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ABSTRACT

The main purpose of this thesis has been to improve the deterministic computational simula-
tions of two industrial problems with a stochastic approach. For this purpose, uncertainty
quantification and global sensitivity analysis have been carried out in two industrial jet flows
with different objectives.
First, an impinging swirling air jet for heat transfer purposes is generated by an axisymmetric
rotating pipe. Despite that many mechanisms to generate swirling jets for heat transfer can
be found in literature, there is no application with rotating pipes. To develop such study, two
Computational Fluid Dynamic (CFD) simulations are carried out in FLUENT (Simulation 1
for the rotating pipe to generate the swirling flow and Simulation 2 for its impingement on
a heated flat plate) in order to compare this heat transfer mechanism with others available
in literature. Once the simulations are validated, experimental uncertainties are taken into
account in the simulation by means of the Stochastic Collocation Method, as to provide
measures of uncertainty is typical in experimental studies but also relevant in CFD. Moreover,
as this Uncertainty Quantification (UQ) method requires to run Simulation 1 several times,
mathematical models are also investigated for the outflow turbulent and velocity profiles to
reduce the complexity and time invested in the analysis. The simulated results show that this
swirling mechanism can significantly beat others in literature, specially by increasing the
angular velocity in small nozzle-to-plate distances, increasing the heat transfer at the stagna-
tion point. This is the only mechanism that provides such increase in short nozzle-to-plate
distances. The investigated models were also implemented in User Defined Functions (UDF)
introducing negligible errors in the simulations.
Second, a framework is presented for the propagation of uncertainties in the computational
research of under-expanded jets. For this aim, experimental and turbulence uncertainty is
input to the CFD simulations of the jet flow and its impact is accounted and apportioned (UQ
and sensitivity analysis) by means of generalised Polynomial Chaos and Kriging surrogates.
The results show that some interesting parts in the computational domain suffer significant
variations due to the input uncertainty. In addition to this, the last part of the framework is
the stability analysis by the Parabolised Stability Equations (PSE). Stochastic Collocation
is used to demonstrate that the impact of experimental and turbulence uncertainty can be
linked to PSE in this framework, despite the fact that the PSE do not include them in their
formulation.
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Chapter 1

Introduction

In industry, it is decisive to achieve the best performance of a product in order to have the best
position in market. To reach this goal, advanced techniques in Uncertainty Quantification
(UQ) and Sensitivity Analysis (SA) can be quite useful if properly applied to computational
simulations. This thesis aims to analyse how the impact of these techniques can benefit to two
industrial jet flow designs: an impinging swirling jet for heat transfer and a multidisciplinary
framework for aircraft under-expanded jets. Both problems deal with certain multi-step
research issues where the propagation of uncertainties is of high interest.

Regarding the under-expanded jet, its investigation has taken place within the FP7 Euro-
pean Commission Marie Curie Action AeroTraNet 2, in collaboration with several partners
across Europe, where contact with computational, experimental and analytical fluid dynamics
experts has been possible and their comments were certainly useful to investigate this type of
jet flow.
In this chapter, the main concepts and definitions of the thesis in the uncertainty context
will be explained. The chapter starts introducing the importance of Computational Fluid
Dynamics (CFD) and stochastic analysis in Section 1.1, where also the current industrial
interest on this field is addressed. Later, the jet flow problems must to be introduced. In
Section 1.2, the aims and objectives of the jet flow investigations in this thesis are explained,
and the methodology is also briefly addressed. The chapter ends with an outline of the thesis.

1.1 The Importance of Computational Fluid Dynamics and
Stochastic Analysis

With the present technology it is possible to perform numerical simulations of events taking
place in real life and governed by complex physics. In the field of fluid dynamics, this
is particularly challenging since many ‘features’ have to be taken into account in order to
develop reliable simulations: compressibility, turbulence, viscosity, etc. Sometimes also the
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so-called fluid-structure interaction, that takes into account not only the performance of the
flow but also the interactions with the physical body, which must be simulated as well.

