, Πα = α, Πg = Ap

g
, ΠTRIP = T0,RIP

Tp
, Παcr = αcr (7)

Thus, the response of the system is fully described by:

θ = ϕ

(
α,

Ap

g
,
T0,RIP
Tp

, αcr

)
(8)

or by a combination of these.
The response of a RIP in terms of rotation (θ) and rotational velocity (θ̇) of the base, is shown in Fig. 5

for gravitational multiplier Πα = α = {0.17, 0.38, 1.00} and Παcr = αcr = 1.5.

Fig. 4 a Rigid inverted pendulum (RIP); b the influence of the gravitational multiplier α on the natural period of the system
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Fig. 5 Time history of a RIP subjected to a single sinusoidal impulse of Πg = 0.3 and Tp = 2.5 s, where T0,RIP = 4.0 s,
Πα = {0.17, 0.38, 1.00} and Παcr = 1.5

Fig. 6 Self-similar master curve concerning the dimensionless response spectrum of the RIP against a large range of T ∗
0,RIP/Tp

subjected to one-cycle sinusoidal pulse

Similarly to the SP case, a self-similar master curve is revealed in Fig. 6 when the dimensionless response,
Πθ(Παcr−Πα)

4π2Πg
, is presented against a wide range of dimensionless period,

ΠTRIP√
(Παcr−Πα)

= T ∗
0,RIP/Tp. It is worth

noting that the difference between the two systems is the substitution of Πα,(SP) with Παcr − Πα,(RIP) which
clearly indicates the reversal of the role of gravity (from stabilizing to destabilizing).

For a structure that can be modeled as a RIP (water towers, silos, etc.), the αcr = Παcr = Kr
mgL factor is

indicative of how rotationally stiff the foundation is (soil–structure interaction), relative to how susceptible the
system is to overturn by its own weight (P − Δ effect = mgLθ). Therefore, high values of αcr mean that the
rotational stiffness (Kr) of the system is substantially increased and hence does not permit the development
of large base rotation (θ), despite the mass (m) and height (L) of the structure.

The influence of low gravity on the response of the RIP to a single sine pulse can be revealed if the
dimensionless response, Πθmax

4π2Πg
, is presented against the reference dimensionless period ΠTRIP , for distinct

values of the gravitational multiplier,Πα and for differentΠαcr values (Fig. 7). It is evident that for RIPs of the
same αcr, lower values of α lead to smaller rotations at the base (θmax), as the destabilizing factor of gravity
decreases. However, for higher values of αcr, the response of the system appears to be substantially lower,
since the rotational spring is stiffer and thus the effect of low gravity as αcr increases becomes negligible.
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Fig. 7 Dimensionless response spectra of the RIP when subjected to a single sinusoidal pulse with period Tp and amplitude Ap ,
for different values of α and αcr
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2.3 Flexural inverted pendulum (FIP)

A more realistic approach regarding the modeling of structures that behave in an inverted pendulum-like way
is presented in this subsection. The FIP (Fig. 8) retains the characteristics of a RIP, the difference being that the
concentrated mass at the top is connected with the rotational spring through a flexural linear member. Thus,
the FIP is a dynamic system of two degrees of freedom (θ, u), but without a mass assigned to each degree.
Hence, the system of Fig. 8 is described as a pseudo-single-degree-of-freedom (SDOF) system and not as a
two-degree-of-freedom system. However, adopting a Lagrangian formulation (see “Appendix”), the equations
of motion [Eqs. (9) and (10)] can be obtained:

mL cos(θ)üg + mL2θ̈ + 2muu̇θ̇ + mu2θ̈ + mLü + Krθ

−mαgL sin(θ) − mαgu cos(θ) = mu sin(θ)üg (9)

mü + mL θ̈ − muθ̇2 + ku − mαg sin(θ) = m cos(θ)üg (10)

Structures in real life possess a finite stiffness and can exhibit large lateral displacements in extreme
circumstances, such as strong wind loads or ground motions. Those lateral displacements, combined with high
vertical loads (usually related to gravity loads), are responsible for the development of second-order effects
[23,24]which constitute an additional load for the structure. Such aphenomenon creates a destabilizingmoment
equal to the vertical force multiplied by the horizontal structural displacement when loaded laterally. In order
to take the P − Δ effect under consideration, the stiffness of the flexural member is set to: k = 3 EI

