
Towards efficient nonlinear option
pricing

Shih-Hau Tan

A thesis submitted in partial fulfilment of the requirements of the University
of Greenwich for the Degree of Doctor of Philosophy

April 2018

DECLARATION

I certify that the work contained in this thesis, or any part of it, has not been accepted in

substance for any previous degree awarded to me, and is not concurrently being submitted

for any degree other than that of Doctor of Philosophy being studied at the University of

Greenwich. I also declare that this work is the result of my own investigations, except where

otherwise identified by references and that the contents are not the outcome of any form of

research misconduct.

..................................

Shih-Hau Tan (PhD Student)

Date:

..................................

Prof. Choi-Hong Lai (First Supervisor)

Date:

..................................

Dr Konstantinos Skindilias (Second Supervisor)

Date:

ACKNOWLEDGEMENTS

I would like to thank my first supervisor, Prof. Choi-Hong Lai, for his guidance of the

research and I am grateful for his enormous support during my PhD study. I would like to

also thank my second supervisor, Dr Konstantinos Skindilias, for his assistance and advice.

I would like to thank Mr. Lung-Sheng Chien from NVIDIA for kindly giving me many

practical suggestions on GPU computing. I would like to express my gratitude to Prof. Kevin

Parrott, for the collaboration and discussion on numerical PDEs. I would like to also thank

Dr André Ribeiro for his support on mathematical finance with his industrial experience. My

sincere thanks to Carlos Vázquez Cendón, Ki Wai Chau, Daniel Duffy, Julien Hok, Karel

in’t Hout, José Antonio García Rodríguez, Daniel Ševčovič, Tai-Ho Wang, for all the fruitful

discussions.

Thanks to the financial and research support from the ITN-STRIKE project and the University

of Greenwich. Also thanks to all the helps from my colleagues. Special thanks to Dr Zuzana

Bučková, Dr Vera Egorova, Dr Álvaro Leitao and Dr Radoslav Valkov for all the useful

discussions.

Finally, I would like to thank my father, mother, aunt and brother, for their concern and

encouragement.

ABSTRACT

This thesis describes the development of efficient numerical solvers for a wide range of non-

linear option pricing problems, including European options, Asian options and a multi-asset

case. The chosen research methodology is the numerical PDE approach which essentially is

to solve the nonlinear Black-Scholes equations with the relevant nonlinear volatility functions.

The emphasis is on obtaining the numerical solution with reasonable accuracy and using

high-performance computation.

The first approach applies the Newton-Raphson method to solve the nonlinear system

resulting from the finite difference spatial discretisation. Several adjustments for improving

accuracy are examined. These Newton-based solvers are combined with a semi-Lagrangian

scheme to deal with the Asian option case, and one Alternative Direction Implicit (ADI)

method for pricing options on multiple assets. An approach to solving large-scale problems

with nonlinear volatilities with a GPU-based parallelisation framework is also proposed.

Implementations on different software platforms are explained and compared. Case studies

including large-scale Europe option pricing problems computed using single and multiple

GPUs are discussed to demonstrate their performance compared with using sequential

algorithms. These constructed solvers with parallel computing implementations essentially

contribute to solving nonlinear problems in finance.

Table of contents

List of figures xiii

List of tables xv

1 Introduction 1
1.1 Nonlinear Option Pricing Models . 1
1.2 Viscosity Solutions . 5
1.3 Numerical Solutions . 6

1.3.1 Approximate Formula . 7
1.3.2 Transformation Method . 8
1.3.3 Backward Stochastic Differential Equation 9

1.4 Research Objectives and Thesis Outline 10
1.4.1 Newton-based Solvers for Nonlinear Black-Scholes Equations . . . 10
1.4.2 GPU Computing Implementations 13
1.4.3 High-dimensional Problems . 14

1.5 Summary . 15

2 Newton-based Solvers 17
2.1 Introduction . 17
2.2 Mathematical Modelling . 19
2.3 Finite Difference Discretisation . 23

2.3.1 Numerical Convergence to the Viscosity Solution 24
2.3.2 Numerical Issues . 28

2.4 Root-finding Problem . 30
2.4.1 Frozen Coefficient Method . 31
2.4.2 Newton-Raphson Method . 31
2.4.3 Numerical Experiments . 36

2.5 Accuracy Improvement . 40

x Table of contents

2.5.1 Coordinate Stretching . 40
2.5.2 Rannacher Timestepping . 43
2.5.3 Richardson Extrapolation . 45

2.6 Other Newton-based Solvers . 47
2.6.1 Newton-like Methods . 47
2.6.2 Deferred Correction Problem . 50
2.6.3 Numerical Experiments . 51

2.7 Summary . 54

3 Large-scale Problems with GPU Computing 57
3.1 Introduction . 57
3.2 Large-scale Nonlinear Option Pricing Problems 59

3.2.1 A Batched Newton-based Solver 60
3.3 GPU Computing Implementations . 63

3.3.1 The GPU Architecture . 63
3.3.2 CUDA Programming . 67
3.3.3 A Parallel Batched Newton-based Solver 69
3.3.4 OpenACC . 73

3.4 Numerical Experiments . 75
3.4.1 Comparisons of CUDA and OpenACC 75
3.4.2 Numerical Results with K80 . 78

3.5 Multi-GPU Computing . 79
3.6 Summary . 81

4 Asian Option Pricing 83
4.1 Introduction . 83
4.2 Mathematical Modelling . 85
4.3 Semi-Lagrangian Scheme . 87

4.3.1 Terminal and Boundary Conditions 91
4.3.2 Coordinate Stretching . 92

4.4 Numerical Experiments . 93
4.5 Summary . 96

5 Multi-Asset Problems 99
5.1 Introduction . 99
5.2 An Extension of the Frey-Patie Model . 102
5.3 ADI-Newton Solver . 107

Table of contents xi

5.4 Numerical Experiments . 112
5.5 Summary . 116

6 Conclusion 117
6.1 Conclusion . 117
6.2 Outlook . 118

6.2.1 Robust Methods to Handle the Singularity 119
6.2.2 GPU Computing for High-dimensional Problems 119
6.2.3 American Options . 119

References 121

List of figures

1.1 The structure of the thesis. 11

2.1 The liquidity profile function from equation (2.9). 21
2.2 Volatility obtained from equation (2.8) with the profile function shown in

equation (2.9). 22
2.3 Option prices with the volatility in equation (2.7) and different liquidities ρ . 22
2.4 Number of iterations during the first ten time steps for solving the Frey-Patie

model with NS = 121,Nt = 61. The upper plot uses the root-finding function
as a stopping condition and the lower plot uses the residue as a stopping
condition. 34

2.5 Results of solving the Frey-Patie model by Newton-Raphson method without
damped updating (the upper plot) and with damped updating (the lower plot). 37

2.6 ˆeoc with different liquidities. The line with blue circle is ρ = 0.01, the line
with red star is ρ = 0.005 and the line with green diamond is ρ = 0.001. . . 40

2.7 Oscillation occurs when using a small grid size in the Crank-Nicolson scheme. 41
2.8 New coordinate points on the non-stretched mesh which shows more points

are employed close to the region S = K. 42
2.9 eoc of using Rannacher timestepping for replacing the first one time step

(blue circle) and first two time steps (red star) by fully implicit scheme. Here
NS presents the grid points for spatial discretisation. 45

2.10 Difference of the solution of solving the Frey-Patie model between the root-
finding approach (NM1) and the deferred correction method (NM2) with
respect to the number of grid points under the l2 norm (left) and l∞ norm
(right) when tol = 10−8. 52

2.11 Different strategies to implement Newton-like method. 54

3.1 Example of assembling three matrices. 61

xiv List of figures

3.2 Floating-Point Operations per Second for the CPU and GPU. The figure is
from [88]. 64

3.3 Grid of Thread Blocks. The figure is from [88]. 64
3.4 Nvidia Kepler GPU hardware structure. The figure is from [91] 65
3.5 Comparison of solving a (M×M) tri-diagonal linear system by using the gtsv

solver from the cuSparse library and the Thomas algorithm implemented on
the CPU with double precision. 72

3.6 A framework of the GPU implementation. 73
3.7 Complexity analysis for single precision calculating by CPU. 77
3.8 Complexity analysis for single precision calculating by GPU. 77
3.9 An example of splitting the works for two GPUs. 81

4.1 The average number of iterations for Newton’s method and Frozen coefficient
for NS = 50,100,200. The average is taken over all the discretisations on
A-direction and all the time steps tn. 97

4.2 The average number of iterations for Newton-Raphson method. The average
is taken over all the discretisations on A-direction at each time step. 98

5.1 Computation time for using finite difference method with Broyden’s method
to approximate the Jacobian matrix. 114

5.2 Average of number of iterations of ADI-Newton method at step 1 and step 2
for spread option case where NS1 = NS2 = 101. 114

5.3 Average of number of iterations of ADI-Newton method at step 1 and step 2
for basket option case where NS1 = NS2 = 61. 116

List of tables

1.1 Summary List of nonlinear volatilities. 5

2.1 Fully implicit scheme with the l2 norm for the case r = 0.01 and σ = 0.4. . 38
2.2 Fully implicit scheme with the l∞ norm for the case r = 0.01 and σ = 0.4. . 38
2.3 Average number of iterations in the first 5 time steps for the case r = 0.01

and σ = 0.4. 39
2.4 Crank-Nicolson scheme with the l2 norm for the case r = 0.01 and σ = 0.4. 39
2.5 Fully implicit scheme with the l2 norm for the case r = 0.01 and σ = 0.4

under stretched coordinate. 43
2.6 Crank-Nicolson scheme with the l2 norm for the case r = 0.01 and σ = 0.4.

Rannacher timestepping is applied to replace the first two time steps by using
fully implicit scheme. 44

2.7 Crank-Nicolson scheme with the l2 norm for the case r = 0.01 and σ = 0.4
under stretched coordinate. Rannacher timestepping is applied to replace the
first two time steps by using fully implicit scheme. 44

2.8 Fully implicit scheme with the l2 norm for the case r = 0.01 and σ = 0.4. . 47
2.9 eotc for the Frey-Patie model, here NM1 means using the Newton-Raphson

method, NM2 means using the deferred correction approach and NM3 means
using the inexact Newton’s method. 53

3.1 An example of using matrix transposition to test the effective memory band-
width of using single GPU. 66

3.2 An example of using matrix mutiplication to test the computational through-
put of using single GPU. 67

3.3 Computation time (s) for single precision. 76
3.4 Speedup for single precision. 76
3.5 Computation time (s) for double precision. 76
3.6 Speedup for double precision. 76

xvi List of tables

3.7 Results of using CPU and GPU for double precision. 79
3.8 Profiling results of using GPU for double precision. 79
3.9 Results of using multiple GPUs for L = 4096. 80

4.1 Fully implicit scheme with r = 0.01, σ0 = 0.4 and ρ = 0. 94
4.2 Crank-Nicolson scheme with r = 0.01, σ0 = 0.4 and ρ = 0. 94
4.3 Crank-Nicolson scheme with r = 0.01, σ0 = 0.4 and ρ = 0. The coordinate

stretching technique is applied. 95
4.4 Fully implicit scheme with r = 0.01, σ0 = 0.4 and ρ = 0.01. 95
4.5 Crank-Nicolson scheme with r = 0.01, σ0 = 0.4 and ρ = 0.01. 96

5.1 ADI-Newton method with the l2 norm for spread option case. 113
5.2 ADI-Newton method with the l2 norm for basket option case. 115

Chapter 1

Introduction

Pricing derivatives both accurately and efficiently is always challenging in financial markets.

New nonlinear option pricing models developed in recent years offer an approach to obtain

realistic and meaningful option prices in an incomplete market. This approach requires the

solution of fully nonlinear PDEs numerically, and therefore robust and efficient solvers are

highly desirable. Many approaches to nonlinear option pricing result in the formulation of

a generalised Black-Scholes equation and an overview is given in this chapter. Different

models with various considerations are introduced. Numerical solutions that have appeared

recently are also reviewed. Several research questions are addressed which are answered in

the chapters hereafter, and an outline of the thesis is given at the end of this chapter.

1.1 Nonlinear Option Pricing Models

An option is one of the most popular financial instruments which gives the owner a right

to buy or sell the underlying asset with a certain strike price at or before the predetermined

maturity time which depends on the type of option. It is often used to hedge the risk from

uncertain movements of the underlying asset price. An essential issue is to compute the op-

tion price accurately which sometimes may be computational demanding when an analytical

formula does not exist.

2 Introduction

According to the classical theory due to Black, Scholes and Merton, an option in an

idealised financial market can be priced as a solution V =V (S, t) to the linear Black-Scholes

equation [8]:

∂V
∂ t

+
1
2

σ
2
0 S2 ∂ 2V

∂S2 + rS
∂V
∂S

− rV = 0, (S, t) ∈ [0,∞)× [0,T) (1.1)

where T is the maturity, r > 0 is the risk-free interest rate and σ0 > 0 is a constant which

measures the volatility of the underlying asset price process {St , t ≥ 0}, which is assumed to

follow the stochastic differential equation

dSt = rStdt +σ0StdWt , (1.2)

where Wt is a standard Brownian motion. A terminal condition V (S, t = T) is given by the

payoff function Φ(S,K) which depends on the type of option contract where K is the strike

price of the option. For example, for the European call option, the payoff function is defined

as

V (S,T) = Φ(S,K) = max(S−K,0),

and for the European put option is

V (S,T) = Φ(S,K) = max(K −S,0).

The linear Black-Scholes equation (1.1) is derived under several restrictive assumptions,

including frictionless, perfectly liquid markets with zero transaction costs and assets with

constant volatility. Theses assumptions are not always true in a real market. The motivation

behind nonlinear option pricing is to lessen these restrictive assumptions in order to achieve

realistic option prices in incomplete markets. These nonlinear option pricing models usually

introduce a non-constant volatility function which depends on the underlying asset S, the

time t and its sensitivity VSS where

VSS =
∂ 2V
∂S2

1.1 Nonlinear Option Pricing Models 3

is often called the option Gamma in financial markets. For these models the classical

Black-Scholes equation (1.1) then becomes a generalised nonlinear Black-Scholes equation

∂V
∂ t

+
1
2

σ
2S2 ∂ 2V

∂S2 + rS
∂V
∂S

− rV = 0. (1.3)

where σ = σ(S, t,VSS).

Leland [80] proposed one of the first nonlinear option pricing models under constant

transaction costs where the volatility function is given as

σ = σ0(1+Le · sign(VSS)), (1.4)

where Le =
√

2
π

c
σ0

√
∆t

. Here c > 0 is a constant transaction cost, and ∆t is the time interval

between portfolio adjustments. A restriction of Le < 1 must be added to guarantee a positive

number of volatility in equation (1.4).

Another model for incoporating transaction costs given by Barles and Soner [7] uses an

exponential utility function to characterize the investor’s preferences leading to

σ = σ0(1+Ψ(er(T−t)a2S2VSS))
1/2, (1.5)

where a > 0 is a constant to measure the risk aversion, and Ψ is the solution of the following

ordinary differential equation:

Ψ
′(x) =

Ψ(x)+1
2
√

xΨ(x)− x
, Ψ(0) = 0. (1.6)

A further class of nonlinear models arise from an uncertain volatility and was studied by

Avellaneda et al [3, 4] and Lyon [82] where it is assumed that the volatility is bounded by two

extremes values σmin and σmax. The volatility function was again shown to be determined by

4 Introduction

the sign of VSS, namely

σ = (σ2
max1VSS>0 +σ

2
min1VSS<0)

1/2, (1.7)

where the function 1 represents the indicator function.

The so-called Risk Adjusted Pricing Methodology (RAPM) was proposed by Kratka

[73] and further generalised by Jandačka and Ševčovič [67]. The aim is to optimise the

time interval between consecutive portfolio adjustments to minimise the sum of the rate of

transaction costs and the rate of a risk from an unprotected portfolio, where the volatility

function is then

σ = σ0

(
1+µ(SVSS)

1
3

)1/2
(1.8)

where µ = 3
(

C2R
2π

)1/3
and C,R ≥ 0 are measures of transaction costs and risk premium

respectively.

The final example is determined by a model of market illiquidity in which the dynamic

of underlying asset is driven by feedback and market effects and was first investigated by

Wilmott [113]. A classical example introduced by Frey [42], Frey and Stremme [42], Frey

and Patie [43], Frey and Polte [44] considers the effect of the stock trading strategy of a large

investor in the illiquid market, and the volatility was derived to be

σ = σ0(1−ρλ (S)SVSS)
−1, (1.9)

where ρ > 0 measures the liquidity, and λ (S) is a function describing the liquidity profile of

the market. The term (1−ρλ (S)SVSS) must be greater than zero to ensure a positive value

of the volatility.

1.2 Viscosity Solutions 5

Table 1.1 Summary List of nonlinear volatilities.

Model σ

Leland model σ0(1+Le · sign(VSS))

Barles Soner model σ0(1+Ψ(er(T−t)a2S2VSS)
1/2

Frey-Patie model σ0(1−ρλ (S)SVSS)
−1

RAPM model σ0((1+µ(SVSS)
1
3))1/2

Uncertain volatility model (σ2
max1VSS>0 +σ2

min1VSS<0)
1/2

1.2 Viscosity Solutions

The nonlinear option pricing problem can be generalised as the solution of a fully nonlinear

PDE, equation (1.3), in which the volatility σ = σ(S, t,VSS) depends on the second derivative

of the solution of the equation. However, if the given initial and boundary conditions are

not smooth enough, then the classical solution which must be C2,1([0,∞)× [0,T)), may not

exist. One usually considers the viscosity solution for which existence and uniqueness can

be established [20, 21] under the Lions framework.

Consider a more general form of the fully nonlinear PDE

ut +F (x, t,u,Du,D2u) = 0, x ∈ Ω, t ∈ [0,T), (1.10)

where Du,D2u means the gradient and Hessian of the solution u(x, t) respectively, and Ω ⊂R

is an open domain.

Definition 1. Viscosity Solution

Let u be locally bounded and assume that F satisfies the ellipticity condition, then

(i) u is called a viscosity supersolution of equation (1.10) if for all φ ∈C2,1([0,∞)× [0,T)),

φt(x, t)+F (x, t,u,Dφ ,D2
φ)≥ ut +F (x, t,u,Dφ ,D2

φ)≥ 0.

6 Introduction

(ii) u is called a viscosity subsolution of equation (1.10) if for all φ ∈C2,1([0,∞)× [0,T)),

φt(x, t)+F (x, t,u,Dφ ,D2
φ)≤ ut +F (x, t,u,Dφ ,D2

φ)≤ 0.

(iii) u is called a viscosity solution if it is both a viscosity supersolution and a viscosity

subsolution.

Viscosity solutions are more suitable and meaningful choices for solving these nonlinear

PDEs in finance as addressed in [5, 6, 41], because the solution can be proved existent and

obtained uniquely, while in the classical solution sense one of them may be absent. The proof

of existence and uniqueness of the viscosity solution for equation (1.10) is usually based

on the comparison principle for which more details can be found in [40]. In this thesis the

viscosity solution of the nonlinear Black-Scholes PDE is assumed to exist and be unique.

The numerical convergence to the viscosity solution is discussed in Chapter 2.

1.3 Numerical Solutions

The example of the nonlinear volatility considered in this thesis has the form

σ = σ(S, t,VSS), (1.11)

and usually the exact solution of the fully nonlinear PDE (1.3) cannot be obtained. However,

construction of explicit solutions with the nonlinear volatility function (1.9) was recently

provided by Bordag [9, 10]. These invariant solutions were constructed by means of the

invariant Lie group theory and depend on various parameters restricting the class of solutions,

and in general there is no exact pricing formula for the case of a call or put payoff function

and therefore the solution cannot be used in the real markets for doing option pricing.

Approximate or numerical solutions are needed and different approaches are summarised in

[34, 54]. A brief overview is given as follows.

1.3 Numerical Solutions 7

1.3.1 Approximate Formula

A small parameter perturbation method discussed by Ďuriš [29] proposes an approximate

formula for volatility functions which can be expressed as the following form:

σ(S,T − t,VSS)
2 = σ

2
0 +2εA(T − t)Sγ−1Hδ−1, where H = SVSS. (1.12)

The powers γ,δ , the parameter ε as well as the function A(T − t) depend on the chosen

nonlinear volatility model. For example, in the case of the Frey-Patie model in equation (1.9)

for the case λ (S) = 1, it can be approximated as

σ(S, t,VSS) = σ0(1−ρSVSS)
−1 ≈ σ0(1+ρSVSS),

so that the parameters in equation (1.12) are

ε = ρ,γ = 1,δ = 2,A(T − t) = σ
2
0/2,

and the model parameter ε is small provided 0 < ε ≪ 1.

The idea is to seek the option price as an asymptotic expansion in terms of the small

parameter. More precisely,

V =V0 +
N

∑
i=1

ε
iVi +O(εN+1), (1.13)

where the leading term V0 is simply a solution to the linear Black-Scholes model. When

considering N = 1, an approximate formula can be derived as shown in [29] of the form

V (S, t)≈V0(S, t)+ εV1(S, t), (1.14)

8 Introduction

where

V1(S, t) =
Kγ

(2πσ2
0)

δ

2

(
S
K

) γ−δ

1−δ

e

{
β+

[γ−δ−α(1−δ)]2σ2
0

2(1−δ)2

}
(T−t)

(1.15)

×
∫ T−t

0

A(ξ)

ξ
δ−1

2
√

δ (T − t)+(1−δ)ξ
eEξ−M(S) 1

δ (T−t)+(1−δ)ξ dξ ,

E is a constant given by

E =
[γ −δ −α(1−δ)]2 σ2

0
2(δ −1)

+β (δ −1)

and

M(S) =
δ

2σ2
0

(
log
(

S
K

))2

+
[γ −δ −α(1−δ)]δ (T − t)

1−δ
log
(

S
K

)
+
[γ −δ −α(1−δ)]2 σ2

0 δ (T − t)2

2(1−δ)2 .

The analytic approximation of the option price V (S, t) can then be evaluated via equation

(1.14) using numerical integration. Note that the approximate formula in equation (1.14)

in fact works well only when the parameter ε is small. When ε is getting larger, the

approximation may be inaccurate which was examined with different examples in [29].

1.3.2 Transformation Method

A numerical method proposed and investigated by Jandačka and Ševčovič [67] is based on

the transformation H = SVSS,x = log(S/K),τ = T − t, which transforms equation (1.3) with

σ = σ(S, t,VSS) into a porous media type of quasilinear parabolic equation:

∂H
∂τ

=
∂ 2

∂x2 β (H)+
∂

∂x
β (H)+ r

∂H
∂x

, (1.16)

where β (H) = 1
2σ2(H)H is an increasing function. For instance, in the case of the volatility

function given by (1.9) for λ (S) = 1, one obtains β (H) =
σ2

0
2 H (1−ρH)−2. In a recent paper

[106], Ševčovič and Žitňanská investigated the nonlinear equation (1.16) in the context of

1.3 Numerical Solutions 9

modeling variable transaction costs. The existence of classical Hölder smooth solutions

was proved and useful bounds for the solution were derived. The transformation technique

developed allows for the construction of a semi-implicit finite volume based numerical

scheme for solving (1.16) which more details can be checked in [67, 105].

1.3.3 Backward Stochastic Differential Equation

There exists a connection between the fully nonlinear PDE and the corresponding Backward

Stochastic Differential Equation (BSDE) as stated in [37, 93] which provides a probabilistic

approach for solving equation (1.3). The BSDE can be first order or second order depending

on the chosen nonlinear volatility model as described in [54]. The BSDE approach allows

the use of Monte Carlo simulation to solve a wide range of class of nonlinear PDE and has

been investigated in recent years. For examples, Bouchard and Touzi introduced a simulation

based on the discrete-time approximation [11] and applied it to the solution of fully nonlinear

parabolic PDEs in [38]. Gobet proposed a regression-based Monte Carlo method for solving

the BSDE in [50] and Alanko [1] gave a higher-order scheme based on this technique and

remedied the drawback of small time steps. More details of employing this approach for

solving fully nonlinear PDEs can be found in [49, 54].

The BSDE approach has the intrinsic potential of being easily implemented on parallel

computing platforms. Labart [77] showed an implementation of using a cluster with multiple

CPUs to simulate the BSDE, and with an application of pricing American option in [76].

Gobet also provided a framework of using GPUs for solving the BSDE with the stratified

regression Monte-Carlo scheme in [51]. The results of applying parallel computing all show

very good performance as the dimension grows.

10 Introduction

1.4 Research Objectives and Thesis Outline

In addition to the approximate formula or probabilistic approach, the finite difference method

provides a straightforward numerical approach to solve the nonlinear Black-Scholes equation

described in equation (1.3). Solving linear PDEs with the finite difference method has been

studied for decades and many classical schemes and their numerical analysis have been

applied to examples from finance (see [28, 58]). A variety of improvements or updated

schemes are emerging in recent years concentrating on nonlinear problems. There are some

difficulties when using the finite difference method for solving nonlinear PDEs. For ex-

ample, the nonlinearity may affect the expected accuracy from the discretisations which

sometimes causes the expected accuracy from the chosen scheme to be only be observed

in one-dimensional problems. Also the increasing complexity of the problem means that

building the nonlinear solver is more time-consuming compared to solving linear cases.

