
 

 

 

 

 

MULTI-OBJECTIVE OPTIMISATION 

WITH FINANCIAL APPLICATIONS 
 

 

 

 

 

NOEL-ANN BRADSHAW 
 

 

 

 

 

 

 

 

A thesis submitted in partial fulfilment of the 

requirements of the University of Greenwich 

for the Degree of Master of Philosophy 

 

 

 

 

 

AUGUST 2015 
 



ii 

 

DECLARATION 

 

I certify that this work has not been accepted in substance for any degree, and is not 

concurrently being submitted for any degree other than that of Master of Philosophy 

being studied at the University of Greenwich. I also declare that this work is the result 

of my own investigations except where otherwise identified by references and that I 

have not plagiarised the work of others. 

 



iii 

 

ACKNOWLEDGMENTS 

I would like to thank my supervisor Dr Chris Walshaw for his encouragement, 

guidance and support during the undertaking of this research. I would also like to thank 

my other supervisors Dr Cos Ieretheou and Professor Kevin Parrott for their input, 

help and support. 

 

 

 

  



iv 

 

ABSTRACT 

Portfolio Optimisation is a multi-objective problem which involves finding the 

allocation of shares in a portfolio that optimises the likely return for a level of risk 

which an investor is prepared to tolerate.  There have been several multi-objective 

evolutionary algorithms that have been used to solve the portfolio optimisation 

problem in recent years. 

This thesis recounts the development of a new multi-objective evolutionary algorithm, 

Adaptive Cell Resolution Evolutionary Algorithm (ACREA), which has been shown 

to perform well in portfolio optimisation.  ACREA uses a novel grid-based dynamic 

reduction mechanism which allows the solution population to grow and reduce whilst 

maintaining diversity across the whole solution space.  The algorithm is tested on data 

from the OR Library and uses the difference in area between the analytic solution and 

found solution to measure the new algorithm’s success. 

Before this algorithm was developed other heuristics were written in order to 

understand the basics of coding evolutionary algorithms in Java.  After covering 

background information on financial applications and optimisation techniques, this 

thesis goes on to describe a simulated annealing algorithm to find the parameters for 

GARCH (1,1) and an evolutionary algorithm to determine trading rules using various 

trading indicators.  These algorithms are described briefly in order to give an account 

of the journey and development.   
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1. Introduction 

The academic field of financial mathematics covers a wide range of topics which can 

broadly be described as mathematical techniques and procedures that can be applied 

in the financial world. Examples of these applications include asset pricing, volatility 

forecasting, hedging and risk management, and portfolio management. This thesis is 

mainly concerned with portfolio management and more specifically optimisation but 

it does touch on other aspects of financial mathematics such as estimating volatility 

and technical analysis. 

Over the last ten to twenty years there has been a proliferation of financial mathematics 

courses ranging from those at undergraduate level to postgraduate courses either for 

those already active in the financial sector and postgraduate courses or for those with 

a numerate background who want to obtain the technical skills to enable them to get 

into the financial world. There has also been an increase in financial mathematics 

conferences and streams at conferences. For example the Institute of Mathematics and 

its Applications (IMA) ran a conference in computational finance in 2007 followed by 

a conference on the mathematics of finance in 2013 and 2015, The British Applied 

Mathematics Colloquium/British Mathematics Colloquium (BAMC/BMC) had a 

financial mathematics stream in 2010 and numerous other financial mathematics 

conferences have sprung up in the few years since this research was started. 

There could be many reasons for this increased interest in the world of econometrics. 

Maybe this an acknowledgement of the need for more understanding of the 

mathematics behind the financial markets or quite simply universities have been able 

to attract financial mathematicians who previously worked for investment companies 

and banks and are therefore able to address the growing demand for training for the 

next generation of financial experts. 

At the time this research began few people would have predicted that financial 

mathematics would become as high-profile as it has since the financial crash.   There 

has been controversy over the role of mathematics in finance (Hand, 2009; Steinsaltz, 

2009).  This is picked up further by Harris in his discussion concerning the context of 

this debate (2015, pp. 79-108).  Nevertheless the application of advanced mathematics 

to the financial world is now largely established as part of the UK mathematics 

curriculum. 

Chapter two provides an introduction to some of the theory behind key measurements 

in financial mathematics namely volatility, risk and asset pricing and then goes on to 

explain the mathematics of portfolio management and the basics of optimisation.  

Chapter three examines various heuristics that can be employed in complex 

optimisation situations where the analytical solution is either too complex or takes too 

long to compute. It starts with optimisation for single-objective problems but then 

progresses to look at multi-objective optimisation.  This chapter culminates with an 
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overview of various evolutionary algorithms that are currently used in portfolio 

optimisation and provides the background theory for the algorithm that has been 

produced by this research. 

Chapter four begins with the description of a new simulated annealing algorithm for 

finding GARCH(1,1) parameters and an evolutionary algorithm for determining 

trading rules based on various technical indicators.  After this it goes on to introduce 

the main focus of this research which is a new multi-objective evolutionary algorithm 

(MOEA) that has been developed for portfolio optimisation.  It details the differences 

between this and the best known MOEAs and looks at some of the initial results.  

Chapter five outlines the possibilities for further research in this area and presents the 

conclusions. 
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2. Background 

This chapter discusses some of the background terminology used in the dissertation. 

It begins with the idea of using share price returns to analyse performance and 

examines various ways that the volatility of these returns can be measured including 

Historic, Exponentially Weighted Moving Average (EWMA), Autoregressive 

Regressive Conditional Heteroskedacity (ARCH) and Generalised Autoregressive 

Regressive Conditional Heteroskedacity (GARCH).  GARCH is referred to again in 

chapter 4 when a simulated annealing program for calculating the parameters is 

discussed.  

The next section describes the Efficient Market Hypothesis and briefly discusses some 

of the issues that financial practitioners and academics disagree over.  This is followed 

by a section on Trading Indicators.  These trading indicators: Moving Averages, Price 

Channel Breakouts, Relative Strength Index, Moving Average Convergence 

Divergence and Oscillators are referred to again in Chapter 4 when an evolutionary 

algorithm for determining these is discussed.   

This chapter goes on to look at risk; discussing both value at risk and conditional value 

at risk.  It concludes with a section on portfolio management which focuses on the 

Modern Portfolio Theory as recounted by Markowitz (1952).  The theory of Portfolio 

Optimisation is returned to later in Chapter 4 is conjunction with the description of a 

new multi-objective evolutionary algorithm for portfolio optimisation: Adaptive Cell 

Resolution Evolutionary Algorithm (ACREA). 

2.1. Returns 

In order to analyse share price performance it is necessary to look at returns. The return 

of a share can be described as ‘the percentage growth in the value of an asset’ 

(Wilmott, 2001). This is a much better way of describing the changing value of an 

asset rather than just looking at the share prices as it takes into account which direction 

and by how much the price is moving. 

The simple or arithmetic return (u) from day (i-1) to day (i) for price (S) is calculated 

as: 

𝑢𝑖 =
𝑆𝑖
𝑆𝑖−1

 

This gives a very similar result to 

𝑢𝑖 = ln(
𝑆𝑖
𝑆𝑖−1

) 
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These ‘log-returns’ are often preferred (Maringer, 2005) as they are very similar in 

behaviour to simple returns and yet the continuously compounded returns are time 

additive and more easily manipulated in mathematical calculations.  

Brookes and Tsolacos (2010) explain this by using the following example.  Suppose 

the weekly return is required and daily log returns have been calculated.  These are 

represented by 𝑢2… . 𝑢6 below.  The weekly return can be computed by summing the 

daily returns for the week. 

𝑢2 = ln (
𝑆2
𝑆1
) = 𝑙𝑛𝑆2 − 𝑙𝑛𝑆1 

𝑢3 = ln (
𝑆3
𝑆2
) = 𝑙𝑛𝑆3 − 𝑙𝑛𝑆2 

𝑢4 = ln (
𝑆4
𝑆3
) = 𝑙𝑛𝑆4 − 𝑙𝑛𝑆3 

𝑢5 = ln (
𝑆5
𝑆4
) = 𝑙𝑛𝑆5 − 𝑙𝑛𝑆4 

𝑢6 = ln (
𝑆6
𝑆5
) = 𝑙𝑛𝑆6 − 𝑙𝑛𝑆5 

 

Thus the return over the week is: 

∑𝑢𝑖

6

𝑖=1

= 𝑙𝑛𝑆6 − 𝑙𝑛𝑆1 = 𝑙𝑛 (
𝑆6
𝑆1
) 

However this property is not so useful in portfolio management where returns are 

aggregated across different assets rather than within one asset across time.  

Consequently simple or arithmetic returns are used when evaluating a portfolio’s 

periodic return and log returns are used when evaluating price behaviour over time 

(Meucci, 2010).  Lists of market prices tend not to quote returns but rather periodic 

(often daily) prices. 

2.2. Volatility 

‘The volatility 𝜎 of a stock is a measure of uncertainty about the returns ... and can be 

defined as the standard deviation of the return provided by the stock in one year.’ 

(Hull, 2006). Hull goes on to say that stocks typically have a volatility measure of 

between 15% and 60%. A stock with a low volatility might be considered a safe 

investment but there is as little chance of a good return as a high loss. Conversely 

stocks with high volatility are considered risky when in fact there is as much chance 

of making a profit as a large loss. There is limited value in calculating past volatility; 

what is more important and valuable is having some sort of estimation of future 
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volatility. A number of methods for forecasting volatility have been proposed and 

those used in this report are outlined below. 

2.2.1. Historic 

Historic volatility is often used as the benchmark; this is the measure to which other 

volatility estimates are compared. It can be worked out using daily, hourly, weekly etc 

prices. Hull (2006) gives the following method of calculation: 

Defining: 

𝑛: Number of observations 

𝑆𝑖: Stock price at the end of the 𝑖th interval with 𝑖 = 0, 1, … , 𝑛 

𝑢𝑖 : Log return 

�̅�𝑖 : The mean logreturn 

 

So 

𝑢𝑖 = log(
𝑆𝑖
𝑆𝑖−1

) 

for 𝑖 = 1, 2, … , 𝑛 Then the usual measure of historic volatility or standard deviation 

(𝜎) of the returns (𝑢𝑖) is given by: 

𝜎 = √
1

𝑛 − 1
∑(𝑢𝑖

𝑛

𝑖=1

− �̅�)2 

Or 

𝜎 = √
1

𝑛 − 1
∑𝑢𝑖2 −

1

𝑛(𝑛 − 1)
(∑𝑢𝑖

𝑛

𝑖=1

)2

𝑛

𝑖=1

 

 

2.2.2. Exponentially Weighted Moving Average 

In 1994 JP Morgan published the first edition of Riskmetrics™, a technical document 

which proposed using the Exponentially Weighted Moving Average (EWMA) for 

forecasting volatility (JP Morgan, 1996).  

𝜎 = √(1 − 𝜆)∑𝜆𝑖−1(𝑢𝑖 − �̅�)2
𝑛

𝑖=1

, 
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where the parameter λ (0 < λ <1) is referred to as the decay factor.  This parameter 

determines the relative weights that are applied to the returns and thus how much they 

are used in determining volatility.  JP Morgan (1996) state two main advantages for 

this measure.  Firstly it gives more weight to most recent changes in the market but 

secondly, after any large jump in price, the volatility will decline exponentially as the 

weight associated with the jump in price falls. Whereas, the use of a simple moving 

average would lead to relatively abrupt changes in the standard deviation once the 

volatility, caused by the jump in price, reduces. 

Riskmetrics™ outlines many ways of determining the best value for 𝜆 (the decay 

factor) (JP Morgan, 1996).  Their results show that for daily volatility it is best to use 

𝜆 = 0.94 and for monthly 𝜆 = 0.97. 

2.2.3. Autoregressive Conditional Heteroskedasticity (ARCH) 

Moving average models of volatility such as EMWA assume that returns are 

independent and identically distributed (Alexander, 2001).  However this is often not 

the case and at high frequencies returns may show signs of autocorrelation.  In the late 

1970’s and early 1980’s Engle and others came up with the ARCH model for 

forecasting volatility. This is documented in (Engle, 1982) and many other 

publications. ARCH takes into account volatility clustering and assumes that today’s 

conditional variance is a weighted average of past returns (Alexander, 2001).  The 

formula for ARCH(n) over n days using the m most recent observations is given as: 

𝜎𝑛
2 = 𝛼0 +∑𝛼𝑖𝑢𝑛−𝑖

2

𝑚

𝑖=1

 

According to Alexander (2001), ARCH models are not often used in financial markets 

as GARCH models outperform them. 