L3 − amg
L

(where kcant = 3 EI
L3 is defined as the cantilever stiffness). The response of the flexural inverted pendulum is

a function of eight parameters θ = f (m, k, Kr, L , g, α, Tp, Ap) with three reference dimensions, therefore:
9 − 3 = 6. The six dimensionless parameters that can fully describe the response of the system are:

Πθ = θtot = utot
L

=
(
θ + u

L

)

Πα = α; Πg = Ap

g
; ΠTFIP = T0,FIP

Tp
; Παcr = αcr

Πk = kL2

Kr
(without p − Δ) ; Πkcant = kcantL2

Kr
(including p − Δ) (11)

Thus, the total horizontal response of the system is fully described by:

θtot = ϕ

(
α,

Ap

g
,
T0,FIP
Tp

, αcr,
kcantL2

Kr

)
(12)

or by a combination of these.

Fig. 8 Flexural inverted pendulum system
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Since the FIP of Fig. 8 is a pseudo-SDOF (as one rather than two masses exist), only one natural period
can be extracted from the linearized equations of motion [Eqs. (9) and (10)]:

T ∗
0,FIP = 2π

√
Krm + mL2k + m2αgL

Krk − mαgLk − m2α2g2
=

√√√√√
1 + α

αcr
+ Πk

αcr

[
Πk − Πk

α
αcr

−
(

α
αcr

)2]T0,SP (13)

From the natural period of the system, a physical constrain arises similarly to the previous systems; the

maximum value of the gravitational multiplier (α) should be between 0 < α ≤ k
2mg

(√
L2 + 4 Kr

k − L

)
.

The aforementioned upper limit of (α) factor is symbolized as α′
cr in order to avoid being confused with the

corresponding αcr which is relevant to RIP. The expression of α′
cr is described by the Eqs. (14) and (15), and

it is also correlated with the dimensionless stiffness parameter Πk .

α′
cr = Kr

mgL

⎛
⎝

√(
kL2

2Kr

)2

+ kL2

Kr
− kL2

2Kr

⎞
⎠ = Παcr

⎛
⎝

√(
Πk

2

)2

+ Πk − Πk

2

⎞
⎠ (14)

Interestingly, the FIP has two independent limiting cases; firstly, when Kr → ∞, the system becomes a vertical
cantilever and on the other hand, when k → ∞, then the structure resembles a RIP. The aforementioned
conclusion can be proved as follows:

lim
Kr→∞ ω2

FIP = lim
Kr→∞

(
Krk − mαgLk − m2α2g2

Krm + mL2k + m2αgL

)
= lim

Kr→∞

⎛
⎝ Krk

Kr
− mαgLk

Kr
− m2α2g2

Kr

Krm
Kr

+ mL2k
Kr

+ m2αgL
Kr

⎞
⎠

= k

m
= ω2

k and Πk → 0

lim
k→∞ ω2

FIP = lim
k→∞

(
Krk − mαgLk − m2α2g2

Krm + mL2k + m2αgL

)
= lim

k→∞

⎛
⎝ Krk

k − mαgLk
k − m2α2g2

k
Krm
k + mL2k

k + m2αgL
k

⎞
⎠

= Kr − magL

mL2 = ω2
RIP and Πk → +∞

By considering p − Δ effects and substituting k with kcant − αmg
L in Eq. (13), we reach Eqs. (15) and (16)

T ∗
0,FIP = 2π

√
Krm + mL2k + m2αgL

Krk − mαgLk − Krαmg
L

=
√√√√ 1 + Πkcant

αcr

[
Πkcant − Πkcant

α
αcr

− α
αcr

]T0,SP (15)

α′
cr = Kr

mgL

(
kcantL2

Kr + kcantL2

)
= acr

(
k6L2

Kr + kcantL2

)
= Παcr

(
Πkcant

1 + Πkcant

)
(16)

A typical time history of a FIP for gravitational multiplier = Πα = {0.17, 0.38, 1.00}, αcr = Παcr = 3.0 and
Πk = 2.0 is presented in Fig. 9.