In this thesis, robust and efficient finite difference solvers for handling the nonlinear

Black-Scholes equation (1.3) are proposed with the implementation of parallel computing and

extension to high-dimensional problems. The focus for the nonlinearity is on the Frey-Patie

model of equation (1.9) which essentially gives a mechanism for understanding the market

impact on the option price in illiquid markets, but the methodology developed in this thesis

is by no means of restricted to this model. The structure of this thesis is depicted in Fig. 1.1

which illustrates all the chapters with the associated topics. To be more precise, three research

objectives with achieved results are summarised below.

1.4.1 Newton-based Solvers for Nonlinear Black-Scholes Equations

Unlike solving the linear PDE, which keeps a constant matrix constructed from the finite

difference spatial discretisation in a time-marching scheme, when handling the nonlinear

PDE, iterative schemes are required and the coefficients of the matrix have to be evaluated

at each time step. Therefore a core issue for making the finite difference solver robust is

1.4 Research Objectives and Thesis Outline 11

Fig. 1.1 The structure of the thesis.

12 Introduction

to reduce the necessary number of iterations and guarantee that the iterative scheme works

successfully. Several research questions are discussed as follows.

• How to construct nonlinear solvers to make the iterative scheme work robustly and

efficiently?

• Whether the expected accuracy of the chosen scheme can be obtained and how can it

be improved?

• How well do the constructed solvers work compared to other solvers?

In Chapter 2, detailed descriptions of constructing Newton-based solvers for nonlinear

Black-Scholes equation are given. They are based upon using Newton-Raphson method

for solving the nonlinear system generated from the finite difference spatial discretisaion.

The benefit of using Newton-Raphson method is a rapidly convergent result for the iterative

scheme, and the cost is the extra computations to obtain the Jacobian matrix. Different

numerical experiments were designed and carried out to demonstrate that the Newton-based

solvers can behave more robustly than elementary fixed point iteration. Also, comparisons

with some other Newton-like methods show that the Newton-based solvers have better effi-

ciency due to the simple tri-diagonal structure of the matrix.

Furthermore, possible adjustments for improving the accuracy are also proposed. It is

commonly observed that some theoretical values from the convergent order of error are not

easily achieved or are only obtained with very fine meshes. Some numerical oscillation

problems may also destroy the higher order accuracy or lead to instability of the solver. In

Chapter 2, a coordinate stretching technique introduced in [94] is applied which provides

the adjustment of the grid points close to S = K, and the usual convergent behaviour of

1.4 Research Objectives and Thesis Outline 13

the error can be observed without using a large number of grid points. The Rannacher

timestepping method from [100] is also examined which remedies the oscillation problem

and this approach combined with the coordinate stretching, eventually can help to recover

the higher order accuracy. In addition, the technique of using Richardson extrapolation to

cancel the solution error is described which results in improved answers by extrapolating

using the answers from coarse meshes. These numerical adjustments indeed contribute to

resolving the accuracy issue from the nonlinear problem supporting the applicability and

usefulness of the constructed Newton-based solvers.

1.4.2 GPU Computing Implementations

In the financial industry, good quality and productive systems are always in high demand

to deal with large-scale problems from the real market. The use of the nonlinear models

addressed in Sec 1.1 potentially allows traders to obtain more realistic and accurate option

prices. However one main drawback comes from the computational cost issue as calculating

the price now takes much more time than using the standard linear model or approximate

solutions. Parallel computing shows the possibility of bridging the gap between the accurate

price and the efficient proxy. Questions linked to this subject are discussed as follows.

• What is the best framework of doing parallel computing on the constructed nonlinear

PDE solvers for large-scale problems?

• What are the possible implementations using high-level libraries or software?

• What is the achieved performance compared with using sequential algorithm?

14 Introduction

• How well does this approach work for nonlinear PDE solvers in terms of the perfor-

mance and programming time?

To answer these questions, in Chapter 3 a framework for solving large-scale nonlinear

PDEs with GPUs is proposed. The substantive tasks are decomposing the PDE solver into dif-

ferent steps of numerical linear algebra computations which are activated by batch operation.

Two different implementations are examined for the constructed nonlinear batched solver

for the given independent nonlinear PDEs. First the commercial software OpenACC which

allows the user to do GPU computing easily without writing too much code. Second, fine

tuning of the CUDA programming is explored with deeper control and manipulation of the

threading and memory allocation to fit the specified problems. Furthermore, the idea of using

multiple GPUs for the batched solver is proposed and implemented. The results achieved

from both implementations show good speedups compared to the sequential computation

and verify the effectiveness of the batch operation.

1.4.3 High-dimensional Problems

Most contemporary research on nonlinear option pricing focuses on the one-dimensional

problem due to the difficulty of building the numerical solvers. There is very little literature

on high-dimensional problems. Therefore the motivation for Chapter 4 and Chapter 5 is

solving nonlinear models in high-dimensional cases by proposing efficient numerical PDE

solvers. The questions discussed in these two chapters are as follows.

• What is the structure of nonlinear option pricing problems and the resulted nonlinear

PDEs in high-dimensional cases?

• What are the methods to reduce the problems to lower dimension cases?

1.5 Summary 15

• How to combine the constructed Newton-based solvers with these methods to solve

high-dimensional nonlinear PDEs?

In Chapter 4, the extension of the Frey-Patie model for Asian options is introduced to

handle the market impact for the price of Asian option in illiquid markets. The generated

mathematical problem becomes a two-dimensional nonlinear PDE and the focus is on con-

structing the numerical solvers. Using a semi-Lagrangian scheme reduces the complexity of

the problem to lower dimensional cases, and the Newton-based solvers developed in Chapter

2 are immediately applicable. The results show the merged scheme is able to compute the

Asian option pricing with nonlinear volatility effectively.

Chapter 5 discusses the multi-asset problem which is another kind of high-dimensional

case considered in this thesis. A derivation of a generalised Frey-Patie model with multiple

assets is given in the beginning of the chapter, and then a constructed ADI-Newton solver is

explained which combines the advantages of using the ADI method to solve high-dimensional

PDE and the developed robust Newton-based solver for dealing with the nonlinearity. The

implementation of this scheme is explained with details and the convergence properties on

several two-dimensional test problems are presented in the thesis.

1.5 Summary

Chapter 1 draws the contour of the whole thesis, and several models and existing numerical

techniques are reviewed. Three main research objectives are addressed and answered in the

following four chapters which contribute to different areas, such as numerical solvers, parallel

computing in nonlinear option pricing. The next chapter starts with the fundamental finite

difference method to construct the Newton-based solver for the nonlinear Black-Scholes

equation.

Chapter 2

Newton-based Solvers

In chapter 2, implicit finite difference schemes for solving the fully nonlinear PDE stated in

equation (1.3) are examined. The focus is on solving the corresponding nonlinear system

resulting from the finite difference spatial discretisation, and different Newton linearisation

techniques are applied and compared. Numerical results on the convergence of the numerical

scheme are shown and explained, and possible remedies for achieving higher order accuracy

are examined.

2.1 Introduction

The essential mathematical problem from nonlinear option pricing is to solve the fully

nonlinear PDE
∂V
∂ t

+
1
2

σ
2S2 ∂ 2V

∂S2 + rS
∂V
∂S

− rV = 0, (2.1)

with typical nonlinear volatility functions σ = σ(S, t,VSS). The finite difference method is

a straightforward way to solve the PDE numerically and many schemes have appeared for

handling different nonlinear volatility models in recent years.

Explicit schemes have been widely used due to a simple computation which only requires

a linear combination of known values to update the solution at the next time step. A consistent

monotone explicit finite difference scheme has been analysed by Company [17] for solving

18 Newton-based Solvers

the Frey-Patie model. Bučková [13] introduced the so-called Alternative Direction Explicit

(ADE) scheme for dealing with different nonlinear models and this method is based on an

explicit scheme but with better accuracy on temporal discretisation. These explicit schemes

have to guarantee stability and consistency requiring some restrictions on the ratio of the sizes

of the temporal and spatial discretisations and sometimes results in excessive computation.

It is possible to combine other techniques for constructing unconditionally stable explicit

schemes as shown in [36, 53], but with other limitations on parameters to ensure the positivity.

Implicit schemes have less restrictions on the step sizes but require paying the cost of

solving a linear system at each time step. Pooley [99] studied the fully implicit and Crank-

Nicolson schemes of solving the uncertain volatility model. Heider [57] examined these

schemes for additional nonlinear volatility models. These implicit schemes generate a corre-

sponding nonlinear system to be solved at each time step and Newton-Raphson method was

applied in both papers [57, 99]. Ďuriš et al. [29] compared different linearisation techniques

based on Newton-Raphson method to solve equation (2.1). Egorova [33] compared using

explicit and implicit schemes to solve the transaction cost model proposed by Barles and

Soner in equation (1.5) for the American option case. These approaches demonstrate some

advantages of solving the nonlinear PDE by merging implicit schemes with Newton-Raphson

method.

In the following sections, a detailed explanation of using implicit schemes to solve equa-

tion (2.1) for European option case is given. The selected nonlinear model in this thesis is the

model introduced by Frey [43] which addresses the importance of the liquidity impacts. An

overview and derivation of the model is given first, followed by a discussion of a finite differ-

ence discretisation to solve such nonlinear PDE. The discussions on numerical convergence

to viscosity solution follow the same ideas from [57, 99], and different methods of solving

the derived nonlinear system are compared. Moreover, variant improvements in terms of

accuracy are examined such as using coordinate stretching and Rannacher timestepping,

2.2 Mathematical Modelling 19

which higher order of accuracy can be recovered. Comparisons of the complexity from

different kinds of Newton-based solvers are shown at the end of this chapter.

2.2 Mathematical Modelling

Departing from the liquid market assumption in the Black-Scholes model, it is known that

people can not trade as they expect. Therefore the hedging strategies from the traders could

influenc prices as they may not be able to obtain sufficient assets to eliminate the risk. The

result is the dynamics of asset price may be driven by the strategies from the investors to

hold or sell the shares. Typical examples can be discovered in an illiquid market when there

exists a large trader whose trades have a large impact, and in such cases it is necessary to

include this strategy into the dynamics of the underlying asset price. In the following the

ideas given by [42, 43, 105, 113] are followed in order to derive the Frey-Patie model and

corresponding PDE of the option price.

Assuming that the price of an underlying asset St is influenced by some holding and

hedging strategies from a large trader, or different small traders who apply the same strategies,

in an illiquid market, and it satisfies the process

dSt = µ0Stdt +σ0StdWt +ρStdαt , (2.2)

where Wt is a standard Brownian motion, µ0 is the drift term, σ0 is the historical volatility, ρ

is the liquidity of the market, and αt is the strategy function which shows how many shares

the investor should hold at a given time t. More precisely, let αt = φ(St , t), then by Itô’s

formula

dαt =

(
∂φ

∂ t
+

σ2
0

2
∂ 2φ

∂S2

)
dt +

∂φ

∂S
, (2.3)

and equation (2.2) can be replaced as

(
1−ρSt

∂φ

∂S

)
dSt = µ0Stdt +σ0StdWt +ρSt

(
∂φ

∂ t
+

σ2
0

2
S2

t
∂ 2φ

∂S2

)
dt, (2.4)

20 Newton-based Solvers

which can be simplified as

dSt = µ(St , t)Stdt +σ(St , t)StdWt , (2.5)

with

µ(S, t) =
1

1−ρS∂φ

∂S

(
µ0 +ρ

(
∂φ

∂ t
+

σ2
0

2
S2 ∂ 2φ

∂S2

))
,

and

σ(S, t) =
σ0

1−ρS∂φ

∂S

.

The strategy function φ(St , t) can be chosen to be

φ(St , t) =
∂V
∂S

as shown in [43]. By taking W̃t =Wt +
µ−r

σ
t to change the equation to risk-neutral measure,

and using Feymann-Kac theorem as stated in [107], the nonlinear Black-Scholes equation

under this Frey-Patie model is

∂V
∂ t

+
1
2

σ
2(S, t)S2 ∂ 2V

∂S2 + rS
∂V
∂S

− rV = 0 (2.6)

with

σ(S, t) =
σ0

1−ρS∂ 2V
∂S2

= σ0(1−ρSVSS)
−1, (2.7)

which allows the pricing of European option in an illiquid market.

Note that from the discussion in [43], the liquidity is more gererally controlled by a

liquidity profile λ (S) which gives

σ = σ0(1−ρλ (S)SVSS)
−1. (2.8)

2.2 Mathematical Modelling 21

90 95 100 105 110
0

5

10

15

20

S

λ
(S

)

Liquidity profile

Fig. 2.1 The liquidity profile function from equation (2.9).

The liquidity profile can actually be parametrised specificity for fitting the volatility smile or

skew. For example, taking the profile function as used in [43]

λ (S) = 1+(S−S0)
2 (a11S≤S0 +a21S>S0) , (2.9)

where 1 represents the indicator function. If the parameters are fixed to be T = 0.25,σ0 =

0.2,S0 = 100,a1 = 0.5,a2 = 0.01,ρ = 0.01, then Fig. 2.1 shows the liquidity profile and

Fig. 2.2 presents the volatility from Frey-Patie model which can perform the behaviour of a

volatility skew.

Fig. 2.3 also gives an example of calculating the option pricing with different liquidities

ρ where the liquidity profile function is considered as λ (S)≡ 1, and it can be observed that

the price is getting larger when ρ increases.

22 Newton-based Solvers

90 95 100 105 110
0.2

0.25

0.3

0.35

0.4

S

σ
Volatility

Fig. 2.2 Volatility obtained from equation (2.8) with the profile function shown in equation
(2.9).

90 95 100 105 110
0

2

4

6

8

10

12

S

V
(S

,t
=

 0
)

Price with different values ρ

ρ = 0
ρ = 0.025
ρ = 0.05

Fig. 2.3 Option prices with the volatility in equation (2.7) and different liquidities ρ .

2.3 Finite Difference Discretisation 23

2.3 Finite Difference Discretisation

Using standard finite difference notation, an implicit finite difference scheme based on

θ -method replaces equation (2.6) reads as follows:

V n−1
i −V n

i
∆t

= θL (V n−1
i)+(1−θ)L (V n

i), (2.10)

where

L (V n
i) =

1
2
(σn

i)
2 S2

i
V n

i+1 −2V n
i +V n

i−1

(∆S)2 + rSi
V n

i+1 −V n
i−1

2∆S
− rV n

i .

Here the computational domain is truncated as V (S, t) ∈ [0,Smax]× [0,T), and Si = i∆S, i =

0, · · · ,NS − 1 also n = 0, · · · ,Nt − 1, where NS and Nt are the numbers of grid points for

spatial and temporal discretisations respectively and ∆S = Smax/(NS −1),∆t = T/(Nt −1).

V n
i is the discretised replacement of V (i∆S,n∆t). Note the calculation here is backward from

n = Nt −1 to n = 0. The volatility function σn
i is evaluated as

σ
n
i = σ0

(
1−ρSi

V n
i+1 −2V n

i +V n
i−1

(∆S)2

)−1

.

When choosing θ = 1, equation (2.10) becomes the fully implicit (or Backward Euler)

scheme and may be written as the nonlinear system

H(V n−1)V n−1 =V n, (2.11)

where H is a (NS −2)× (NS −2) tri-diagonal matrix defined as [a,b,c] and a,b,c are (NS −

2)×1 column vectors representing the lower, main and upper diagonal entries of H which

are

ai =
∆t
2

(
−rSi

∆S
+

(
σ

n−1
i
)2

S2
i

(∆S)2

)
, bi = 1−∆t

((
σ

n−1
i
)2

S2
i

(∆S)2 + r

)
, ci =

∆t
2

(
rSi

∆S
+

(
σ

n−1
i
)2

S2
i

(∆S)2

)
,

where i = 1, · · ·NS −2.

24 Newton-based Solvers

Similarly when choosing θ = 0.5, equation (2.10) is called the Crank-Nicolson scheme

and the problem can be stated as the nonlinear system

H1(V n−1)V n−1 = H2(V n)V n, (2.12)

where H1 and H2 are again (NS −2)× (NS −2) tri-diagonal matrices defined as [ã, b̃, c̃] and

[d̃, ẽ, f̃], here again ã, b̃, c̃, d̃, ẽ, f̃ are (NS − 2)× 1 column vectors representing the lower,

main and upper diagonal entries of H1 and H2 which are

ãi =
∆t
4

(
−rSi

∆S
+

(
σ

n−1
i
)2

S2
i

(∆S)2

)
, b̃i = 1−∆t

2

((
σ

n−1
i
)2

S2
i

(∆S)2 + r

)
, c̃i =

∆t
4

(
rSi

∆S
+

(
σ

n−1
i
)2

S2
i

(∆S)2

)
,

d̃i =
∆t
4

(
rSi

∆S
−

(σn
i)

2 S2
i

(∆S)2

)
, r̃i = 1+

∆t
2

(
(σn

i)
2 S2

i

(∆S)2 + r

)
, f̃i =

∆t
4

(
−rSi

∆S
−

(σn
i)

2 S2
i

(∆S)2

)
,

where i = 1, · · ·NS −2.

2.3.1 Numerical Convergence to the Viscosity Solution

As stated in Section 1.2, when discussing the solution of nonlinear equations from finance, the

viscosity solution is the best choice. Barles [5, 6] proved that for any monotone, consistent

and stable finite difference scheme converges to the unique viscosity solution. This provides

clear assertion when one wants to show that the numerical scheme converges to the unique

viscosity solution. The results of proving consistency is standard and can be found from [108].

Pooley [99] demonstrated the fully implicit and Crank-Nicolson schemes converge under

certain conditions for the uncertain volatility model, and Heider [57] showed similar results

for different nonlinear volatility models under a transformed coordinate. Following this

approach the convergence to the viscosity solution for Frey-Patie model shown in equation

(2.7) is as follows.

2.3 Finite Difference Discretisation 25

Let Γn
i = Γn

i (V
n
i−1,V

n
i ,V

n
i+1) be the evaluation of VSS with {V n

i−1,V
n
i ,V

n
i+1} by finite differ-

ences, namely

Γ
n
i (V

n
i−1,V

n
i ,V

n
i+1) =

V n
i+1 −2V n

i +V n
i−1

(∆S)2 , (2.13)

and σn
i = σn

i (Si, tn,Γn
i (V

n
i−1,V

n
i ,V

n
i+1)) which in the Frey-Patie model is

σ
n
i = σ0

(
1−ρSi

V n
i+1 −2V n

i +V n
i−1

(∆S)2

)−1

= σ0 (1−ρSiΓ
n
i)

−1 , (2.14)

then

Γ
n
i (V

n
i−1 + ε,V n

i ,V
n
i+1) = Γ

n
i (V

n
i−1,V

n
i ,V

n
i+1 + ε) = Γ

n
i +

ε

(∆S)2 ,

Γ
n
i (V

n
i−1,V

n
i + ε,V n

i+1) = Γ
n
i −

2ε

(∆S)2 ,
(2.15)

and the relations below follow from equations (2.14) and (2.15):

σ
n
i (Si, tn,Γn

i (V
n
i−1 + ε,V n

i ,V
n
i+1)) = σ

n
i (Si, tn,Γn

i (V
n
i−1,V

n
i ,V

n
i+1 + ε))≥ σ

n
i ,

σ
n
i (Si, tn,Γn

i (V
n
i−1,V

n
i + ε,V n

i+1))≤ σ
n
i ,

(2.16)

for all ε > 0. Note that the term (1−ρSVSS) is assumed to be positive. With these relations it

is sufficient to prove the following lemmas.

Lemma 1. (Monotonicity of the Fully Implicit Scheme) When θ = 1 in equation (2.10),

the fully implicit scheme is monotone if σ2S
∆S − r ≥ 0.

Proof. Let fi(V n−1
i−1 ,V n−1

i ,V n−1
i+1 ,V n

i) = 0 represent the discrete equation (2.10) for θ = 1 ;

then it is necessary to show that ∀ε > 0

(a) fi(V n−1
i−1 + ε,V n−1

i ,V n−1
i+1 ,V n

i)≥ fi(V n−1
i−1 ,V n−1

i ,V n−1
i+1 ,V n

i)

(b) fi(V n−1
i−1 ,V n−1

i ,V n−1
i+1 + ε,V n

i)≥ fi(V n−1
i−1 ,V n−1

i ,V n−1
i+1 ,V n

i)

(c) fi(V n−1
i−1 ,V n−1

i + ε,V n−1
i+1 ,V n

i)≤ fi(V n−1
i−1 ,V n−1

i ,V n−1
i+1 ,V n

i)

(d) fi(V n−1
i−1 ,V n−1

i ,V n−1
i+1 ,V n

i + ε)≥ fi(V n−1
i−1 ,V n−1

i ,V n−1
i+1 ,V n

i)

26 Newton-based Solvers

The inequalities (b) and (c) hold immediately from equations (2.15) and (2.16). For the

inequality (a),

fi(V n−1
i−1 + ε,V n−1

i ,V n−1
i+1 ,V n

i)≥ fi(V n−1
i−1 ,V n−1

i ,V n−1
i+1 ,V n

i)+

εSi

(
(σn−1

i)2Si
∆S − r

)
2∆S

≥ fi(V n−1
i−1 ,V n−1

i ,V n−1
i+1 ,V n

i),

(2.17)

where the inequality holds from the initial assumption.

The inequality (d) holds also immediately since

fi(V n−1
i−1 ,V n−1

i ,V n−1
i+1 ,V n

i + ε) = fi(V n−1
i−1 ,V n−1

i ,V n−1
i+1 ,V n

i)+
ε

∆t

≥ fi(V n−1
i−1 ,V n−1

i ,V n−1
i+1 ,V n

i),

(2.18)

which concludes the proof.

Lemma 2. (Stability of the Fully Implicit Scheme) When θ = 1 in equation (2.10), the fully

implicit scheme is unconditionally stable.

Proof. The proof of stability can be found in [99].

Theorem 1. The fully implicit scheme converges to the viscosity solution of equation (1.3)

when ∆S → 0 and ∆t → 0.

Proof. The theorem is proved by using the facts of Lemma 1 and 2.

In the following a similar analysis is shown for θ = 0.5 in (2.10).

Lemma 3. (Monotonicity of the Crank-Nicolson Scheme) When θ = 0.5 in equation (2.10),

the Crank-Nicolson scheme is monotone if σ2S
∆S − r ≥ 0 and 1

∆t − r ≥ 0.

Proof. Let gi(V n−1
i−1 ,V n−1

i ,V n−1
i+1 ,V n

i−1,V
n
i ,V

n
i+1) = 0 represent the discrete equation (2.10) for

θ = 0.5; then again it is necessary to show that ∀ε > 0

(a) gi(V n−1
i−1 + ε,V n−1

i ,V n−1
i+1 ,V n

i−1,V
n
i ,V

n
i+1)≥ gi(V n−1

i−1 ,V n−1
i ,V n−1

i+1 ,V n
i−1,V

n
i ,V

n
i+1)

(b) gi(V n−1
i−1 ,V n−1

i ,V n−1
i+1 + ε,V n

i−1,V
n
i ,V

n
i+1)≥ gi(V n−1

i−1 ,V n−1
i ,V n−1

i+1 ,V n
i−1,V

n
i ,V

n
i+1)

2.3 Finite Difference Discretisation 27

(c) gi(V n−1
i−1 ,V n−1

i + ε,V n−1
i+1 ,V n

i−1,V
n
i ,V

n
i+1)≤ gi(V n−1

i−1 ,V n−1
i ,V n−1

i+1 ,V n
i−1,V

n
i ,V

n
i+1)

(d) gi(V n−1
i−1 ,V n−1

i ,V n−1
i+1 ,V n

i−1 + ε,V n
i ,V

n
i+1)≥ gi(V n−1

i−1 ,V n−1
i ,V n−1

i+1 ,V n
i−1,V

n
i ,V

n
i+1)

(e) gi(V n−1
i−1 ,V n−1

i ,V n−1
i+1 ,V n

i−1,V
n
i + ε,V n

i+1)≥ gi(V n−1
i−1 ,V n−1

i ,V n−1
i+1 ,V n

i−1,V
n
i ,V

n
i+1)

(f) gi(V n−1
i−1 ,V n−1

i ,V n−1
i+1 ,V n

i−1,V
n
i ,V

n
i+1 + ε)≥ gi(V n−1

i−1 ,V n−1
i ,V n−1

i+1 ,V n
i−1,V

n
i ,V

n
i+1)

The inequalities (b), (c) and (f) hold immediately again from equation (2.16). For

inequality (a),

gi(V n−1
i−1 + ε,V n−1

i ,V n−1
i+1 ,V n

i−1,V
n
i ,V

n
i+1)≥gi(V n−1

i−1 ,V n−1
i ,V n−1

i+1 ,V n
i−1,V

n
i ,V

n
i+1)+

εSi

(
(σn−1

i)2Si
∆S − r

)
4∆S

≥gi(V n−1
i−1 ,V n−1

i ,V n−1
i+1 ,V n

i−1,V
n
i ,V

n
i+1),

(2.19)

which holds from the initial assumptions.