2.2.4. Generalized Autoregressive Conditional Heteroskedasticity 

(GARCH)      

In 1986 Tim Bollerslev adapted the ARCH model to GARCH (1,1) the simplest of the 

ARCH/GARCH models. This is the only GARCH model that is used in this report.  

Here returns are assumed to be generated by a stochastic process with time-varying 

volatility (Alexander, 2001).  Bollerslev (1986) describes the model as allowing for a 

much more flexible lag structure than ARCH.  The “(1,1)” in GARCH(1,1) indicates 

that 𝜎𝑛
2 is based on the most recent observations of 𝑢2and the most recent estimate of 

the variance rate.  The more general GARCH(p,q) model calculates 𝜎𝑛
2from the most 

recent p observations on 𝑢2 and the most recent q estimates of the variance rate. 

A general equation for a weighted average for variance over n days using the most 

recent m observations could be expressed as: 
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𝜎𝑛
2 = ∑𝛼𝑖𝑢𝑛−𝑖

2

𝑚

𝑖=1

 

where 𝑢𝑖 is the return on day i and 𝛼𝑖 represents the amount of weight given to 

observation i days ago.  The 𝛼𝑖’s are positive.  If they are chosen such that 𝛼𝑖 < 𝛼𝑗  

when 𝑖 > 𝑗, then less weight is given to older observations. The weights must sum to 

one (Hull, 2006). 

GARCH extends this by assuming that there is a long-running average variance rate 

and that this should be given some weighting (Hull, 2006).  This leads to: 

𝜎𝑛
2 = 𝛾𝑉𝐿 +∑𝛼𝑖𝑢𝑛−𝑖

2

𝑚

𝑖=1

 

where 𝑉𝐿 is the long-run variance rate and 𝛾 the assigned weight.  Because the weights 

sum to one we have: 

𝛾 +∑𝛼𝑖

𝑚

𝑖=1

= 1 

Defining 𝜔 = 𝛾𝑉𝐿 we obtain 

𝜎𝑛
2 = 𝜔 +∑𝛼𝑖𝑢𝑛−𝑖

2

𝑚

𝑖=1

 

Eventually we get to the equation for GARCH(1,1) 

𝜎𝑛
2 = 𝜔 + 𝛼𝑢𝑛−1

2 + 𝛽𝜎𝑛−1
2  

where 𝜔 is a constant, 𝛼 is the GARCH error coefficient and 𝛽 the GARCH lag 

coefficient. 

The value of the estimated parameters determines the short-run movement of a stock’s 

volatility.  Large 𝛽 coefficients suggest that very high or low volatility will take a long 

time to die out whereas large 𝛼 coefficients indicate that the volatility of a particular 

stock will react intensely to market movement (Alexander, 2001).  So stocks which 

have a high value of 𝛼 and a low value of 𝛽 will show a spiky volatility time-series 

(Alexander, 2001).  Chapter 4 describes an evolutionary algorithm for determining 

weights 𝜔, 𝛼, 𝛽, for a set of given returns.   
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2.3. Risk 

There is always risk when investing in stocks and shares. What is the risk of losing 

money? The study of risk is complicated and much has been written on this. Risk is 

touched on here in order to mention the two measures of risk described below. 

2.3.1. Value at Risk 

Value at Risk (VaR) answers the question ‘how bad can things get?’ (Hull, 2006).  In 

1996 the Basel Committee on Bank Supervision concluded that banks should calculate 

their market risk using VaR.  A degree of confidence in the measure is set and a period 

of time agreed.  For example it might be calculated that over the next month there is a 

95% probability that a portfolio of assets will lose no more than £5m (Wilmott, 2001).  

This would be written as: 

Prob{𝛿𝑉 ≤ −£5m} = 0.05 

Where 𝛿𝑉 is the change in the portfolio’s value.  Generally we have: 

Prob{𝛿𝑉 ≤ −VaR} = 1 − 𝑐 

where c is the degree of confidence, 95% in the above example. 

Wilmott goes on to say that VaR is calculated using the current prices of all assets in 

the portfolio, their volatilities and the correlations between them.  Hull (2006) shows 

this as being 𝑧𝜎𝑃√𝑛 where n is the number of days in the time period, 𝜎𝑃 the standard 

deviation of the change in the portfolio and 𝑧 the number of standard deviations away 

from the mean that a normally distributed variable will decrease by for a given 

probability.  This standard deviation of the portfolio can be calculated as follows: 

𝜎𝑃
2 = ∑𝛼𝑖

2

𝑛

𝑖=1

𝜎𝑖
2 + 2∑∑𝜌𝑖𝑗

𝑗<𝑖

𝑛

𝑖=1

𝛼𝑖𝛼𝑗𝜎𝑖𝜎𝑗 

 

Where 𝛼𝑖 is the amount invested in asset 𝑖(1 ≤ 𝑖 ≤ 𝑛) and 𝜌𝑖𝑗 is the coefficient of 

correlation of the returns between assets 𝑖and 𝑗. 

2.3.2. Conditional Value at Risk 

Conditional Value at Risk (CVaR) answers the question ‘If things do get bad how 

much can one expect to lose?’ (Hull, 2006). Thus this is considered to be a better 

measure of risk but, until recently, was not so well used.  Alexander (2001) argues that 

VaR is not a coherent risk measure as it does not necessarily satisfy the following 

inequality VaR (X+Y)≤VaR(X)+VaR(Y) where X and Y are the losses incurred by 
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two different assets.  To overcome this Artzner, et al. (1999) introduced Conditional 

Value at Risk as a new measure of risk and describe it as the expected loss given that 

the loss has exceeded the VaR threshold.  That is: 

Conditional VaR = 𝐸(𝑋|𝑋 > VaR) 

Both VaR and CVaR were originally used as the measures of risk in the prototype of 

the new algorithm ACREA for Portfolio Optimisation proposed in chapter 4.  

However in order to be able to make comparisons between this algorithm and others 

in the literature VaR and CVaR are no longer used. 

2.4. Efficient Market Hypothesis 

This is the assumption that states that share prices are random and that successive price 

changes are independent of each other. It is still the subject of much research, 

discussion and disagreement between leading academics and practitioners with 

academics promoting the hypothesis and practitioners dismissing it (Adams, 2003).  

An efficient stock market is one where the share prices fully reflect all available 

information such as the economic prospects of the companies concerned, stock splits, 

dividend increases, and merger announcements etc.  If a market is efficient, this 

implies that it is not possible to use technical analysis of past prices to predict future 

patterns in the behavior of stock prices.  Burton Malkiel (author of A Random Walk 

Down Wall Street) discusses this at some length in Is the Stock Market Efficient? 

(1989) concluding that ‘Pricing irregularities may well exist and even persist for 

periods of time, and markets can at times be influenced by fads and fashions. 

Eventually, however, any excesses in market valuations will be corrected.’  However 

he goes on to say that as technology advances we may see further departures from 

efficiency and be able to understand their causes more fully.   This is echoed in his 

survey of the literature in The Efficient Market Hypothesis and Its Critics (Malkiel, 

2003). 

2.5. Trading Indicators 

If you search online for ‘Trading Indicator’ numerous websites come up all claiming 

to offer great financial rewards for those who are prepared to study patterns in the 

distribution of stock prices.  The use of trading indicators (also called technical 

analysis) is a way of predicting future price movements based only on observing the 

past history of prices (Wilmott, 2001).  The idea is that by looking for patterns in past 

prices traders can decide whether they should buy, sell or hold their shares for a 

particular asset.  Depending on which indicators seem to work for a particular asset 

trading rules can be determined. 

According to Lo, et al. (2000) one of the greatest gulfs between academic finance and 

industry practice is the separation that exists between technical analysts and their 
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academic critics.  The idea of being able to predict what a share in a company might 

do by looking at these indicators is an anathema to the academics who believe fully in 

the Efficient Market Hypotheses.  Indeed, Malkiel (1996) argues that “under scientific 

scrutiny, chart-reading must share a pedestal with alchemy”.  Lo, et al. (2000) attempt 

to bridge the gap between technical analysis and quantitative finance by developing a 

systematic and scientific approach to the practice to gauge the efficiency of technical 

indicators over time and across securities. 

There are mixed results for those using trading indicators to determine a set of rules 

which investors can use to determine when to buy and sell assets.  Ready (2002) 

compares the work of Allen & Karjalainen (1999) and Brock, et al., (1992) who have 

used different methods to determine trading rules with mixed results.  Following on 

from Allen & Karjalainen (1999) an evolutionary algorithm for finding these rules is 

discussed in chapter 5.  The indicators used in this program are discussed below. 

2.5.1. Moving Averages 

This is a technical indicator that is used to measure the momentum or trend of a 

particular stock (Anon., 2015).  The moving average of closing prices over n days is 

calculated and compared with the current price.  If the current price is higher, then a 

‘buy’ indicator is returned whereas, if lower, a ‘sell’ indicator is returned.  Moving 

averages over different periods of time can be compared and the point where they 

cross can signify a change in the underlying trend and indicate a time to buy or sell 

(Wilmott, 2001).  

Both Allen & Karjalainen (1999) and Brock, et al., (1992) use moving averages as 

indicators extensively.   Murphy (2015) says that while some technical indicators are 

more popular than others, few have proved to be as objective, reliable and useful as 

the moving average.  

Figure 1 shows an example of a moving average where n=10. Point A shows the price 

rising above the average and thus triggering a ‘buy’ signal whereas point B shows the 

price falling below the average and thus triggering a ‘sell’ signal. 
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Figure 1: Diagram showing how a moving average can be used to create buy 

and sell signals 

2.5.2. Price Channel Breakouts 

A maximum and minimum value for the channel are set.  These are usually taken as 

the highest high and lowest low over the last period time intervals and according to 

Krivo (2012) are often referred to as Donchian channels after Richard Donchian 

(Donchian, 1957).  The stock price is plotted on the channel and if it exceeds the 

maximum then the indicator becomes ‘sell’ whereas if it goes below the minimum 

then ‘buy’ is returned. This is shown in Figure 2 where point A shows a ‘sell’ signal 

and point B a ‘buy’ signal. 

 

 

Figure 2: An example of a price channel breakout 
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2.5.3. Relative Strength Index 

Wilmot (2001) describes this as the percentage of up moves in the last n days.  A 

number higher than 70% is said to be overbought and likely to fall so returns a ‘sell’ 

indicator, whereas a number below 30% is said to be oversold and thus rise and so 

returns a ‘buy’ indicator (Wilmott, 2001).  It can be calculated using the following 

formula RSI = 100 −
100

(1−𝑅𝑆)
 where RS is the average of x days' up closes divided by 

the average of x days' down closes. 

 

Figure 3: Share prices used to calculate RSI 

 

Figure 4: RSI calculated from share prices in Figure 3 
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Figure 3 shows sample share prices with the corresponding RSI underneath it in Figure 

4.  In Figure 4 point A shows where the share is said to have been overbought and 

likely to fall and so returns a ‘sell’ indicator, whereas point B shows where the share 

is said to have been oversold and thus rise and so returns a ‘buy’ indicator. 

2.5.4. Moving Average Convergence Divergence (MACD) 

This indicator looks at the difference between two moving averages known as the 

MACD Line.  If this then crosses a third moving average (the signal line) then a 

buy/sell flag is triggered (Anon., 2015).  It is usual to calculate the MACD Line as the 

12-day moving average minus the 26-day moving average.  A 9-day moving average 

of the MACD Line is plotted as a signal line. The values of 12, 26 and 9 are the typical 

setting used with the MACD, however other values can be substituted depending on 

your trading style and goals.   

The shorter moving average is faster and responsible for most MACD movements 

whereas the longer moving average is slower and less reactive to share price changes.  

The MACD Line oscillates above and below the zero line, which is also known as the 

centerline. These crossovers signal that the shorter moving average has crossed the 

longer moving average (Stockcharts, 2015).  

 

Figure 5: MACD with corresponding share prices and moving averages 

In Figure 5 point A shows the MACD falling below the signal line indicating that it 

may be time to sell whereas point B shows the MACD rising above the signal line 

indicating that it may be time to buy. 

 

A B 
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2.5.5. Oscillators 

An oscillator looks at the trend behind stock prices and will return a buy or sell flag 

accordingly.  The Stochastic Oscillator compares a closing price to its price range over 

a given period. By adjusting n the oscillator’s sensitivity to market movement can be 

reduced or increased.  Two values, SK and SD are calculated.   

𝑆𝐾 = 100 (
𝐶 − 𝐿

𝐻 − 𝐿
) 

Where C is the recent closing price, L is the low of the previous n days and H is the 

high of the previous n days.  SD is a 3-period moving average of SK. 