In this case, the system exhibits a self-similar behavior along the full range of parameters as the previ-

ous systems. Figure 10a shows the dimensionless response,
Πθ(α′

cr−Πα)
4π2Πg

, of the FIP against a wide range of√
1+Πkcant

Παcr [Πkcant−Πkcant
Πα

Παcr
− Πα

Παcr
]T0,SP/Tp = T ∗

0,FIP/Tp and Πkcant , when subjected to a continuous sine pulse

with amplitude, Ap, and period, Tp and Fig. 10b shows the self-similar curve of a FIP subjected to one cycle
sinusoidal pulse and resembles this of the RIP. Figure 10 makes a very important point for this study, as it
interconnects directly the response of two seemingly different systems (RIP and cantilever) to a single master
response. Obviously, the link between the two different systems is the FIP, given that the two systems are two
different aspects (limit cases) of the same system (FIP).



N. Kalapodis et al.

Fig. 9 Time history of a FIP subjected to a sinusoidal impulse of Πg = 0.3 and Tp = 2 s, where T0,SP = 3.47 s, Πα =
{0.17, 0.38, 1.00} , Παcr = 3.0 and Πk = 2.0

Fig. 10 a 3D Dimensionless self-similar response spectrum of the FIP when subjected to a continuous sine pulse with period Tp
and amplitude Ap , b self-similar spectrum curve of a FIP which is subjected to one-cycle sinusoidal pulse with period Tp and
amplitude Ap

Figure 11 shows the dimensionless response of a FIP. More specifically, it depicts Πθ

4π2Πg
, against√

1+Πkcant

Παcr [Πkcant−Πkcant
1

Παcr
− 1

Παcr
]T0,SP/Tp = T0,FIP/Tp, for the three values of Πα = {0.17, 0.38, 1.00} and

for different values of α′
cr = {1.2, 1.5, 2.0}. As expected, the response decreases with low gravity in a similar

manner as RIP.

2.4 Rigid rocking block (RRB)

Over the past few decades, various researchers investigated the concept of a freestanding rocking rigid block
resting on a rigid surface. Rocking systems are classified as a different class of systems than RIP and FIP
systems, since gravity tends to restore their equilibrium—under the condition that the rotation angle (θ)
defined at the pivot points (Fig. 12) will not surpass a certain threshold defined by the capacity of each block
(overturning event). The equation of motion is then [9,10,22]:

θ̈ = −p2
[
sin (sign (θ) asl − θ) + cos (sign (θ) asl − θ)

üg
αg

]
(17)



Revisiting the fundamental structural dynamic systems

Fig. 11 Dimensionless response spectra of the flexural inverted pendulum FIP when subjected to a sine pulse with period Tp and
amplitude Ap , for different values of α and α′

cr
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Fig. 12 Rocking of a rigid block

where p∗
RB =

√
3αg
4R : frequency parameter of the rigid block (RB) (rad/s) and R = √

B2 + H2

asl = a tan

(
B

H

)
: Defines the slenderness of the block

The uplifting acceleration of the RB is equal to αg tan(asl). Obviously, low gravity results in easier uplifting
of the RRB. During the rocking motion, just before and after the impact, the rotation angle (θ) is equal to zero
as is the potential energy of the system. Thus, the total energy of the system can be expressed in the form of
kinetic energy. The energy loss according to Housner [9] is expressed by:

l = 1 −
(

θ̇2

θ̇1

)2

(18)

The rocking response of the rigid block is a function of six parameters θ = f
(
αsl, p, g, α, ωp, Ap

)
with

two reference dimensions, therefore by applying Buckingham’s theorem: 7 − 2 = 5. The five dimensionless
parameters that can fully describe the response of the system are chosen as:

Πθ = θ, Παsl = tan(αsl), Πα = α, Πg = Ap

g
, Πω = ωp

p
(19)

Thus, the response of the system is fully described by:

θ = ϕ

(
α,

Ap

g
,
ωp

p
, tan (αsl)