Similarly for the inequality (d),

gi(V n−1
i−1 ,V n−1

i ,V n−1
i+1 ,V n

i−1 + ε,V n
i ,V

n
i+1)≥gi(V n−1

i−1 ,V n−1
i ,V n−1

i+1 ,V n
i−1,V

n
i ,V

n
i+1)+

εSi

(
(σn

i)
2Si

∆S − r
)

4∆S

≥gi(V n−1
i−1 ,V n−1

i ,V n−1
i+1 ,V n

i−1,V
n
i ,V

n
i+1),

(2.20)

which also follows from the assumptions.

Finally for the inequality (e),

gi(V n−1
i−1 ,V n−1

i ,V n−1
i+1 ,V n

i−1,V
n
i ,V

n
i+1 + ε)≥gi(V n−1

i−1 ,V n−1
i ,V n−1

i+1 ,V n
i−1,V

n
i ,V

n
i+1)+ ε

(
1
∆t

− r
)

≥gi(V n−1
i−1 ,V n−1

i ,V n−1
i+1 ,V n

i−1,V
n
i ,V

n
i+1),

(2.21)

which also holds from the assumptions and concludes the proof.

28 Newton-based Solvers

Lemma 4. (Stability of the Crank-Nicolson Scheme) When θ = 0.5 in equation (2.10), the

Crank-Nicolson scheme is unconditionally stable.

Proof. The proof of stability can be found in [99].

Theorem 2. The Crank-Nicolson scheme converges to the viscosity solution of equation (1.3)

when ∆S → 0 and ∆t → 0.

Proof. The theorem is proved by using the facts of Lemma 3 and 4.

The conditions of Lemma 1 and Lemma 3 can sometimes be violated when using improper

grid sizes or when the interest rate is large. Possible remedies could be applying upwinding

schemes for the discretisation of the convection term which has been examined in [81], or

restricting to the case of small interest rates followed in the numerical experiments in this

thesis.

2.3.2 Numerical Issues

By using the finite difference scheme (2.10), the problem of solving equation (2.6) becomes

solving the nonlinear system (2.11) or (2.12) depending on the chosen scheme. However,

two main problematic issues may occur in the numerical computation especially when the

time close to maturity.

The first issue arises from the non-smooth terminal condition, for examples, the European

call and put options. It is known that the payoff functions are not smooth at V (S = K, t = T),

and the infinite behaviour of Gamma, which is equal to ∂ 2V
∂S2 , is inevitable due to the dis-

continuity of Delta which is equal to ∂V
∂S . Even if choosing suitable number of grid points

to avoid calculating second derivative on V (S = K, t = T), such issue still occurs when the

grid size of spatial discretisation is too small. This infinite behaviour of Gamma can lead

to instabilities in the numerical solvers because Gamma is actually an input of the volatility

function which influences directly the entries of the nonlinear systems (2.11) and (2.12).

2.3 Finite Difference Discretisation 29

The second issue can be observed from equation (2.7), or equation (2.8) if considering a

non-constant liquidity profile function that singularity may occur if the denominator is equal

or very close to zero. This again could generate difficulties to construct a robust solver.

In [43], the authors proposed a smoothed version of the nonlinear Black-Scholes equation

to solve numerically like

∂V
∂ t

+
1
2

σ
2
0 S2 max

α0,
1

1−min
(

α1,λ (S)S∂ 2V
∂S2

) ∂ 2V
∂S2

= 0,

where r = 0 in this case and α0,α1 are positive constants. This setting can guarantee that

the denominator is always greater than zero, and avoid problems when the volatilities tend-

ing to be too large or small which performs an easy adjustment for the second issue. The

authors also suggested replacing the terminal condition with the prices from the standard

Black-Scholes formula with constant volatility from t = T to t = T − ε , and starting using

the implicit finite difference scheme to solve the nonlinear equation from t −T − ε to t = 0.

ε is recommended to choose typically 8% of the lifetime of the contract. This shifting trick

could potentially avoid the first issue since the terminal condition is no longer non-smooth.

However, it could bring too many strong assumptions within that time period as the Black-

Scholes formula is employed to obtain the option price.

Both issues were also investigated by Glover et al described in the full-feedback model

in [48]. The strategy to handle the numerical difficulties provided by the authors is based

on the Keller scheme (see [68]) which considers the nonlinear Black-Scholes equation as a

system of two first-order equations in V (S, t) and VS(S, t) = ∂V
∂S (S, t). The domain for S is

split into two regions, namely S > K and S < K and the grid points have to be chosen such

that S = K can coincide with one of the the grid points on S. Then at S = K, it is necessary to

compute two values of the option price such as V+ =V (S = K+, t),V− =V (S = K−, t) and

30 Newton-based Solvers

Delta V+
S =VS(S = K+, t),V−

S =VS(S = K−, t) such that

V− =V+, V+
S =V−

S −1,

for call option, and

V− =V+, V+
S =V−

S +1,

for put option. With such adjustment, the computations were shown highly robust and

independent of grid which can remedy the numerical issues.

There are other problematic issues which were analysed from the asymptotic analysis

close to expiry in [48] and can happen either with large λ or small σ . These kinds of

numerical difficulties may be from the insufficient modelling of considering the nonlinear

volatility in option pricing. However, the techniques provided in [48] enable to deal with

basic problems with suitable parameters, and to incorporate with the numerical methods to

solve the nonlinear systems (2.11) and (2.12) which are introduced in the next section.

2.4 Root-finding Problem

With the finite difference discretisation, equation (2.1) becomes a nonlinear system like those

shown in equation (2.11) or (2.12). These nonlinear systems cannot be solved directly in a

backward time-marching scheme as the entries of the tri-diagonal matrices depend on the

solution. Therefore it is necessary to apply an iterative scheme to obtain the solution.

A standard way is to consider solving the nonlinear system as a root-finding problem,

namely defining the root-finding function G as

G(V n−1) = H(V n−1)V n−1 −V n = 0, (2.22)

2.4 Root-finding Problem 31

when using the fully implicit scheme, and

G(V n−1) = H1(V n−1)V n−1 −H2(V n)V n = 0, (2.23)

when using the Crank-Nicolson scheme.

Note that V n−1 is the required solution at each time step in this backward time-marching

process, and V n is the known value at the current time step. In a given iterative scheme to

solve equation (2.22) or (2.23), the nonlinear volatility depends on the unknown value V n−1

which is initially approximated by an initial guess V ∗, i.e.

σ
n−1
i ≈ σ0

(
1−ρSi

V ∗
i+1 −2V ∗

i +V ∗
i−1

(∆S)2

)−1

,

and in the following sections two different iterative schemes are introduced.

2.4.1 Frozen Coefficient Method

The frozen coefficient method is widely used when solving such nonlinear problem as the

implementation simply uses the idea of fixed point iteration. In each iterative step, the

stopping condition is to check whether the difference of the solved solution and the previous

iteration is smaller than a given tolerance. Algorithm 1 describes the details and note the Nite

is a maximum tolerated number of iterations which judges whether the iterative scheme is

convergent or not. The initial guess V ∗ at the first time step is picked up from the payoff

function, and for the rest of the time steps it is chosen to be the solution from the previous

time step.

2.4.2 Newton-Raphson Method

Algorithm 1 is an easy way to solve equation (2.1). However, a reliably convergent result is

normally only obtained when the temporal discretisation size ∆t is small. This is a drawback

of this method as it may force the use of a large number of grid points along the temporal

32 Newton-based Solvers

Algorithm 1: Frozen Coefficient Method
Input: terminal condition V Nt−1 =V (S, t = T), initial guess V ∗, tol
Output: V 0 =V (S, t = 0)
for n = Nt −1 : 1 do

V ∗ =V n ;
for k = 1 : Nite do

1. Solve equation (2.22) or (2.23) to get V n−1 ;
2. err =V ∗−V n−1 ;
if ∥err∥< tol then

V n−1 =V ∗, break;
else

V ∗ =V n−1, go back to 1.;
end

end
end

end

axis with little gain compared to using fully explicit scheme.

Newton-Raphson method in fact offers a better adaptive root search in the iterative scheme.

The main idea is to have a corrective direction to help updating the root-finding algorithm

which requires the Jacobian matrix Jac(G) of the root-finding function G. Algorithm 2

describes the details of solving the problem by Newton-Raphson method. Again the initial

guess at the first time step is often picked up as the same value from payoff function to

ensure it is within the convergent region, and for the rest of time steps it is chosen to be the

solution from the previous time step. Jac(G(V ∗)) means the Jacobian matrix evaluated at V ∗.

The stopping condition shown in Algorithm 2 is designed to check whether the root-finding

function is close enough to 0 as

∥G(V ∗)∥
max(1,∥V ∗∥)

< tol,

here tol is a given tolerance which usually is chosen to be a small number, and ∥V ∗∥

represents the norm of the vector V ∗. In fact some alternative stopping conditions can be

2.4 Root-finding Problem 33

considered like checking the updating term res such as

∥res∥
max(1,∥V ∗∥)

< tol,

where

res =− [Jac(G(V ∗))]−1 G(V ∗).

Fig. 2.4 shows the same behaviour of using these two different stopping conditions on the

number of iterations for the first ten time steps when solving the Frey-Patie model.

Algorithm 2: Newton-Raphson Method
Input: terminal condition V Nt−1 =V (S, t = T), initial guess V ∗, tol
Output: V 0 =V (S, t = 0)
for n = Nt −1 : 1 do

V ∗ =V n ;
for k = 1 : Nite do

1. Calculate G(V ∗) by equation (2.22) or (2.23) ;
2. Calculate res = − [Jac(G(V ∗))]−1 G(V ∗) ;
3. if ∥G(V ∗)∥

max(1,∥V ∗∥) < tol then
V n−1 =V ∗, break;
else

V ∗ =V ∗+ res, go back to 1.;
end

end
end

end

Jacobian Matrix

One difficulty of implementing a root-finding solver with Newton-Raphson method is to

compute the Jacobian matrix efficiently. It is time-consuming using a small perturbation to

calculate this because it requires the evaluation of the root-finding function twice. Instead, a

derived formula can be achieved by applying a decomposition

H(V n−1) = Σ
n−1 Ha +Hb, where Σ

n−1 = Diag((σn−1
i)2).

34 Newton-based Solvers

0 2 4 6 8 10
4

4.5

5

5.5

6

6.5

7

time step

nu
m

be
r

of
 it

er
at

io
ns

0 2 4 6 8 10
4

4.5

5

5.5

6

6.5

7

time step

nu
m

be
r

of
 it

er
at

io
ns

Fig. 2.4 Number of iterations during the first ten time steps for solving the Frey-Patie model
with NS = 121,Nt = 61. The upper plot uses the root-finding function as a stopping condition
and the lower plot uses the residue as a stopping condition.

2.4 Root-finding Problem 35

Note that Ha and Hb are constant tridiagonal matrices. By using this decomposition, the

Jacobian matrix of G becomes

Jac(G(V n−1)) =
∂ [H(V n−1)V n−1]

∂V n−1 = H(V n−1)+Diag(HaV n−1)∇(Σn−1) ,

where

∇(Σn−1) = ((∇(σn−1
1)2)T ,(∇(σn−1

2)2)T , ...,(∇(σn−1
NS−2)

2)T)T ,

here ∇(σn−1
i)2 is treated as a row vector. Then for the Frey-Patie model in equation (2.7),

the formulas are obtained as

Ha =
θ∆tS2

2(∆S)2 × [1,−2,1],

(∇(σn−1
i)2)T =

2σ
n−1
i σ0ρSi(

∆S
(

1−ρSi
V n−1

i+1 −2V n−1
i +V n−1

i−1
(∆S)2

))2 .

Here again the matrix form [1,−2,1] means a tri-diagonal matrix with lower diagonal entries

equal to 1, main diagonal entries equal to -2 and upper diagonal entries equal to 1.

Damped Updating

Newton-Raphson method provides an efficient way to find the root. Sometimes the updating

direction may become too large resulting an unnecessarily large change to the current

approximate solution leading to a loss in accuracy. Equally this large change may lead to

oscillations of the root-finding function affecting the convergence of the solution. In order

to avoid this situation, a damping factor η is usually inserted in order to provide a smaller

and safer correction in the updating process. This leads to a change in the updating formula

listed in Algorithm 2, to

V ∗ =V ∗+η × res,

36 Newton-based Solvers

where res = − [Jac(G(V ∗))]−1 G(V ∗). η may be chosen as 2−m as suggested in [69] such

that m is the smallest integer satisfying

∥∥G(V ∗+2−m × res)
∥∥< (1−α2−m)∥G(V ∗)∥ ,

where α is usually chosen as a small number. When taking α = 0, this setting can guarantee

that G would be monotone decreasing in the iterative loop and avoid any oscillation.

Fig 2.5 shows an example of using a damped factor in Newton-Raphson method to

achieve an adaptive updating. It can be observed that using damped Newton’s method

avoids the oscillations of the root-finding function, although it may require evaluation of the

root-finding function at least twice within a Newton-Raphson iteration. However this extra

cost can guarantee a more robust result when applying Newton-based solvers.

2.4.3 Numerical Experiments

The numerical experiment described here was to solve a European call option with Frey-Patie

model where the terminal and boundary conditions were taken as
V (S,T) = (S−K)+, for 0 ≤ S < Smax

V (0, t) = 0, for 0 ≤ t ≤ T

V (S, t) = S−Ke−r(T−t), when S = Smax

and the model parameters were chosen to be: K = 100,Smin = 0,Smax = 300,T = 1. The

liquidity parameter in the Frey-Patie model in equation (2.7) was chosen to be ρ = 0.01. The

tolerance for Newton’s iterations was set to be tol = 10−10. The experiments were designed

to examine different σ0 and r.

2.4 Root-finding Problem 37

Fig. 2.5 Results of solving the Frey-Patie model by Newton-Raphson method without damped
updating (the upper plot) and with damped updating (the lower plot).

38 Newton-based Solvers

Table 2.1 Fully implicit scheme with the l2 norm for the case r = 0.01 and σ = 0.4.

NS Nt V (Newton) V (Frozen) Di f f Err R eoc ˆErr R̂ ˆeoc

61 31 16.4039 16.4039 4.2e-09 0.058 2.35 1.23 0.105 2.26 1.18
121 61 16.4627 16.4627 1.0e-09 0.025 2.10 1.07 0.046 2.17 1.12
241 121 16.4877 16.4877 1.7e-08 0.011 1.95 0.96 0.021 2.27 1.18
481 241 16.4997 16.4997 2.4e-08 0.006 1.87 0.90 0.009 2.86 1.51
961 481 16.5058 16.5058 1.3e-08 0.003 0.003
1921 961 16.5091 16.5091 6.9e-09

Table 2.2 Fully implicit scheme with the l∞ norm for the case r = 0.01 and σ = 0.4.

NS Nt V (Newton) V (Frozen) Di f f Err R eoc ˆErr R̂ ˆeoc

61 31 16.4039 16.4039 2.8e-09 0.058 2.35 3.13 0.105 2.26 1.18
121 61 16.4627 16.4627 2.2e-09 0.025 2.10 1.07 0.046 2.17 1.12
241 121 16.4877 16.4877 8.2e-08 0.011 1.95 0.96 0.021 2.27 1.18
481 241 16.4997 16.4997 5.2e-08 0.006 1.87 0.90 0.009 2.86 1.51
961 481 16.5058 16.5058 3.0e-08 0.003 0.003
1921 961 16.5091 16.5091 2.0e-08

The aim of the numerical experiment was to examine the experimental order of conver-

gence (eoc) at the point V (S = K, t = 0) constructed from the convergence rate of the error.

Two possible choices of defining the ratio were considered. Let Vh be the solution evaluated

with mesh sizes h∆S for the spatial discretisation, and h∆t for temporal discretisation; then

the ratio of error with asymptotic behaviour was constructed as follows

R =
∥Vh −Vh/2∥
∥Vh/2 −Vh/4∥

, (2.24)

where the eoc is equal to log2(R). The other choice is to take the solution evaluated with a

small mesh size to be the true solution and then the ratio of error can be defined as:

R̂ =
∥Vh −V̂∥
∥Vh/2 −V̂∥

, (2.25)

where V̂ is the solution evaluated with the most refined grid and the ˆeoc is equal to log2(R̂).

Table 2.1 and 2.2 show the results of using the fully implicit scheme. The value Di f f

is the difference of the solutions from Newton-Raphson method and the frozen coefficient

2.4 Root-finding Problem 39

Table 2.3 Average number of iterations in the first 5 time steps for the case r = 0.01 and
σ = 0.4.

NS Nt V (Newton) with l2 V (Frozen) with l2 V (Newton) with l∞ V (Frozen) with l∞
61 31 4.6 7.4 4.6 7.4
121 61 4.8 8.4 4.8 8.4
241 121 5.2 9.8 5.4 9.6
481 241 5.6 12 6.2 11.6
961 481 6.6 17.2 7 16.6
1921 961 10.8 64 11.6 60.2

method which demonstrates both converge to the the same solution. The behaviour of the

experimental order of convergence under the l2 norm and l∞ is the same and both definitions

of R and R̂ approximately match the theoretical value 1 for the fully implicit scheme. From

Table 2.3 the average number of iterations for the first five time steps when using Newton-

Raphson method and the frozen coefficient method are presented. The number of iterations

when using the frozen coefficient method is much higher when the grid size is smaller and

sometimes exceeds the maximum number of tolerated iterations causing the iterative process

to fail. Therefore Newton-Raphson method is a more robust way of solving this nonlinear

system.

It is worthwhile noting that for ˆeoc, which uses the solution with fine meshes to represent

the true solution V̂ , it is sometimes not easy to obtain an asymptotic behaviour if V̂ is not

accurate enough. Therefore another example presented here is to take the solution from

the approximate formula in equation (1.14), to be V̂ and then calculate ˆeoc. Fig. 2.6 shows

the results of using the fully implicit scheme with the cases ρ = 0.01,0.005,0.001. It can

be observed that when ρ is getting smaller, the values ˆeoc reach the theoretical value. The

results also demonstrate that the approximate formula in equation (1.14) works well when

the parameter ρ is small as discussed in [29].

Table 2.4 presents the same example but using the Crank-Nicolson scheme. The solution

becomes unstable when the spatial grid point reaches 121, due to ∆S becoming too small

and the oscillations occur around the region S = K (as shown in Fig 2.7 when using central

40 Newton-based Solvers

1 1.5 2 2.5 3

0.7

0.8

0.9

1

1.1

1.2

1.3

log
2
((N

S
−1)/30)

e
o
c

Fig. 2.6 ˆeoc with different liquidities. The line with blue circle is ρ = 0.01, the line with red
star is ρ = 0.005 and the line with green diamond is ρ = 0.001.

Table 2.4 Crank-Nicolson scheme with the l2 norm for the case r = 0.01 and σ = 0.4.

M N V (Newton) V (Frozen) Di f f Err R eoc

61 31 16.5483 16.5483 8.8e-10 0.208 1.03 0.04
121 61 16.7566 16.9196 0.16 0.201
241 121 16.9585 fail

2.4 Root-finding Problem 41

0 100 200 300
−0.4

−0.2

0

0.2

0.4

S

V
S

S
Gamma

0 100 200 300
0.2

0.3

0.4

0.5

0.6

0.7

S

σ

Volatility under Frey−Patie model

Fig. 2.7 Oscillation occurs when using a small grid size in the Crank-Nicolson scheme.

42 Newton-based Solvers

difference method to evaluate VSS). The oscillation influences strongly the order of accuracy

and some improvements can be applied to recover it which will be introduced in the next

section.

2.5 Accuracy Improvement

As mentioned in the previous section, the numerical scheme sometimes cannot achieve the

theoretical order of accuracy, as the nonlinearity may affect some of the properties of the

numerical solutions, e.g. like continuity or smoothness, or oscillations which can occur

when using smaller grid sizes. There are some strategies which potentially can recover the

expected accuracy of a scheme without requiring highly refined grids.

2.5.1 Coordinate Stretching

A coordinate stretching technique used in [94] provides an idea to adjust the grid points

around the most important region, normally close to S = K. The stretched coordinate x is

defined by

S =
K
λ

sinh(x−LS)+K, (2.26)

or inversely as

x = sinh−1
(

λ

K
(S−K)

)
+LS, (2.27)

where LS is the parameter to control the amount of stretching, and λ = sinh(LS). Let

S∗ = S/K, then from equation (2.27),

S∗ =
(sinh(x− sinh−1(λ))

λ
+1, (2.28)

which leads the adjustment of taking small values around S∗ = 1 which is equivalent to S = K

as shown in Fig 2.8.

2.5 Accuracy Improvement 43

0 10 20 30
0

0.5

1

1.5

2

2.5

3

mesh points

S
*

Stretched coordinate

Fig. 2.8 New coordinate points on the non-stretched mesh which shows more points are
employed close to the region S = K.

Applying this coordinate stretching, equation (2.1) becomes

∂V
∂ t

+
1
2
(σTλ (x))

2 ∂ 2V
∂x2 + r̃Tλ (x)

∂V
∂x

− rV = 0, (2.29)

where

Tλ (x) =
sinh(x−LS)+λ

cosh(x−LS)
,

r̃ = r− 1
2

σ
2Tλ (x) tanh(x−LS),

and the developed Newton-based solver described in Sec 2.4.2 can be applied as before to

solve equation (2.29). Table 2.5 shows the results using the fully implicit scheme with coor-

dinate stretching with the control size LS = 3 for the same numerical experiment provided in

Sec. 2.4.3 and the convergent behaviour of the ratio can be achieved without using refined

grid points.

44 Newton-based Solvers

Table 2.5 Fully implicit scheme with the l2 norm for the case r = 0.01 and σ = 0.4 under
stretched coordinate.

NS Nt Err R eoc ˆErr R̂ ˆeoc

31 16 0.063 1.78 0.83 0.125 2.02 1.01
61 31 0.035 2.03 1.02 0.061 2.35 1.23
121 61 0.017 2.01 1.01 0.026 3.00 1.58
241 121 0.008 0.008
481 241

2.5.2 Rannacher Timestepping

As observed from Fig 2.7, using the Crank-Nicolson scheme can have trouble with small

sizes of mesh which harms the order of convergence and the solution can converge to a wrong

one. Rannacher [100] proposed a methodology to remedy it. The idea is to replace the first

few Crank-Nicolson timesteps by fully implicit timesteps which less likely to oscillate. Giles

[47] also suggested some other techniques based on manipulating the timesteps of a fully

implicit scheme which can avoid this type of numerical oscillation.

Table 2.6 shows the result of replacing the first two timesteps by using the fully implicit

scheme, and for the remainder of the timesteps using the Crank-Nicolson scheme. Compared

with Table 2.4 it demonstrates that the oscillation problem can be cured by using Rannacher

timestepping even though second order accuracy is not achieved. Fig. 2.9 also presents the re-

sults of manipulating the timesteps which are replaced by the fully implicit scheme and it can

be found that replacing more timesteps may harm the accuracy. The choice of the number of

timesteps with Rannacher timestepping in fact depends on the case and needs empirical study.

Finally Table 2.7 gives the results of combining coordinated stretching with the control

size LS = 3 and Rannacher timestepping which replacing the first two time steps by fully

implicit scheme. It can be observed that without using large number of grid points the second

order accuracy can be recovered.

2.5 Accuracy Improvement 45

Table 2.6 Crank-Nicolson scheme with the l2 norm for the case r = 0.01 and σ = 0.4.
Rannacher timestepping is applied to replace the first two time steps by using fully implicit
scheme.

NS Nt Err R eoc ˆErr R̂ ˆeoc

61 31 0.0263 3.29 1.72 0.0398 2.95 1.56
121 61 0.0080 2.61 1.38 0.0134 2.46 1.30
241 121 0.0030 2.03 1.02 0.0054 2.28 1.18
481 241 0.0015 1.71 0.77 0.0023 2.71 1.43
961 481 0.0008 0.0008
1921 961

Table 2.7 Crank-Nicolson scheme with the l2 norm for the case r = 0.01 and σ = 0.4 under
stretched coordinate. Rannacher timestepping is applied to replace the first two time steps by
using fully implicit scheme.

NS Nt Err R eoc ˆErr R̂ ˆeoc

31 16 0.0067 1.59 0.67 0.0123 2.21 1.14
61 31 0.0042 4.02 2.01 0.0055 4.16 2.05
121 61 0.0010 3.74 1.90 0.0013 4.73 2.24
241 121 0.0002 0.0002
481 241

1 2 3 4
0.5

1

1.5

2

log
2
((N

S
−1)/30)+1

e
o

c

eoc with different Rannacher time stepping settings

Fig. 2.9 eoc of using Rannacher timestepping for replacing the first one time step (blue circle)
and first two time steps (red star) by fully implicit scheme. Here NS presents the grid points
for spatial discretisation.