For a long time, scientists and engineers from both industry and academia have developed
the best algorithms and models (especially a key aspect in turbulence modelling) in order to
perform reliable numerical results for the so-called Navier-Stokes equations [45, 229], which
govern the physics of flows. This area of research is the well-known Computational Fluid
Dynamics (CFD).
For this task, there are several possibilities available with increasing importance of numerics
and decreasing model dependence, thanks also to the increasingly available computational
resources: from Reynolds-Average Navier-Stokes (RANS) to Direct Numerical Simulations
(DNS). RANS are time-averaged equations of motion for fluid flows that let modelling
turbulence by decomposing quantities into its time-averaged and fluctuating part. On the
contrary, DNS allows to solve directly the Navier-Stokes equations for turbulent flows not
requiring any turbulent model, as depicted in Fig. 1.1.
One of the key aspects of the CFD simulations is that they are, generally, a cheaper option

Figure 1.1 Classification of the most normally used methods in turbulence simulations. Image
taken from J.P. Laval’s slides from ‘International Master on Turbulence’ at University of
Lille (France).

for product design and development than experiments. If an engineer wants to test the
performance of an experimental facility or measure the risk in particular new conditions
(imagine a nuclear reactor) not taken into account in early stages of the design, to undertake
such a task can be expensive (you may need to build several prototypes) and even dangerous
(if conditions are extreme). For this reason, CFD simulations are a powerful tool in fields like
optimisation [223, 85], aerospace & aerodynamics industry [150, 84], fire safety modelling
[228], heat transfer [177] or nuclear energy [144], amongst many others. Much effort has
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been spent to develop the above mentioned techniques, leading to the most reliable simula-
tions for decision-making purposes.
Despite these relevant advances in the field, recently, a new discussion has appeared. It
is a regular practice in CFD to analyse the scenario performance of fluids by undertaking
simulations with fixed parameters in the set-up configuration. However, this can often be an
incomplete approach. When a classic code is used to mimic the physics of a flow, it does not
take into account the associated error and uncertainties such as geometrical adaptation, grid
uncertainty, domain size, numerical convergence, manufacturing tolerances or uncertainty of
the measurement devices. Not taking into account these inaccuracies can result to misleading
or incomplete engineering conclusions. This gives rise to the need of providing extra accuracy
metrics in CFD, as most experimentalists do.

Before going into details on this, it is important to explain the meaning and differences
between uncertainty and error. According to [170], where these concepts are put into work
in a modelling and simulation environment, error is defined as a recognisable inaccuracy in
any phase or activity of modelling and simulation that is not due to lack of knowledge. That
is, the inaccuracy is identifiable or knowable upon examination; and therefore not caused
by lack of knowledge. In their paper, it is also distinguished between errors that result from
acknowledged sources, such as mathematical modelling approximations or finite arithmetic
precision in computers, and unacknowledged sources not recognised by the analyst, such as
computer programming errors.

Regarding uncertainty, it is important to also differentiate between this concept and risk.
In [59], uncertainty is referred to as the stochastic behaviour of any physical phenomenon
that causes the indefiniteness of outcomes meaning the expected and actual outcomes are
never the same. The variation could have a negative, positive or no impact on the overall
performance. On the contrary, risk is defined as a special case of uncertainty where the
outcomes of a specific event or a number of events have a negative effect on the overall
performance. Other interesting definitions in literature of these two terms state that risk
is defined as something unknown but with measurable probability, while uncertainty has
unknowns in its formulation but with no measurable probability.

Within the definition of uncertainty, it was earlier expressed this term with the label
‘stochastic’. In this thesis, uncertainty is playing a role in costly simulations1 with random
inputs. In this context, as stochastic one has to understand any simulation which has inherent
random variables in its performance. Thus, it contains random elements which make the
output unpredictable.

Uncertainty is often distinguished as aleatoric or epistemic. Aleatoric uncertainty (also
known as statistical uncertainty) is considered as inherent to the natural stochasticity in

1The term ‘costly’ will be often addressed in this thesis, and it means that a run takes a long time, typically
hours or days.
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a physical quantity. This source of uncertainty is generally quantified by a probability or
frequency distribution when sufficient information is available [170]. On the other hand, epis-
temic uncertainty (also known as systematic uncertainty) rises from the lack of knowledge.
It is commonly referred to as incomplete inherent variability of which not enough is known
to accurately approximate the uncertainty through a form such as a density function [199].