)
(20)

or by a combination of these.
Figure 13 presents the rocking response time histories of a RBwith R = 7.21 andαsl = 1/4when subjected

to a one-cycle sine pulse with period TP = 1 s and different amplitudes (a) Ap = 0.20 g, (b) Ap = 0.35 g, (c)
Ap = 0.55g for the three distinct values of gravitational multiplier α = 0.17, 0.38 and 1.00. Figure 13a shows
that the system does not uplift for α = 1.00. Additionally, Fig. 12b illustrates that the RB will rock for all
gravitational multiplier values but the response for α = 1.00 will exhibit the smallest amplitude, with a large
difference compared to α = 0.17 and 0.38. However, the maximum angular velocity of the RB for α = 1.00
is very close to the other two cases. Figure 13c highlights that, interestingly the RB for α = 1.00 overturns
first, even if it was the last to uplift compared to the other two. This observation is rather counterintuitive, since



Revisiting the fundamental structural dynamic systems

Fig. 13 Rocking response of a RB with R = 7.21 and αsl = 1/4 when subjected to a single sinusoidal pulse with period
TP = 1.00 s, and different amplitudes a Ap = 0.20 g, b Ap = 0.35 g, c Ap = 0.55 g for α = 0.17, 0.38 and 1.00
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Fig. 14 Self-similar rocking overturning spectrum for a rigid block of Παsl = 1/4, subjected to a one-cycle sinusoidal excitation

gravity acts as a stabilizing factor. The reason for this overturning event is that the system for α = 1.00 has a
bigger p resulting in an impact (zero crossing) at an earlier time for the first rocking cycle, as indicated in the
figure. Thus, just after the first impact, the system for α = 1.00 receives an extra “push” from the excitation
and this proves to be a critical parameter for this case. An additional factor to assist in the overturning is that
angular velocities for α = 1.00 are higher than the cases of α = 0.17 and α = 0.38 as mentioned above.

The self-similar behavior of the system is shown in Fig. 14, which presents the overturning spectrum of the

RB,
Πgmin

ΠαΠαsl
against Πω√

Πα
when Παsl = 1/4. It has been proven that a freestanding rigid block under sinusoidal

pulses may overturn with two distinct modes [10,13,32,33]. The first mode of overturning occurs by exhibiting
at least one impact and the second without any impact. However, to deduce the effect of low gravity on the

overturning spectrum of the RRB, Fig. 15 plots the minimum overturning acceleration,
Πgmin
Παsl

, against Πω for

the three distinct values of Πα . Overturning without any impact always requires higher values of Ap than
overturning with impact for a certain value of Πα . Moreover, the plot in Fig. 15 can be separated into four
characteristic regions (A, B, C and D). Region A is defined for 0 < Πω ≤ 2.23 where the first overturning

Fig. 15 Rocking overturning spectra of rigid blocks with Παsl = 1/4, subjected to one-cycle sinusoidal excitation, concerning
the gravitational multipliers α = 0.17, 0.38 and 1.00
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happens for the RB with α = 0.17. Region B is 2.23 <
ωp
p ≤ 3.61 where the first overturning occurs for

α = 0.38. Region C corresponds to 3.61 <
ωp
p ≤ 8.22 with the first overturning occurring for α = 1.00.

The RB in regions B and C exhibits a counterintuitive behavior since one would expect that the lower gravity
leads to an easier overturning for a given value of Ap. Such phenomenon lies above the response illustrated in
Figure 13c and has already been explained in this subsection. Finally, region D (8.22 <

ωp
p ) is the safest, as

one can observe only overturning without impact that corresponds firstly to α = 0.17, then to α = 0.38 and
finally to α = 1.00 which is the expected behavior of the RB, since gravity acts as a stabilizing factor.