46 Newton-based Solvers

2.5.3 Richardson Extrapolation

A technique of using Richardson extrapolation stated in [47, 94] is also worth trying. The

idea is to eliminate the lower order term from the truncation error by taking some linear

combination of the existing solutions. To be clear, suppose V is the exact solution of

the option price, and V (∆S,∆t) is the solution calculated by finite difference method with

temporal mesh size equal to ∆t and spatial mesh size equal to ∆S. Then for the fully implicit

scheme it is known that the leading truncation error term should satisfy O((∆S)2+∆t) which

implies:

V (∆S,∆t) =V + c1(∆S)2 + c2(∆t)+h.o.t, (2.30)

here c1,c2 are constants and h.o.t represents other higher order term. Similarly

V
(

∆S
2
,
∆t
2

)
=V + c1

(
∆S
2

)2

+ c2

(
∆t
2

)
+h.o.t. (2.31)

Now observe that

V (∆S,∆t)−V
(

∆S
2
,
∆t
2

)
=

3
4

c1(∆S)2 +
1
2

c2∆t +h.o.t,

which shows

2V
(

∆S
2
,
∆t
2

)
−V (∆S,∆t) =V +O((∆S)2 +(∆t)2),

and it indicates the formula for achieving the second order accuracy on time by extrapolating

the solutions from the fully implicit scheme as

VR(k,k/2) = 2V
(

∆S
2k

,
∆t
2k

)
−V

(
∆S
k
,
∆t
k

)
, k = 2i−1 ∀i ∈ N.

Following the same idea, for the case of using Crank-Nicolson scheme, the leading

truncation error term satisfies O((∆S)2 +(∆t)2) which implies:

V (∆S,∆t) =V +d1(∆S)2 +d2(∆t)2 +h.o.t, (2.32)

2.5 Accuracy Improvement 47

Table 2.8 Fully implicit scheme with the l2 norm for the case r = 0.01 and σ = 0.4.

NS Nt V (Newton) Err R eoc V (Richardson) Err R eoc

31 16 16.2437 0.160 2.72 1.45
61 31 16.4039 0.058 2.35 1.23 16.5641 0.0425 4.92 2.30
121 61 16.4627 0.025 2.10 1.07 16.5215 0.0086 7.20 2.85
241 121 16.4877 0.011 1.95 0.96 16.5128 0.0012 4.29 2.10
481 241 16.4997 0.006 1.87 0.90 16.5116 0.0002
961 481 16.5058 0.003 16.5119
1921 961 16.5091

here d1,d2 are constants and h.o.t represents other higher order term. Similarly

V
(

∆S
2
,
∆t
2

)
=V +d1

(
∆S
2

)2

+d2

(
∆t
2

)2

+h.o.t, (2.33)

and subtracting equation (2.33) by equation (2.32) gives

V (∆S,∆t)−V
(

∆S
2
,
∆t
2

)
=

3
4
(
d1(∆S)2 +d2(∆t)2)+h.o.t,

which leads to

4
3

V
(

∆S
2
,
∆t
2

)
− 1

3
V (∆S,∆t) =V +O((∆S)4 +(∆t)4),

and it suggests the formula that the fourth order accuracy could be obtained by extrapolating

the solutions from the Crank-Nicolson scheme as

VR(k,k/2) =
4
3

V
(

∆S
2k

,
∆t
2k

)
− 1

3
V
(

∆S
k
,
∆t
k

)
, k = 2i−1 ∀i ∈ N.

Note that the extrapolation technique works well mostly for the case with the stable

behaviour of the experimental order of convergent. An example is given in Table 2.8 using

the results from Table 2.1 to do the extrapolation, which shows the high order accuracy

solution can be extrapolated from the solutions on coarse meshes.

48 Newton-based Solvers

2.6 Other Newton-based Solvers

Solving the root-finding problem with Algorithm 2 leads to the numerical solution of the

original nonlinear partial differential equation (2.1). In this approach the inversion of the

Jacobian matrix was done using a tri-diagonal direct solver such as the Thomas algorithm.

This is sometimes called an exact Newton’s method as a direct solver is employed. In fact

some alternatives approaches may also be considered and introduced next.

2.6.1 Newton-like Methods

Different techniques that approximate the Jacobian matrix or solve the linear system with an

iterative solver can be applied. In general these approaches are called Newton-like methods.

Essentially these methods are suitable for some difficult situations, e.g. when the cost of

evaluating the Jacobian matrix is expensive or when analytic formula doesn’t exist, or the

matrix structure of generated nonlinear system is complicated and direct solvers are too slow.

Two standard techniques are described and compared here.

To simplify the notation, the root-finding problem listed in equation (2.22) and (2.23) are

rewritten in the form

G(v) = 0,

with the updating formula

vk+1 = vk +δvk, δvk =−[Jac(G(vk))]−1G(vk),

where k represents the iteration step.

Inexact Newton Methods

A major computational cost when applying Newton-Raphson method is the expense of

calculating the updating direction δvk, which requires the inversion of the Jacobian matrix

2.6 Other Newton-based Solvers 49

[Jac(G)]−1. Therefore reducing the number of iterations would be a way to shorten the

overall computation time. The idea is to perform a Newton iteration approximately, as shown

in [23] by finding an update direction which satisfies the inexact Newton condition

∥∥∥G(vk)+ Jac
(

G(vk)
)

δvk
∥∥∥< β

∥∥∥G(vk +δvk)
∥∥∥ ,

where β is known as the forcing term.

In terms of implementation there are two loops, one being the inner loop for finding the

updating direction and the other being the outer Newton iterative loop. The choice of β is

important. Small values of β reduce the iteration to simply Newton’s method. Other choices

of β may not improve the result, but rather lead to a poorer one. Discussions of suitable

choices can be found from [69, 72].

Broyden-type Method

Another approach to avoid the excessive computation of the Jacobian matrix is Broyden’s

method. From experiences gained through numerical experiments, a highly accurate Jacobian

matrix in each iteration is often unnecessary to achieve fast convergence. Broyden’s method

relies on the concept of a generalised secant method which leads to an iterative scheme for

approximating the Jacobian matrix,

Jac(G)k = Jac(G)k−1 +
∆G− Jac(G)k−1∆v

∥∆v∥2 ∆vT . (2.34)

here again k represents the iteration step. The first few Jacobian matrices in the iteration

still need to be obtained numerically by using a finite difference method. Broyden’s method

then simplifies the evaluation of Jacobian matrix to some additions and multiplications of

matrices and vectors. Note the formula in equation (2.34) in most of the cases does change

the structure of the original Jacobian matrix especially if it is sparse matrix.

50 Newton-based Solvers

There are several modifications of Broyden’s method as shown in [84]. A typical example

is to preserve the matrix structure by using the sparse Broyden method introduced by Schubert

[104]. However in some cases the implementation of this sparsity preservation method does

not save much time. Therefore a simple trick, is to pick up only the tri-diagonal entries

after performing each iteration in Broyden’s method, and this can achieve convergence

behaviour similar to the original matrix with cheaper computation on the numerical linear

algebra. Further discussion can be found in [33] which Egorova compared using different

Broyden-type methods to solve the Barles-Soner model with nonlinear function shown in

equation (1.5).

2.6.2 Deferred Correction Problem

Another Newton-based solver introduced here is based on the deferred correction method

which was used in solving initial boundary value problem of ordinary differential equations

(see [75, 79]). A similar idea can be applied to solve equation (2.1) with Newton’s linearisa-

tion. First consider a smooth function F representing the nonlinear Black-Scholes equation

(2.1), i.e.

F(Vt ,VS,VSS,V)≡Vt +
1
2

σ
2S2VSS + rSVS − rV = 0.

Here the abbreviations Vt ,VS,VSS are for partial derivatives of V with respect to t,S and

the second derivative with respect to S. Then a linearisation on an approximate value

(V ∗
t ,V

∗
S ,V

∗
SS,V

∗) of the function F reads as follows:

F(V ∗
t + et ,V ∗

S + eS,V ∗
SS + eSS,V ∗+ e)

≈ F(V ∗
t ,V

∗
S ,V

∗
SS,V

∗)+
∂F
∂Vt

et +
∂F
∂VS

eS +
∂F

∂VSS
eSS +

∂F
∂V

e,
(2.35)

where e is correction term and the partial derivatives are evaluated at (V ∗
t ,V

∗
S ,V

∗
SS,V

∗).

Equation (2.35) transforms equation (2.1) into a linear partial differential equation corre-

sponding to a correction term e with zero boundary and initial condition. This equation can

2.6 Other Newton-based Solvers 51

be solved easily if all the coefficients of equation (2.35) are determined. The coefficient can

be evaluated either by derived formula or the finite difference method. Eventually after finite

difference discretisation, the problem becomes

∂F
∂V ∗

t
en −∆tF(V ∗

t ,V
∗
S ,V

∗
SS,V

∗) = H∗
e (V

∗)en+1. (2.36)

where He is a tri-diagonal matrix and the algorithm of solving equation (2.36) is described as

Algorithm 3. Again, an initial guess can be chosen to be the solution from the previous time

step. Figure 2.10 shows a difference between the solution solved from root-finding approach

(denoted NM1) and deferred correction problem (denoted NM2) under l2 and l∞ norm using

the same parameters proposed in Sec. 2.4.3 with the tolerance equal to tol = 10−8, and

both methods converge to almost the same solution. However, the drawback of the deferred

correction method is that in the new transformed equation (2.35), the four coefficients are

not always guaranteed to be positive values which could make the finite difference scheme

become quite unstable or even converge to a wrong solution. Forcing the coefficients to be

zero when getting negative values is an option but can change the updating direction which

can harm the efficiency of this method.

Algorithm 3: Deferred Correction Problem
Input: terminal condition V Nt−1 =V (S, t = T), initial guess V ∗, tol
Output: V 0 =V (S, t = 0)
for n = Nt −1 : 1 do

for k = 1 : Nite do
1. Calculate ∂F

∂V ∗
t
, ∂F

∂V ∗
S
, ∂F

∂V ∗
SS
, ∂F

∂V ∗ ;

2. Solve equation (2.35) to get en ;
if ∥en∥< tol then

V n =V ∗, break;
else

V ∗ =V ∗+ en, go back to 1.;
end

end
end

end

52 Newton-based Solvers

0 50 100 150 200
2

4

6

8

10

12

14
x 10

−6

number of grid points

D
iff

er
en

ce
 u

nd
er

 l 2 n
or

m
NM1 V.S NM2

0 50 100 150 200
0.5

1

1.5

2

2.5

3
x 10

−5

number of grid points

D
iff

er
en

ce
 u

nd
er

 m
ax

im
um

 n
or

m

NM1 V.S NM2

Fig. 2.10 Difference of the solution of solving the Frey-Patie model between the root-finding
approach (NM1) and the deferred correction method (NM2) with respect to the number of
grid points under the l2 norm (left) and l∞ norm (right) when tol = 10−8.

2.6 Other Newton-based Solvers 53

2.6.3 Numerical Experiments

The numerical experiment provided here is designed as in Sec. 2.4.3. Tne aim is to compare

the complexity of different methods, and the approach taken is to perform the comparisons of

using the so-called experimental order of time complexity eotc introduced in [29] as defined

below

Time = c̃×∆teotc

and can be expressed as

eotch =−
log2((Time)h/(Time)h/2)

log2((h∆t)/(h∆t/2))
.

here Time means the total CPU computation time and h means evaluation with mesh sizes

h∆S,h∆t for spatial and temporal discretisations, respectively.

Table 2.9 shows the values of eotc for Newton-Raphson method (denoted NM1), Deferred

correction method (denoted NM2) and Newton-like method (denoted NM3). The Jacobian

matrix of Newton-Raphson method is calculating by the derived formula, and the same for the

coefficients for Deferred correction method, and both methods are using Thomas algorithm

to solve the tri-diagonal system. The Newton-like method is using inexact Newton’s method

where the iterative solver is using Jacobi method. The result shows Newton-like method

performs slowly and the computation time grows faster than other two methods. The reason

is for the concerning equation, the matrix structure is tri-diagonal which is a simple structure,

and iterative solver does not have benefit compared with using a simple and fast tri-diagonal

direct solver.

Another comparison in Fig. 2.11 shows using different Newton-like methods to solve Frey-

Patie Model. The aim is to compare using exact and inexact Newton’s methods, combined

with finite difference method and Broyden-type method to approximate the Jacobian matrix.

The grid points of temporal discretisation is fixed to be Nt = 1000 and of spatial discretisation

were chosen as NS = 50,100,150,200,250. Damped updating was also used to guarantee an

54 Newton-based Solvers

Table 2.9 eotc for the Frey-Patie model, here NM1 means using the Newton-Raphson
method, NM2 means using the deferred correction approach and NM3 means using the
inexact Newton’s method.

NS Nt eotcNM1 eotcNM2 eotcNM3

40 40 — — —
80 80 1.190 1.300 1.410
160 160 1.642 1.531 2.124
240 240 2.479 2.402 2.842
480 480 3.888 3.465 4.241

50 100 150 200 250
0

10

20

30

40

50

60

N
S

c
o
m

p
u
ta

it
o
n
 t
im

e
 (

s
e
c
)

Computation time for Newton−like methods

Broyden+exact

FD+exact

Broyden+inexact

FD+inexact

Fig. 2.11 Different strategies to implement Newton-like method.

adaptive updating. It is observed that Broyden-type method can replace the finite difference

method to evaluate the Jacobian matrix and reduce the computation time. It shows that

if there is no exact formula for Jacobian matrix, then a better strategy in one-dimensional

case is to choose exact Newton’s method with some approximation of Jacobian matrix like

Broyden-type methods.

2.7 Summary 55

2.7 Summary

In this chapter, Newton-based solvers are constructed for solving the one-dimensional nonlin-

ear Black-Scholes equation. Several adjustments are applied to make the solver efficient and

robust, and some strategies of improving the order of accuracy are also examined. Different

numerical experiments were designed that solved the European option case under the Frey-

Patie model, demonstrating that these methods and improvements work well. A comparison

with variants of Newton-like methods also concludes that using a direct Newton’s method is

better for the one-dimensional case in terms of the efficiency.

The developed Newton-based solver is able to solve nonlinear option pricing properly for

the single option case. In order to impact on the finance industry, it is necessary to have a

framework for demonstrating solvers that are able to handle large-scale problems efficiently

and productively. A detailed discussion focusing on parallel computing implementations is

provided in the next chapter.

Chapter 3

Large-scale Problems with GPU

Computing

In this chapter, the aim is to construct a parallel computation framework for the Newton-based

solvers developed in Chapter 2 to deal with large-scale nonlinear option pricing problems.

The concepts of batch operation and implementations using GPUs are explained. Eventually

a batched solver for large-scale nonlinear PDEs was constructed and numerical experiments

of achieved performance were examined.

3.1 Introduction

Solving PDE problems with parallel computing has been studied for decades in different

areas as shown in [86, 92]. Unlike Monte Carlo simulation which has a large potential being

done in parallel, PDE solvers have certain restrictions. The calculations are contained within

a time-marching scheme where initial conditions rely on the solution from the previous time

step. Nevertheless, at each time step, the core parts, the numerical linear algebra computa-

tions, are suitable for parallel algorithms (see [24, 52]) either for explicit or implicit schemes.

With proper implementation good parallel performance is still achievable for PDE solvers.

58 Large-scale Problems with GPU Computing

There are many different platforms for implementing parallel algorithms. Using multi-

core processors is one of the popular choices as it is able to speed up expensive computations.

The hardware accelerator Intel Xeon Phi launched around 2012 enables computing with high

throughput and some advantages have been demonstrated for building a triangular solver in

[114] and for the multigrid method in [111]. Another popular approach is the use of graphics

processing units (GPUs) due to their massively parallel architecture and high bandwidth.

Several recent studies concentrated on exploiting the parallelism in the direct solver for

the linear system solution which is required when using an implicit scheme. For examples,

Egloff [31] and Giles [45] constructed a parallel tri-diagonal solver for solving the linear

Black-Scholes equation by implementing the parallel cyclic reduction algorithm, and Zhang

[116] used the benefits of a recursive doubling algorithm to design some hyprid algorithms

which achieved better performance than the linear solver from LAPACK library [2]. Chang

[15] described another implementation using the SPIKE algorithm (see [97, 98]) to solve

linear systems with tri-diagonal structure. In [102] a comparison of the benchmark results

from different platforms for constructing the multigrid preconditioners is given. László et al.

[78] also examined the performance of building the linear Black-Scholes PDE solver by using

CPU, GPU and FPGA architectures. Essentially it is necessary to consider the target problem

when choosing the platform on which to implement high performance computing, with some

further considerations on the cost of energy of the machines and software development time

as suggested in [46].

Another challenging issue that often occurs in the quantitative finance is the need to

solve large-scale problems. These problems arise from needing prices for many different

contracts or choices of parameters which result in large-scale PDE problems. A discussion in

[30] examined the performance of using GPUs to build massively parallel PDE solvers, and

an idea of batch operation was also described in [45] and can be applied to solve different

independent PDEs.

3.2 Large-scale Nonlinear Option Pricing Problems 59

In the following sections the emphasis is on two main tasks. The first task is to construct

a batched Newton-based solver for handling large-scale nonlinear PDEs. The developed non-

linear solver is decomposed into the different tasks of numerical linear algebra computations

in order to easily apply the batch operation. The second task is to set up a framework for

doing GPU computing with the constructed batched Newton-based solver. Two possible

implementations, using OpenACC and CUDA programming, are explained in detail and

compared in terms of the efficiency. Numerical results are shown in the end of this chapter.

3.2 Large-scale Nonlinear Option Pricing Problems

In Chapter 2 it is shown the solution of the nonlinear Black-Scholes equation

∂V
∂ t

+
1
2

σ
2S2 ∂ 2V

∂S2 + rS
∂V
∂S

− rV = 0, (3.1)

can be transformed into a repeated root-finding problem in a discretised nonlinear system,

namely

G(V ∗) = H(V ∗)V ∗− f = 0, (3.2)

where V ∗ is the pursued solution, f represents the right hand side value which can be

evaluated from known values at the current time step, and H is a tri-diagonal matrix for

which the entries depend on the solution V ∗. Equation (3.2) can be solved by applying the

Newton-based solver.

As commonly seen in the financial markets, option contracts vary because of different

maturities, strike prices or types of option. The problem of solving equation (3.1) or (3.2)

will change by inputting different parameters. These factors also affect the terminal and

boundary conditions as well, more precisely,

• Different types of option change the terminal condition from payoff function,

• Different maturities Ti change the boundary condition and the grid size ∆t,

60 Large-scale Problems with GPU Computing

• Different strike prices Ki change the terminal condition from payoff function,

• Different volatilities (σ0)i change the entries of the tri-diagonal matrix H,

• Different interest rates ri change the entries of the tri-diagonal matrix H.

3.2.1 A Batched Newton-based Solver

If a computer system receives a lot of requirements taken from the possible choices above,

for example, calculating option prices at different maturities, then it will be necessary to

solve a set of independent nonlinear Black-Scholes equations leading to the solution of a set

of nonlinear systems, i.e.

Gl(V ∗
l) = Hl(V ∗

l)V
∗
l − fl = 0, l = 1, ...,L, (3.3)

where L represents the problem size. These nonlinear systems are independent and can be

solved in parallel. The idea of batch operation is to assemble all the nonlinear systems into

one big one, namely

G(V∗) = H(V∗)V∗−F = 0, (3.4)

where G = (G1, ...,GL)
T , F = (f1, ..., fL)

T , V∗ = (V ∗
1 , ...,V

∗
L)

T and H is constructed from

H1, ...,HL. Fig 3.1 shows an example of constructing H with L = 3. Some entries are filled

with zeros to preserve the structure of a tri-diagonal matrix.

Note that for different nonlinear systems of G(V∗), the stopping condition of the iterative

scheme depends on dl, l = 1, ...,L, where

dl =
∥Gl∥

max(∥V ∗
l ∥,1)

,

is calculated from the root-finding function, or alternatively

dl =
∥resl∥

max(∥V ∗
l ∥,1)

,

3.2 Large-scale Nonlinear Option Pricing Problems 61

Fig. 3.1 Example of assembling three matrices.

is chosen from the updating residual, here

resl =− [Jac(Gl(V ∗
l))]

−1 Gl(V ∗
l).

To guarantee all the nonlinear systems converge with respect to a given tolerance tol, it is

necessary to check

dl < tol, l = 1, ...,L.

Checking these different conditions one by one may be cumbersome and it is worthwhile

to consider a total norm from the batched system like

d =
√

d2
1 + ...+d2

L, (3.5)

which implies immediately that

d2 > d2
l , l = 1, ...,L,

and therefore by checking the condition

d < tol, (3.6)

62 Large-scale Problems with GPU Computing

it is sufficient to guarantee that all the dl, l = 1, ...,L, satisfy the stopping condition and ensure

the convergent of the iterative scheme for solving the batched nonlinear system (3.4).

Algorithm 4 presents the algorithm for constructing a batched Newton-based solver

with problem size L. It can be viewed as assembling different numerical linear algebra

computations from independent equations together and then doing the calculation once with

a much larger size. This setting provides enough work for keeping the GPUs diligent when

doing the parallel computing, which is introduced in the next section. It is important to notice

that the batched matrix H has to be tri-diagonal, and so it is necessary to fill in zero values to

some entries.

Algorithm 4: Batched Newton-based Solver

Input: terminal conditions V Nt−1
l =Vl(S, t = T), initial guesses V ∗

l , for l = 1, ...,L,
tol,

Output: V 0
l =Vl(S, t = 0) for l = 1, ...,L

for n = Nt −1 : 1 do
Initialise the batched vector V∗ = (V ∗

1 , ...,V
∗
L)

T ;
for k = 1 : Nite do

1. Get the batched matrix H and vector F by V∗ ;
2. Calculate G by equation (3.2) ;
3. Calculate d ;
if d < tol then

Vn−1 = V∗, break;
else

1. Calculate res = − [Jac(G(V∗))]−1 G(V∗) ;
2. V∗ = V∗+ res, go back to 1.;

end
end

end
end

3.3 GPU Computing Implementations 63

3.3 GPU Computing Implementations

3.3.1 The GPU Architecture

Graphics processing units (GPUs) are devices incorporated into many computers or laptops

for creating images efficiently and displaying them. The rapid development and evolution of

GPUs for general purpose programming has allowed researchers to accelerate computations

in different areas. In the following a brief introduction to the GPU architecture is given and

further details of the architecture from the latest graphic card in NVIDIA can be found in [90].

Generally speaking, a GPU consists of a large number of stream multiprocessors (SM),

and each of them with a variable number of stream processors (SP) that can execute compu-

tation in parallel. This can be of benefit to computational problems that can be expressed

as data parallel computing due to its massively parallel architecture (see Figure 3.3). It also

contains a hierarchical memory called global memory which is writable from both the GPU

and its CPU, plus a hierarchy of memories such as shared memory, constant memory, texture

memory and registers.

There are three metrics which can be considered to measure performance when doing

GPU computing. The first one is to compute the elapsed time from the application using the

parallel algorithm with CPU and GPU, and then compare with using the sequential algorithm

with only CPU to get the speedups. This is a standard comparison to have an idea of how

much time can be saved when doing GPU computing.

The second one is the memory bandwidth, which usually is expressed in GB/s and

shows the rate of writing and reading data. The memory bandwidth can be evaluated under

the theoretical sense which usually called peak bandwidth, or with the sense of effective

memory bandwidth which is derived from the computation. Note that measuring the memory

bandwidth relies on the computation time, for example, the effective memory bandwidth can

64 Large-scale Problems with GPU Computing

Fig. 3.2 Floating-Point Operations per Second for the CPU and GPU. The figure is from [88].

Fig. 3.3 Grid of Thread Blocks. The figure is from [88].

3.3 GPU Computing Implementations 65

Fig. 3.4 Nvidia Kepler GPU hardware structure. The figure is from [91]

be calculated as

(Rbyte +Wbyte)/(time×109),

where Rbyte means the number of bytes with reading application, and Wbyte represents the

number of bytes with writing application.

The third one is the computational throughput which is measured with GFLOP/s (Giga-

FLoating-point OPerations per second). It indicates how many operations from additions

and multiplications are done per second in a given computation. Figure 3.2 shows that the

GPU has a much higher theoretical throughput than CPU. It also depends on getting the

computation time first in order to evaluate the throughput as following

Noperation/(time×109).

66 Large-scale Problems with GPU Computing

Table 3.1 An example of using matrix transposition to test the effective memory bandwidth
of using single GPU.

N effective bandwidth theoretical bandwidth percentage
4096 145.18 GB/s 240 GB/s 60.4%
8192 145.13 GB/s 240 GB/s 60.4%
16384 139.21 GB/s 240 GB/s 58.0%

.