According to Dempster & Jones (2001) there are many rules for trading using 

stochastic oscillators, some of which are highly subjective and cannot be easily 

automated. However a commonly used rule is to buy when 𝑆𝐾 > 𝑆𝐷 and sell when 

𝑆𝐾 < 𝑆𝐷.  

 

Figure 6: Share prices used to calculate stochastic oscillator 
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Figure 7: SD and SK calculated from share prices in Figure 6 

In Figure 7 point A is where the SK rises above the SD which is where a ‘buy’ signal 

is generated and point B is where the SD line is above the SK line and then a ‘sell’ 

signal is generated.  Figure 6 shows the corresponding shareprices; it can be seen from 

this that point A occurs just as share prices start to rise so a good time to buy and point 

B when share prices are beginning to fall so a good time to sell. 

2.6. Portfolio Management 

A portfolio is a collection of assets.  In general for most people these are likely to 

include real assets such as house, car, electrical appliances as well as financial assets 

(Elton, et al., 2011).  Like Elton, this thesis, is confined to financial assets. 

Modern Portfolio Theory is based on Harry Markowitz’s work, some of which was 

published by the Journal of Finance in 1952 (Markowitz, 1952). According to 

Markowitz it is possible to construct an ‘efficient frontier’ of optimal portfolios.  These 

are portfolios that have the highest possible return for a given measure of risk.  If you 

are willing to tolerate a particular level of risk you want to maximise the amount of 

return obtained.  Thus you want to be able to identify the optimum portfolios for 

particular risk measures and this set of portfolios are said to be on the efficient frontier. 

Nowadays portfolios of assets can include bonds, shares, stocks, treasury bills and all 

sorts of other financial investments.  This chapter will look at some of the issues and 

mathematics behind portfolio management. 

2.6.1. Risk-Return trade off 

Everyone who wants to invest is trying to make the most money that they can whilst 

taking into account how much risk they are prepared to incur.  For some this will mean 

a safe investment where the risk is minimal but so is the return, whilst others are 

content to experience significant losses if they can also expect significant return at 
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other points.  There is no such thing as a perfect investment; for every amount of return 

there will be a degree of risk and it is up to the investor to say what level of risk they 

are prepared to accept (Elton, et al., 2011). 

2.6.2. Portfolio Construction and Diversification 

In order to spread the risk out, it is important to have a portfolio that is not all 

concentrated in one area or sector. If one has investments that are all linked to, say, 

the construction industry and then the economy slows to the extent that all new builds 

stop, this portfolio is going to lose a considerable amount of money.  However if a 

portfolio is carefully constructed so that different industries, with little overlap, are 

represented then the portfolio can weather the losses in one industry and survive times 

of economic downfall because they are compensated elsewhere. 

Nowadays, it is becoming more common to have portfolios that are internationally 

diversified so that investments span different currencies and operate in different 

countries with diverse economic climates (Bekaert & Hodrick, 2011). 

2.6.3. Portfolio Optimisation 

A key question in portfolio optimisation is how much should you invest in any 

particular asset so that, across the whole portfolio, you maximise your return within 

your accepted measure of risk? 

The usual way of describing this is to suppose that there are 𝑋 risky assets, whose rates 

of return are denoted by random variables 𝑢1, ⋯ , 𝑢𝑋.  Recall that 

𝑢𝑖 =
𝑆𝑖
𝑆𝑖−1

 

Let 𝑤 = (𝑤1⋯𝑤𝑋)
𝑇 , where𝑤𝑖 denotes the proportion of the portfolio invested in 

asset i, with  

∑𝑤𝑖 = 1

𝑋

𝑖=1

 

Thus the rate of return for the portfolio is 

𝑢𝑝 =∑𝑤𝑖

𝑋

𝑖=1

𝑢𝑖 

Traditionally academics have taken the standard deviation or variance of the returns 

of assets in a portfolio as the measure of risk associated with a portfolio.  The variance 

and covariance of individual assets are characterized by a covariance matrix 
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𝑉 = [

𝜎11 ⋯ 𝜎1𝑋
⋮ ⋱ ⋮

𝜎𝑋1 ⋯ 𝜎𝑋𝑋
] 

 

where 𝜎𝑖𝑖 is the variance of asset i and 𝜎𝑖𝑗 is the covariance of asset i and asset j.  The 

portfolio variance is given by 

𝜎𝑝
2 = 𝑤𝑇𝑉𝑤 =∑∑𝑤𝑖

𝑋

𝑗=1

𝑋

𝑖=1

𝑤𝑗𝜎𝑖,𝑗 

However this has been criticised by many practitioners who prefer to use VaR or 

CVaR (Adams, 2003; Maringer, 2005). 

Markowitz (1952) proposed a mean-variance portfolio theory which formulated the 

problem as: 

minimise∑∑𝑤𝑖

𝑋

𝑗=1

𝑋

𝑖=1

𝑤𝑗𝜎𝑖,𝑗 

subjectto 

𝑢𝑝 =∑𝑤𝑖

𝑋

𝑖=1

𝑢𝑖 

∑𝑤𝑖

𝑋

𝑖=1

= 1 

0 ≤ 𝑤𝑖 ≤ 1𝑖 = 1,… . . , 𝑋 

This is a static problem in that the problem parameters stay unchanged during 

the planning period.      

2.7. Summary 

This chapter has provided the reader with the background information on the aspects 

of financial mathematics necessary for the understanding of the remainder of this 

thesis and in particular the financial theory behind the new algorithms developed in 

Chapter 4.  

It began by looking at how share price returns can be used to analyse performance and 

discussed several different measures of volatility: Historic, Exponentially Weighted 

Moving Average (EWMA), Autoregressive Regressive Conditional Heteroskedacity 

(ARCH) and Generalised Autoregressive Regressive Conditional Heteroskedacity 
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(GARCH). This information will be referred to again in Chapter 4 where a simulated 

annealing program for calculating the parameters for GARCH (1,1) is discussed.  

The Efficient Market Hypothesis was briefly discussed and some of the issues that 

financial practitioners and academics disagree over were highlighted.  This was 

followed by a section on various trading indicators including: Moving Averages, Price 

Channel Breakouts, Relative Strength Index, Moving Average Convergence 

Divergence and Oscillators.  It was necessary to include a description of these as 

background information for the Evolutionary Algorithm for determining these which 

is discussed in Chapter 4.   

The concept of risk, and in particular value at risk and conditional value at risk, is 

discussed which is followed by a section on the theory of portfolio optimisation where 

risk is an important factor.  This is returned to later in Chapter 4 in conjunction with 

the description of the new multi-objective evolutionary algorithm for portfolio 

optimisation: Adaptive Cell Resolution Evolutionary Algorithm (ACREA) which is 

the main thrust of this research.  
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3. Optimisation 

The previous chapter provided the background financial mathematics necessary for 

the understanding of the new work contained in this thesis whereas this chapter 

contains the background information on optimisation that is necessary to understand 

the material in Chapter 4.   The chapter starts with the basics of finding the global 

minimum and maximum using calculus and then various numerical iterative processes 

such as gradient search before going on to look at two heuristics; simulated annealing 

and evolutionary algorithms.  These can be used when the function is complex and 

simpler methods tend to result in the finding of local minima and maxima.   The 

terminology and parameters used in evolutionary algorithms are discussed in detail in 

order to prepare the reader to understand the different algorithms discussed later in the 

chapter. 

Whilst new versions of these two algorithms have been developed as part of this 

research, the main thrust has been to create a multi-objective evolutionary algorithm 

(MOEA) and a general introduction to MOEAs is in the next section in this chapter.  

After a discussion as to why MOEAs are needed there then follows a description of 

some of the main competing algorithms for the new algorithm in Chapter 4.  These 

are: The Elitist Non-Dominated Sorting Genetic Algorithm (NSGA and NSGAII), the 

Pareto Archived Evolution Strategy (PAES), the Strength Pareto Evolutionary 

Algorithm (SPEA and SPEAII) and the Pareto Envelope-Based Selection Algorithm 

(PESA and PESAII).  These algorithms are initially described generally for a variety 

of purposes. 

The next section looks at various research that has used these MOEAs to solve the 

Portfolio Optimisation problem and how it is possible to measure how well an 

algorithm has performed.  An understanding of this is important in order to see how 

well the new MOEA described in chapter 4 performs.  

3.1. Introduction 

Optimisation is concerned with finding values for one or several decision variables 

that best meet the objective(s) without violating any constraint(s) (Maringer, 2005).  

Obviously the definition of the word ‘best’ is key in this explanation. Deb (2001) says 

that the need for optimisation arises from the desire to find a solution for real-life 

situations such as the minimum cost of production or the maximum reliability of a 

particular material. 

There are several analytical solutions for optimising certain mathematical functions in 

order to find the global maximum or the global minimum.  The simplest method of 

finding the maximum and minimum point of a function where there are no constraints 

requires finding the root of the first derivative, 
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𝑓′(𝑥) = 0 

followed by the second derivative to determine if the point is a maximum, minimum 

or saddle.  However this only works for a continuous, differentiable function. 

For complex functions with more than one variable or with several turning points 

finding the global maximum or minimum is much harder and requires the use of 

computerised algorithms. Common gradient-based search algorithms include 

Newton’s method and the method of steepest decent (Yang, 2008).  These are usually 

local search methods which start with a ‘guess’ in the feasible region and then follow 

an iterative process to improve the solution.  Such algorithms will often find local 

maxima and minima (e.g. A and B) and not necessarily the global maximum (e.g. C) 

or global minimum point (e.g. D).  To combat this, heuristic optimisation techniques 

are often used (Yang, 2008). 

Figure 8: Diagram to show maxima and minima of a function 

There are many definitions of the word heuristic but in the context of optimisation 

Barr and Feigenbaum’s (1986) definition seems particularly apt: 

‘A heuristic is a rule of thumb, strategy, trick, simplification, or any other kind of 

device which drastically limits search for solutions in large search spaces.  Heuristics 

do not guarantee optimal solutions: in fact they do not guarantee any solution at all; 

all that can be said for a useful heuristic is that it offers solutions which are good 

enough most of the time.’ 

The challenge is therefore to find a heuristic that produces as near an optimum solution 

as often as possible. 
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There are far too many optimisation heuristics to list and describe them all.  This 

research has concentrated on two main algorithms: Simulated Annealing and 

Evolutionary Algorithms.  Simulated Annealing was chosen as being a relatively 

straight forward technique to use to begin exploring optimisation heuristics.  However 

the focus moved on to evolutionary algorithms as these were being used with financial 

applications (Coello Coello, 2006).  Finally the bulk of the work concentrates on 

investigating improvements to Multi-Objective Evolutionary Algorithms as these are 

widely used in Portfolio Optimisation (Castillo Tapia & Coello Coello, 2007). 

3.2. Simulated Annealing 

Simulated annealing (SA) owes its name to the annealing process that takes places 

when metal cools.  This physical process involves careful control of the temperature 

and cooling rate (Yang, 2008).  The application to search optimisation originated from 

research by Kirkpatrick, Gelatt and Vecchi (1983).  Since then it has been proved that 

for certain problems SA will converge to a global maximum or minimum if there is 

enough randomness and the process is gradual.  The SA algorithm allows for the 

solution to be improved but when no improved solution can be found then, with some 

probability, a poorer solution is accepted.  This acceptance of weaker solutions means 

that the search algorithm does not stay in a local minimum but can climb out to find 

the global minimum. 

As time goes on the probability of taking a weaker solution decreases so convergence 

to the optimal solution is more likely.  The pseudo code for this algorithm, based on 

Yang (2008), follows.   
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1 begin 

 Objective function f(x) 

 Initialize T= T0 and n = 0 

      Set initial guess x0 randomly; 

 Set final temperature Tf and number of iterations N 

 Define parameter α for cooling schedule 

 while (T>Tf  and n<N) 

             Neighborhood search: xnew=xn+rand 

  Calculate δf=f(xnew)-f(xn) 

  if solution is improved 

                              xn+1=xnew 

                                             x*=xnew 

  else 

   Generate a random number r 

   if (p=exp[-δf/T]>r) 

                                           xn+1=xnew 

   end if 

                  end if 

                  n=n+1 

                  update T 

 end while 

 end 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 
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The code begins in line 2 with the objective or cost function that needs minimizing.  