2.5 Flexural rocking block (FRB)

The rigid block model in some earthquake engineering applications can be characterized as unrealistic and
incompatible with the structures that display flexural characteristics. Hence, in this subsection, the block is
simulated as a deformable rocking column characterized by a uniformly distributed mass (mc) and stiffness
(EI) as shown in Fig. 16. Several authors in the past have considered similar models [21,31,34]. However,
Vassiliou et al. [31] investigated the analytical formulation in depth and proposed the model used in this study.
The total mass of the column (mc) is also uniformly distributed along the height. Two additional lumpedmasses
are located at the top (mt) and base (mb), while the moment of inertia (Ib) is considered around the center of
mass. The width of the base is defined as 2B. Similarly to rigid blocks, the slenderness is: asl = a tan

( B
H

)
, and

the surface is assumed to be rigid. The flexural block subjected to rocking is a dynamic system of two degrees
of freedom (DOFs). The first DOF is the base rotation (θ) and the second one is the horizontal displacement
of the top with respect to the bottom of the column (u).

When there is no uplift the motion is described by the same equation as this of a flexural vertical cantilever
fixed to the base.

ü + 2ξωnu̇ + ω2
nu = −Γ̃ üg (21)

where ξ : represents the damping ratio associated with the energy dissipated during the vibration of the column

(viscous classical damping),ωn = k̃
m̃ , m̃ = mt+ 33

140mc : expresses the generalizedmass, k̃ = 3 EI
H3 : represents

the generalized stiffness and -Γ̃ üg = − mt+ 3
8mc

mt+ 33
140mc

üg is equal to the excitation of the system.

Fig. 16 Flexural rocking block model
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When the systemuplifts, the rocking behavior is described by twoDOFs (θ, u). By applying the Lagrangian
formulation (see [31]), one can produce the equations of motion shown in Eqs. (22) and (23).

(
Ib + mc

(
B2 + H2

3

)
+ 33

140
mcu

2 − signθ
3

4
Bumc + mt

(
B2 + H2) − signθ2Bumt + mtu

2
)

θ̈

= −
(
33

70
mc + 2mt

)
uu̇θ̇ −

(
11

40
mc + mt

)
Hü + signθ

(
3

4
mc + 2mt

)
Bu̇θ̇

+
(

−signθ (mt + mc + mb) B sin θ −
(mc

2
+ mt

)
H cos θ +

(
3

8
mc + mt

)
u sin θ

)
üg

+
(

−signθ (mt + mc + mb) B cos θ −
(mc

2
+ mt

)
H sin θ +

(
3

8
mc + mt

)
u cos θ

)
(αg) (22)

(
33

140
mc + mt

)
ü +

(
11

40
mc + mt

)
H θ̈

= −3
EI

H3 u − cu̇ +
(
3

8
mc + mt

)
(αg) sin θ

+
((

33

140
mc + mt

)
u − signθ

(
3

8
mc + mt

)
B

)
θ̇2 −

(
3

8
mc + mt

)
üg cos θ (23)

The uplift condition of the system is a function [Eq. (26)] of the overturning (Mot) and restoring (Mrt)
moments about a pivot point (Fig. 16). More specifically,

Mot = −üH

(
mt + 11

40
mc

)
−

(
mt + mc

2

)
ügH ; (24)

Mrt = (mb + mc + mt) (ag) B ±
(
3

8
mc + mt

)
(αg) u (25)

where the upper and the lower signs denote moments about the right and the left pivot point, respectively. By
combining Eqs. (24) and (25), the uplift condition which is described in Eq. (26) is defined.

± (Mot + Mrt) > 0 ⇔
±H

(
mt + 11

40
mc

)(
ω2
nu + 2ξωnü + Γ̃ üg

)
∓

(
mt + mc

2

)
ügH

− (mb + mc + mt) (ag) B ±
(
3

8
mc + mt

)
(αg) u > 0. (26)

The modeling of the dissipated energy at impact during the rocking of a deformable block constitutes a field of
interest for many researchers [18,21,31]. The approach of Acikgoz and Dejong (ADJex) [21] is adopted herein
and considers two possible states after the impact. In the first state, after the impact the block’s base stays
on the ground and experiences a full contact phase, while in the second state, the block immediately uplifts
about the opposite corner and continues to rock. The ‘decision’ between these two possible states is taken by
considering the minimum of the total energy of the rocking system under the restriction that the amount of
the post-impact kinetic energy must be less than the pre-impact kinetic energy. Acikgoz and Dejong enforce
energy decrease through the conservation of the horizontal momentum instead of that of angular momentum,
which in certain cases leads to energy increase after impact.