The graphic card used in this thesis is a NVIDIA Tesla K80 which is popular for ac-

celerating scientific computations. It uses the Kepler architecture (see Figure 3.4) having

much greater throughput, higher compute capability, and larger number of registers than

the previous Fermi architecture and also many additional innovations as explained in [91].

One other feature is the K80 can be seen - there are two separate GPUs on the same board

and thus doing multi-GPU computing is possible. All numerical experiments are done with

the workstation from Amazon EC2 with the P2 Instance. The example provided here is to

examine the effective memory bandwidth by doing a matrix transposition with a matrix size

N ×N, and the computational throughput by doing a matrix-multiplication with two N ×N

matrices in double precision. In such case it is clear that

(Rbyte +Wbyte) = 2×N ×N ×Sdouble,

where Sdouble means the size of the data in double precision, and also

Noperation = N3.

Table 3.1 and Table 3.2 show the results run on the Tesla K80 machine using a single GPU

and it can be observed that it is possible to reach 60% of the theoretical memory bandwidth

and 70% of the throughput.

3.3 GPU Computing Implementations 67

Table 3.2 An example of using matrix mutiplication to test the computational throughput of
using single GPU.

N computational throughput theoretical throughput percentage
4096 947.449 Gflop/s 1455 Gflop/s 65.1%
8192 1053.57 Gflop/s 1455 Gflop/s 72.4%
16384 1056.47 Gflop/s 1455 Gflop/s 72.6%

The memory bandwidth and computational throughput metrics give ideas about whether

the calculation are either memory bound or computation bound. This is quite important for

doing performance optimisations. For complicated algorithms this may require tools to help

evaluate these metrics; these are introduced in the next sections.

3.3.2 CUDA Programming

To employ the GPUs by programming, one must cope with multiple threads which can

be executed at the same time. The threads are the basic units of the assigned executions

which are grouped into blocks, and the blocks are grouped into grids as shown in Figure 3.3.

One standard way of performing actions with data on these threads and blocks is to use the

Compute Unified Device Architecture (CUDA), which is an extension of the C language.

When running a computer program to do scientific computation, normally some specific

functions are executed to give instructions on the threads and blocks in parallel. These

functions are called kernel functions which are programmed in CUDA. Kernel functions

are essentially manipulating the computations on device (or GPUs) and have to be allocated

memory suitable to the purpose. For example, the constant and texture memory are only

read-only and limited. The registers contain the smallest but the fastest memory. Global

memory is accessible by all threads but its performance is the slowest. It may happen that if

the memory allocation is not managed well, then the results can only obtain low speedups

even if there is enough parallelism in the computation.

68 Large-scale Problems with GPU Computing

CUDA also contains several useful APIs for doing data transfer or measuring performance.

For examples:

• cudaMemcpy

• checkCudaErrors

• cudaEvent_t

• nvprof, nvvp

cudaMemcpy permits synchronous data transfers between host and device which means

the transfers start when CUDA has finished all other executions called previously. Also, other

executions from CUDA will not start until the transfers have finished. It is crucial to have the

fewest operations for transferring data and minimise the transferred size which can help to

optimise the performance. checkCudaErrors can report different fundamental issues from

programming and is usually applied with cudaMemcpy to secure a safe data transfer.

As mentioned computation time is an important metric in which to measure performance.

Normally it can be done by using the standard clock_t in C code. CUDA provides another

specific timer cudaEvent_t which records the start and stop time of the relevant execution

and returns the elapsed time between them in milliseconds. The timer is also able to record

different events in one execution, useful for the complexity analysis of the algorithm. The

profiler nvprof enables a deeper understanding of the data movements when running the

code. It also contains many useful functions to count the number of operations which are

important for measuring the bandwidth and throughputs. The visual profiler nvvp has a

graphical interface and can display a timeline of the works from CPUs and GPUs which

can help to realise and optimise the performance. All these mentioned APIs are used in the

numerical experiments and in the next sections some further specific CUDA libraries are

introduced and applied as well.

3.3 GPU Computing Implementations 69

3.3.3 A Parallel Batched Newton-based Solver

The main purpose in this chapter is to solve large-scale nonlinear option pricing problems, in

which the batched Newton-based solver constructed in Sec. 3.2.1 assembles all the problems

together. As explained in Algorithm 4, the solver is decomposed into different basic linear

algebra computations where the parallelism is well known and many existing tools are able

to applied. More precisely, the computations below are parallelised

• Batch operation on the matrix H and evaluation of the root-finding function G,

• Tri-diagonal solver for calculating the inversion of Jacobian matrix [Jac(G)]−1,

• Calculating the l2 norm for checking the stopping condition,

• Vector addition for updating V∗ = V∗+ res.

This decomposition gives an insight on how to calculate the memory bandwidth and

throughput for which the number of operations can be estimated by computations mentioned

above. For example, when evaluating the volatility function, Gamma is required, namely

VSS =
V ∗

i−1 −2V ∗
i +V ∗

i+1

(∆S)2 ,

which needs two additions and three multiplications for each i. Similarly when evaluating

σi = σ0 (1−ρSiVSS)
−1 ,

there are one addition and four multiplications. Some coefficients, which are repeatedly used,

can be simplified as

C1 =
σ2

i S2
i

(∆S)2 , C2 =
rSi

∆S
,

where for C1 it needs five multiplications, and for C2 two multiplications. The entries of

tri-diagonal matrix H can then be obtained by

ai =
−∆t

2
(C1 −C2) ,

70 Large-scale Problems with GPU Computing

bi = 1+∆t (C1 + r) ,

ci =
−∆t

2
(C1 +C2) ,

when using the fully implicit scheme and ai,bi,ci all contain three operations for each i.

Now consider the batch size is equal to L, NS,Nt are the grid points employed for the

spatial and temporal discretisations, and Nite is the an average number of iterations for

making the Newton-based solver converge. The number of operations for the tri-diagonal

solver is approximated by the operation count of the Thomas algorithm which is O(NS).

Then, summing up all the operations needed in Algorithm 4 with the formulas provided in

Sec. 2.4.2, the computational throughput, is evaluated by the formula

Noperation/(time×109),

where

Noperation = 68× (NS −2)×Nite × (Nt −1)×L.

Following a similar idea, in Algorithm 4, the data storage involved the known value

V n, initial guess V ∗, the entries of the tri-diagonal matrix H, the entries of the tri-diagonal

Jacobian matrix Jac, the right hand side value f , the root-finding function G, and also the

residue vector res for doing the updating. Hence the effective memory bandwidth is

2×11× (NS −2)×Nite × (Nt −1)×L×Sdouble/(time×109),

again here Sdouble represents the size of the data in double precision.

The calculations above show the metrics for measuring the performance of the com-

putation. As mentioned the paralleled parts are common linear algebra calculations, and

there exist sophisticated GPU-accelerated libraries from CUDA Toolkit [88] that can obtain

reasonable performance as the codes are highly-optimised and can be directly used by just

3.3 GPU Computing Implementations 71

calling the functions. For examples, the CUDA sparse matrix library (cuSPARSE) [89] and

the CUDA Basic Linear Algebra Subroutine library (cuBLAS) [87] contain many useful

functions for parallel numerical linear algebra computation. A brief explanation of the

specific functions used in this chapter is given as follows (for more details or examples see

[18, 103]).

gtsv,gtsv2

An useful parallel tri-diagonal solver called gtsv exists in the cuSPARSE library. This solver

uses the SPIKE algorithm [15]. The inputs are the three arrays of the tri-diagonal matrix, and

one array from the right hand side vector, all of which are necessarily allocated on device for

executing the function. Note that the output is the solution as an array on device. The gtsv

solver supports both single and double precision. Figure 3.5 shows an example of solving a

given tri-diagonal linear system by using the gtsv solver and using the Thomas algorithm

implemented with CPU. It can be observed that using the library solver performs faster as the

size of matrix grows. A drawback appears when using the gtsv solver is that when calling the

solver, it automatically does an initialisation each time to allocate suitable memory which can

ruin the performance. Because in the constructed Newton-based solver, when the number of

grid points are given, the size of matrix is fixed which means it is only necessary to initialise

the matrix once. The new gtsv2 solver released in CUDA9.0 remedies this issue since it

is possible to give a buffer size as an input to avoid the repeated initialisations and it can

perform much faster.

nrm2

As addressed in Sec. 3.2.1, this is able to guarantee the batched Newton-based solver con-

vergence by checking the stopping condition in equation (3.5). The term d can be obtained

by calculating the norm of the batched vector G or res, using the function nrm2 from the

cuBLAS library. The input is the array on device and the output is the l2 norm on host which

72 Large-scale Problems with GPU Computing

19 20 21 22 23
0

100

200

300

400

log
2
(M)

c
o

m
p

u
ta

it
o

n
 t

im
e

 (
m

s
)

Comparison of solving a tri−diagonal system

Thomas

gtsv

Fig. 3.5 Comparison of solving a (M×M) tri-diagonal linear system by using the gtsv solver
from the cuSparse library and the Thomas algorithm implemented on the CPU with double
precision.

can be verified directly to see whether it is smaller than a given tolerance. The function nrm2

calculates the norm very fast even with a large size of array, and it shows the benefits of

efficiency rather than calculating different norms dl, l = 1, ...,L, and checking the stopping

conditions many times.

axpy

The function axpy from the cuBLAS library is helpful when updating the residual. Typically

the updating is a simple vector addition even in the batched Newton-based solver, as the

initial guess V∗ is decomposed to V ∗
l , l = 1, ...,L. The function axpy presents the addition of

the form

a× x+ y,

where a is scalar which is chosen to be 1 when doing the updating. x and y are both vectors

which are replaced by the initial guess V∗ and the calculated residue res.

3.3 GPU Computing Implementations 73

Fig. 3.6 A framework of the GPU implementation.

The final task is to construct the batched matrix consisting of evaluations of the entries

with given explicit formula. These evaluations are all independent as the entries may differ

from the chosen discretised point and can be done in parallel with global memory. It is

important to note that CUDA organises execution on device using groups of 32 threads,

which is normally called a warp. The threads in the same warp are run on the same stream

multiprocessor. To improve performance, the allocation of the global memory when loading

the data needs to be coalesced which means the threads have to access consecutive global

memory within a half-warp (16 threads). Fig. 3.6 shows the framework for implementing the

parallel batched Newton-based solver by using all the introduced functions.

3.3.4 OpenACC

As an alternative to CUDA programming, there exists an easier platform called OpenACC

(Open Accelerators) which is able to implement GPU computing and becoming increas-

ingly popular. OpenACC is commercial software which relies on a specific PGI compiler.

The threshold for beginners is lower as it only requires users to specify the core part of

74 Large-scale Problems with GPU Computing

loops that need to be parallelised. The embedded compiler will analyse and construct a

parallel equivalent in the executable code for execution. It can be applied to complicated

algorithms, e.g. solving problems in computational fluid dynamics, as shown in [74]. This

platform may not achieve as good a performance as CUDA programming, however, it can

obtain computation or simulation results without spending too much time on coding and

optimising the code which can allow the users more time for the scientific part of the research.

The most important task for using OpenACC is to give sufficient instructions for the

compiler to examine and work. For example, the main task is to identify the core parts to be

parallelised using the following commands:

#pragma acc p a r a l l e l l oop

{

Code t o be p a r a l l e l i s e d ;

}

and this is applied to most of the for loops in Algorithm 4 except the loop for time-marching

scheme as this loop has to be implemented sequentially.

If the type of computation is known precisely inside the loop, for example, like reduction

for calculating the norm, then one can give more specific commands to increase the speedup

as:

#pragma acc loop r e d u c t i o n

{

R e d u c t i o n code t o be p a r a l l e l i s e d ;

}

A challenge of using OpenACC is when doing the GPU computing, the compiler examines

the loops and decides how to allocate the memory and transmit the data automatically which

may incur some unnecessary data transmission. In order to manage the data movement well,

it is important to add commands to address which data is transmitted from host to device, or

from device to host, or where the data has been kept on device to use as follows:

#pragma acc d a t a c op y i n (a []) copyou t (b []) p r e s e n t (c [])

3.4 Numerical Experiments 75

{

Code t o be p a r a l l e l i s e d ;

}

which is quite important in the time-marching scheme as some arrays created on device need

not necessarily copied to host.

In general OpenACC is useful when a parallel computing implementation is required

with a tight deadline. In the next section several numerical experiments are described which

were designed to examine the performance.

3.4 Numerical Experiments

The numerical experiment provided here was the solution of the European call option where

the terminal and boundary conditions were taken as
V (S,T) = (S−K)+, for 0 ≤ S < Smax

V (0, t) = 0, for 0 ≤ t ≤ T

V (S, t) = S−Ke−r(T−t), when S = Smax

and some basic parameters were fixed as σ0 = 0.4,K = 100,r = 0.03,Smin = 0,Smax =

300,T = 1/12. The tolerance for Newton’s iteration was chosen to be 10−4 for single

precision and 10−8 for double precision. The grid points were fixed to be NS = Nt = 1024.

The large-scale problems were chosen to be with different σ0 which are

(σ0)i = σ0 −0.0001× i, i = 0, ...,L−1,

here L represents the size of the problem.

76 Large-scale Problems with GPU Computing

3.4.1 Comparisons of CUDA and OpenACC

In the first experiment, the aim is to compare the performance of using CUDA and OpenACC.

For a fair comparison the implementations were done on the same machine and the graphic

card used is Quadro K2100M which has a compute capability equal to 3.0. For the hardware

information, the CPU processor is : Intel(R) Core(TM) i5-2500 CPU @ 3.30GHz with 4096

MB. The compilers for C code is gcc 4.7, for CUDA is CUDA7.5 and for OpenACC is PGI

16.4.

Table 3.3 Computation time (s) for single precision.

#Options CPU OpenACC CUDA
L = 64 16.0 5.91 7.66
L = 128 32.5 11.6 8.77
L = 256 64.8 23.0 11.6

Table 3.4 Speedup for single precision.

#Options CPU OpenACC CUDA
L = 64 1.0x 2.7x 2.0x
L = 128 1.0x 2.8x 3.7x
L = 256 1.0x 2.8x 5.5x

Table 3.5 Computation time (s) for double precision.

#Options CPU OpenACC CUDA
L = 64 24.8 12.2 10.9
L = 128 49.7 24.1 13.0
L = 256 122 65.5 17.0

Table 3.6 Speedup for double precision.

#Options CPU OpenACC CUDA
L = 64 1.0x 2.0x 2.2x
L = 128 1.0x 2.1x 3.8x
L = 256 1.0x 1.9x 7.2x

3.4 Numerical Experiments 77

Fig. 3.7 Complexity analysis for single precision calculating by CPU.

Fig. 3.8 Complexity analysis for single precision calculating by GPU.

78 Large-scale Problems with GPU Computing

Table 3.3 and 3.4 show the total computation time and speedups with different imple-

mentations for single precision. Similarly Table 3.5 and 3.6 show the results for double

precision. It can be observed that by using OpenACC, it is possible to obtain a speed up of 2

by adding only few lines of codes. However the speedup doesn’t increase when the size of

problem grows due to the data movement becoming more complicated and requiring more

sophisticated techniques to control it.

Using CUDA library and kernel functions shows better performance and the speedup

increases when the size of problem is getting larger. The implementation takes more time

in double precision than single because the main computations are memory bound and

calculation in double precision takes more time to read and write the data. Therefore avoiding

too much data transmission or usage is important when handling such problems in double

precision.

Fig. 3.7 and 3.8 also show the individual computation times of each large-scale problem.

For both using CPU and GPU, constructing the necessary tri-diagonal matrix is the time-

consuming part where using GPU computing takes the advantage of performing these

calculations with a large number of threads instead of evaluating them sequentially. The

parallel tri-diagonal solver also shows benefits when the size of batched matrix is large. For

calculating the norm and doing the updating, using GPU gives also better results, however this

time is less important than other parts so the results are combined into the other calculation

part.

3.4.2 Numerical Results with K80

The second numerical experiment was designed to solve the same problem stated in Sec 3.4

using a Tesla K80 GPU which has a compute capability 3.7. Note that in this experiment

only one GPU was used for the calculations. The CPU hardware is as Intel(R) Xeon(R) CPU

E5-2686 v4 @ 2.30GHz. The compiler for the C code is gcc 4.7, for CUDA is CUDA9.0. In

3.5 Multi-GPU Computing 79

Table 3.7 Results of using CPU and GPU for double precision.

#Options CPU time GPU time speedup effective bandwidth computational throughput
L = 512 178.9 8.780 20.37x 53.63 GB/s 41.44 Gflops/s
L = 1024 381.9 12.45 30.67x 75.67 GB/s 58.46 Gflops/s
L = 2048 801.3 25.21 31.78x 74.73 GB/s 53.28 Gflops/s

Table 3.8 Profiling results of using GPU for double precision.

#Options GPU time batch gtsv2 others
L = 512 8.780 4.94 (56,2%) 2.67(30.4%) 1.17 (13.3%)
L = 1024 12.45 7.68 (60.6%) 3.12 (25.0%) 1.65 (13.2%)
L = 2048 25.21 14.63 (58.0%) 6.88 (27.2%) 3.7 (14.6%)

this experiment the parallel tri-diagonal solver gtsv2 was chosen to use.

Table 3.7 shows the results for speedups, effective memory bandwidth and the compu-

tational throughput when doing the computation in double precision. Table 3.8 presents

the profiling results on the individual task. It can be seen that the results achieve around

20% of the theoretical memory bandwidth but very low throughput, as most of the computa-

tion, including using the libraries, is memory bound. One reason for this is in the batched

Newton-based solver, the iterative scheme waits until all the stopping conditions for the

assembled nonlinear systems are satisfied which results in storing more data. This can also

be observed from the profiling results as the batch operation contributes the majority of the

computation time. However, around 20 times speedup is still achievable when doing the

calculation in double precision as the size of the batched matrix is large and the benefits of

using GPU-based libraries can be seen.

3.5 Multi-GPU Computing

As mentioned before the NVIDIA Tesla K80 has two GPUs which can both be used. There-

fore some further improvements to the performance from using multiple GPUs are considered.

The idea is to split the tasks for different GPUs to work for at the same time. For the large-

scale problems, since all the nonlinear PDEs are independent, an easier strategy is to do

80 Large-scale Problems with GPU Computing

the splitting for the number of problems divided by the number of GPUs. Fig 3.9 shows an

example of using two GPUs where in each GPU, the implementation is exactly the same as

the framework explained from Fig 3.6.

Different implementations of assigning each device to do the work in parallel are possible,

and one easy way relies on using OpenMP where the compiler can allocate the tasks to the

assigned device automatically by adding the commands

#pragma omp p a r a l l e l f o r

f o r (i n t i =0 ; i <Num_device ; i ++){

c u d a S e t D e v i c e (i) ;

/ / main code t o be run i n each d e v i c e

}

and in such case, device(0) is the first GPU running the assigned tasks and similarly for other

devices.

Table 3.9 shows the computation times for a large-scale problem where L = 4096 using

the CPU, one GPU and multiple GPUs on the Amazon EC2 workstation with P2 Instance

(p2.8xlarge) which it allows to use a maximum 8 GPUs for doing computation. For the

multi-GPU computing the problems are split by the number of GPUs, for example, if using

two GPUs then for the first 2048 problems which are assigned to run on device 0 and

the remaining 2048 problems on device 1. It shows that by using a single GPU, about

27 times speedup can be achieved. When adding the number of GPUs, a further speedup

can be obtained although it seems not achieving the theoretical value. The reason why the

performance is lower than expected may be from spending time on the process of splitting

the work and also collecting the necessary data from different devices. These influences

could be minimised possibly by controlling the data transmission to avoid too many transfers

between different devices.

3.6 Summary 81

Fig. 3.9 An example of splitting the works for two GPUs.

Table 3.9 Results of using multiple GPUs for L = 4096.

CPU 1 GPU 2 GPUs 4 GPUs 8 GPUs
time (s) 1562 57.983 36.467 22.79 16.27
speedup 1x 26.939x 45.31x 68.53x 96.00x

3.6 Summary

In this chapter, a batched Newton-based solver is constructed for dealing with large-scale

nonlinear option pricing problems. The solver consists of different numerical linear algebra

computations which are suitable for parallel computation. GPUs were chosen to be the im-

plementation, and two possible platforms of doing CUDA programming or using OpenACC,

are introduced. It can be observed that if the application doesn’t require an huge speedup, but

needs quick implementation, then using OpenACC is a good option as it can avoid spending

much time on coding. If it is necessary to obtain higher levels of speedup, then doing CUDA

programming and using CUDA libraries can achieve this goal. Further improvement using

multiple GPUs is also introduced and demonstrated through an example showing using two

GPUs.

Chapter 4

Asian Option Pricing

In this chapter, an extension of the Frey-Patie model from Vanilla type options to Asian

option pricing is illustrated. The mathematical problem becomes that of solving a high-

dimensional nonlinear PDE, using a merged numerical method consisting of a Newton-based

solver and a semi-Lagrangian scheme. A range of numerical results are compared and some

improvements of the developed solver are also discussed.

4.1 Introduction

Asian options are commonly seen in insurance markets where the price depends on an

average of the underlying asset over time. It is usually cheaper than European or American

option due to the average effect and more difficult to be manipulated as explained in [59].

In general there exists no analytic or closed form solution so numerical methods have to

be employed to calculate the price. Kemna [70] used the Monte Carlo method for pricing

such options, and a further study by Boyle [12] with different variance reduction techniques

used the Quasi-Monte Carlo method. Rogers [101] considered an approach of reducing the

problem to the solution of a parabolic PDE and provided a lower bound for the solution.

84 Asian Option Pricing

In addition to these techniques, an alternative way of pricing Asian option, as explained

and derived in [107, 112] (also in Sec.4.2), is to solve the following PDE for V (S,A, t)

∂V
∂ t

+
1
2

σ
2S2 ∂ 2V

∂S2 + rS
∂V
∂S

+
(S−A)

t
∂V
∂A

− rV = 0, (4.1)

where S is the underlying asset, r > 0 is the risk-free interest rate, σ is volatility of the

underlying asset price process, and A is the asset price average with definition

At =
1
t

∫ t

0
Sτdτ. (4.2)

Different volatility models have been studied in equation (4.1) as well as constant volatil-

ity, for examples, Parrott [95] used a stochastic volatility models with such PDE, and jump

models were discussed by D’Halluin [25]. Tangman [109] has included further models such

as Merton and Carr-German-Madan-Yor models. The uncertain volatility model was looked

at by Fan [39] which results in the PDE becoming nonlinear.

As it can be observed that the PDE in equation (4.1) is two-dimensional and a variety of

methods such as operator splitting or dimensional reduction have been explored. One modern

technique is applying the semi-Lagrangian scheme, which was introduced by Parrott [94, 95]

and further examined with different examples by D’Halluin in [25]. This technique has good

potential for parallel computing as the problem becomes that of solving a large-scale set of

one-dimensional PDEs, and Castillo et al [14] proposed an elaborate implementation of a

parallel solver using GPUs which included a fast technique of doing interpolation using the

GPU texture memory.

In the following sections, the focus is on constructing the semi-Lagrangian solver for

Asian option pricing. To begin with the extension of the Frey-Patie model to Asian option

pricing and the derivation of the fully nonlinear PDE is given. A semi-Lagrangian scheme is

then merged with the Newton-based solver from Chapter 2 as the optimal numerical method

to solve the high-dimensional fully nonlinear PDE. Different numerical experiments are

4.2 Mathematical Modelling 85

compared for examining the feasibility of using semi-Lagrangian scheme also some possible

improvements are discussed.

4.2 Mathematical Modelling

Following the same idea given by [43] and also the derivation shown in [105], assume that

the price of an underlying asset St is influenced by strategies of holding the asset from a large

trader or amount of small traders using same strategy in an illiquid market, and it satisfies the

process

dSt = µ0Stdt +σ0StdWt +ρStdαt , (4.3)

where Wt is the standard Brownian motion, µ0 is the drift term, σ0 is the volatility, ρ is the

liquidity of the market, and αt is the strategy function. Let αt = φ(St , t) by Itô’s formula

dαt =

(
∂φ

∂ t
+

σ2
0

2
∂ 2φ

∂S2

)
dt +

∂φ

∂S
, (4.4)

so equation (4.3) can be replaced by

(
1−ρSt

∂φ

∂S

)
dSt = µ0Stdt +σ0StdWt +ρSt

(
∂φ

∂ t
+

σ2
0

2
S2

t
∂ 2φ

∂S2

)
dt (4.5)

which can be simplified to

dSt = µ(St , t)Stdt +σ(St , t)StdWt , (4.6)

with

µ(S, t) =
1

1−ρS∂φ

∂S

(
µ0 +ρ

(
∂φ

∂ t
+

σ2
0

2
S2 ∂ 2φ

∂S2

))
,

σ(S, t) =
σ0

1−ρS∂φ

∂S

,

86 Asian Option Pricing

where the strategy function φ(St , t) will be chosen to be

φ(St , t) =
∂V
∂S

as explained in [43].