When simulating the physics of a problem, boundary conditions and geometries are
imposed, neglecting any variability or inaccurate description that can be noted in the real-life
performance. This leads to the statement that, if an accurate description is desired, these
problems cannot be carried on a deterministic framework but a stochastic one. Therefore,
it is necessary to model input uncertainties according to a realistic stochastic behaviour
provided by probabilistic distributions from experiments. This is often unavailable and,
initially, modellers themselves used to provide the assessment of input uncertainties as well
as the study of this propagation, as this was not considered a main activity in former research
in the field, being the main objective to compute the nominal values [123]. Nowadays,
with formal methods it has been demonstrated that there is a dependence of the output
with the selected input uncertainties [253] and it is recommended to have a reliable mod-
elling for the parameters. This is particularly important for correlated inputs, as in these
cases to neglect the correlation in the uncertainty propagation leads to very misleading results.

Uncertainty Quantification (UQ) is about determining how likely the outputs of a model
(numerical or otherwise) are when the inputs are not precisely defined. Once the input
uncertainties are modelled, it is necessary to find an appropriate UQ methodology. This
process can be summarised as depicted in Fig. 1.2. There is a mathematical model represented
as a function ŷ(ξ ,x), of the random variables ξ1,ξ2, . . . ,ξNξ

, with Nξ the dimension of
the random input space. These variables can represent a large variety of parameters in a
problem, like temperatures, flow rate, pressure, etc. Then, when their variation is modelled by
probabilistic functions based on their own performance, the objective is to extract information
of the imprecision or variation in the output of ŷ(ξ ,x), being x the spatial coordinate for
instance. Among the possibilities, one has for instance, to extract the probabilistic distribution
of an output yk (i) or to get the standard deviation as uncertainty measure to plot envelopes
(ii). Another important study that can be extended from UQ is Sensitivity Analysis (SA).
According to [205], this is the study of how uncertainty in the output of a model (numerical
or otherwise) can be apportioned to different sources of uncertainty in the model input.
In fact, ideally, SA and UQ should be run in a row, with uncertainty analysis usually
preceding sensitivity analysis. This mathematical approach undoubtedly helps to rank the
most influential random inputs and provides decision-making solutions. Also, understanding
the sensitivity of model output to input parameter uncertainty can guide field data-collection
activities [162] and can be exploited to direct experimental work in order to reduce uncertainty
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in identified influential parameters, neglecting the non-influential ones [216]. In Chapter 2,
UQ and SA methods are extensively described.

Figure 1.2 Sketch of propagation of uncertainties in a mathematical model.

1.1.1 Industrial Interest in UQ and SA

The stochastic analysis in CFD simulations is an increasingly important fact in industry. Here
are several quotes [31] from relevant company leaders giving evidence of the importance of
adding the sources of uncertainty to simulations:

“The future of fluids is analysis, modelling and simulation”. Edward Whalen, The
Boeing Company.

“Many noisy factors and variables affect the final performance achieved by the vehicle.
[. . . ] It is essential that engineers are therefore able to understand and quantify the impact
these uncertainties might have on the performance”. Andy Richardson, Head of Simulation,
Jaguar and Land Rover product development.

“The term ‘uncertainty’ is unquestionable fraught with misunderstanding. I would prefer
the phrase ‘how confident I am?’, the reciprocal of uncertainty”. Prof. Michael Rawlins,
Chair, National Institute of Clinical Excellence.

“All the time, multi-million pound decisions are made using weather forecasts that contain
uncertainty; in energy trading to predict future energy demands or by local councils deciding
when to grit roads, for example. If you know the potential cost or damage, you can work
out when it pays to take action”. Prof. Leonard Smith, Director of Centre for Analysis of
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Time Series, London School of Economics.

Similarly, a more synthesized and useful view can be extracted from the following bullet-
points presented by Prof. Gianluca Iaccarino at the von Karman Institute Lecture series in
Uncertainty Quantification (2014), where he pointed out the key-facts of UQ&SA in CFD
related problems:

• Uncertainty is everywhere and everybody can notice it in daily events.

• UQ is an essential part of validation.

• It can provide a rigorous measure of confidence.

• It indicates priorities and supports decision making.

• It quantifies robust design/optimization and margins of safety or risk.