In the full contact phase:

u̇2 =
(
Ibc − 2mbB2 + mc

(
−B2 + H2

3 + 33
140u

2
)

+ mt
(−B2 + H2 + u2

))
( 11
40mc + mt

)
H

θ̇ + u̇ (27)

The indicies ‘1’ and ‘2’ denote the pre- and the post-impact states of the system.

E2, f c = 1

2

(
mt + 33

140
mc

)
u̇22 (28)
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Due to the instantaneous character of the impact, u2 = u1 and θ2 = θ̇2 = 0.
In the immediate rocking phase:
There are two unknown quantities. The first is the post-impact angular velocity of the base (θ̇2) and the

second is the post-impact relative horizontal velocity of the top mass (mt) with respect to the base of the block
(u̇2). As mentioned above, in order to conserve the horizontal momentum, Acikgoz and Dejong [21] made the
assumption that the relative horizontal velocity remains the same after impact, that is: u̇2 = u̇1.

Hence, by adopting the above assumption and applying the conservation of angular momentum around an
impact corner, one can derive the following equations:

θ̇2 =
(
Ibc − 2B2mb

) + mc

(
−B2 + H2

3 + 33
140u1

2
)

+ mt
(−B2 + H2 + u12

)
Ibc + mc

(
B2 + H2

3 + 33
140u1

2 ± 3
4 Bu1

)
+ mt

(
B2 + H2 + u12 ± 2Bu1

) θ̇1 (29)

where the upper sign corresponds to impact on the left corner and the lower sign corresponds to the right corner
of the block.

The kinetic energy is given by the following equation:

E2,r = 1

2
Ibcθ̇

2 + 1

2
mc

((
B2 + H2

3
+ 33

140
u2 ± 3

4
Bu

)
θ̇22 + 33

140
u̇22 + 11

20
H θ̇2u̇2

)

+1

2
mt

((
B2 + H2 + u2 ± 2Bu

)
θ̇22 + u̇22 + 2H θ̇2u̇2

)
(30)

following the sign convention of Eq. (25)
If E1 is the prior to the impact kinetic energy of the system, in case (Er, Efc) > E1, then the conservation

of horizontal momentum leads to:

u̇2 =
(mc

2 + mt
)
H

3
8mc + mt

θ̇1 + u̇1 (31)

The response is a function of 13 variables:

(u, θ) = f
(
ωn, m,mc,mb, Ib, ξ, αsl, p, g, ωp, Ap, a

)
(32)

Through the application of dimensional analysis, the response can be described by 14−3 = 11 dimensionless
parameters:

Πθ = θ

θcr
; Πu = u

ucr
;Παsl = tan(αsl);Πα = α

Πg = Ap

g
;Πωp = ωp

p
;Πωn = ωn

p
;Πξ = ξ

Πmc = γmc = mc

m
;Πmb = γmb = mb

m
;ΠIb = γIb = Ib

4
3mbB2

(33)

And the response can be expressed as(
u

ucr
,

θ

θcr

)
= f

(
ωn

p
,
ωp

p
, γmc, γmb, γIb, ξ, α,

Ap

g tan asl

)
(34)

where

ωn =
√√√√ 3EI

H3(
mt + 33

140mc
) (35)

p =
√

g

R
(36)

γmc = mc

mt
, γmb = mb

mt
, γIb =

(
Ib

4
3mbB2

)
(37)
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θcr = tan−1
(
mt + mb + mc

mt + mc
2

B

H

)
(38)

ucr = (mt + mb + mc) Bg(
mt + 11

40mc
)
Hω2

n + ( 3
8mc + mt

)
g

(39)

Figures 17 and 18 present the rocking response of the flexural block with ωn
p = 5 and ωn

p = 20, respectively

for γmb = 2, γmc = 1, ωp
p = 7, Ap

g tan(αsl)
= 5, αsl = 0.1 and for the three distinct values of gravitational

multiplier, a = 0.17, 0.38, 1.00.