Now consider a portfolio

Πt =Vt −∆
∗
t St ,

so that the total change in value is

dΠt = dVt −∆
∗
t dSt ,

which is assumed to be hedgeable without any uncertainty and thus equal to the rate of return

on riskless portfolio, namely

dΠt = dVt −∆
∗
t dSt = r(Vt −∆

∗
t St)dt, (4.7)

where r is the risk-free interest rate. Then by Itô’s formula [107],

dV =
∂V
∂ t

dt +
∂V
∂S

dS+
1
2

∂ 2V
∂S2 (dS)2 +

∂V
∂A

dA,

so that equation (4.7) becomes

r(Vt −∆
∗
t St)dt

=

(
∂V
∂ t

+µ(S, t)St
∂V
∂S

+
σ2(S, t)S2

t
2

∂ 2V
∂S2

)
dt +

∂V
∂A

(St −At)

t
dt +

∂V
∂S

Stσ(S, t)dWt

− ∆
∗
t (µ(S, t)Stdt +σ(S, t)StdWt) . (4.8)

Equation (4.8) shows that ∆∗
t has to be chosen as

∆
∗
t =

∂V
∂S

4.3 Semi-Lagrangian Scheme 87

to eliminate the term dWt . Hence the following equation is obtained

∂V
∂ t

+µ(S, t)S
∂V
∂S

+
1
2

σ
2(S, t)S2 ∂ 2V

∂S2 +
∂V
∂A

(S−A)
t

− ∂V
∂S

µ(S, t)S = r
(

V − ∂V
∂S

S
)
,

which can be simplified to

∂V
∂ t

+
1
2

σ
2(S, t)S2 ∂ 2V

∂S2 + rS
∂V
∂S

+
(S−A)

t
∂V
∂A

− rV = 0, (4.9)

with

σ(S, t) =
σ0

1−ρS∂ 2V
∂S2

= σ0(1−ρSVSS)
−1. (4.10)

Note that when ρ equal to 0, equation (4.10) becomes the standard linear partial differen-

tial equation as stated in equation (4.1) which the solution is the price of the Asian option

with constant volatility as discussed in [107, 112].

4.3 Semi-Lagrangian Scheme

To construct a nonlinear solver for equation (4.10), the aim is to merge the Newton-Raphson

method, as shown in Chapter 2, with the semi-Lagrangian scheme. This method is denoted

as the SL-Newton (Semi-Lagrangian Newton) solver and described as follows.

First, apply the semi-Lagrangian scheme to equation (4.9), the equation becomes

DV
Dt

+
1
2

σ
2S2 ∂ 2V

∂S2 + rS
∂V
∂S

− rV = 0, (4.11)

where
DA
Dt

=
1
t
(S−A). (4.12)

In order to use a finite difference discretisation, assume that the computational domain is

truncated as V (S,A, t) ∈ [0,Smax]× [0,Amax]× [0,T). The discretisation notation is defined

88 Asian Option Pricing

as

V n
i, j =V (Si,A j, tn) =V (i∆S, j∆A,n∆t),

where i = 0, ...,NS −1, j = 0, ...,NA −1 and n = 0, ...,Nt −1. Here NS,NA,Nt are the num-

bers of grid points for discretisation on S,A, t respectively, and ∆S = Smax/(NS −1), ∆A =

Amax/(NA −1), ∆t = T/(Nt −1).

Applying the standard finite difference scheme of θ -method with backward timestepping,

equation (4.11) can be discretised as

V n−1
i, j −Ṽ n

i, j

∆t
= θL (V n−1)+(1−θ)L (Ṽ n), (4.13)

where

L (V n−1) =
1
2

σ
2S2

i
V n−1

i+1, j −2V n−1
i, j +V n−1

i−1, j

(∆S)2 + rSi
V n−1

i+1, j −V n−1
i−1, j

2∆S
− rV n−1

i, j ,

and the time integral path is along (Ã j, tn) to (A j, tn−1) for n = Nt −1, ...,1. Here

Ṽ n
i, j =V (Si, Ã j, tn)

and Ã j can be formulated as stated in [94] by simply doing an integration of the equation

(4.12) ∫ Ã j

A j

1
Si −A

dA =
∫ tn

tn−1

1
t

dt

which results the formula

Ã j = Si −
(

tn−1

tn

)
(Si −A j). (4.14)

V n−1 is the required solution in the backward timestep and therefore equation (4.13)

needs the solution of a nonlinear system. This can be formulated as a root-finding problem

following the same idea as in Chapter 2 as:

G(V n−1) = H(V n−1)V n−1 − f̃ = 0, (4.15)

4.3 Semi-Lagrangian Scheme 89

where G is the root-finding function, H is the constructed tri-diagonal matrix and f̃ is the

residual term put on the right hand side which can be evaluated from the known value V n at

the current time step tn. The root-finding problem of equation (4.15) can be solved either by

frozen coefficient method in Algorithm 5 or by Newton-Raphson method, shown in Algo-

rithm 6. The Jacobian matrix can be evaluated using the same derived formula from Sec 2.4.2.

Algorithm 5: Frozen Coefficient Method
Input: Terminal condition V Nt−1 =V (S,A, t = T), initial guess V ∗ =V Nt−1,

tolerance tol
Output: V 0 =V (S,A, t = 0)
for n = Nt −1 : 1 do

for j = 1 : NA do
for k = 1 : Nite do

1. Calculate σ with V ∗ and construct tri-diagonal matrix H;
2. Calculate Ã j by equation (4.14);
3. Calculate Ṽ n

i, j =V (Si, Ã j, tn) by doing interpolation for all i = 1, ...,NS

;
4. Calculate f̃ of equation (4.13) by V (Si, Ã j, tn) for all i = 1, ...,NS ;
5. Solve Vtemp = H \ f̃ ;
if ∥Vtemp −V ∗∥ ≤ tol then

V (S,A j, tn−1) =V ∗, break;
end
else

V ∗ =Vtemp and go back to 1.;
end

end
end

end

4.3.1 Terminal and Boundary Conditions

The solution V (S,A, t) of the equation (4.9) is defined in the domain D = [0,+∞)× [0,+∞)×

[0,T) with the following possible terminal conditions

• V (S,A,T) = Φ(S,A,K) = max(A−K,0) (fixed strike call),

90 Asian Option Pricing

Algorithm 6: Newton-Raphson Method
Input: Terminal condition V Nt−1 =V (S,A, t = T), initial guess V ∗ =V Nt−1,

tolerance tol
Output: V 0 =V (S,A, t = 0)
for n = Nt −1 : 1 do

for j = 1 : NA do
for k = 1 : Nite do

1. Calculate σ with V ∗ and construct tri-diagonal matrix H;
2. Calculate Ã j by equation (4.14);
3. Calculate Ṽ n

i, j =V (Si, Ã j, tn) by doing interpolation for all i = 1, ...,NS;
4. Calculate f̃ of equation (4.13) by V (Si, Ã j, tn) for all i = 1, ...,NS;
5. Define the root-finding function G(V ∗) = H(V ∗)V ∗− f̃ = 0;
6. Calculate the Jacobian matrix Jac(G);
7. Calculate the residue res =−(Jac(G))−1G;
if ∥res∥

max(∥V ∗∥,1) ≤ tol then
V (S,A j, tn−1) =V ∗, break;

end
else

V ∗ =V ∗+ res and go back to 1.;
end

end
end

end

4.3 Semi-Lagrangian Scheme 91

• V (S,A,T) = Φ(S,A,K) = max(K −A,0) (fixed strike put),

• V (S,A,T) = Φ(S,A,K) = max(S−A,0) (floating strike call),

• V (S,A,T) = Φ(S,A,K) = max(A−S,0) (floating strike put),

where K is the strike price, and with the Neumann boundary condition

• lim
S→+∞

∂ 2V
∂S2 (S,A, t) = 0.

In fact the boundary condition of S →+∞ can be further analysed by following the same

idea shown in [14, 25] which replaces the boundary condition in equation (4.9) and obtains

∂V
∂ t

+ rS
∂V
∂S

+
(S−A)

t
∂V
∂A

− rV = 0, S →+∞. (4.16)

A linear solution can be obtained for equation (4.16) as

V (S,A, t) =C1(τ)S+C2(τ)A+C3(τ), (4.17)

where τ = T − t means the time to maturity. Substituting V in equation (4.16) by (4.17)

generates the nonhomogeneous system of differential equations as

C′
1(τ)+

1
T − τ

C2(τ) = 0,

C′
2(τ)+

(
r+

1
T − τ

)
C2(τ) = 0,

C′
3(τ)+ rC3(τ) = 0,

and the solutions can be found explicitly as

C1(τ) = k1 −
k2

r
e−rτ ,

C2(τ) = k2(T − τ)e−rτ ,

C3(τ) = k3e−rτ ,

92 Asian Option Pricing

where k1,k2,k3 are determined from the terminal conditions. For example, for the fixed strike

call case V (S,A, t) = max(A−K,0), the coefficients k1,k2,k3 are obtained as

k1 = 1, k2 = r, k3 = A−K − rTA.

Therefore, the solution for A−K > 0 and S →+∞ is given by

V1(S,A, t) =
(

k1 −
k2

r

)
e−r(T−t)S+ k2te−r(T−t)A+ k3e−r(T−t), (4.18)

and the asymptotic behaviour of the solution

V (S,A, t) = max(V1(S,A, t),0), S →+∞ (4.19)

is taken as the boundary condition instead of using the second order condition.

4.3.2 Coordinate Stretching

The coordinate stretching technique used in 2.5 can also be considered in the present context

when solving equation (4.11) which has been used in [94]. Following a similar idea as

discussed in Sec. 2.5, the refinement of the grid points is expected to be acted around S = K

and A = K, then the stretched coordinates x1,x2 are defined as

S =
K
λ

sinh(x1 −LS)+K,

A =
K
λ

sinh(x2 −LS)+K,

or conversely

x1 = sinh−1
(

λ

K
(S−K)

)
+LS,

x2 = sinh−1
(

λ

K
(A−K)

)
+LS,

4.4 Numerical Experiments 93

where LS is the parameter controlling the stretching size, and λ = sinh(LS).

Applying this coordinate stretching, equation (4.11) becomes

DV
Dt

+
1
2

σ
2(Tλ (x1))

2 ∂ 2V
∂x2

1
− 1

2
σ

2 tanh(x1 +LS)Tλ (x1)
∂V
∂x1

+ rTλ (x1)
∂V
∂x1

− rV = 0, (4.20)

where

Tλ (x1) =
sinh(x1 −LS)+λ

cosh(x1 −LS)
.

4.4 Numerical Experiments

Several numerical experiments are described that illustrate the experimental order of con-

vergence (eoc) under different circumstances, with the same definitions used as in Chapter

2. Let Vh be the solution evaluated with mesh sizes h∆S,h∆A for the spatial discretisations

in the S and A directions, and h∆t for the temporal discretisation. Then the ratio of error is

defined as:

R =
∥Vh −Vh/2∥
∥Vh/2 −Vh/4∥

, (4.21)

where the eoc = log2(R). As explained in Chapter 2, an alternative choice is taking the

solution evaluated with small mesh size to be the exact solution and then the ratio of error

can be defined as:

R̂ =
∥Vh −V̂∥
∥Vh/2 −V̂∥

, (4.22)

where V̂ is the solution evaluated with fine meshes and the ˆeoc = log2(R̂).

The aim of the numerical experiments is to examine the eoc at the point V (S = K,A =

K, t = 0) with the above definitions. The interpolation method uses the cubic spline func-

tion in MATLAB. Certain parameters were fixed as K = 100,Smax = Amax = 3K,T = 1,r =

94 Asian Option Pricing

Table 4.1 Fully implicit scheme with r = 0.01, σ0 = 0.4 and ρ = 0.

NS = NA Nt V Err R eoc ˆErr R̂ ˆeoc

61 31 9.4146 0.0391 1.42 0.50 0.0907 1.75 0.81
121 61 9.3754 0.0275 1.75 0.81 0.0516 2.14 1.10
241 121 9.3479 0.0157 1.88 0.91 0.0240 2.88 1.52
481 241 9.3322 0.0083 0.0083
961 481 9.3238

Table 4.2 Crank-Nicolson scheme with r = 0.01, σ0 = 0.4 and ρ = 0.

NS = NA Nt V Err R eoc ˆErr R̂ ˆeoc

61 31 9.3876 0.0330 1.71 0.77 0.0646 2.04 1.03
121 61 9.3545 0.0193 2.10 1.07 0.0316 2.57 1.36
241 121 9.3352 0.0092 3.03 1.60 0.0122 4.03 2.01
481 241 9.3260 0.0030 0.0030
961 481 9.3229

0.01,σ = 0.4. The payoff function was chosen to be the fixed strike call, i.e. V (S,A,T) =

Φ(S,A,K) = max(A−K,0).

Table 4.1 and 4.2 show the results of using backward Euler scheme and Crank-Nicolson

scheme for cauculating the option price V (S = K,A = K, t = 0) when ρ = 0. Here NS,NA

denote the number of grid points using on the spatial discretisations of S and A, and Nt

represents the number of grid points on the temporal discretisation. For the fully implicit

scheme the results tend to the expected value of eoc as the number of grid points become

larger. For the Crank-Nicolson scheme, Rannacher timestepping method was applied to

replace the first two time steps by the fully implicit scheme. The convergence behaviour does

not behave well bacause of the non smooth terminal condition; similar results were presented

in [25].

Table 4.3 shows the results of using Crank-Nicolson scheme with coordinate stretching

as described in Sec. 4.3.2. Again the first two time steps of the Crank-Nicolson scheme were

replaced by the fully implicit scheme. The improvements can be observed as the eoc values

are close to 2 without using fine meshes.

4.4 Numerical Experiments 95

Table 4.3 Crank-Nicolson scheme with r = 0.01, σ0 = 0.4 and ρ = 0. The coordinate
stretching technique is applied.

NS = NA Nt Err R eoc

31 16 0.0178 3.65 1.87
61 31 0.0048 4.04 2.01
121 61 0.0012
241 121

Table 4.4 Fully implicit scheme with r = 0.01, σ0 = 0.4 and ρ = 0.01.

NS = NA Nt V (S = K,A = K, t = 0) Err R eoc

50 10 1.2402 3.34e-3 0.35 -1.50
100 20 1.2369 9.45e-3 1.43 0.52
200 40 1.2274 6.60e-3 1.76 0.81
400 80 1.2208 3.75e-3 2.10 0.93
800 160 1.2171 1.78e-3 – –
1600 320 1.2153 – – –

For the nonlinear volatility case, the liquidity factor was fixed at ρ = 0.01. Table 4.4 and

4.5 show the results of using the fully implicit scheme and the Crank-Nicolson scheme. The

nonlinear system was solved by Newton-Raphson method since the solution doesn’t converge

well for the frozen coefficient method. For the backward Euler scheme the eoc approaches 1.

For the Crank-Nicolson the Rannacher timestepping technique was again applied to replace

the first two time steps with the fully implicit scheme. Second order accuracy is not seen;

possible reasons are errors accumulated from the interpolation or in the evaluation of the

nonlinearity.

Table 4.5 Crank-Nicolson scheme with r = 0.01, σ0 = 0.4 and ρ = 0.01.

NS = NA Nt V (S = K,A = K, t = 0) Err R eoc

50 10 1.2365 9.53e-3 2.15 1.11
100 20 1.2270 4.42e-3 2.39 1.26
200 40 1.2226 1.84e-3 8.49 -0.23
400 80 1.2207 2.17e-3 2.63 1.4
800 160 1.2186 8.27e-7 – –
1600 320 1.2177 – – –

96 Asian Option Pricing

50 100 150 200
4

6

8

10

12

14

N
S

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
it
e

ra
ti
o

n
s

Newton−Raphson method vs Frozen coefficeint

Newton

Frozen

Fig. 4.1 The average number of iterations for Newton’s method and Frozen coefficient for
NS = 50,100,200. The average is taken over all the discretisations on A-direction and all the
time steps tn.

Figure 4.1 gives a comparison of the number of iterations averaged over each discretise

A-coordinate and all the time steps tn. For Newton-Raphson method it requires around 6

iterations to converge, compared to the frozen coefficient method which needs more than

double this number or even diverges. Figure 4.2 also emphasises the average number of itera-

tions on each time step for Newton-Raphson method. It was found in practice that the most

demanding iteration is for the time step t1 which is the last step of the backward calculation

(from V 1 to V 0) and therefore sometimes the damped updating for Newton-Raphson method

has to be employed to guarantee the root-finding function G in equation (4.15) is monotone

decreasing in order to avoid oscillation.

4.4 Numerical Experiments 97

0 2 4 6 8 10
5

6

7

8

9

10

11

time step

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f
it
e
ra

ti
o
n
s
 o

n
 A

Fig. 4.2 The average number of iterations for Newton-Raphson method. The average is taken
over all the discretisations on A-direction at each time step.

98 Asian Option Pricing

4.5 Summary

This chapter discusses the case of pricing Asian options in illiquid market with the Frey-

Patie model. This requires the solution of a two-dimensional fully nonlinear PDE. The

methodology of using a semi-Lagrangian scheme is followed leading to a SL-Newton solver.

Essentially the SL-Newton solver provides the benefits of obtaining the Asian option price

by solving a set of one-dimensional nonlinear PDEs. The cost optimal since after finite

difference spatial discretisation, these one-dimentional nonlinear systems which emerge have

matrices that are all tri-diagonal. Numerical results show that the second order accuracy is

not easily obtained since it is affected by different sorts of errors in the SL-Newton solver

when using the Crank-Nicolson scheme. However applying the fully implicit scheme in

the SL-Newton solver does have the expected accuracy and may be a better choice when

applying the solver.

Chapter 5

Multi-Asset Problems

In this chapter, the aim is to explore the multi-asset option pricing problem for illiquid markets

which results in a multi-dimensional nonlinear Black-Scholes equation. A generalisation

of the Frey-Patie model to the multi-asset case is proposed and the nonlinear PDEs are

derived. Numerical solution using an Alternative Direction Implicit method merged with

the Newton-based solver is constructed and explained. Several numerical experiments are

discussed and compared to examine accuracy and efficiency.

5.1 Introduction

Multi-asset problems occur when the financial product depends on more than one under-

lying asset. Examples can be found from S&P 500, FTSE 100, options amongst others,

which can be seen as a basket of stocks in a portfolio. These kinds of products protect

investors against the market losses especially when the constructed portfolio is not suffi-

cient diversified. An option that depends on multiple assets is called a multi-asset option

and has different structures such as basket options, spread options, rainbow options, and so on.

These multi-asset options allow various payoff functions, for example, the spread call

option which is widely used in commodity markets as discussed in [16] has the payoff

100 Multi-Asset Problems

function for the two-asset case

V (S1,S2,T) = Φ(S1,S2,K) = max(S1 −S2 −K,0) , (5.1)

where S1,S2 are the two underlying assets, T is the maturity and K is the strike price of the

option. Another example is the arithmetic sum basket option, where the payoff function can

be expressed as

V (S1,S2,T) = Φ(S1,S2,K) = max(Ave−K,0) , (5.2)

where Ave = a1S1+a2S2 and a1,a2 are the assigned weights for assets S1,S2, respectively. It

is worthwhile noting that for some examples with simple payoff functions, explicit solutions

or approximate formulae can be derived. For instance, the spread option with payoff function

in equation (5.1) is normally approximated by using Kirk’s formula shown in [71], and for

the basket option with payoff function in equation (5.2) it is possible to have a proxy using

the inverse gamma distribution as introduced in [85]. If the payoff function is

Φ(S1,S2,K) = max(S1 −S2,0),

then the option price can be obtained by using Margrabe’s formula proposed in [83]. However

in general if the dynamics of underlying assets or the payoff functions are complicated, it

is difficult to get exact solutions or approximate formulas and numerical solutions using

approximations to PDE or Monte Carlo simulation are necessary.

In this thesis, the focus is on using a numerical PDE approach to solve the option pricing

problems with multiple assets, which typically leads to a multi-dimensional Black-Scholes

equation as discussed in [58], namely

∂V
∂ t

+
n

∑
i=1

rSi
∂V
∂Si

+
1
2

n

∑
i=1

n

∑
j=1

ρi jσiσ jSiS j
∂ 2V

∂Si∂S j
− rV = 0, (5.3)

where n represents the number of assets. When n is greater than 3, the PDE approach is not

appropriate as it comes the curse of dimensionality. Typically equation (5.3) is solved when

5.1 Introduction 101

n = 2 or n = 3 with the built numerical solvers.

Using a fully implicit scheme to solve equation (5.3) somehow is expensive especially

when the number of grid points are becoming large. This is because the generated system

to be solved at each time step is of an enormous size, and it is costly to store such matrices

when doing computation either with dense or sparse structure. The Alternative Direction

Implicit (ADI) method provides a technical way to reduce the dimensional cost when solving

high-dimensional PDE. The idea was proposed many decades ago but is still commonly

used or modified today. The first study was given by Peaceman and Rachford [96] which

provided a natural way of splitting the high-dimeional PDE into different intermediate steps

in which each step involves lower dimensional PDE. Further schemes which manipulate

the splitting steps or involve special designs for different types of equations can be found

in [19, 26–28, 60, 61, 110] . These schemes provide a good approximation of the original

high-dimensional PDE but stability conditions may be required if cross-derivative term exists.

In’t Hout examined different schemes in [62, 63, 65, 66, 115] for the convection-diffusion

equation with cross-derivative, and with applications especially to Heston type models in

[55, 56, 64].

The advantage of applying an ADI scheme is solving reasonable matrix sizes. The other

benefit is the set of lower dimensional PDEs can be solved in parallel as they can be generated

independently and does not depend on each other. Dang [22] provided a framework for

solving three-dimensional PDEs with cases like Rainbow and basket options by using GPUs.

Egloff [32] gave also an example of doing GPU computing for solving a stochastic volatility

model. These demonstrations highlight a promising direction of using GPUs to implement

ADI solvers.

In the following sections, the focus is on pricing option on multiple assets in illiquid

markets for which very few studies can be found in the literature. The idea of the Frey-

Patie model is reviewed and a more generalised model for multi-asset is derived with the

102 Multi-Asset Problems

corresponding multi-dimensional nonlinear Black-Scholes equation. A two-dimensional case

is studied using the standard Peaceman-Rachford scheme with Newton-Raphason method

and different numerical experiments are examined.

5.2 An Extension of the Frey-Patie Model

In Chapter 2, derivation of the nonlinear PDE for Frey-Patie model is given for the one-

dimensional case. It explains how an option price is affected by the holding or hedging

strategy on the single underlying asset taken by a large trader or groups of small traders in

an illiquid market. When handling multi-asset problems, it is necessary to consider a more

general model with different dynamics of the underlying assets which may influence each

other. In the following the details of extending the Frey-Patie model to the multi-asset case is

explained

Assume now the option price depends on multiple underlying asset Si, i = 1, ...,n. Then

following the same idea as the one-dimensional case, assume the dynamic of Si satisfies the

stochastic process

dSi = µ̃iSidt +
n

∑
j=1

σ̃i jS jdWj +
n

∑
j=1

ρ̃i jS jdα j, i, j = 1, ...,n, (5.4)

where α j are strategies for a large trader or a group of small traders holding stocks S j and ρ̃i j

are the liquidities for the underlying asset Si with holding strategies α j. Note when n = 1,

the model is exactly the same one as discussed in Chapter 2 for the one-dimensional case.

To simplify the equation, consider µi = µ̃iSi, σi j = σ̃i jS j, ρi j = ρ̃i jS j to replace the

equation (5.4) to

dSi = µidt +
n

∑
j=1

σi jdW j +
n

∑
j=1

ρi jdα j, i, j = 1, ...,n, (5.5)

5.2 An Extension of the Frey-Patie Model 103

and the aim is to write equation (5.5) in the form

dSi = bidt +
n

∑
j=1

vi jdWj. (5.6)

To start first consider the strategy of holding or hedging stocks is described by the

functions

αi = φi(S1,S2, ...,Sn, t).