And the usefulness of the full analysis can even be further interpreted. With a proper
uncertainty analysis it is possible to detect the so-called Black Swans. These are rare events,
that could happen and have severe consequences. The deterministic models are unable to
predict them, since they take place in variability from the tails of the input probabilistic
distributions [158]. This is a useful concept in engineering performance. To illustrate the
meaning of good engineering practice, in Fig. 1.3 are shown the possible case scenarios,
according to Dr. Luis Crespo, senior researcher at the NASA Langley Research Center.
In such diagram, it would be reasonable to think that, with a wishful thinking (pretending
to ignore the risk with a bad engineering practice) and with not enough information to
measure the impact, one could end with a negligence outcome. It is therefore important to
invest efforts in reducing uncertainty and increase the knowledge to avoid, if possible, an
unknown-unknown scenario (it is not even known what is unknown) leading to Black Swans,
or at least be able to measure the impact reliably by exploration. These conclusions are
showing the necessity of developing stochastic analysis in our case scenarios, exposing that a
deterministic approach would have several limitations neglecting the impact of randomness.
The specific addressed problems are described in the following section.

1.2 Stochastic CFD Analysis in Jet Flows: Aims and Ob-
jectives

In Section 1.1, the general goal of this piece of work has been put into context: development
of computational studies accounting the existing uncertainties for a correct and complete
modelling, avoiding such a big lack in literature of neglecting the inherent non-deterministic
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Figure 1.3 Impact of UQ for decision-making in engineering practice. Image taken from Luis
Crespo’s slides from ‘NASA Langley’s UQ Challenge’ presentation (2015).

contributions. Due to the fact that in this thesis two different jet flow problems are addressed,
it is important to clearly differentiate the specific objectives and procedures for each, in order
to avoid any confusion. This is the purpose of this section in the introductory chapter.

1.2.1 CFD Simulations and UQ for Uncompressible Swirling Imping-
ing Jet Flows with Heat Transfer Purposes.

Objective: The main scope of this study is to provide a different impinging jet heat transfer
mechanism by means of the addition of swirl to a jet flow by a rotating pipe. The methodol-
ogy of this analysis is threefold.
On one hand, a CFD numerical simulation is done through deterministic 2D steady Reynolds-
Averaged Navier-Stokes (RANS) simulations in FLUENT for a swirling flow generated
by a rotating pipe (Simulation 1) and used in heat transfer by impingement (Simulation 2).
This swirl generation mechanism has never been addressed before to create impinging jet
flows, and researchers used to rely on other devices. This study demonstrates some goodness
in comparison with them. In addition, the way the two simulations are coupled can be
considered novel too, since there is no literature on similar problems and normally the swirl
flow that exits the nozzle is characterised already and it is not previously computed.
On the other hand, as discussed in previous sections, a deterministic analysis is not fully
descriptive, so then a quantification of the impact of input experimental uncertainties is
added to the original formulation, by means of the Stochastic Collocation method.
Moreover, mathematical models are suggested and tested for velocity and turbulence
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profiles at the exit of the pipe, in order to make a more efficient (from the computational cost
side) uncertainty quantification. A sketch of the problem case scenario is shown in Fig. 1.4.
A formal literature review and extensive explanation of the problem is done in Chapters 3
and 4.

Ω

r

z

Q

             Inlet 

(laminar, no swirl)

                         Outlet 

(turbulent, fully-developed, swirl)

Q

x

Simulation 1

Simulation 2 

Figure 1.4 Sketch of Simulation 1 & 2.

1.2.2 Framework for Uncertainty Propagation in Aircraft Under-expanded
Jet Flows.

Objective: To develop and test a framework for propagation of uncertainties in the
computational design of under-expanded jets, with special interest in CFD simulations run
within the FP7 AeroTraNet 2 Marie Curie Action, with the objective of providing a stochastic
approach for the deterministic analysis developed in the project.
Such framework begins with the experiments, from which uncertainty is taken into account
for next design phases. The following stage in the framework involves inputting uncertainty
in the numerical injection of turbulence in conjunction with the experimental one, to develop
Non-Intrusive UQ on 3D steady RANS simulations by generalised Polynomial Chaos
(gPC) and Kriging surrogates, in order to understand how the input uncertainties affect
simulations of an under-expanded single jet with shock-cells (a detail of shock-cells can be
seen in Fig. 1.5.a). Secondly, a sensitivity analysis is conducted to quantify the impact of
each uncertainty contribution in the simulated jet plume. Results show that some interesting
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(a)

(b)

Figure 1.5 Detail of a) shock-cell patterns in aircraft and missiles [33], and b) Kelvin-
Helmtholtz instabilities [179].

areas of the CFD simulation of the jet are sensitive to the combination of input uncertainties.
The last part of the framework is about using the stochastic base-flow from UQ on RANS
to develop a quantification of uncertainties through Parabolised Stability Equations
(PSE) on Kelvin-Helmtholtz instability features (Fig. 1.5.b). This framework represents,
to knowledge of the author, the only way to assess the propagation of experimental and
turbulence model uncertainties through PSE. These results show that stability features can be
sensitive to input uncertainties in jet designs, which can help to understand how the noise
emission is being affected and can guide to future more robust developments in aircraft
industry. A sketch of the framework is shown in Fig. 1.6. A formal literature review and
extensive explanation of the problem is carried out in Chapter 5.
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Figure 1.6 Sketch of the uncertainty propagation through experiments, CFD simulations and
PSE equations.