Fig. 17 Rocking response of a flexural block when subjected to a sinusoidal pulse for α = {1.00, 0.38, 0.17} where: ωn
p = 5,

γmb = 2, γmc = 1, ωp
p = 7, Ap

g tan(asl)
= 5, αsl = 0.1

Fig. 18 Rocking response of a flexural block when subjected to a sinusoidal pulse for α = {1.00, 0.38, 0.17} where: ωn
p = 20,

γmb = 2, γmc = 1, ωp
p = 7, Ap

g tan(asl)
= 5, αsl = 0.1
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Fig. 19 Rocking spectra of a flexural block when subjected to a sinusoidal pulse for α = {1.00, 0.38, 0.17} where: ωn
p = 5,

γmb = 1, γmc = 1

The RRB system analysis has shown that generally low gravity does not act beneficially for rocking (except
for regions B and C in Fig. 15—for a single sinusoidal pulse), but on the other hand, Fig. 11 illustrates the
beneficial effect of low gravity on the vertical cantilever system. In this case, the FRB system couples the two
systems together. From Figs. 17 and 18, it can be deduced that low gravity significantly lengthens the rocking
cycles through the “rocking frequency” (p) but it is very beneficial regarding the flexural response, Πu , as
this decreases significantly in accordance with Fig. 11. The latter observation is also a result of the stronger
gravitational field when α = 1.00, which leads to higher angular velocities prior and post-impact, compared
to the α = 0.17 and 0.38 cases. The higher post-impact angular velocities for α = 1.00 amplify the flexural
response accordingly, independent of other parameters, such as Πωn or Πξ . Lower values of Πωn combined
with higher gravitational multipliers (Fig. 17- blue thick line), lead to flexible FRB which is affected more
by the p − Δ effects (due to the higher gravity). The jaggedness of the θ/αsl curve for α = 1.00 in Fig. 17
confirms the aforementioned observation.



N. Kalapodis et al.

Fig. 20 Rocking spectra of a flexural block when subjected to a sinusoidal pulse for α = {1.00, 0.38, 0.17} where: ωn
p = 20,

γmb = 1, γmc = 1

The FRB is a complex system affected by many dimensionless parameters as shown in Eqs. (32) and
(33). This study chooses to present only the most important aspects of its response. Four representative
overturning spectra of FRB subjected to a single sinusoidal impulse are shown in Figs. 19 and 20, for different

values of dimensionless stiffness
(

ωn
p = {5, 20}

)
, slenderness (αsl = 0.1, 0.2), and gravitational multiplier

(α = 0.17, 0, 38 and 1.00). As in the case of the RRB, the sequence concerning regions A, B and C is the
same for each spectrum. However, region C dominates the range ωp/p, and hence, low gravity plays a more
beneficial role than expected, especially for large blocks or high-frequency pulses (

ωp
p > 3 − 4). On the

contrary, region D cannot be defined, since it varies for different values of the aforementioned parameters.
Slenderness (αsl) is important when it comes to overturning of a block, since for αsl = 0.1 we observe a
broadened area of mode-1 overturning (with one impact), while for αsl = 0.2 this area is substantially limited.
On the other hand, the area of overturning without impact is slightly different from spectrum to spectrum,
irrespective of the stiffness and slenderness of the flexural block, or of the gravitational conditions.
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3 Conclusions

This paper revisits the fundamental structural dynamic systems to investigate the effect of low gravity on their
dynamic characteristics and their response when subjected to a sine pulse. It begins by using dimensional
analysis for the formulation of positive stiffness vibration models, such as the simple pendulum (SP), the rigid
inverted pendulum (RIP), and the flexural inverted pendulum (FIP), and concludes with (negative stiffness)
rocking system models: the rigid rocking block (RRB) and the flexural rocking block (FRB). The sine pulse
was chosen as the simplest harmonic excitation and in order to reveal any critical trends or patterns regarding
the effect of low gravity.

The conclusions of this study can be summarized as follows:

• TheSP—studied here purely as a reference case—becomes amoreflexible configuration as the gravitational
multiplier decreases (low gravity). This results in an amplification of the response in the vicinity of the
resonant frequency. On the other hand, this increase in flexibility occurs for a wider range of T0,SP/Tp,
indicating less sensitivity to the frequency content of the excitation. The response is self-similar and can
be described by a master curve as shown in Fig. 2.