Applying multi-dimensional Itô’s lemma mentioned in [107],

dαi =
∂φi

∂ t
dt +

n

∑
j=1

∂φi

∂S j
dS j +

1
2

n

∑
i, j=1

∂ 2φi

∂Si∂S j

n

∑
k=1

σikσ jkdt, (5.7)

here the fact < dWi,dWj >= δi jdt is applied, and combining equation (5.5) and (5.7) the

following equation is obtained

dSi = Hidt +
n

∑
j=1

σi jdW j +
n

∑
j=1

ρi j

n

∑
k=1

∂φ j

∂Sk
dSk, (5.8)

where

Hi = µi +
n

∑
j=1

ρi j
∂φ j

∂ t
+

1
2

n

∑
p,q=1

∂ 2φ j

∂Sp∂Sq

n

∑
l=1

σplσql. (5.9)

Equation (5.8) can be rewritten as

dSi = Hidt +
n

∑
j=1

σi jdWj +
n

∑
k=1

n

∑
j=1

ρi j
∂φ j

∂Sk
dSk, (5.10)

which gives the following vector form

IdS⃗ = ΣdW⃗ +AdS⃗+ H⃗dt. (5.11)

Here the notations dS⃗=(dS1,dS2, ...,dSn)
T , dW⃗ =(dW1,dW2, ...,dWn)

T , H⃗ =(H1,H2, ...,Hn)
T

from (5.9), and Σ = (σi j)n×n. I is an identity matrix, and A is a (n×n) matrix defined as

104 Multi-Asset Problems

A =



n
∑
j=1

ρ1 j
∂φ j
∂S1

n
∑
j=1

ρ1 j
∂φ j
∂S2

...
n
∑
j=1

ρ1 j
∂φ j
∂Sn

n
∑
j=1

ρ2 j
∂φ j
∂S1

n
∑
j=1

ρ2 j
∂φ j
∂S2

...
n
∑
j=1

ρ2 j
∂φ j
∂Sn

...
n
∑
j=1

ρn j
∂φ j
∂S1

n
∑
j=1

ρn j
∂φ j
∂S2

...
n
∑
j=1

ρn j
∂φ j
∂Sn


,

which can be simplified to

A =


ρ11 ρ12 ... ρ1n

ρ21 ρ22 ... ρ2n

...

ρn1 ρn2 ... ρnn





∂φ1
∂S1

∂φ1
∂S2

... ∂φ1
∂Sn

∂φ2
∂S1

∂φ2
∂S2

... ∂φ2
∂Sn

...

∂φn
∂S1

∂φn
∂S2

... ∂φn
∂Sn

= ρ × Jac(φ),

where Jac is the Jacobian matrix.

Note equation (5.10) now becomes

(I −A)dS⃗ = ΩdW⃗ + H⃗dt, (5.12)

and after changing the measure to the risk-neutral one, the terms in equation (5.6) can be

found to be

bi = r, Ω = (vi j)n×n = (I −A)−1
Σ.

Hence applying the multi-dimensional Feymann-Kac theorem from [107], a multi-dimensional

nonlinear Black-Scholes equation under the Frey-Patie model can be derived

∂V
∂ t

+
n

∑
i=1

rSi
∂V
∂Si

+
1
2

n

∑
i=1

n

∑
j=1

(
n

∑
k=1

vikv jk

)
SiS j

∂ 2V
∂Si∂S j

− rV = 0, (5.13)

and the option price can be obtained by solving this equation. An example for n = 2 is given

as follows.

5.2 An Extension of the Frey-Patie Model 105

Example 5.2.1. Suppose S1, S2 satisfy the stochastic processes

dS1 = µ̃1S1dt + σ̃11S1dW1 + σ̃12S2dW2 + ρ̃11S1dα1 + ρ̃12S2dα2, (5.14)

dS2 = µ̃2S2dt + σ̃21S1dW1 + σ̃22S2dW2 + ρ̃21S1dα1 + ρ̃22S2dα2, (5.15)

and assume αi = φi(S1,S2, t). Again to simplify the notation let µi = µ̃iSi, σi j =

σ̃i jS j, ρi j = ρ̃i jS j, i.e. replace (5.14) by

dS1 = µ1dt +σ11dW1 +σ12dW2 +ρ11dα1 +ρ12dα2, (5.16)

dS2 = µ2dt +σ21dW1 +σ22dW2 +ρ21dα1 +ρ22dα2, (5.17)

Applying Itô’s lemma to α1 and α2,

dα1 =
∂φ1

∂ t
+

(
∂φ1

∂S1
dS1 +

∂φ1

∂S2
dS2

)
+

1
2

(
2

∑
i, j=1

∂ 2φ1

∂Si∂S j

2

∑
k=1

σikσ jk

)
dt, (5.18)

dα2 =
∂φ2

∂ t
+

(
∂φ2

∂S1
dS1 +

∂φ2

∂S2
dS2

)
+

1
2

(
2

∑
i, j=1

∂ 2φ2

∂Si∂S j

2

∑
k=1

σikσ jk

)
dt. (5.19)

Combining these equations,

dS1 = h1dt +σ11dW1 +σ12dW2 +ρ11

(
∂φ1

∂S1
dS1 +

∂φ1

∂S2
dS2

)
+ρ12

(
∂φ2

∂S1
dS1 +

∂φ2

∂S2

)
dS2,

dS2 = h2dt +σ21dW1 +σ22dW2 +ρ21

(
∂φ1

∂S1
dS1 +

∂φ1

∂S2
dS2

)
+ρ22

(
∂φ2

∂S1
dS1 +

∂φ2

∂S2

)
dS2,

and rewrite into vector form as

IdS⃗ = ΣdW⃗ +AdS⃗+ H⃗dt, (5.20)

where

Σ =

σ11 σ12

σ21 σ22

 , I =

1 0

0 1

 , H⃗ =

H1

H2

 ,

106 Multi-Asset Problems

and

A =

ρ11
∂φ1
∂S1

+ρ12
∂φ2
∂S1

ρ11
∂φ1
∂S2

+ρ12
∂φ2
∂S2

ρ21
∂φ1
∂S1

+ρ22
∂φ2
∂S1

ρ21
∂φ1
∂S2

+ρ22
∂φ2
∂S2

= ρ × Jac(φ),

where

ρ =

ρ11 ρ12

ρ21 ρ22


represents the liquidities.

Hence, by changing the measure to the risk-neutral one and choosing the functions to be

φ1 =
∂V
∂S1

, φ2 =
∂V
∂S2

,

eventually the two-dimensional nonlinear Black-Scholes equation can be derived as

∂V
∂ t

+ r
(

S1
∂V
∂S1

+S2
∂V
∂S2

)
+

1
2

(
a

∂ 2V
∂S2

1
+b

∂ 2V
∂S1∂S2

+ c
∂ 2V

∂S2∂S1
+d

∂ 2V
∂S2

2

)
− rV = 0,

(5.21)

where

a = v2
11 + v2

12, b = v11v21 + v12v22, c = v21v11 + v22v12, d = v2
21 + v2

22,

and v11 v12

v21 v22

= (I −A)−1
Σ,

where

v11 =

(
1−
(

ρ21
∂V

∂S1∂S2
+ρ22

∂V
∂S2

2

))
σ11 +

(
ρ11

∂V
∂S1∂S2

+ρ12
∂V
∂S2

2

)
σ21

det(I −A)
,

v12 =

(
1−
(

ρ21
∂V

∂S1∂S2
+ρ22

∂V
∂S2

2

))
σ12 +

(
ρ11

∂V
∂S1∂S2

+ρ12
∂V
∂S2

2

)
σ22

det(I −A)
,

v21 =

(
ρ21

∂V
∂S2

1
+ρ22

∂V
∂S1∂S2

)
σ11 +

(
1−
(

ρ11
∂V
∂S2

1
+ρ12

∂V
∂S1∂S2

))
σ21

det(I −A)
,

5.3 ADI-Newton Solver 107

v22 =

(
ρ21

∂V
∂S2

1
+ρ22

∂V
∂S1∂S2

)
σ12 +

(
1−
(

ρ11
∂V
∂S2

1
+ρ12

∂V
∂S1∂S2

))
σ22

det(I −A)
.

The determinant can be expanded as

det(I −A) = 1−
(

ρ21
∂V

∂S1∂S2
+ρ22

∂V
∂S2

2

)
−
(

ρ11
∂V
∂S2

1
+ρ12

∂V
∂S1∂S2

)
+

(
ρ12ρ21

(
∂ 2V

∂S1∂S2

)2

+ρ11ρ22
∂ 2V
∂S2

1

∂ 2V
∂S2

2
−ρ12ρ21

∂ 2V
∂S2

1

∂ 2V
∂S2

2
−ρ11ρ22

(
∂ 2V

∂S1∂S2

)2
)
,

which can be simplified to

det(I −A) = 1−ρ ×Hess(V)−det(ρ)
(

∂ 2V
∂S1∂S2

)2

+det(ρ)
∂ 2V
∂S2

1

∂ 2V
∂S2

2
,

where Hess means the Hessian matrix.

Note that choosing the parameters to be

Σ =

σ11 σ12

σ21 σ22

=

σ11 0

0 σ22

 ,

ρ =

ρ11 ρ12

ρ21 ρ22

=

0 0

0 0

 ,

simplifies equation (5.21) to become the standard multi-dimensional linear Black-Scholes

equation.

5.3 ADI-Newton Solver

Solving the equation (5.13) is not an easy task as it is necessary to construct a nonlinear

solver for high-dimensional PDEs. Using a fully implicit scheme then requires the solution

of a huge linear systems within the iterative scheme where the matrix structure normally

would have a banded structure from the spatial discretisations. The whole computation is

108 Multi-Asset Problems

becoming expensive. Therefore rather than a fully implicit scheme or a Crank-Nicolson

scheme, an ADI method is chosen considered as the methodology.

The idea of using an ADI method is to create several fractional time steps in the time-

marching scheme, and at each fractional time step, the spatial discretisation is employed

implicitly in a chosen direction where as the other terms are discretised explicitly using known

values at current fractional time step. To be more precise, consider the two-dimensional

nonlinear Black-Scholes equation (5.21) which can be rewritten as

∂V
∂ t

+ r
(

S1
∂V
∂S1

+S2
∂V
∂S2

)
+

1
2

(
αS2

1
∂ 2V
∂S2

1
+2βS1S2

∂ 2V
∂S1∂S2

+ γS2
2

∂ 2V
∂S2

2

)
− rV = 0.

(5.22)

where α = α(S1,S2, t,VS1S1,VS1S2,VS2S2), β = β (S1,S2, t,VS1S1,VS1S2,VS2S2) and

γ = γ(S1,S2, t,VS1S1 ,VS1S2,VS2S2). The solution V (S1,S2, t) depends on two different spatial

dimensions. The Peaceman-Rachford scheme is followed since it gives a good approximation

in the two-dimensional case. Essentially in the backward time-marching scheme, when

calculating the value V n−1 from V n, the Peaceman-Rachford scheme suggests splitting it into

the the following two fractional steps:

V
n− 1

2
i j −V n

i j

∆t/2
= L1(V n− 1

2)+L2(V n)+L3(V n)+L4(V n− 1
2)+L5(V n)− rV

n− 1
2

i j , (5.23)

and

V n−1
i j −V

n− 1
2

i j

∆ t/2
= L1(V n− 1

2)+L2(V n−1)+L3(V n− 1
2)+L4(V n− 1

2)+L5(V n−1)− rV n−1
i j ,

(5.24)

where

L1(V n) =
αn

i j(S1)
2
i

2

V n
i+1, j −2V n

i j +V n
i−1, j

(∆S1)2 ,

L2(V n) =
γn

i j(S2)
2
j

2

V n
i, j+1 −2V n

i j +V n
i, j−1

(∆S2)2 ,

5.3 ADI-Newton Solver 109

L3(V n) = 2β
n
i j(S1)i(S2) j

V n
i+1, j+1 −V n

i−1, j+1 −V n
i+1, j−1 +V n

i−1, j−1

4∆S1∆S2
,

L4(V n) = r(S1)i
V n

i+1, j −V n
i−1, j

2∆S1
,

L5(V n) = r(S2) j
V n

i, j+1 −V n
i, j−1

2∆S2
.

where the computational domain is truncated as V (S1,S2, t) ∈ [0,(S1)max]× [0,(S2)max]×

[0,T) and V n
i j is a discrete approximation to V (i∆S1, j∆S2,n∆t). Here (S1)i = i∆S1, i =

0, · · · ,NS1 − 1, (S2) j = j∆S2, j = 0, · · · ,NS2 − 1, and n = 0, · · · ,Nt − 1, where NS1 and NS2

are the numbers of grid points for spatial discretisations on S1 and S2 directions, and Nt is

the number of grid points for temporal discretisation. The sizes of meshes are calculated as

∆S1 = (S1)max/(NS1 −1),∆S2 = (S2)max/(NS2 −1),∆t = T/(Nt −1).

Therefore equations (5.23) and (5.24) provide an approximation for getting the answer

V n−1 from V n and can be re-formulating as the following

H1(V n− 1
2)V n− 1

2 = f1(V n), (5.25)

H2(V n−1)V n−1 = f2(V n− 1
2), (5.26)

where H1 is a (NS1 − 2)× (NS1 − 2) tri-diagonal matrix defined as [a,b,c] and a,b,c are

(NS1 − 2)× 1 column vectors represent the lower, main and upper diagonal entries of H1

which are

ai =
∆t
4

−r(S1)i

∆S1
+

α
n− 1

2
i j (S1)

2
i

(∆S1)
2

 ,

bi =−1− ∆t
2

α
n− 1

2
i j (S1)

2
i

(∆S1)
2 − r

 ,

ci =
∆t
4

r(S1)i

∆S1
+

α
n− 1

2
i j (S1)

2
i

(∆S1)
2

 ,

110 Multi-Asset Problems

where i = 1, · · ·NS1 −2. f1(V n) represents the right hand side values which can be evaluated

from the known values V n at the current time step.

Similarly H2 is a (NS2 −2)× (NS2 −2) tri-diagonal matrix defined as [d,e, f] and d,e, f

are (NS2 −2)×1 column vectors represent the lower, main and upper diagonal entries of H2

which are

d j =
∆t
4

(
−r(S2) j

∆S2
+

γ
n−1
i j (S2)

2
j

(∆S2)
2

)
,

e j =−1− ∆t
2

(
γ

n−1
i j (S2)

2
j

(∆S2)
2 − r

)
,

f j =
∆t
4

(
r(S2) j

∆S2
+

γ
n−1
i j (S2)

2
j

(∆S2)
2

)
,

where j = 1, · · ·NS2 −2. f2(V n− 1
2) again represents the right hand side values which can be

evaluated from the known values V n− 1
2 when moving to the second step of the Peaceman-

Rachford scheme.

The advantage of applying the Peaceman-Rachford scheme is readily seen from the

matrices H1 and H2 which both very simple tri-diagonal structures of smaller size than the

system for the fully implicit scheme. The nonlinear problem at each step is similar to the

one-dimensional case, and the methodology of solving the nonlinear systems (5.25) and

(5.26) is again to use the root-finding approach which can be expressed as solving

G1(V n− 1
2) = H1(V n− 1

2)V n− 1
2 − f1(V n) = 0, (5.27)

G2(V n−1) = H2(V n−1)V n−1 − f2(V n− 1
2) = 0, (5.28)

where G1 and G2 are the root-finding functions for the first and the second step in the

Peaceman-Rachford scheme. Equations (5.27) and (5.28) can be solved by either applying

the frozen coefficient method or Newton-Raphson method as in Chapter 2. Note that using the

Newton-Raphson method, the explicit Jacobian matrix is not easily obtained as the volatility

5.3 ADI-Newton Solver 111

function is complicated and consequently finite difference approximation and Broyden type

methods have to be employed. The nonlinearities can also be approximated using the initial

guesses V ∗ and V ∗∗ in the iterative scheme. The developed solver, termed the ADI-Newton

method, is explained in Algorithm 7.

Algorithm 7: ADI-Newton Method
Input: initial guesses V ∗,V ∗∗, terminal condition V Nt−1 =V (S1,S2, t = T), tol
Output: V 0 =V (S1,S2, t = 0)
for n = Nt −1 : 1 do

<ADI Step 1>
for j = 2 : NS2 −1 do

for k = 1 : Nite do
1. Calculate G1(V ∗) by equation (5.27);
2. Calculate res =− [Jac(G1(V ∗))]−1 G1(V ∗) ;
if ∥G1(V ∗)∥

max(1,∥V ∗∥) < tol then
V n− 1

2 =V ∗, go to <ADI Step 2> ;
else

V ∗ =V ∗+ res, go back to 1.;
end

end
end

end
<ADI Step 2>
for i = 2 : NS1 −1 do

for k = 1 : Nite do
3. Calculate G2(V ∗∗) by equation (5.28);
4. Calculate res =− [Jac(G2(V ∗∗))]−1 G2(V ∗∗) ;
if ∥G2(V ∗∗)∥

max(1,∥V ∗∗∥) < tol then
V n−1 =V ∗∗, break;
else

V ∗∗ =V ∗∗+ res, go back to 3.;
end

end
end

end
end

112 Multi-Asset Problems

5.4 Numerical Experiments

Two numerical experiments were designed to examine the accuracy of using this ADI-Newton

method by calculating the experimental order of convergence (eoc) at a given point. The eoc

number was constructed similarly to the methodology in Chapter 2. Let Vh be the solution

evaluated with mesh sizes h∆S1 for spatial discretisation on S1 direction, h∆S2 for spatial

discretisation on S2 direction and h∆t for temporal discretisation, then the ratio of error with

asymptotic behaviour was constructed as:

R =
∥Vh −Vh/2∥
∥Vh/2 −Vh/4∥

, (5.29)

where the eoc = log2(R). The other choice is taking the solution evaluated with small mesh

size to be the true solution and then the ratio of error can be defined as:

R̂ =
∥Vh −V̂∥
∥Vh/2 −V̂∥

, (5.30)

where V̂ is the solution evaluated with refined grid points and the ˆeoc = log2(R̂).

The first numerical experiment focuses on spread option pricing and the payoff function

was chosen to be

V (S1,S2,T) = Φ(S1,S2,K) = max(S1 −S2 −K,0).

The truncated domain for finite difference discretisation was set as S1 ∈ [0,1000], S2 ∈

[0,400]. The strike price, maturity, and interest rate were fixed as K = 100,T = 1/12,r =

0.005. The volatilities also the liquidities were chosen to beσ11 σ12

σ21 σ22

=

0.4 0

0 0.1

 ,

ρ11 ρ12

ρ21 ρ22

=

0.01 0

0 0.005

 ,

5.4 Numerical Experiments 113

Table 5.1 ADI-Newton method with the l2 norm for spread option case.

NS1 = NS2 Nt Err R eoc ˆErr R̂ ˆeoc

11 1001 0.053 2.44 1.29 0.083 2.76 1.46
21 1001 0.021 3.36 1.75 0.030 3.64 1.86
41 1001 0.006 3.70 1.89 0.008 4.70 2.23
81 1001 0.001 0.001
161 1001

and boundary conditions were taken as

V (0,S2, t) = 0,
∂V
∂S2

(S1,0, t) =
∂V
∂S1

(S1max,S2, t) =
∂V
∂S2

(S1,S2max, t) = 0, (5.31)

for t ∈ [0,T).

Table 5.1 shows the results of eoc numbers where NS1,NS2 are grid numbers for spatial

discretisations in S1,S2 directions, and Nt is the grid number of temporal discretisation which

is fixed to be Nt = 1001 in order to observe the convergent behaviour of the error from spatial

discretisations. The number eoc actually presents the accuracy for the spread option case as

O((∆S1)
2−ε +(∆S2)

2−ε)) where ε is a small number.

Fig 5.1 shows the computation time for using the ADI-Newton method, with different

approaches for evaluating the Jacobian matrix. It can be observed that Broyden’s method is

faster than finite difference as the number of grid points are getting larger. Fig 5.2 also shows

the average number of iterations for the two steps of the ADI-Newton method. In step 1 the

number is higher, which can is understandable as the numerical experiment was designed

for the truncated domain in which S1 is greater than S2 and it reflects the fact that the mesh

size ∆S1 > ∆S2 with a fixed number of grid points along both spatial axes. This also shows

the reason why the computation time in step 1 is higher than in step 2. Note that both steps

actually only require around 5 iterations to guarantee convergence which shows the benefit

of using Newton-Raphson method.

114 Multi-Asset Problems

Fig. 5.1 Computation time for using finite difference method with Broyden’s method to
approximate the Jacobian matrix.

Fig. 5.2 Average of number of iterations of ADI-Newton method at step 1 and step 2 for
spread option case where NS1 = NS2 = 101.

5.4 Numerical Experiments 115

Table 5.2 ADI-Newton method with the l2 norm for basket option case.

NS1 = NS2 Nt Err R eoc ˆErr R̂ ˆeoc

16 1001 0.5002 1.76 0.81 0.8610 2.38 1.25
31 1001 0.2838 4.57 2.19 0.3608 4.68 2.22
61 1001 0.0620 4.13 2.05 0.0770 5.13 2.35
121 1001 0.0150 0.0150
241 1001

The second numerical experiment involved calculating the price of a basket option with

the payoff function chosen to be

V (S1,S2,T) = Φ(S1,S2,K) = max
(

S1 +S2

2
−K,0

)
.

The truncated domain for the finite difference discretisation was set as S1 ∈ [0,300], S2 ∈

[0,300]. Other parameters were chosen to be the same as the case in spread option. The

boundary conditions were taken as

∂V
∂S1

(0,S2, t) =
∂V
∂S2

(S1,0, t) =
∂V
∂S1

(S1max,S2, t) =
∂V
∂S2

(S1,S2max, t) = 0. (5.32)

Table 5.2 presents the results for eoc numbers and again Nt = 1001 for observing the

convergent behaviour of the error from spatial discretisations. In this case the number eoc can

reach around 2 which essentially gives the accuracy of second order in space when ∆t is fixed.

Fig 5.3 again shows the average number of iterations for the two steps of the ADI-Newton

method. The only difference occurs in the first few time steps, and after both ADI steps

actually only require 3 iterations on average to converge in general. The small number of

iterations is the benefit of using ADI-Newton method to solve multi-dimensional nonlinear

equations.

116 Multi-Asset Problems

Fig. 5.3 Average of number of iterations of ADI-Newton method at step 1 and step 2 for
basket option case where NS1 = NS2 = 61.

5.5 Summary

In this chapter, the idea of using the Frey-Patie model to explore the option price behaviour in

illiquid markets is extended for options which depend on multiple assets. A multi-dimensional

nonlinear Black-Scholes equation is derived for the multi-asset problem and this approach is

followed for pricing such options.

Two cases including spread and basket options in two dimensions are examined with a

merged solver which incorporates both the ADI method and the Newton-based solver. This

ADI-Newton solver has the advantage of solving a nonlinear system with a smaller matrix

size and requires only a small number of iterations. The accuracy of the solver depends on

the problem but can reach second order on space when taking the mesh size of temporal

discretisation to be very small.

Chapter 6

Conclusion

6.1 Conclusion

In this thesis an overview of various nonlinear problems in option pricing is given in the

introduction, and a detailed discussion in terms of mathematical modelling, numerical non-

linear PDE solvers and parallel computing has been given. The model provided by Frey and

Patie in [43] is chosen as the focus and extended to high-dimensional cases. A brief summary

of research contributions is as follows.

First of all, efficient and robust nonlinear PDE solvers based on Newton-Raphson method

are constructed for solving nonlinear Black-Scholes equations. A principal conclusion for

the one-dimensional case is that applying Newton-Raphson method with a direct solver is

considered to be best as it performs efficiently due to the simple tri-diagonal structure of the

nonlinear system and fast convergence of the iterative scheme. Numerical experiments have

demonstrated that this constructed Newton-based solver does achieve the expected accuracy

after suitable adjustments. These results have been published in [29, 33, 35].

Secondly, a parallel batched Newton-based solver is built for solving large-scale nonlinear

PDEs with implementations on GPUs. These large-scale problems come from multiple con-

tracts where the option pricing uses nonlinear models, and the batched Newton-based solver

118 Conclusion

enables pricing these independent options with multiple parameters at the same time. Good

performance solutions can be obtained by using sophisticated GPU libraries and allocating

memory appropriately, and numerical tests demonstrate that good speedups can be achieved

when the size of problems becomes large.

Finally, a feature of the constructed Newton-based solvers is the solvers are able to be

combined with other numerical schemes when handling high-dimensional problems. Two

case studies, including Asian option and multi-asset problems, have been described gener-

ating the SL-Newton and ADI-Newton solvers. An important issue to address is that the

expected accuracy from the chosen scheme is sometimes not easily achievable as the merged

schemes contain different sources of numerical errors. However these merged schemes

reduce the computation time and also data storage and therefore it is recommended to use

them for two-dimensional problems.

These combined solvers will add to the numerical tools for the wide range of nonlinear

PDEs available to the finance industry. The parallel computing implementation allows the

solution to be obtained efficiently. With these tools it is feasible to generate practical insights

and understanding of the effects of nonlinearities in the real market.

6.2 Outlook

The numerical solvers described in the thesis are suitable for dealing with basic nonlinear

problems in finance. To have more generic, compact and powerful solutions, there are still

some challenging issues which need to be overcome and are considered as future work.

6.2 Outlook 119

6.2.1 Robust Methods to Handle the Singularity

The first one is developing systematic ways to handle singularities which occur at specific

discontinuous points, addressed and discussed with some remedies in [48] and in Chapter 2.

These issues appear in high-dimensional cases as well depending on the payoff functions

since the nonlinear volatility functions still depend on the sensitivities which may generate

more instabilities in the nonlinear solvers. Therefore extensions of these adjustments for

singularities are needed for incorporation into the developed SL-Newton and ADI-Newton

solvers. The techniques provided in [48] are a good basis for extensions for handling

high-dimensional nonlinear option pricing problems.