Line 3 sets the initial ‘temperature’ and the number of iterations to zero.  Line 4 sets 

the initial guess (𝑥0) as a random number.  Line 5 sets the final ‘temperature’ and so 

determines how long the algorithm is going to run for if the final temperature is 

reached before the final number of iterations N is reached.  Some versions just specify 

number of iterations.  Line 6 defines the way in which the next temperature is set ie 

the rate of cooling.  Line 7 sets the conditions for the while loop so this runs until 

either the final temperature is reached or the number of iterations set is met.  Line 8 

conducts a basic neighborhood search; the next value of x is determined by taking the 

previous value and adding a random number.  Line 9 calculates the gradient of the 

function at this new point i.e. the change in energy.  Line 10 determines whether this 

is accepted.  If the new value is better, 𝛿𝑓 < 0, then this new value is accepted with 

x* being the best solution found.  Otherwise, in lines 14-16 a new random number is 

obtained and the solution is accepted with the probability 𝑃 = 𝑒
−𝛿𝑓

𝑇  modelled using 

the Boltzmann distribution and comes from the second law of thermodynamics 

(Rutenbar, 1989).  This allows for a worse solution to be accepted thus enabling the 

algorithm to jump out of a local minimum. 
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3.3. Evolutionary Algorithms 

An evolutionary algorithm (EA) is a general term used for algorithms that mimic the 

Darwinian process of evolution by natural selection.  Throughout the different 

iterations of the algorithm ‘fitter’ populations are produced (Jones, 2004). 

There are a number of different types of evolutionary algorithm and these generally 

fall into one of three main categories: Evolutionary Programming, Evolution 

Strategies and Genetic Algorithms (De Jong, 2006).  This work focusses on Genetic 

Algorithms but uses the generic term Evolutionary Algorithm as there are aspects of 

these EAs that do not totally coincide with the specifications of a Genetic Algorithm. 

As the name suggests, genetic algorithms (GAs) were inspired by natural selection and 

evolution as seen in the birth of successive generations of plants and animals.  The 

first was developed by John Holland in 1960s.  At the starting point are two solutions 

(parents) taken from an initial population of solutions.  These are combined to produce 

a new solution (children) (Hopgood, 2001).  The children keep some characteristics 

from their parents but new characteristics are also introduced thus enabling more of 

the search space to be examined.  The ‘value’ of each child’s fitness is calculated and 

the best ones kept and added to the original population.  Thus the population evolves 

towards an optimal solution.   

In order to implement a GA the following parameters need to be determined: 

 The size of the initial population (P). 

 The size of the population of parents (M). 

 The size of the population of off-spring (N). 

 The method for determining the fitness of a solution and who goes into the 

new population (M). 

 The methods used for reproduction.  

 The stopping criterion. 

Unlike SA which looks at one solution at a time GAs involve creating a population of 

several solutions.  Also, whereas SA uses nearest neighbor to find new solutions, GAs 

can combine solutions some distance away. 

Each solution is termed a chromosome (string) which is made up of various genes 

which take values called alleles.  These usually take binary values and where this (and 

other criteria) is relaxed then the term Evolutionary Algorithms (EAs) is usually used 

(De Jong, 2006). 

3.3.1. Size of initial population (P) 

The initial population is made up of approximations to the desired solution that are 

used as inputs for the EA.  Diaz-Gomez, et al. (2007) acknowledge that determining a 
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suitable population size for a particular problem is very important.  There is a trade-

off between increasing the size of the population sufficiently to allow for the algorithm 

to search as wide a space as possible and converge with each and having a small 

enough population so that computation time is reduced.  Alander (1992) favours a 

population of around 50 solutions but concedes that as in nature there are situations 

where much larger populations and families are necessary. 

3.3.2. Size of parent population (M) 

As with the initial population it is important that this population is large enough to 

maintain diversity of solutions but not so large that speed of convergence of the 

algorithm is reduced.  De Jong (2006) discusses this and provides examples to show 

that where large numbers of parents are used (circa 100) convergence to the global 

optimum is reached more quickly.   

3.3.3. Size of offspring population (N) 

Whilst the parent population reflects the areas of the solution space where the EA is 

focusing its search based on feedback form earlier generations, the offspring 

population determines how long solutions remain in the parent population (De Jong, 

2006).  Replacing parent solutions before they have had an opportunity to reproduce 

can reduce the diversity of the solution space. 

3.3.4. How to determine which solutions survive 

In this simple EA we are assuming that a population of M solutions is maintained.  

Each iteration of the algorithm will produce N offspring from a subset of population 

𝑀 and then the ensuing 𝑀 +𝑁 population is reduced back to 𝑀.  Both these steps, 

choosing parents and then choosing the next population can be done using 

deterministic or stochastic selection methods (De Jong, 2006). 

Using deterministic methods, solutions in the initial population P are assigned a 

number which equates to the number of times they can be selected as parents.  To 

reduce the population back to 𝑀 a fitness measure is employed and the 𝑀 best 

solutions within the 𝑀 +𝑁 population are chosen. 

Using stochastic methods, solutions in the initial population are chosen to be parents 

with probability 𝑝𝑖 based on their fitness.  A similar method can be deployed to reduce 

the 𝑀 +𝑁 population back to 𝑀. 

De Jong (2006) provides information about traditional EA selection categories in 

Table 1 and observes that it has been demonstrated that stochastic methods provide 

the greatest chance of preserving diversity and thus increasing the algorithms chances 

of converging to the optimal solution. 
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Table 1: Traditional EA selection categories 

 

Methods of reproduction 

Methods of reproduction in EAs are analogous to biological methods of reproduction.  

Solutions are usually combined using ‘crossover’ and ‘mutation’.   The point of 

crossover needs to be determined and also the number of times crossover takes place.  

A simple example might be: 

Parents before crossover: 

1 0 0 1 0 1 1 0 

 

0 0 0 0 1 1 1 1 

 

Children after crossover:  

 

1 0 0 1 1 1 1 1 

 

0 0 0 0 0 1 1 0 

Figure 9: Crossover 

Another decision to make is whether both children from this coupling are retained or 

just one. 

In mutation a parent is cloned and then the value of an allele relating to a particular 

gene in the chromosome is changed. It needs to be decided how many genes can be 

changed in any one mutation.  There follows an example where just one gene is 

mutated and this is chosen randomly. 

 

 

 

 

Evolutionary 

Algorithm 
𝑴 𝑵 

Parent 

Selection 

Survival 

Selection 

Evolutionary 

Programming 
< 20 𝑁 = 𝑀 

Deterministic Deterministic 

Evolutionary 

Strategies 
< 10 𝑁 ≥ 𝑀 

Stochastic Deterministic 

Genetic 
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Parent before mutation: 

0 0 0 0 1 1 1 1 

Child after mutation: 

0 1 0 0 1 1 1 1 

Figure 10: Mutation 

All these variables can be decided stochastically as well as by following a 

deterministic procedure.   

The general algorithm can be described with the following pseudo code: 

1 begin 

 Define fitness function 

 Generate initial population 

 Define parameters of reproduction 

 while (n<max generations) 

  Generate new solutions using Crossover and Mutation 

  Evaluate new solutions 

  Accept the new solutions if they increase fitness 

  Select the current best solutions for new generation (elitism) 

 end while 

end 

 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

According to the pseudo code, the basic features of the evolutionary algorithm are as 

follows: for the objective function that is being optimized you obtain a population of 

initial solutions (line 3).  Line 4, the parameters of reproduction are then determined.  

These can consist of the number of parents, the proportion of the population that 

combines and mutates and the maximum number of generations the algorithm runs 

for.  Lines 5-10 form a loop that runs until the maximum number of generations is 

completed.  This loop will continue to combine and mutate solutions and keep the best 

(according to the parameters set down by the specific algorithm).  

Evolutionary algorithms are similar to GAs except that some of the strict criteria are 

relaxed.  In some applications this means that EA can be more likely to find the global 

minimum/maximum (De Jong, 2006).  

3.3.5. Tournament Selection 

At various points during the running of an EA a selection process is required.  

Tournament Selection is the common choice (Deb, 2001).  This involves randomly 

choosing 𝑞 solutions from the population, ranking them and selecting the fittest to 

survive into the next generation.  Sometimes this ranking is just based on the fitness 

measure but other factors can be used.  Binary tournaments (𝑞 = 2) are the most 
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frequently used.  In this case two solutions are compared and the fitter solution is 

chosen and then another pair of solutions is randomly selected (Hopgood, 2001).   

3.4. Multi-Objective Optimisation 

So far we have been looking at single objective optimisation.  But supposing we are 

looking at a problem like portfolio optimisation which we know has two objectives: 

maximising return whilst minimising risk.  What is the best strategy for solving this?   

The problem here is that there is usually no one single optimal solution but rather a 

number of solutions that are good compromises (or trade-offs).  This notion of many 

optimal solutions was first proposed by Francis Ysidro Edgeworth (Edgeworth, 1881) 

and later by Vilfredo Pareto (Pareto, 1896).  Whilst sometimes referred to as the 

Edgeworth-Pareto optimum it is more generally called the Pareto optimum. 

Here is the standard definition of Pareto optimality taken from Castillo Tapia & Coello 

Coello (2007): 

"A solution𝑥 ∈ Ω𝑖s said to be Pareto Optimal𝑤. 𝑟. 𝑡Ω𝑖𝑓𝑓there is no𝑥′

∈ Ωforwhichv = F(x′) = (𝑓1(𝑥
′),… , 𝑓𝑘(𝑥

′))dominates𝑢 = F(𝑥)

= (𝑓1(𝑥),… , 𝑓𝑘(𝑥)). " 

The phrase Pareto Optimal is taken to mean with respect to the entire decision variable 

space unless otherwise specified. 

 

  

Figure 11: An example of the multi-objective portfolio optimisation problem.    

The Pareto front or trade-off surface is delineated by a curved line. 
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Pareto solutions (solutions on the Pareto front) are those solutions within the decision 

space (Ω) that cannot be improved for all objectives simultaneously.  Any such 

solution means that it can only be improved in terms of one objective which would 

lead to worsening it in terms of another.  In Figure 11 these are the red solutions and 

they are referred to as non-dominated or undominated solutions.  Remaining solutions 

(the blue ones in Figure 11) are referred to as dominated solutions as other solutions 

have been found to improve them with regards to all objectives.   

It is not easy, and is in most cases impossible, to find an analytic method to compute 

the Pareto front (Coello Coello, et al., 2006).  The standard method would be to 

produce as many points in Ω as possible and then determine the non-dominated (Pareto 

optimal) solutions.  This is a non-trivial task. 

3.5. Multi-Objective Evolutionary Algorithms 

Evolutionary Algorithms are well-suited for solving multi-objective optimisation 

problems due to the fact that they can deal simultaneously with a set of possible 

solutions (Coello Coello, et al., 2006).  Rather than find one solution at a time, as in 

traditional mathematical programming techniques, they can produce a suite of 

solutions with each iteration of the program.   

The main difference between an EA and a MOEA is that the latter has to consider a 

vector of objectives rather than a single one.  The rest of the characteristics described 

above remain. 

There are numerous different multi-objective algorithms (MOEAs) that have been 

designed and tested for a wide range of problems.  Some of this work has been carried 

out by computer scientists (this is the focus taken here) and others from an operational 

research background also taking on the need for the algorithms to work with multi-

constrained optimisation problems.  This research will focus on the algorithms 

mentioned below which are the ones most discussed in the literature regarding 

portfolio optimisation. 

It is helpful to provide some definitions for standard MOEAs to enable the reader to 

see clearly how those below and the new proposed algorithm differ.   The notation 

used by Coello Coello, et al. (2006) has been adopted. 

At any time during the running of the MOEA there exists a current population of 

Pareto solutions represented by 𝑃𝑐𝑢𝑟𝑟𝑒𝑛𝑡(𝑡), where 𝑡 represents the current generation 

number. 

Many MOEAs use a second population, often called an archive, to store previously 

found non-dominated solutions.  This is represented by 𝑃𝑘𝑛𝑜𝑤𝑛(𝑡).  Note that 

𝑃𝑘𝑛𝑜𝑤𝑛(0) will be empty and 𝑃𝑘𝑛𝑜𝑤𝑛 is the final set of Pareto optimal solutions.   𝑃𝑡𝑟𝑢𝑒 
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represents the population of solutions that, if there was an analytic solution, would be 

non-dominated.  The aim of every MOEA is for 𝑃𝑘𝑛𝑜𝑤𝑛 = 𝑃𝑡𝑟𝑢𝑒. 

3.5.1. Dealing with several objective functions 

There are various methods for dealing with the often conflicting objectives. Before 

deciding on the method to use it is best to consider what results are needed for the 

particular problem.  For example if ultimately only one answer is needed then 

combining objectives into one single objective function might be sensible.  This 

method is called a priori or preference-based approach (Deb, 2001).  Weights are 

assigned to objectives and then summed and normalised into one fitness measure.  Its 

simplicity aids its popularity despite its limitations.  Whilst Fonseca and Fleming 

(1995) show that for any positive set of weights and fitness function a Pareto optimal 

solution can always be found, Das and Dennis (1997) demonstrate that if all the non-

dominated solutions in 𝑃𝑡𝑟𝑢𝑒 are nonconvex, then not all the front can be obtained.  So 

care must be taken in order to avoid losing solutions. 