1.3 Outline of the Thesis

The PhD thesis is broken down in seven chapters and two appendices in order to follow a
coherent storyline as follows.

In Chapter 1, an introduction to the importance of stochastic analysis instead of de-
terministic for industry is given. Also, the two problems covered in this thesis are briefly
described.

In Chapter 2, the mathematical methods utilised in this thesis for the data analysis
are explained, as well as other related methods not put to work here. For testing and
criticism purposes, the methods for uncertainty and sensitivity analysis are employed on two
test problems. This also set a starting point for the following more advanced engineering
problems.

After introducing the objectives and methods in this thesis, the first engineering problem
is presented in Chapters 3 and 4. In Chapter 3, the Reynolds-Averaged Navier-Stokes
simulations for the generation of the swirling turbulent flow (Simulation 1) and the heat
transfer by impingement on a heated flat plate (Simulation 2) are developed. A literature
review is also included regarding the state-of-the-art in relation to our heat transfer mechanism.
In this chapter, the comparison with other existing swirling flow mechanisms is presented, as
well as suggested models for the outflow profiles in (Simulation 1) is also presented. This
will be an useful tool for the following chapter.

In Chapter 4, an account of experimental uncertainties is carried out, in order to evaluate
how they can be affecting the CFD simulation for a more complete analysis, contrary to the
standard deterministic approach. The outflow profiles are utilised here to demonstrate their
advantage to avoid re-run (Simulation 1) each time that a new collocation point is required
for the Stochastic Collocation method.

The second and last problem is the framework for propagation of uncertainties in the
computational design of under-expanded jets, presented in Chapter 5. For this objective,
experimental and turbulence uncertainty is input in the RANS simulations of the jet flow and
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its impact is accounted and apportioned by means of the so-called generalised Polynomial
Chaos and sampled Kriging surrogates. In addition to this, the last part of the framework
is the stability analysis by the namely Parabolised Stability Equations (PSE). Stochastic
Collocation is used to demonstrate that the impact of experimental and turbulence uncertainty
can be linked to PSE with this framework, despite the fact that PSE does not include them in
their formulation.

In Chapter 6, conclusions from both analysis are given, as well as suggestions for future
work. The disseminated work to date is also shown here.

In addition to the aforementioned chapters, the last part of the thesis consist of two
appendices: Appendix A, which contains the User-Defined Function script coded in C for
the turbulent and velocity profiles, and Appendix B, which contains the models for the fitting
coefficients of the profiles.

1.4 Summary

In this introductory chapter, the main motivation and objectives of this thesis were described.
The chapter started addressing the importance of Computational Fluid Dynamics (CFD)
and stochastic analysis in Section 1.1, where other relevant concepts such as risk, types
of uncertainty, acknoledge& unacknoledge errors, stochastic, Black Swans, Uncertainty
Quantification (UQ) and Sensitivity Analysis (SA) have been defined. There, it was also
discussed the viewpoint of UQ&SA in industrial practice, showing also evidence in daily
events, validation purposes, support in decision making and quantify robustness. In Section
1.2, the aims and objectives of the jet flow investigations are explained.

In the investigation of the swirling jet flow for heat transfer, it has been said that the main
scope of this study is to provide a different impinging jet heat transfer mechanism by means
of the addition of swirl to a jet flow by a rotating pipe. To this aim, CFD simulations, a
quantification of uncertainties and mathematical models are the main steps in the suggested
methodology.

The second research topic is to develop a framework for uncertainty propagation in
simulations of an under-expanded jet flow. It has been enlighten the use of generalised
Polynomial Chaos expansions and Kriging surrogates to achieve this goal, applying them
to the CFD simulations. For the Parabolised Stability Equations, Stochastic Collocation
has been the chosen method because of the easier implementation. The last chapter of the
introduction just break down the content of this thesis.