6.2.2 GPU Computing for High-dimensional Problems

The solvers introduced in Chapter 4 and 5 can potentially be the basis for large-scale problems,

where GPU computing is very suitable using the framework proposed in Chapter 3. Some

extra settings would need to be employed to adjust the SL-Newton and ADI-Newton solvers

to formulate the batched Newton-based solver. The main challenge comes from the memory

allocation for doing extra calculations, e.g. interpolations for Asian option pricing which is

memory bound and takes more time than doing the batch operation or tri-diagonal solver.

The parallel ADI solver proposed in [22] which the authors used to solve a three-factor

model PDE would be followed and compared. Also in [14] the parallel PDE solver using the

semi-Lagrangian scheme actually solves similar equations for doing Asian option pricing

using similar ideas. These references focus on the constant volatility, and essentially the aim

would be to obtain reasonable speedups optimise the performance for nonlinear case.

6.2.3 American Options

The option pricing problems discussed in this thesis concentrate on European options, which

only allow exercise at maturity. There are more possibilities such as American options, which

give the right to early exercise, in real financial markets. There is only a small literature

base discussing the nonlinearity impact from volatility in American option pricing as it is

120 Conclusion

difficult to handle both the free boundary problem also to build a nonlinear PDE solver. Some

techniques using moving boundary transformation proposed in [33] enable the solution of the

nonlinear American option pricing problem in the call option case and the authors examined

the case of transaction costs model given by [7]. It is considered to be future work to transfer

this technique to the Frey-Patie model and to construct Newton-based solvers which are

suitable for the American option case.

References

[1] S. Alanko. Stability of Regression-Based Monte Carlo Methods for Solving Nonlinear

PDEs. Communications on Pure and Applied Mathematics, 69(5):958–980, 2016.

[2] E. Anderson, Z. Bai, J. Dongarra, A. Greenbaum, A. McKenney, J. Du Croz, S. Ham-

merling, J. Demmel, C. Bischof, and D. Sorensen. LAPACK: A portable linear algebra

library for high-performance computers. In Proceedings of the 1990 ACM/IEEE

conference on Supercomputing, pages 2–11. IEEE Computer Society Press, 1990.

[3] M. Avellaneda, A. Levy, and A. Parás. Pricing and hedging derivative securities in

markets with uncertain volatilities. Applied Mathematical Finance, 2(2):73–88, 1995.

[4] M. Avellaneda and A. Paras. Managing the volatility risk of portfolios of derivative

securities: the Lagrangian uncertain volatility model. Applied Mathematical Finance,

3(1):21–52, 1996.

[5] G. Barles. Convergence of Numerical Schemes for Degenerate Parabolic Equations

Arising in finance Theory. Numerical methods in finance, 13:1, 1997.

[6] G. Barles, C. Daher, and M. Romano. Convergence of numerical schemes for parabolic

equations arising in finance theory. Mathematical models and methods in applied

Sciences, 5(01):125–143, 1995.

[7] G. Barles and H. M. Soner. Option pricing with transaction costs and a nonlinear

Black-Scholes equation. Finance and Stochastics, 2(4):369–397, 1998.

[8] F. Black and M. Scholes. The Pricing of Options and Corporate Liabilities. Journal of

Political Economy, 81(3):637–654, 1973.

122 References

[9] L. A. Bordag. Geometrical Properties of Differential Equations: Applications of Lie

Group Analysis in Financial Mathematics. World Scientific Publishing Co Inc, 2015.

[10] L. A. Bordag and R. Frey. Pricing options in illiquid markets: symmetry reductions

and exact solutions. 2008.

[11] B. Bouchard and N. Touzi. Discrete-time approximation and Monte-Carlo simula-

tion of backward stochastic differential equations. Stochastic Processes and their

Applications, 111(2):175–206, 2004.

[12] P. Boyle, M. Broadie, and P. Glasserman. Monte Carlo methods for security pricing.

Journal of Economic Dynamics and Control, 21(8):1267–1321, 1997.

[13] Z. Buckova, M. Ehrhardt, and M. Günther. Alternating direction explicit methods

for convection diffusion equations. Acta Mathematica Universitatis Comenianae,

84(2):309–325, 2015.

[14] D. Castillo, A. Ferreiro, J. A. García-Rodríguez, and C. Vázquez. Numerical methods

to solve PDE models for pricing business companies in different regimes and imple-

mentation in GPUs. Applied Mathematics and Computation, 219(24):11233–11257,

2013.

[15] L.-W. Chang and W. H. Wen-mei. A Guide for Implementing Tridiagonal Solvers on

GPUs. In Numerical Computations with GPUs, pages 29–44. Springer, 2014.

[16] I. J. Clark. Commodity Option Pricing: A Practitioner’s Guide. John Wiley & Sons,

2014.

[17] R. Company, L. Jódar, and J.-R. Pintos. A consistent stable numerical scheme for a

nonlinear option pricing model in illiquid markets. Mathematics and Computers in

Simulation, 82(10):1972–1985, 2012.

[18] S. Cook. CUDA PROGRAMMING: A DEVELOPER’S GUIDE TO PARALLEL

COMPUTING WITH GPUs. Newnes, 2012.

References 123

[19] I. J. Craig and A. D. Sneyd. An alternating-direction implicit scheme for parabolic

equations with mixed derivatives. Computers & Mathematics with Applications,

16(4):341–350, 1988.

[20] M. G. Crandall, H. Ishii, and P.-L. Lions. User’s guide to viscosity solutions of second

order partial differential equations. Bulletin of the American Mathematical Society,

27(1):1–67, 1992.

[21] M. G. Crandall and P.-L. Lions. Viscosity solutions of Hamilton-Jacobi equations.

Transactions of the American Mathematical Society, 277(1):1–42, 1983.

[22] D.-M. Dang, C. Christara, and K. R. Jackson. A Parallel Implementation on GPUs

of ADI Finite Difference Methods for Parabolic PDEs with Applications in Finance.

2010.

[23] R. S. Dembo, S. C. Eisenstat, and T. Steihaug. Inexact Newton Methods. SIAM

Journal on Numerical analysis, 19(2):400–408, 1982.

[24] J. W. Demmel, M. T. Heath, and H. A. Van Der Vorst. Parallel numerical linear algebra.

Acta numerica, 2:111–197, 1993.

[25] Y. d’Halluin, P. A. Forsyth, and G. Labahn. A semi-Lagrangian approach for American

Asian options under jump diffusion. SIAM Journal on Scientific Computing, 27(1):315–

345, 2005.

[26] J. Douglas. Alternating direction methods for three space variables. Numerische

Mathematik, 4(1):41–63, 1962.

[27] J. Douglas and H. H. Rachford. On the Numerical Solution of Heat Conduction Prob-

lems in Two and Three Space Variables. Transactions of the American Mathematical

Society, 82(2):421–439, 1956.

[28] D. J. Duffy. Finite difference methods in financial engineering: A Partial Differential

Equation Approach. John Wiley & Sons, 2013.

[29] K. Ďuriš, S.-H. Tan, C.-H. Lai, and D. Ševčovič. Comparison of the Analytical

Approximation Formula and Newton’s Method for Solving a Class of Nonlinear

124 References

Black–Scholes Parabolic Equations. Computational Methods in Applied Mathematics,

16(1):35–50, 2016.

[30] D. Egloff. GPUs in Financial Computing Part II: Massively Parallel PDE Solvers on

GPUs. Wilmott Magazine, pages 50–53, 2010.

[31] D. Egloff. Part I: High-Performance Tridiagonal Solvers on GPUs for partial differen-

tial equations. Wilmott Magazine, pages 32–40, 2010.

[32] D. Egloff. GPUs in Financial Computing Part III: ADI Solvers on GPUs with Appli-

cation to Stochastic Volatility. Wilmott, 52:51–53, 2011.

[33] V. Egorova, S.-H. Tan, C.-H. Lai, R. Company, and L. Jódar. Moving boundary

transformation for American call options with transaction cost: finite difference

methods and computing. International Journal of Computer Mathematics, 94(2):345–

362, 2017.

[34] M. Ehrhardt. Nonlinear Models in Mathematical Finance: New Research Trends in

Option Pricing. Nova Science Publishers, 2008.

[35] M. Ehrhardt, M. Günther, and E. J. W. ter Maten. Novel Methods in Computational

Finance, volume 25. Springer, 2017.

[36] M. Ehrhardt and R. Valkov. Numerical analysis of nonlinear European option pricing

problem in illiquid markets. 2014.

[37] N. El Karoui, S. Peng, and M. C. Quenez. Backward stochastic differential equations

in finance. Mathematical Finance, 7(1):1–71, 1997.

[38] A. Fahim, N. Touzi, and X. Warin. A probabilistic numerical method for fully nonlinear

parabolic PDEs. The Annals of Applied Probability, pages 1322–1364, 2011.

[39] Y. Fan and H. Zhang. The pricing of Asian options in uncertain volatility model.

Mathematical Problems in Engineering, 2014, 2014.

[40] X. Feng, R. Glowinski, and M. Neilan. Recent developments in numerical methods for

fully nonlinear second order partial differential equations. SIAM Review, 55(2):205–

267, 2013.

References 125

[41] W. H. Fleming and H. M. Soner. Controlled Markov Processes and Viscosity Solutions,

volume 25. Springer Science & Business Media, 2006.

[42] R. Frey. Market illiquidity as a source of model risk in dynamic hedging. Model Risk,

pages 125–136, 2000.

[43] R. Frey and P. Patie. Risk management for derivatives in illiquid markets: A simulation

study. In Advances in Finance and Stochastics, pages 137–159. Springer, 2002.

[44] R. Frey and U. Polte. Nonlinear Black–Scholes Equations in Finance: Associated Con-

trol Problems and Properties of Solutions. SIAM Journal on Control and Optimization,

49(1):185–204, 2011.

[45] M. Giles, E. László, I. Reguly, J. Appleyard, and J. Demouth. GPU implementation of

finite difference solvers. In Proceedings of the 7th Workshop on High Performance

Computational Finance, pages 1–8. IEEE Press, 2014.

[46] M. Giles and I. Reguly. Trends in high-performance computing for engineering

calculations. Phil. Trans. R. Soc. A, 372(2022):20130319, 2014.

[47] M. B. Giles and R. Carter. Convergence analysis of Crank-Nicolson and Rannacher

time-marching. Journal of Computational Finance, pages 89–112, 2006.

[48] K. J. Glover, P. W. Duck, and D. P. Newton. On nonlinear models of markets with

finite liquidity: some cautionary notes. SIAM Journal on Applied Mathematics,

70(8):3252–3271, 2010.

[49] E. Gobet. Méthodes de Monte-Carlo et processus stochastiques: du linéaire au

non-linéaire. Editions de l’Ecole Polytechnique, 2013.

[50] E. Gobet, J.-P. Lemor, X. Warin, et al. A regression-based Monte Carlo method to

solve backward stochastic differential equations. The Annals of Applied Probability,

15(3):2172–2202, 2005.

[51] E. Gobet, J. López-Salas, P. Turkedjiev, and C. Vázquez. Stratified regression Monte-

Carlo scheme for semilinear PDEs and BSDEs with large scale parallelization on

GPUs. SIAM Journal on Scientific Computing, 38(6):C652–C677, 2016.

126 References

[52] G. H. Golub and C. F. Van Loan. Matrix Computations, volume 3. JHU Press, 2012.

[53] J. Guo and W. Wang. On the numerical solution of nonlinear option pricing equation

in illiquid markets. Computers & Mathematics with Applications, 69(2):117–133,

2015.

[54] J. Guyon and P. Henry-Labordère. Nonlinear Option Pricing. CRC Press, 2013.

[55] T. Haentjens, K. i. Hout, T. E. Simos, G. Psihoyios, and C. Tsitouras. ADI Finite Dif-

ference Discretization of the Heston-Hull-White PDE. In AIP Conference Proceedings,

volume 1281, pages 1995–1999. AIP, 2010.

[56] T. Haentjens and K. J. In’t Hout. Alternating direction implicit finite difference

schemes for the Heston-Hull-White partial differential equation. Journal of Computa-

tional Finance, 16(1):83, 2012.

[57] P. Heider. Numerical methods for non-linear Black-Scholes equations. Applied

Mathematical Finance, 17(1):59–81, 2010.

[58] A. Hirsa. Computational Methods in Finance. CRC Press, 2012.

[59] J. C. Hull. OPTIONS, FUTURES, AND OTHER DERIVATIVES. Pearson Education

India, 2006.

[60] W. Hundsdorfer. Accuracy and stability of splitting with stabilizing corrections.

Applied Numerical Mathematics, 42(1-3):213–233, 2002.

[61] W. Hundsdorfer and J. G. Verwer. Numerical Solution of Time-Dependent Advection-

Diffusion-Reaction Equations, volume 33. Springer Science & Business Media, 2013.

[62] K. in’t Hout and C. Mishra. Stability of the modified Craig–Sneyd scheme for two-

dimensional convection–diffusion equations with mixed derivative term. Mathematics

and Computers in Simulation, 81(11):2540–2548, 2011.

[63] K. in’t Hout and C. Mishra. Stability of ADI schemes for multidimensional diffusion

equations with mixed derivative terms. Applied Numerical Mathematics, 74:83–94,

2013.

References 127

[64] K. in’t Hout, T. E. Simos, G. Psihoyios, and C. Tsitouras. ADI Schemes in the

Numerical Solution of the Heston PDE. In AIP Conference Proceedings, volume 936,

pages 10–14. AIP, 2007.

[65] K. In’t Hout and B. Welfert. Stability of ADI schemes applied to convection-diffusion

equations with mixed derivative terms. Applied Numerical Mathematics, 57(1):19–35,

2007.

[66] K. In’t Hout and B. Welfert. Unconditional stability of second-order ADI schemes

applied to multi-dimensional diffusion equations with mixed derivative terms. Applied

Numerical Mathematics, 59(3-4):677–692, 2009.

[67] M. Jandačka and D. Ševčovič. On the risk-adjusted pricing-methodology-based

valuation of vanilla options and explanation of the volatility smile. Journal of Applied

Mathematics, 2005(3):235–258, 2005.

[68] H. B. Keller. Numerical methods in boundary-layer theory. Annual Review of Fluid

Mechanics, 10(1):417–433, 1978.

[69] C. T. Kelley. Solving Nonlinear Equations with Newton’s Method, volume 1. SIAM,

2003.

[70] A. G. Kemna and A. Vorst. A pricing method for options based on average asset

values. Journal of Banking & Finance, 14(1):113–129, 1990.

[71] E. Kirk. Correlation in the energy markets. Managing Energy Price Risk, 1:71–78,

1995.

[72] D. A. Knoll and D. E. Keyes. Jacobian-free Newton–Krylov methods: a survey of

approaches and applications. Journal of Computational Physics, 193(2):357–397,

2004.

[73] M. Kratka. No mystery behind the smile. RISK-LONDON-RISK MAGAZINE

LIMITED-, 11:67–71, 1998.

128 References

[74] J. Kraus, M. Schlottke, A. Adinetz, and D. Pleiter. Accelerating a C++ CFD code with

OpenACC. In Proceedings of the First Workshop on Accelerator Programming Using

Directives, pages 47–54. IEEE Press, 2014.

[75] W. Kress and B. Gustafsson. Deferred correction methods for initial boundary value

problems. Journal of Scientific Computing, 17(1-4):241–251, 2002.

[76] C. Labart and J. Lelong. A Parallel Algorithm for solving BSDEs-Application to the

pricing and hedging of American options. arXiv preprint arXiv:1102.4666, 2011.

[77] C. Labart and J. Lelong. A parallel algorithm for solving BSDEs. Monte Carlo

Methods and Applications, 19(1):11–39, 2013.

[78] E. László, Z. Nagy, M. B. Giles, I. Reguly, J. Appleyard, and P. Szolgay. Analysis of

parallel processor architectures for the solution of the Black-Scholes PDE. In Circuits

and Systems (ISCAS), 2015 IEEE International Symposium on, pages 1977–1980.

IEEE, 2015.

[79] A. T. Layton and M. L. Minion. Implications of the choice of quadrature nodes for

Picard integral deferred corrections methods for ordinary differential equations. BIT

Numerical Mathematics, 45(2):341–373, 2005.

[80] H. E. Leland. Option pricing and replication with transactions costs. The Journal of

Finance, 40(5):1283–1301, 1985.

[81] D. C. Lesmana and S. Wang. An upwind finite difference method for a nonlinear

Black–Scholes equation governing European option valuation under transaction costs.

Applied Mathematics and Computation, 219(16):8811–8828, 2013.

[82] T. J. Lyons. Uncertain volatility and the risk-free synthesis of derivatives. Applied

Mathematical Finance, 2(2):117–133, 1995.

[83] W. Margrabe. The value of an option to exchange one asset for another. The Journal

of Finance, 33(1):177–186, 1978.

[84] J. M. Martınez. Practical quasi-Newton methods for solving nonlinear systems.

Journal of Computational and Applied Mathematics, 124(1):97–121, 2000.

References 129

[85] M. A. Milevsky and S. E. Posner. A closed-form approximation for valuing basket

options. The Journal of Derivatives, 5(4):54–61, 1998.

[86] P. G. Multigrid. Numerical solution of partial differential equations on parallel

computers. Lecture Notes in Computational Science and Engineering, 51, 2006.

[87] NVIDIA. cuBLAS LIBRARY DOCUMENTATION.

http://docs.nvidia.com/pdf/CUBLAS_Library.pdf.

[88] NVIDIA. CUDA Toolkit Documentation. http://docs.nvidia.com/cuda.

[89] NVIDIA. cuSPARSE LIBRARY DOCUMENTATION.

http://docs.nvidia.com/pdf/CUSPARSE_Library.pdf.

[90] NVIDIA. GPU architecture. http://www.nvidia.com/object/gpu-architecture.html.

[91] NVIDIA. Kepler Compute Architecture White Paper.

http://international.download.nvidia.com/pdf/kepler/NVIDIA-Kepler-GK110-

GK210-Architecture-Whitepaper.pdf.

[92] J. M. Ortega and R. G. Voigt. Solution of partial differential equations on vector and

parallel computers. SIAM review, 27(2):149–240, 1985.

[93] E. Pardoux and S. Peng. Backward stochastic differential equations and quasilinear

parabolic partial differential equations. Stochastic partial differential equations and

their applications, pages 200–217, 1992.

[94] A. Parrott and S. Rout. Semi-Lagrange time integration for PDE models of Asian

options. In Progress in Industrial Mathematics at ECMI 2004, pages 432–436.

Springer, 2006.

[95] K. Parrott, N. Clarke, et al. A parallel solution of early exercise asian options with

stochastic volatility. In Proceedings of the 11th Domain Decomposition Conference,

Greenwich, volume 19, 1998.

[96] D. W. Peaceman and H. H. Rachford, Jr. The numerical solution of parabolic and

elliptic differential equations. Journal of the Society for Industrial and Applied

Mathematics, 3(1):28–41, 1955.

130 References

[97] E. Polizzi and A. Sameh. SPIKE: A parallel environment for solving banded linear

systems. Computers & Fluids, 36(1):113–120, 2007.

[98] E. Polizzi and A. H. Sameh. A parallel hybrid banded system solver: the SPIKE

algorithm. Parallel Computing, 32(2):177–194, 2006.

[99] D. M. Pooley, P. A. Forsyth, and K. R. Vetzal. Numerical convergence properties of

option pricing PDEs with uncertain volatility. IMA Journal of Numerical Analysis,

23(2):241–267, 2003.

[100] R. Rannacher. Finite element solution of diffusion problems with irregular data.

Numerische Mathematik, 43(2):309–327, 1984.

[101] L. C. G. Rogers and Z. Shi. The value of an Asian option. Journal of Applied

Probability, 32(04):1077–1088, 1995.

[102] K. Rupp, J. Weinbub, F. Rudolf, A. Morhammer, T. Grasser, and A. Jüngel. A

Performance Comparison of Algebraic Multigrid Preconditioners on CPUs, GPUs,

and Xeon Phis. Under Review, 2015.

[103] J. Sanders and E. Kandrot. CUDA by Example: An Introduction to General-Purpose

GPU Programming, Portable Documents. Addison-Wesley Professional, 2010.

[104] L. Schubert. Modification of a quasi-Newton method for nonlinear equations with a

sparse Jacobian. Mathematics of Computation, 24(109):27–30, 1970.

[105] D. Ševcovic, B. Stehlıková, and K. Mikula. Analytical and numerical methods for

pricing financial derivatives. Nova Science Publ. ISBN, pages 978–1, 2011.

[106] D. Ševčovič and M. Žitňanská. Analysis of the nonlinear option pricing model under

variable transaction costs. Asia-Pacific Financial Markets, 23(2):153–174, 2016.

[107] S. E. Shreve. Stochastic calculus for finance II: Continuous-time models, volume 11.

Springer Science & Business Media, 2004.

[108] J. Stoer and R. Bulirsch. Introduction to numerical analysis, volume 12. Springer

Science & Business Media, 2013.

References 131

[109] D. Tangman, A. Peer, N. Rambeerich, and M. Bhuruth. Fast simplified approaches to

Asian option pricing. Journal of Computational Finance, 14(4):3, 2011.

[110] D. Tavella and C. Randall. Pricing financial instruments: The finite difference method,

volume 13. John Wiley & Sons, 2000.

[111] S. Williams, D. D. Kalamkar, A. Singh, A. M. Deshpande, B. Van Straalen,

M. Smelyanskiy, A. Almgren, P. Dubey, J. Shalf, and L. Oliker. Optimization of

geometric multigrid for emerging multi-and manycore processors. In Proceedings of

the International Conference on High Performance Computing, Networking, Storage

and Analysis, page 96. IEEE Computer Society Press, 2012.

[112] P. Wilmott, S. Howison, and J. Dewynne. The mathematics of financial derivatives: a

student introduction. Cambridge University Press, 1995.

[113] P. Wilmott and P. J. Schönbucher. The feedback effect of hedging in illiquid markets.

SIAM Journal on Applied Mathematics, 61(1):232–272, 2000.

[114] M. M. Wolf, M. A. Heroux, and E. G. Boman. Factors impacting performance of mul-

tithreaded sparse triangular solve. In International Conference on High Performance

Computing for Computational Science, pages 32–44. Springer, 2010.

[115] M. Wyns et al. Convergence of the Modified Craig–Sneyd scheme for two-dimensional

convection–diffusion equations with mixed derivative term. Journal of Computational

and Applied Mathematics, 296:170–180, 2016.

[116] Y. Zhang, J. Cohen, and J. D. Owens. Fast tridiagonal solvers on the GPU. ACM

Sigplan Notices, 45(5):127–136, 2010.

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Nonlinear Option Pricing Models
	1.2 Viscosity Solutions
	1.3 Numerical Solutions
	1.3.1 Approximate Formula
	1.3.2 Transformation Method
	1.3.3 Backward Stochastic Differential Equation

	1.4 Research Objectives and Thesis Outline
	1.4.1 Newton-based Solvers for Nonlinear Black-Scholes Equations
	1.4.2 GPU Computing Implementations
	1.4.3 High-dimensional Problems

	1.5 Summary

	2 Newton-based Solvers
	2.1 Introduction
	2.2 Mathematical Modelling
	2.3 Finite Difference Discretisation
	2.3.1 Numerical Convergence to the Viscosity Solution
	2.3.2 Numerical Issues

	2.4 Root-finding Problem
	2.4.1 Frozen Coefficient Method
	2.4.2 Newton-Raphson Method
	2.4.3 Numerical Experiments

	2.5 Accuracy Improvement
	2.5.1 Coordinate Stretching
	2.5.2 Rannacher Timestepping
	2.5.3 Richardson Extrapolation

	2.6 Other Newton-based Solvers
	2.6.1 Newton-like Methods
	2.6.2 Deferred Correction Problem
	2.6.3 Numerical Experiments

	2.7 Summary

	3 Large-scale Problems with GPU Computing
	3.1 Introduction
	3.2 Large-scale Nonlinear Option Pricing Problems
	3.2.1 A Batched Newton-based Solver

	3.3 GPU Computing Implementations
	3.3.1 The GPU Architecture
	3.3.2 CUDA Programming
	3.3.3 A Parallel Batched Newton-based Solver
	3.3.4 OpenACC

	3.4 Numerical Experiments
	3.4.1 Comparisons of CUDA and OpenACC
	3.4.2 Numerical Results with K80

	3.5 Multi-GPU Computing
	3.6 Summary

	4 Asian Option Pricing
	4.1 Introduction
	4.2 Mathematical Modelling
	4.3 Semi-Lagrangian Scheme
	4.3.1 Terminal and Boundary Conditions
	4.3.2 Coordinate Stretching

	4.4 Numerical Experiments
	4.5 Summary

	5 Multi-Asset Problems
	5.1 Introduction
	5.2 An Extension of the Frey-Patie Model
	5.3 ADI-Newton Solver
	5.4 Numerical Experiments
	5.5 Summary

	6 Conclusion
	6.1 Conclusion
	6.2 Outlook
	6.2.1 Robust Methods to Handle the Singularity
	6.2.2 GPU Computing for High-dimensional Problems
	6.2.3 American Options

	References