In the a posteriori approach the full set of non-dominated solutions (𝑃𝐹𝑡𝑟𝑢𝑒) are looked 

for along the whole length of the Pareto front.  Therefore the emphasis is on widening 

the search as far as possible and not initiating the decision making process until the 

search has been completed.  This can include varying the weights assigned to 

objectives during the running of the algorithm (Srigiriraju, 2000).   

In the Vector Evaluated Genetic Algorithm (VEGA) proposed by David Shaffer 

(1985) the population is split into groups and the fitness of the solutions in these groups 

are measured using a different objective chosen at random.  VEGA is regarded as 

being the first documented version of an MOEA; its weakness is that it tends to 

converge to a local rather than the global optimum. 

Deb (2001) discusses an ideal approach where the weights associated with certain 

objectives are not considered until after the Pareto optimal solutions have been 

obtained.  Then a weight vector is calculated and a trade-off made on each of the 

solutions.  This enables different users to compute different solutions with different 

weight vectors depending on their priorities. 

3.5.2. Methods for Preserving Diversity 

In an ideal situation the 𝑃𝑘𝑛𝑜𝑤𝑛 solutions would usually be distributed along the full 

length of the solution space.  In order for this to happen it is important that diversity 

in the population is maintained and to find some way of actively encouraging less 

populated areas to reproduce and create more non-dominated solutions.  The main 

method is often referred to as fitness sharing or niching. 

In this approach the solution space is broken down into neighbourhoods or niches and 

the number of solutions located in each niche are counted.  The fitness of a niche 
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decreases proportionally to the number of solutions contained in the niche thus 

ensuring that less populated areas and thus more isolated solutions are kept and 

allowed to reproduce.  The size of the niche is controlled through a niche share radius 

𝜎𝑠ℎ𝑎𝑟𝑒 . 

All the algorithms mentioned below use some form of this density estimation and the 

differences are discussed later. 

3.6. Examples of MOEAs 

3.6.1. A generic MOEA 

According to Coello Coello, et al. (2006) in general an effective MOEA should contain 

certain observations including removing dominated solutions from the population 

based on some sort of fitness measure, using a density measure to preserve diversity, 

performing reproductive operations to generate new individual solutions, removing 

Pareto dominated and infeasible solutions from the population, and storing non-

dominated solutions in an archive. 

3.6.2. Elitist Non-Dominated Sorting GA (NSGA and NSGA-II) 

Proposed by Srinivas and Deb (1995) NSGA sorts the non-dominated solutions into 

different fronts.  These fronts are then assigned a dummy fitness value corresponding 

to which front they are in.  So, for example, those in the first front might all be assigned 

a fitness value of 10 while those in the second front might all be assigned 8 etc.  Once 

all the non-dominated solutions have been categorized, then solutions for mating are 

chosen.  The higher fitness ranking for the first front means that these are most likely 

to be chosen to reproduce. 

This enables the algorithm to converge towards  𝑃𝑡𝑟𝑢𝑒 more quickly.  However it is 

also necessary to preserve diversity so the full front is finally obtained.  This means 

that it is necessary to include solutions from less populated areas even if they are not 

in the first front of solutions.  This niching method was first suggested by Goldberg 

and Richardson (1987) and has since been widely used in algorithms including NSGA 

and NSGA-II.   The procedure is conducted using the following function Sh(d) where 

𝑑 is the Euclidean distance between two solutions and 𝜎𝑠ℎ𝑎𝑟𝑒 is the niche radius 

described in 3.5.2 with 𝛼 normally being 1. 

𝑆ℎ(𝑑) = {
1 − (

𝑑

𝜎𝑠ℎ𝑎𝑟𝑒
)
𝛼

0,otherwise.

,if 𝑑 ≤ 𝜎𝑠ℎ𝑎𝑟𝑒; 

This means that whilst solutions in the first front have a greater chance of being 

selected for reproduction, if they are in a densely populated area fewer of these 

solutions will be accepted.  Conversely solutions from a lower front might have less 
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chance of selection but if they are in a sparsely populated region then this chance will 

be increased. 

However, Coello Coello (2006) reports that this fitness sharing mechanism created a 

bottleneck in these algorithms.  This is because this method involves finding the 

distance d with every population member (Deb, 2001).  Although Deb (2001) goes on 

to say that the computational complexity (O(MN3)) may not be critical, it is clear from 

his work on NSGA-II (Deb, et al., 2000) that there is a need to reduce this.  NSGA-II 

alleviates this issue by using niching after reproduction which reduces complexity to 

O(MN2).   

NSGA-II starts off by creating an initial population 𝑃 size 𝑁 and then using this to 

reproduce in order to create an offspring population 𝑄 also size 𝑁.  These are 

amalgamated to form population 𝑅, size 2𝑁.  At this point a nondominated sorting, 

similar to NSGA, is used to classify the population.  The new population is made up 

from the solutions from the best fronts using tournament-selection and a crowding 

density measure to enable solutions from an isolated area but on a weaker front to still 

have a chance to be chosen, thus preserving diversity. 

3.6.3. Pareto Archived Evolution Strategy (PAES) 

This algorithm by Knowles and Corne (1999) uses a combination of local search and 

evolutionary methods to reach the Pareto front.   A single parent is mutated to form a 

single child.  There is an archive of best solutions and every mutated solution is 

compared to this archive and either replaces a solution in the archive or is rejected and 

the parent is mutated again.  The maximum size of the archive is maintained. 

From the archive, parents for the next generation are chosen.  This is done using a 

density measure so solutions in less crowded areas are most likely to be chosen as 

parents. 

The density calculation is based on a grid or mesh, or set of hypercubes.  The number 

of solutions in each hypercube is counted and, if the offspring is in a less densely 

populated hypercube than the parent, it is chosen as a parent in the next generation. 

If there is no room in the non-dominated archive then the offspring is compared to the 

solutions in the most densely populated hypercube.  If the new solution is not from 

this box then it is kept in the archive and one of the solutions from this densely 

populated hypercube is removed. 

3.6.4. The Strength Pareto Evolutionary Algorithms (SPEA and SPEA2) 

In 1998 Zitzler and Thiele proposed SPEA (Zitzler & Thiele, 1998).  This stores an 

external archive of the best non-dominated solutions and remains a fixed size.  Every 

solution in the archive is given a strength value and a fitness level which takes into 

account its nearness to the Pareto front and the distribution of other solutions. 
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The algorithm begins with a randomly created population 𝑃 of size 𝑁 and an empty 

external population �̅� with maximum capacity �̅�.  In any generation 𝑡 the best 

nondominated solutions in 𝑃𝑡 are copied to population �̅�𝑡.  In each successive 

generation dominated solutions in �̅� are replaced with better ones. 

To preserve diversity in the archive, a clustering method is used.  Distances between 

solutions is calculated and the closest solutions merged to keep the archive to �̅�. 

In 2001, Zitzler, Laumanns and Thiele proposed a variation on SPEA which has been 

claimed to surpass NSGA-II for the portfolio optimisation problem (Zitzler, et al., 

2001).  SPEA2 differs from SPEA as it has a nearest neighbour density measure, an 

improved fitness assignment taking into account the number of solutions each solution 

dominates and is dominated by and an enhanced  truncation method which guarantees 

the preservation of boundary solutions. 

The algorithm is similar to NSGA-II in that there is a population and an archive; these 

are merged, duplicates removed and this represents the population.  Each solution in 

this population is assigned a strength value and a fitness level.  The strength value 

represents the number of solutions that are dominated by this solution. 

Solutions are then mated; parents being chosen using binary tournaments.  This new 

population then replaces the old population which remains static in number. 

3.6.5. Pareto Envelope based Selection Algorithms (PESA and PESA2) 

Proposed by Corne, Jerram, Knowles and Oates (2000) PESA has an internal 

population and a larger external population.  Like PAES it divides the solution space 

up into hypercubes and a crowding measure is used to make sure that diversity in the 

selection of parents is maintained. 

In 2001 the same team developed PESA2 (Corne, et al., 2001).  The main differences 

between this and PESA is that instead of the solution being selected the hypercube is 

selected and then any individual solutions used in mating are chosen randomly.  The 

fitness of the hypercube is determined by the number of solutions in it, with the least 

populated having more chance of being chosen and thus preserving diversity of the 

new population. 

3.7. MOEAs for Portfolio Optimisation 

Markowitz’s foundations of Modern Portfolio Theory only works by applying 

simplifications and assumptions in order to reduce computational complexity 

(Maringer, 2005).  These include assuming that markets are perfect in that there are 

no taxes nor transactional costs, assets are infinitely divisible, investors make 

decisions at one point in time and the means, standard deviations and correlations are 

sufficient to describe the asset’s returns.  Heuristics such as Evolutionary Algorithms 
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can take care of these assumptions and provide more accurate solutions because they 

can iteratively search for and test new improved or modified solutions until some 

convergence criterion is reached (Maringer, 2005).  

Another issue with Portfolio Optimisation is that it is important to have good results 

quickly.  The customer does not want to wait for an algorithm to slowly examine the 

problem and eventually reach an optimum solution but would rather have a quick but 

accurate range of solutions depending on how risk-averse they are.  The traditional 

mean-variance approach can take a long time when various constraints have to be 

taken into account. 

In recent years many groups have begun working on fast, efficient Evolutionary 

Algorithms specifically for Portfolio Optimisation.  In 2007 Castillo Tapia and Coello 

Coello surveyed a number of problems in economics and finance and work done to 

address these using evolutionary algorithms (Castillo Tapia & Coello Coello, 2007).  

They noted that the area of Portfolio Optimisation was where the bulk of work had 

taken place. 

Maringer (2005) lists a number of heuristics that can be used in different areas of 

modern portfolio theory and concludes that “there is not one best heuristic that would 

be superior to all other methods.  It is rather a ‘different courses, different horses’ 

situation where criteria……influence the decision which heuristic to choose.” 

He also notes that genetic algorithms are complex and need experience to implement.  

Despite this, evolutionary algorithms are the focus for many research papers in the last 

twenty years as they provide a way of addressing the additional constraints more 

effectively that then traditional approach described by Markowitz (Schlottmann & 

Sesse, 2004).   

In 2007 Skolpadungket, Dahal and Harnpornchai discussed Portfolio Optimisation 

using Multi Objective Genetic Algorithms (Skolpadungket, et al., 2007).  They 

compared several algorithms including SPEA2 and NSGA-II on data in the OR 

library.  Their conclusions were that SPEA2 performed best in terms of finding a 

diverse set of Pareto optimal solutions. 

In 2009 Branke, Scheckenbach, Stein, Deb and Schmek published on Portfolio 

Optimisation with an envelope-based multi-objective evolutionary algorithm (Branke, 

et al., 2009).  They noted that various real-world cardinality constraints led to a non-

convex search space and, because of this, the traditional methods can no longer be 

applied.  Their algorithm involved allowing the MOEA to find convex subsets of 

feasible portfolios and then merging partial solutions to form a full solution of the 

original non-convex problem.   
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Previously in 2008 Chiam, Tan and Mamum published on constrained Portfolio 

Optimisation (Chiam, et al., 2008) and compared different algorithms with various 

constraints using the data from the OR-library (Beasley, 2012). 

However these papers have built on earlier research experimenting with using multi-

objective evolutionary algorithms to solve variations of the Portfolio Optimisation 

problem.  These include Shoaf & Foster (1996) who describe a genetic algorithm for 

the efficient set portfolio problem based on the Markowitz model.  This offers 

significant benefits over the quadratic programming approach including the ability to 

simultaneously optimize risk and return.  Vedarajan, et al. (1997) propose a MOEA 

approach to portfolio selection searching for non-dominated feasible solutions with 

respect to two objectives and also include a variant where a transaction cost is an 

additional component which can cause problems for standard quadratic programming 

problems.  Chang, et al. (1999) consider the problem of finding the efficient frontier 

including cardinality constraints that limit a portfolio to a specified number of assets. 

Lin, et al. (2001) consider the variation to the Markowitz problem which included 

constraints on the amount of money that could be invested in each asset as well as a 

fixed transactional cost.   

This work shows that not only is there a value in using multi-objective evolutuonary 

algorithms to solve the portfolio selection problem but that there is still more work to 

be done to find fast, efficient algorithms that incorportate all necessary constraits. 