• The change in gravity has exactly the opposite effect on the RIP. Low gravity forms a stiffer RIP config-
uration and thus decreases the response accordingly. The response in this case is also self-similar and can
be described by the master curve in Fig. 6. The beneficial effect of low gravity is further highlighted in
Fig. 7.

• The FIP, the last of the vibrating systems, is also the most complex, as it combines a rotational with a
translational/flexural DOF in series, resembling a Maxwell element. This system is a pseudo-SDOF, as

no mass is assigned to the rotational DOF. By considering k = 3 EI
L3 − αmg

L and α′
cr = acr

(
kcantL2

Kr+kcantL2

)
in order to take p − Δ effects into account, the system exhibits a self-similar behavior similar to the RIP.
Interestingly, we find that although the RIP and the vertical cantilever appear to be two different systems,
they are actually two aspects of the FIP; as such, we prove that they exhibit the same dimensionless
response, defined by the master curve of Fig. 10. The beneficial role of low gravity is shown in Fig. 11.

• The RRB is the simplest rocking model and is affected by low gravity in three ways: (a) the uplift of
the block occurs for lower excitation amplitudes (Ap); (b) the “rocking frequency” parameter, p, results
in longer rocking cycles; and (c) weakening of the gravitational field results in lower angular velocities.
However, the effect is not the same over the entire range of ωp/p values; in regions A and D, low gravity
acts detrimentally (as expected), while in regions B and C, it acts beneficially, as explained in Fig. 13.

• The FRB is a complex system that combines rocking with flexural response. Because gravity acts as a
stabilizing force in rocking, but in most cases as a destabilizing force in vibrations, this introduces an
added complexity. The effect of low gravity with respect to the rocking response is -similar to that of the
RRB-, divided into three regions A, B and C (Figs. 19 and 20), with no reliable/discernible region D.

Nevertheless, when flexure is more dominant in the system
(

ωn
p = 5

)
, low gravity plays a beneficial role

for larger blocks, where ωp
p > 3 − 3.5.

Table 1 summarizes all key results of this study for the 5 main systems analyzed, comparing and contrasting
the stabilizing and destabilizing factors, frequency parameters and gravity effects.

This study has revisited the main structural systems from an extraterrestrial civil engineering point of
view. Although such applications are not yet underway, this study anticipates them based on the enormous
streamline of investments that have taken place in recent years by world-leading firms and federal agencies
(NASA, SpaceX, Boeing, Virgin Galactic, ESA). These investments will most assuredly require the extension
of civil engineering in extraterrestrial conditions, be it for the development of Lunar and Martian outposts or
for Space tourism.

where

λ =

√√√√√√√
Ibc + mc

(
H2

3 + B2
)

+ mt
(
H2 + B2

)

Ibc + mc

(
H2

3 + B2
)

+ mt
(
H2 + B2

) −
(
11
40mc+mt

)2
H2

11
40mc+mt



Revisiting the fundamental structural dynamic systems

Acknowledgements Partial financial support for this research was provided by the Faculty of Engineering and Science of the
University of Greenwich U.K.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.

Appendix

Derivation of the equations of motion [Eqs. (9) and (10)] of the FIP dynamic system.
The kinetic energy of the FIP dynamic system is equal to:

T = 1

2
m

(
u̇2g + 2u̇g L cos θ θ̇ − 2u̇gu sin θ θ̇ + 2u̇gu̇ cos θ + L2θ̇2 + u2θ̇2 + u̇2 + 2L θ̇ u̇

)
(A1)

The potential energy of the FIP dynamic system due to gravity, D’Alembert forces and strain energy is equal
to:

V = 1

2
Krθ

2 + 3

2

EI

L3 u
2 − m (αg) (L (1 − cos θ) + u sin θ) (A2)

Lagrange equations:

d

dt

∂ (T − V )

∂θ̇
− ∂ (T − V )

∂θ
= 0 (A3)

d

dt

∂ (T − V )

∂ u̇
− ∂ (T − V )

∂u
= −cu̇ (A4)
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