In the next chapter useful mathematical tools will be discussed and applied to some test
cases. To understand these existing methods in literature is a must before their application to
complex engineering problems.
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Chapter 2

Mathematical Preliminaries

Unfortunately, CFD simulations usually are computationally expensive. As the non-intrusive
quantification of uncertainties is expensive itself, by requiring several model evaluations,
this makes important to find an efficient way to address uncertainty in problems were it
was not imaginable before. This chapter aims to describe the existing methods for an
efficient analysis, as well as to point out the advantages with respect to other classical
approaches. As mentioned in the introductory chapter, Uncertainty Quantification (UQ) is
about determining how likely the outputs of a model (numerical or otherwise) are when
the inputs are not precisely defined. This type of input for a model is referred to variables
which have associated uncertainty, and therefore need a specific modelling in order to explore
the new stochastic input space by advanced methods. This process hence requires firstly
to identify the input uncertainties and then the choice of a suitable approach, which will
be also decided based on the modelling of the input uncertainty and the desired statistical
information as outputs.

In Section 2.1 the types of uncertainty and probabilistic/non-probabilistic methods are
discussed. In this section, probabilistic methods are the recommended ones because of the
more complete information that they provide, so these will receive a more sounded discussion
and application to test cases in Section 2.4. In Section 2.2, an overview of sensitivity analysis
is developed, highlighting also the methods in this thesis. An additional section of high
interest is 2.3, where conclusions and a critique on the methods is developed, followed by
examples of application in Section 2.4.

12
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2.1 An Overview of Uncertainty Quantification

2.1.1 Sources of uncertainty

The sources of uncertainty can be classified in three different types: inherent, predictive and
parametric.

Inherent uncertainty: It is associated to an intrinsic stochastic behaviour in nature. In
[188] is defined as "processes or quantities that are inherently stochastic arise from the
unavoidable unpredictability". Despite makes sense to distinguish this type of uncertainty,
some authors place it in the parametric uncertainty group as aleatoric parametric uncertainty
[199]. A good example of this type of uncertainty can be turbulence.

Predictive uncertainty: When developing a model, some assumptions are done. It is im-
possible (or at least inefficient) to produce a model that takes into account all the complexity.
This remind us the famous quote "All models are wrong, but some are useful" by George E.
P. Box. Moreover, it is sometimes difficult for the designer to choose the correct model for
the case scenario if several are available. This leads to the concept of model-form uncertainty
[199]. This is a common type of uncertainty in turbulence modelling in CFD.

Parametric uncertainty: When trying to mimic the physics, models require input parame-
ters. These are often treated as deterministic, but in most case scenarios, true physics present
some randomness. The uncertainty associated to these parameters is the so-called parametric
uncertainty. This is the most common source of uncertainty in UQ studies in literature.

Another differentiation must be done between aleatoric and epistemic uncertainty. Aleatoric
uncertainty (also known as statistical uncertainty), as commented above, is considered as
inherent to the natural stochasticity in a physical quantity. On the other hand, epistemic
uncertainty (also known as systematic uncertainty) rises from the lack of knowledge. It
is then assumed that this uncertainty could be reduced by adding extra information. As
illustrative example, if no errors are present and the epistemic uncertainty can be reduced
to zero, the remaining uncertainty that would be present would be the aleatoric one [124].
Often, it is not easy to identify if underlying uncertainties are either aleatoric or epistemic,
and this classification is responsibility of the analyst.

2.1.2 Probabilistic vs Non-Probabilistic

With the available prior knowledge, a decision has to be made in terms of dealing with
uncertainty under a probabilistic or non-probabilistic framework.

13



2.1 An Overview of Uncertainty Quantification

In non-probabilistic methods, uncertainty is modelled from its model parameter error
bounds. This requires just minor knowledge about input uncertainty, and a not so accurate
measure of the input variability is taken into consideration, since a broad estimate is used.
This makes the non-probabilistic approaches most valuable in early design stages, whereas
the probabilistic approach remains indispensable in later stages [155].

There are a number of arguments used in support of the claim that probability is a co-
herent approach to uncertainty, of which Cox’s theorem [48] is undoubtedly the most well
known [41]. Such theorem states that any measure of belief is isomorphic to a probability
measure.
A nice summary in [155] states that the probabilistic concept can be designated as a most
valuable solution strategy when three conditions are met simultaneously: (1) trustworthy
probabilistic information on the non-determinism is available, (2) a probabilistic description
of the simulated non-deterministic behaviour is desired, and (3) the computational constraints
are not too tight. In the probabilistic approach, a more detailed (statistical) analysis is develop
since step one, as the input uncertainty will be modelled as probabilistic distributions. And if
desired, not only statistical moments but also output probabilistic distributions of quantities
of interest can be computed.