3.8. Performance 

It is not easy to judge how well a MOEA has performed as one has to compare fronts 

as opposed to individual solutions (Branke, et al., 2009).  Zitzler, et al. (2003) discuss 

a number of different performance measures such as measuring the distance of an 

approximated front to the Pareto-optimal front, measuring the diversity of the 

approximated front using a chi-squared-like deviation measure and measuring the 

volume of space dominated by the approximated front. 

Branke, et al. (2009) use the difference in area from the known Pareto front as 

calculated using the critical line algorithm and their approximation.  This was based 

on the Portfolio Optimisation problem.  They acknowledge that it is not ideal as it is 

necessary to define values for maximum variance and maximum return.  If there is a 

large gap between these values then this can have a significant impact on the quality 

of the solution whereas if they are set too close then some parts of the front may be 

cut off. 

3.9. Summary 

This chapter has provided the theory of optimisation necessary for understanding how 

to create a variety of new optimisation algorithms.  It began with an overview of how 

to find the global minimum and maximum using calculus and various numerical 
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iterative processes such as gradient search before going on to look at two heuristics; 

simulated annealing and evolutionary algorithms.  These can be used when the 

function is complex and simpler methods tend to result in the finding of local minima 

and maxima.    

The terminology and parameters used in evolutionary algorithms, such as methods of 

reproduction and ways of creating populations, were discussed in detail in this chapter, 

in order to prepare the reader to understand the way in which the algorithm works. 

The rest of the chapter concerned Multi Objective Evolutionary Algorithms (MOEAs).  

After an introduction as to why MOEAs are needed there then followed a description 

of some of the key aspects of the general algorithm such as how to deal with multiple 

objectives and different methods for preserving diversity.   

Following this, several important algorithms: The Elitist Non-Dominated Sorting 

Genetic Algorithm (NSGA-II), the Pareto Archived Evolution Strategy (PAES), the 

Strength Pareto Evolutionary Algorithm (SPEA and SPEA2) and the Pareto Envelope-

based Selection Algorithm (PESA and PESA2) were discussed in more detail.   

The final section looked at various research where these MOEAs have been used to 

solve the Portfolio Optimisation problem and how it is possible to measure how well 

an algorithm has performed.  An understanding of this is important in order to see how 

well the proposed new MOEA described in chapter 4 performs.  
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4. New Algorithms for Financial Optimisation 

This chapter describes the main body of new work that this research has focused on.  

It begins with a simulated annealing algorithm designed to calculate the parameters 

for GARCH (1,1).  In section 4.1 some results are presented which compare the 

parameters found using this algorithm against those found using the maximum 

likelihood method.   

This is followed in section 4.2 by an evolutionary algorithm that calculates the values 

of nine different trading indicators in order to see if a share should be bought or sold 

on a particular day.  The evolutionary algorithm then combines and mutates 

combinations of these indicators in order to find rules that optimise the amount of 

profit made.   

The above work was exploratory and was used to direct and inform the subsequent 

research.  Results given for both these algorithms are brief due to the fact that these 

paved the way for the more substantive work on multi-objective evolutionary 

algorithms. 

The main work developed a multi-objective algorithm for portfolio optimisation and 

this is where the majority of the chapter is focused.  The discussion of this algorithm 

in section 4.3 explains how the reproduction process is carried out, how solutions are 

stored, and how the adaptive cell-based system ensures that diversity is preserved.   

The performance of the algorithm using the comparison between the area under Ptrue 

and the area under the found Pareto front (Pknown) is discussed in section 4.4 and results 

are presented for varying methods of cell adaptivity.  The algorithm was also tested to 

see how sensitive it is to random numbers.   

4.1. A Simulated Annealing Algorithm for GARCH 

The Stock Exchange of Mauritius (SEM) is classed as one of the emerging markets.  

Established in 1989, it has grown considerably in size and now attracts much interest 

from foreign investors.  Thus understanding the volatility in the SEM is increasingly 

important as well as providing a suitable test case for our algorithm. 

Data from the SEMDEX index was collected from 2000 to 2007 and from this 12 

companies from a range of industries were chosen for the study.  The main reason for 

the choice of these companies was that their data was clean and there were no breaks. 

A Simulated Annealing program was written to find the GARCH (1,1) parameters for 

the SEM data similar to the program described and discussed by Maringer (2005).  The 

Maximum Likelihood approach was used. 
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Firstly historic volatility was calculated from the daily returns in the dataset.  Then 

with a small tolerance level the program perturbs values for 𝛼, 𝛽, 𝜔 in order to 

maximise 

∑[− ln(σ𝑖
2) −

𝑢𝑖
2

σ𝑖
2]

𝑚

𝑖=1

 

Where m is the number of recent observations, ui the daily return and σ𝑖 the daily 

variance. 

The daily long term volatility (V) is then found by combining the weights so that 

𝑉 =
𝜔

1 − 𝛼 − 𝛽
 

Initial results with the SEM data looked promising but the algorithm was then run on 

data from the US Standard and Poor (S&P) index to enable them to be compared to 

other studies.  The algorithm was found to converge quickly with results comparable 

to those found using MS Excel Solver and other commercial software when running 

for 1000 iterations with shareprices from the S&P500.  Further work could be done to 

test the speed of convergence with different levels of tolerance.  Before this was 

carried out the work moved on to look at ways of determining rules of trading using 

Evolutionary Algorithms. 

Table 2: Comparison of parameters for GARCH(1,1) using data from the 

S&P500 

Software Maximum Long-term 

Volatility 

𝜶 𝜷 𝝎 

GARCH 

SA 

11833.2440 1.259427 0.0795888 0.7678411 0.0000242 

MS Excel 

Solver 

11833.3493 1.702257 0.0693761 0.8291634 0.0000294 

Other 

software 

11833.2752 1.438048 0.0728163 0.7927531 0.0000278 

 

Table 2 shows the values for the parameters α, β and 𝜔 as well as the value for the 

maximum obtained with the new SA algorithm for GARCH and compared with the 

values found using Excel MS solver and a recommended solver found on the internet.  

This shows that the SA algorithm was finding values close to that of reputable solvers. 

As mentioned in Section 2.2.4 it can be seen that the values for 𝛽 are high thus 

indicating that volatility is persistent as any shocks will take time to die out.  The long-

term volatility is also high as this is usually below 0.8 (Hull, 2006).  However the 
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important aspect is that the new SA algorithm found similar results to publically 

available solvers. 

4.2. Finding Trading Rules using Trading Indicators 

4.2.1. Overview 

There is evidence in the literature that applying the results of individual technical 

indicators to the forecasting of asset pricing has a limited increase on the investment 

return (Fama, 1970).  Thus it has become practice to combine the indicators to form 

rules.  Whilst Brock, et al. (1992) discuss the importance of computational methods 

for determining profitable trading rules Allen & Karjalainen (1999) demonstrate how 

this can be done with a genetic algorithm. 

To investigate the workings of a single objective evolutionary algorithm and to gain 

practice of Java programming it was decided to investigate technical analysis by 

forming trading rules.  This was done by writing an evolutionary algorithm in Java, 

similar in format to that described by Allen & Karjalainen (1999).  The algorithm was 

initially written and tested with the GARCH (1,1) problem described in section 3.2 to 

make sure it was performing as expected.  Similar results were achieved for the 

GARCH (1,1) parameters thus the new algorithm was considered to be functioning 

well. 

The program was then adapted to calculate the best trading rules for different shares.   

The algorithm uses data from 12 companies from the Standard and Poor 500 index in 

the US.  Mirroring the work conducted by Allen & Karjalainen (1999) it calculates the 

value of 8 different trading indicators shown below (described in section 2.5) and 

evaluates their return (positive or negative) at the end of the day.  If the indicator gives 

a positive return then shares should be bought, if negative then shares should be sold 

and if zero then shares are held. 

Table 3 List of trading indicators used in evolutionary algorithm 

Trading Indicator 

Short Price Channel Breakout 

 Long Price Channel Breakout 

Short Moving Average 

 Stochastic Oscillator 

 Long Moving Average 

 Simple moving average crossover 

 Moving Average Convergence Divergence 

 Relative Strength Index 
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4.2.2. Finding the rules 

The program started off using training data ie historic data where the buy and sell 

signals are known and performed calculations to evaluate the various trading 

indicators listed in the previous section. 

Then the evolutionary algorithm combines and mutates different indicators in order to 

find out which rules (combinations of indicators) should be used in order to maximise 

profit for each share.  The fitness of a rule is determined by evaluating how much extra 

return would be acquired as compared to a traditional buy and hold policy. The simple 

return from a single trade (Ri) which is bought at date bi and sold at date si is 

𝑅𝑖 =
𝑃𝑠𝑖
𝑃𝑏𝑖

×
1 − 𝑐

1 + 𝑐
− 1 

Where Pt is the closing price on day t and c is the one-way transaction cost (expressed 

as a fraction of the price). 

From this the daily continuously compounded return (r) is calculated 

𝑟 = log𝑃𝑡 − log𝑃𝑡−1 

Letting T be the number of trading days, 𝑟𝑓(t) denoting the risk-free rate on day t , m 

the number of trades and defining two indicator variables, 𝐼𝑏(t) and 𝐼𝑠(t), which equate 

to one if a rule returns a buy or sell signal respectively and equate to zero if otherwise 

we have 

𝑟 = ∑𝑟𝑡

𝑇

𝑡=1

𝐼𝑏(𝑡) +∑𝑟𝑓

𝑇

𝑡=1

(𝑡)𝐼𝑠(𝑡) + 𝑛log
1 − 𝑐

1 + 𝑐
 

The total simple return is 𝑅 = 𝑒𝑟 − 1 

The return for the buy and hold strategy is 

𝑟𝑏ℎ =∑𝑟𝑡

𝑇

𝑡=1

+ log
1 − 𝑐

1 + 𝑐
 

And thus the excess return or fitness for a trading rule is given by 

∆𝑟 = 𝑟 − 𝑟𝑏ℎ 

The actual algorithm can be described using the following steps (Allen & Karjalainen, 

1999): 
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Step 1 

 Create a random rule. 

 Compute the fitness of the rule as the excess return over the buy and hold 

strategy. 

 Do this 500 times to form the initial population. 

Step 2 

 Apply the fittest rule in the population to the selection period and compute the 

excess return.  Save this as the initial best rule. 

Step 3 

 Pick two parent rules at random. 

 Create a new rule using crossover and calculate the fitness. 

 Replace one of the old rules with this new rule. 

 Repeat 500 times in each generation. 

Step 4 

 Apply the fittest rule in the population and calculate the excess return. 

 If the excess return improves upon previous best rule then this is saved as the 

new best rule. 

 If no improvements after 25 generations or after a total of 50 generations stop.  

Otherwise go back to step 3. 

4.2.3. Results 

The outcome was that different shares gravitated to different rules.  For BP the 

successful rule was made up of the following indicators 

 Price Channel Breakout 

 Short Moving Average 

 Stochastic Oscillator 

 Short v long Exponentially Weighted Moving Average 

 Moving Average Convergence Divergence 

However data from some shares (such as BP) converged more easily than others (such 

as General Motors) showing that in some cases it is not possible to determine particular 

rules. The rules were then used on test data; this consists of share price data that is 

known but not used in formulating the rules.  By using the rules to determine when 

shares would have been bought and sold the amount of profit/loss over the period was 

calculated.   

More work would be required on this before results could be presented however the 

writing of this algorithm led to interest in multi-objective evolutionary algorithms and 

portfolio optimisation which is where the rest of this research is focused. 
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4.3. Adaptive Cell Resolution Evolutionary Algorithm 

(ACREA) 

4.3.1. Overview 

As previously stated, in order for a MOEA to find a close approximation to the Pareto 

front it needs to be able to maximise the diversity of the population in the solution 

space and have a method of controlling the density of the solutions. This proposed 

Adaptive Cell Resolution Evolutionary Algorithm (ACREA) does this using three 

methods: 

 A dynamic population. 

 A grid whose cell size changes dynamically. 

 A depth of solutions along the solution front which changes dynamically. 

 

These are described in more detail below and in the rest of this section. 

It is hard for a fixed population size to maintain a diverse population so a dynamic 

population that will grow as necessary is proposed.  

The problem chosen to test ACREA was an unconstrained portfolio optimisation 

problem where the variance of the portfolio was minimized  

𝜎𝑝
2 = 𝑤𝑇𝑉𝑤 =∑∑𝑤𝑖

𝑥

𝑗=1

𝑥

𝑖=1

𝑤𝑗𝜎𝑖,𝑗 

and the return of the portfolio was maximized  

𝑢𝑝 = ∑𝑤𝑥

𝑋

𝑥=1

𝑢𝑥 

subject to 

∑𝑤𝑥 = 1

𝑋

𝑥=1

 

as previously described in section 2.6.3 . 

Each individual solution is made up of a series of weights which refer to specific 

assets.  So for example the solution: 

𝑤1 𝑤2 𝑤3 𝑤4 
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Each of the 𝑤𝑥 is a proportion of a specific asset. 

This algorithm is similar to PESA in that it divides the solution space into boxes which 

are called grid cells. If the problem were more than two dimensional this could be 

generalized to hypercubes like PESA. Another algorithm that uses this grid as a base 

is the DMOEA (Yen & Lu, 2003). The difference that is proposed here is that as well 

as a changing population size ACREA also has a dynamic grid where the individual 

grid cells can change in size both horizontally and vertically. As the number of 

generations increase, the number of grid cells in the solution spaces increases, thus 

shrinking the dimensions and surface area of each grid cell. The population size is also 

dynamic, increasing in size with each generation as mutations and combinations are 

added to it. The number of non-dominated solutions is not limited and thus grows as 

the population grows. 

Because of the increased computation resulting from the population growth, the 

algorithm is slowed down. To minimize this, and as not all the solutions are worth 

keeping, the width of the solution front is restricted and can change dynamically.  All 

grid cells beyond the front width are emptied.  Also, only a certain number of the non-

dominated solutions are retained.  The pseudocode that describes this algorithm 

follows: 

1 begin 

 Initialise Fitness Function 

 Generate initial population 

 Define parameters of reproduction 

     Define density levels 

 Define grid and rate at which cells grow 

 Populate grid with population depending on normlised risk and variance 

 while nGenerations<maxGenerations 

  Perform mutation and crossover  

  Measure fitness of new solutions 

  Keep mutated solution and best crossover from each parent 

  if (grid size trigger point reached) 

    Increase grid size 

   if (density>q) 

    remove weakest solutions in each cell 

    if (population size trigger point reached) 

 Decrease solution front width in x and y                   

directions 

    end if 

   end if 

  end if 

 end while 

end 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 
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After the initialization of the algorithm where all the parameters are set (lines 0-5) the 

solution space (grid) is populated with random solutions based on their values of risk 

and variance in line 7. The fitness of these solutions is calculated and stored.  Line 8 

sets up a loop to run for each generation until the stopping criteria is reached.  In line 

9 mutation and crossover operations are performed.  Line 10 the fitness of these 

solutions is measured.  Line 11 the fittest crossover and single mutation is kept for 

each mating. Line 12 starts an If statement declaring the trigger point for grid 

expansion.  This is discussed more in section 4.3.4.  The trigger point mentioned in 

the code can be the start of each new generation or every n generations depending on 

the method used.  This is discussed further in section 4.3.3.   

In line 13 the grid increases its mesh density as described in section 4.3.4.   Lines 14 

and 15 say that all solutions are kept until the density reaches q.  At this point the 

weakest solutions are removed from individual cells so that the maximum number of 

solutions in each cell is q.  Lines 16 and 17 declare the trigger point for reducing the 

number of cells behind the solution front.  Once this point is reached the cells furthest 

away from the front (behind a previously declared distance), in each direction x and 

y, are all emptied to reduce the number of solutions in the population. 

Individual aspects of the algorithm are explained in more detail below. 

4.3.2. Reproduction 

4.3.2.1 Mutations 

A solution is chosen at random to be mutated.  Each solution is made up of weights 

(relating to assets).  One of the non-zero weights in this solution is chosen at random. 

This weight is decreased by a small amount (n).  This has changed the sum of all 

weights by n so this amount n is then added to another randomly chosen weight to 

maintain the original total.  The fitness of the mutated solution is assessed and the 

solution is stored in the grid. 

Parent    Initial Child 

0.3 0.2 0.4 0.1   0.3 0.2 0.2 0.1 

   

Final Child 

0.5 0.2 0.2 0.1 
 

Figure 12 Mutations in ACREA 

4.3.2.2 Combinations 

Two solutions are chosen at random to be parents.  The solutions are combined to 

produce two offspring and then the one with the greater fitness level is kept and stored 

in the grid. 
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Each weight (i) in a solution is assigned a random number in turn.  If this is less than 

0.5 then the weight (i) of the first child is equal to the weight (i) of parent 2 and the 

weight (i) of the second child is equal to the weight (i) of parent 1. Otherwise the other 

way around.    

However, as with mutations, it can be seen that this changes the sum of the weights 

which is important in this problem.  Again similarly to the mutations, a weight is 

chosen at random and altered to make sure that the original weight is maintained.  In 

the following example child 1 needs to lose 0.3 and child 2 needs to gain 0.3.  A 

solution, if weight one was chosen, is shown in the final step of Figure 13. 

Parent 1   Parent 2 

0.3 0.2 0.4 0.1   0.1 0.2 0.3 0.4 

 

Randi  <  0.5,  Randi+1  <  0.5,  Randi+2  <  0.5, Randi+3 > 0.5 

Child 1   Child 2 

0.3 0.2 0.4 0.4   0.1 0.2 0.3 0.1 

 

Child 1   Child 2 

0.0 0.2 0.4 0.4   0.4 0.2 0.3 0.1 

Figure 13: Combinations in ACREA 

4.3.3. The Grid 

As said before, the algorithm divides the solution space into a grid or mesh similar to 

PESA.  The population is placed into this grid according to the solutions’ fitness.  

Solutions are randomly chosen to mutate or to become parents and be combined.  This 

new population (including mutants and combinations) is then put into the grid.  This 

continues until the maximum number of generations is reached. 

Initially, the grid has 50 grid cells in each direction x and y.  This is an arbitrary value 

that tests show works well. The resolution of the grid then increases in both directions 

every generation based on a particular function.  Different functions for the increase 

of the grid resolution have been investigated and are discussed below.  If a simple 

increasing function was used every 10 generations and the initial number of grid cells 

in each direction was 5 then the grid would look like Figure 14 at 0, 10, 20 generations. 

However, without some method of reducing the population this would increase by the 

number of mutations and combinations produced at each generation, which, if left to 

continue, would become so large that it would slow down the algorithm considerably.  

To combat this, the population is reduced by emptying grid cells that are a certain 

distance away from the solution front in both x and y directions. 
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Figure 14: Example of changing grid cell size with initial grid of 5x5 increasing 

by 5 every 10 generations 

Initially the algorithm runs for 10 complete generations to allow the population to 

grow by mutating and combining solutions.  After this, only the solutions in the first 

150 width of grid cells from the solution front in both x and y directions are kept.  This 

value was chosen after testing, as it seems to keep enough solutions to increase 

diversity of the solution space but not too many that the algorithm is slowed down.  If, 

at any point, the population size reaches the maximum number of solutions then the 

retained number of grid cells from the front (again in both x and y directions) decreases 

to 90.  As the number of solutions increase the solution width needs to be reduced to 

avoid the algorithm taking too long to reach a solution.  Various sizes for the retained 

number of grid cells were tested and these were found to perform best.  However more 

rigorous testing is required to determine the optimal width of grid cells to maintain.  

All the time this reduction is taking place, the number of grid cells is increasing (size 

of individual grid cell is shrinking).  Figure 15, Figure 16 and Figure 17 provide a 

schematic view of this.  The *’s represent grid cells containing non-dominated 

solutions.  In this example the retained number of grid cells from the front (a cell 

containing non-dominated solution) is 3 so the shaded grid cells, being further away, 

are emptied.  As the algorithm continues to run, the grid cells decrease in size and the 

solution begins to converge.  As the generations increase, the grid cells shrink in size 

and thus more solutions are removed.   

 

Figure 15 shows which cells are emptied if the algorithm was just doing this in the 

vertical direction whereas Figure 16 shows the cells to be emptied in the horizontal 

direction.  One could choose to either combine these so that either the union or 

intersection cells are emptied. The current version of the ACREA algorithm empties 

the cells in the union. 
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          * * * * * 

        * *      

       *        

      *         

     *          

    *           

    *           

   *            

   *            

  *             

  *             

  *             

 *              

 *              

 *              
 

Figure 15: Diagram to show which cells would be emptied in vertical y 

direction 

               * * * * * 

        * *      

       *        

      *         

     *          

    *           

    *           

   *            

   *            

  *             

  *             

  *             

 *              

 *              

 *              
 

Figure 16: Diagram to show which cells would be emptied in horizontal x 

direction 
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          * * * * * 

        * *      

       *        

      *         

     *          

    *           

    *           

   *            

   *            

  *             

  *             

  *             

 *              

 *              

 *              
 

Figure 17: Diagram to show which cells would be emptied in both x and  y 

directions 

As the resolution of the grid increases and the grid cells become smaller, it is necessary 

to control the number of solutions in each cell.  The number of solutions in each grid 

cell is determined by the density value.  This value can be set to a specific level 

throughout the running of the algorithm or changed at different points. After 

experimentation, in the current implementation, the density value starts off at 6 then 

decreases to 4 after 100 generations, then 3 after 170 and 2 after 250.  This helps to 

control the population size but also increases diversity because, even if a particular 

solution is not as close to the Pareto front as others, it will still be kept if it is in a 

sparsely populated grid cell. 

4.3.4. Cell increase 

The area of the grid is a finite space that does not change.  This space is divided into 

grid cells which are easier to visualise with two dimensional problems.   Several 

versions of the function used in the adaptive grid algorithm have been tested (here 

named Grid 1 through to Grid 4). Initially the algorithm ran with 100 cells in each 

direction and then, every 20 generations (Grid 1) the number of cells in each direction 

in this solution space increased by 20.   This seemed to work adequately for small data 

sets but was not so good for large ones.  To increase the rate at which the grid 

resolution increased, various experiments were carried out to see what would happen 

if the grid resolution equated to kG where k is a number that could be changed and G 

the number of the generation that the program is on.  This made a slight improvement 



48 

 

but was still not converging for larger datasets.  Grid 2 in Figure 18 shows the 

resolution when k=4. 

Thus a new algorithm was developed which meant that the number of cells increased 

as a logarithmic function. The advantage of this was that the population size increased 

quickly so there was far greater diversity early on but this did not carry on 

exponentially.  Two variations of this, Grid 3 and Grid 4, were tried and for this 

method the starting point of 50 grid cells in each direction was used.  

Grid 3: Number of cells = Max(50, 600 ln (G)) 

Grid 4: Number of cells = Min(x+(0.02x),4000) where x=50 for n=2 as the starting 

point for the grid is 50 cells in both directions. 

Figure 18 compares the 4 strategies, showing the slow growth of Grid 1, the slow but 

exponential increase for Grid 2, asymptotic increase for Grid 3, and the fast 

exponential followed by slow linear increase for Grid 4. 

 

Figure 18: Graph to show how cell resolution increases over number of 

generations 

4.3.5. Implementation 

The algorithm was implemented with data from Beasley’s OR Library (2012) 

consisting of estimated returns and variances for groups of assets in different stock 

market indices.  The same data has been used in similar work by Chiam, et al. (2008) 
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Skolpadungket, et al. (2007) and Branke, et al. (2009).  Table 4 shows the number of 

assets in each of the data sets as well as the original source of the data. 

Table 4: Table to show the number of shares in each dataset 

Problem index Data Source Number of assets 

Port1 Hang Seng 31 

Port2 Dax 100 85 

Port3 FTSE 100 89 

Port4 S&P 100 98 

Port5 Nikkei 225 225 

 

When testing the algorithm at different stages it was obvious that the problem became 

more complex and slower when dealing with larger quantities of data and thus it was 

important to have an algorithm that could accommodate larger data sets.  For this 

reason this work concentrates on the largest dataset, Port 5.  Other algorithms, such as 

the one described by Chiam, et al. (2008), struggled to find the Pareto front with this 

data set. 

4.4. ACREA Results 

4.4.1. Area Ratio 

In line with other similar studies the difference in area between the true Pareto front 

(𝑃𝑡𝑟𝑢𝑒) and the front generated by ACREA (Pknown) was measured in order to provide 

a measure of performance of ACREA.  The analytical solutions contained in 𝑃𝑡𝑟𝑢𝑒 

were given in the dataset provided by the OR Library (Beasley, 2012).  This 

comparison of results can be seen in Table 8. 

In order to calculate the difference between the areas of ACREA and Ptrue it was 

necessary to make certain adjustments where the maximum risk and minimum return 

values of Pknown were greater than Ptrue and vice versa.  This is in line with other 

research such as Branke, et al (2009). 

In the case where the maximum risk and minimum return values of Pknown were greater 

than Ptrue boundary points were established to remove some of the most extreme 

solutions.  This avoided the situation where large areas bounded by very few solutions 

at the extreme points are compared.  These boundary points were identified as being 

the smallest return value (A) and the largest risk value (B) for Ptrue.  This is 

demonstrated in Figure 19. 

In the situation where the maximum risk and minimum return values of Ptrue were 

greater than Pknown then the smallest risk and largest return values were extended and 

the resulting area CDE calculated.  This is shown in Figure 20 
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This enables sensible comparisons to be made without outliers making otherwise good 

solutions seemingly have a very large difference between the areas. 

 

Figure 19: Area boundaries where the maximum risk and minimum return 

values of Pknown are greater than Ptrue 

 

 

Figure 20: Area boundaries where the maximum risk and minimum return 

values of Ptrue are greater than Pknown 

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

0 0.0005 0.001 0.0015 0.002

R
e
tu
rn

Risk

P(True)

Example

A

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014 0.0016 0.0018

R
et

u
rn

Risk

P(True)

Example 2

D

E

B 

C 



51 

 

4.4.2. Parameters 

The following table shows a list of the different parameters that are used within the 

ACREA algorithm along with the maximum and minimum values as well as the value 

used in the best performing version of the algorithm.  Some systematic testing was 

carried out which has determined some of the optimal values but further tests need to 

be carried out. 

Table 5 table showing the different parameters used in the ACREA algorithm 

Parameter Minimum 

value 

Maximum 

value 

Value in best 

performing 

version 

Initial population size 20 500 20 

Proportion of mutations 0.1 0.9 0.9 

Proportion of combinations 0.1 0.9 0.9 

Cell density value 4 10 4 

Front width 1 1 1 

Number of generations 400 600 600 

Scale grid (function) 100 (increase 

by 20 Grid 1) 

4000 (Grid 4)  

Population ceiling 150000 500000 150000 

 

4.4.3. Implementation 

ACREA was programmed using Java.  This language was chosen as it was one that 

was most familiar.  The mean processing time of the runs in Table 6 is 9639 seconds 

with the median 9536 seconds, so just over two and a half hours.  All the tests in this 

thesis were run on a machine with a dual processor at 2.53GHz with 2.96GB of RAM. 

4.4.4. Sensitivity 

In order to check how sensitive the algorithm was to different random numbers a short 

experiment was constructed where the best algorithm was run 10 times so with 10 

different random seeds.  Although the time taken for each run, total population and the 

number of non-dominated solutions all changed, the area ratio (discussed in section 

4.4.1) remained very similar.  The results are shown in Table 6. 
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Table 6: Sensitivity 

Run Final 

Population 

Non-

Dominated 

Population 

Area Ratio Processing 

time 

1 100350 2802 1.000957531 9608 

2 100197 2809 1.00099939 8990 

3 99410 2916 1.001035822 9131 

4 98677 3022 1.000972169 9760 

5 99188 2688 1.000993987 9150 

6 99339 2775 1.001056081 10498 

7 101626 2963 1.00096566 9005 

8 101979 2880 1.000942046 9464 

9 96426 2958 1.000967243 10016 

10 99785 2795 1.000968716 10769 

 

In order to measure the variability of the data in Table 6 the mean, range, standard 

deviation and interquartile range were calculated.  These measures are shown in Table 

7.  From this it can be seen that the very small values for the range, standard deviation 

and IQR show that there is little spread in the data and thus demonstrate that the 

algorithm is not sensitive to random numbers. 

Table 7: Measures of variability 

Variability Measure Area Ratio 

Mean 1.000985865 

Range 0.000114035 

Standard deviation 3.59544E-05 

Inter-quartile range 3.19835E-05 

 

4.4.5. Main Results 

Initial results for ACREA are very positive.  In a short time the algorithm was able to 

find a solution very close to the analytically obtained Pareto front.  As said before all 

results discussed, result from using the share price dataset Port 5 from the OR library’s 

Portfolio Optimisation dataset (Beasley, 2012) which contains the largest number of 

assets. 

Several experiments were undertaken to determine which parameters produced the 

best results.  The main set of experiments were undertaken with the Grid 4 method for 

the adaptive grid.  Table 8 shows the results for different variations of mutations and 
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combinations and cell density with the difference in area under the Pareto front 

between Pknown, the new algorithm, and Ptrue, the analytical solution, being the key 

measure.  This final measure is described in section 4.4.1. The ratio rather than the 

difference is used because when there is very little difference between the two areas it 

is easier to see how close they are to one.  All runs listed in Table 8 used 600 

generations and a population ceiling of 150,000.  These parameters had previously 

been found to be particularly good.  This is just a selection of all the runs and different 

permutation of parameters in order of performance (best first) in terms of area ratio. 

Table 8: ACREA results 

Run 

# 

Initial 

population 

Proportion 

of mutations 

Proportion of 

combinations 
Cell density Area ratio 

1 20 0.9 0.9 4 1.00094 

2 100 0.9 0.9 6 1.00096 

3 20 0.9 0.9 6 1.00097 

4 20 0.9 0.9 4 1.00097 

5 20 0.5 0.9 4 1.00098 

6 20 0.9 0.9 4 1.00099 

7 50 0.9 0.9 4 1.00099 

8 20 0.9 0.9 6 1.00104 

9 20 0.9 0.5 4 1.00121 

10 50 0.1 0.9 4 1.00131 

11 20 0.9 0.1 4 1.00215 

 

The final population sizes for the best three runs are given in Table 9 where ‘best’ is 

defined as the smallest area ratio. 

Table 9: Three best ACREA results  

Run # Final 

Population 

# Non-

dominated Sol 

Area ratio 

1 101979 2880 1.000942 

2 100350 2802 1.000958 

3 96426 2958 1.000967 

 

Secondly the difference between the methods for cell increase was investigated.  Grid 

4 and Grid 3 were compared along with variations of Grid 2 where k was taken as 5, 

10, 15 and 20.  These larger values of k had not been examined before and have 

produced better results than the previous experiments with Grid 3 and Grid 4.  This is 

presumably because, for higher values of k, the final number of grid cells is much 
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larger as shown in Figure 21.  The grid size for these new versions of Grid 2 are shown 

in Figure 21 alongside the previous methods used in Grid 3 and Grid 4. 

 

Figure 21: Grid cell multiplication 

The same parameters as run 1 were chosen in order to compare the different 

algorithms. However it is possible that different methods of increasing the mesh size 

might work best with different parameters.  This is something that could be 

investigated later.   

Table 10 shows the results comparing the final population size, non-dominated 

population size and area ratio of the different methods for determining the rate at 

which the grid cells increase. 

Table 10: Grid multiplication 

 Final population Non-dominated pop Area ratio 

Grid 4 101979 2880 1.000942 

Grid 3 84297 2078 1.001086 

Grid 2 (10) 124387 2801 1.001085 

Grid 2 (15) 98965 4303 1.000736 

Grid 2 (20) 130688 5697 1.0006 
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The function used in Grid 2 had previously been discounted as it failed to converge 

for small values of k with the larger data sets.  However with larger values of k it can 

be seen that it out performs the other functions and future work would include running 

further tests with this type of function. 

4.4.6. Performance 

 

Figure 22: Graph to show non-dominated solutions from ACREA compared to 

known Pareto front. 

As discussed in section 4.4.1 the difference in area between the true Pareto front 

(𝑃𝑡𝑟𝑢𝑒) and the front generated by ACREA (Pknown) was measured in order to give 

some idea as to the performance of ACREA.  The best results show no discernable 

difference when graphed, however, where the algorithm does not perform so well 

(where both risk and return are low), graphing the results shows the gaps in the front.  

An example of this is shown in Figure 22.  Figure 23 shows one of the sparser sections 

of the graph when magnified to make it easier to see where the gaps occur.   

It is possible that if the algorithm was set to perform more iterations that these gaps 

would be filled.  Further tests need to be carried out before any conclusions can be 

drawn from this phenomenon. 
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Figure 23: Diagram to show gaps in Pareto front produced by ACREA 

4.5. Summary 

This chapter described the main body of new work that this research has focused on.  

It began with a simulated annealing algorithm designed to calculate the parameters for 

GARCH (1,1).  Some results were presented which compared the parameters found 

with this algorithm against those found using the maximum likelihood method.   

After this an evolutionary algorithm was presented.  This EA used data from 12 

companies in the Standard & Poor 500 and calculated the values of nine different 

trading indicators in order to see if a share should be bought or sold on a particular 

day.  The evolutionary algorithm then combined and mutated combinations of these 

indicators in order to find rules to optimise the amount of profit made.  This work led 

to an interest in multi-objective optimisation which was the main area of research.   

The main part of the chapter is devoted to a description of the multi-objective 

algorithm that was developed for portfolio optimisation.  The algorithm is called 

Adaptive Cell Resolution Evolutionary Algorithm (ACREA).  This is because it 

involves using a mesh of grid cells which adapt in terms of both the number of cells 

in all dimensions and the size of the grid cells as the number of generations increases.  

As well as explaining how the reproduction process is carried out, this chapter details 

how the grid mechanism adapts by changing in resolution ie the number of grid cells 

in the solution space.  The number of solutions stored in each cell varies throughout 

the algorithm.  Also when the population gets too large the cells containing the weakest 

solutions are emptied allowing the best solutions to be the ones reproducing.   

The chapter concludes with a discussion on the performance of the algorithm 

measured by comparing the area between the Pareto front, Pknown, found by the 

algorithm and Ptrue followed by a set of results which look at the algorithm’s sensitivity 

to random numbers and the difference between various methods of calculating how 

quickly the cell resolution changes.  
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5. Opportunities for further research and 

Conclusions 

This final chapter starts by discussing future work that could be done both to develop 

ACREA further and also to assess its performance more thoroughly.  This includes 

collecting more results, vigorous analysis on the method for adapting the grid cell size 

and testing it against other known MOEAs.  As well as this the algorithm would 

benefit from a user-friendly front end to allow the user to set the maximum level of 

risk that they were prepared to tolerate in order for them to have the choice of suitable 

portfolios. 

5.1. Further work to be carried out 

5.1.1. Testing against other known MOEAs 

To be able to test if ACREA does outperform other MOEAs on the Portfolio 

Optimisation problem it needs to be tested against other algorithms on the same 

machine and problem.  This includes testing against the MOEA used in the Matlab 

optimisation toolbox which is based on NSGA-II. 

5.1.2. Determine optimal parameters 

Further tests also need to be carried out to find out what the optimal growth rate of the 

grid is, optimal population size, reproduction percentages and density values.  After 

this the algorithm needs to be tested on larger data sets such as used the study by 

Branke, et al (2009). 

5.1.3. Further surveying of recent literature 

Also due to the time elapsed between this research and the writing of this thesis a new 

survey of the literature is essential to understand and take account of more recent work 

in this area. 

5.1.4. Investigation of hybrid algorithms 

Possible hybrid algorithms have been discussed looking at starting off with an 

evolutionary algorithm and then moving to a particle swarm algorithm to see if this 

speeds up computational time. 

5.1.5. Inclusion of user-friendly front end 

A user-friendly front end which allows the investor to easily choose the optimal 

portfolio from a range of optimal portfolios based on the level of risk that they are 

willing to accept would be a beneficial addition. 
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5.2. Conclusion 

This thesis has presented work on three heuristics for financial applications.  This work 

began with a Simulated Annealing algorithm to find the parameters for GARCH(1,1).  

The results produced compared favorably with results obtained using commercially 

available solvers.  Then, in order to understand how to code an evolutionary algorithm, 

code was written to determine trading rules based on a series of trading indicators.  

Few results were produced with this algorithm as it was decided to move on to develop 

a multi-objective evolutionary algorithm for portfolio optimisation.  

The main part of this thesis is devoted to a description of this multi-objective algorithm 

that was developed for portfolio optimisation.  The algorithm is called Adaptive Cell 

Resolution Evolutionary Algorithm (ACREA).  ACREA involves using a mesh of grid 

cells which adapt in terms of both the number of cells in all dimensions and the size 

of the grid cells as the number of generations increases.  

ACREA provides an interesting addition to the suite of currently used MOEAs.  Initial 

research shows that it performs at least as well as other MOEAs but further research 

is needed in order to make more detailed comparisons on performance.   

The thesis explains how the reproduction process is carried out and how the grid 

mechanism adapts by changes to the resolution ie the number of grid cells in the 

solution space.  The number of solutions stored in each cell varies throughout the 

algorithm.  Also when the population gets too large the cells containing the weakest 

solutions are emptied allowing the best solutions to be the ones reproducing.   

The performance of the algorithm is measured by comparing the area between the 

Pareto front, Pknown, found by the algorithm and Ptrue followed by a set of results which 

look at the algorithm’s sensitivity to random numbers and the difference between 

various methods of calculating how quickly the cell resolution changes.  

Although this has only been tested on the Portfolio Optimisation problem to date there 

is no reason why it could not be used on MOEAs with more than two objective 

functions. 
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