2.1.3 Non-Probabilistic Methods for Uncertainty Quantification

Despite the fact that non-probabilistic methods are out of the scope of this thesis, some
descriptions will be here given for the readers. The main feature in non-probabilistic methods
is that they rely on error bounds for the inputs, and probabilistic information is fully omitted
in input prescription, as well as global effects. However, the following methods can be found
in literature to be useful especially for early design stages.

Interval Analysis

This method aims to provide a description of the range of variability of the outputs of a
model when inputs are described by intervals. The interval analysis is easy to implement
and intuitive, but it provides maximal error bounds that can be quite large [239]. There are
several publications that provide some mathematical foundations of the arithmetic theory
approach for this method as [6, 23, 132] and applications such as [54, 197]. This method
provides an estimate of the variability of the parameters, but it neglects how these vary in the
error bound. Hence, this method is recommended when there is only few knowledge about
that behaviour.
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2.1 An Overview of Uncertainty Quantification

Fuzzy Analysis

An improvement of Interval Analysis is the application of Fuzzy Analysis. Fuzzy sets were
firstly introduced by [262] to deal with indefiniteness and ambiguity in knowledge. The main
advantage of this method is that this approach is capable of describing linguistic and vague
information mathematically in a non-probabilistic way. This method plays an interesting
role in cases where there is no real but predictable data, what can certainly happen often in
real-life applications. To put this in context, examples of uncertainty that fuzzy analysis deal
with can be statements like ‘the distance is one or two miles’ or ‘the project will last five or
six years’.

This method introduces a function called membership function, which describes the
degree of membership to the fuzzy set [156]. Formal descriptions of this method are not to
be developed here, but the reader is suggested to see [262, 52, 263]. Interesting applications
of this method can also be found in [155, 50, 116, 241].

Sensitivity Analysis for Error Propagation

The theory of propagation of errors has been widely used as a measure of variation in many
works [234, 209, 243]. The role of sensitivity analysis in error propagation is to give a
measure about how the output variables are changing when the inputs are varied. That
is, to measure the rate as a local approach. In practice, its value can be associated to a
first-order term which indicates the significance of each input to the variation in the output.
Mathematically, this sensitivity ratio between the k-th output yk and the i-th input xi can be
expressed as:

Sik =
∂yk

∂xi
. (2.1)

Taking into account the variation associated to each parameter, δξi and an independent
relation between the inputs, the output error, δyk, can be given by

δyk =

Nξ

∑
i=1

Sik δξi, (2.2)

with k = 1,2, . . . ,Ny, being Ny the number of output variables and Nξ the number of inputs.
To obtain the sensitivity derivatives is not always straightforward. It does happen often
that an analytical calculation is not possible, being necessary to obtain the derivatives
computationally. Some interesting options for the computation in [188] can be:

• Finite Difference. This computation is well-known and straightforward, but the size
of the perturbation has to be controlled to avoid noticeable errors. In CFD applications,
this approach requires several runs, for each variable, perturbed and non-perturbed,
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what is expensive. And this has to be repeated at each point of the computational
domain if contours are desired.

• Complex Variable Formulation. This approach deals with the output modelling
locally by means of a complex Taylor expansion. If the complex perturbation is small
enough, the expansion can be considered lineal, being the slope an approximation to
the sensitivity derivative.

• Sensitivity Equation Method. This method requires to differentiate the model equa-
tions and then discretise and solve the new underlying equations. It is often referred
to as ‘direct’ method. It is a fast approach, but has the drawback of modifying the
original equations.

• Discrete Adjoint Method. The popular adjoint approach deals with the computation
of the sensitivity derivative by creating a minimisation problem. Its computational cost
is more reduced than in finite difference and it has the great advantage of computing
the exact value of the derivatives [13].

The main drawback of these non-probabilistic sensitivity-based methods is that they are
a local approach, being necessary a probabilistic formulation for a global analysis (as it will
be discussed later in this chapter).

2.1.4 Probabilistic Methods for Uncertainty Quantification

Once the input uncertainties are statistically modelled as first step in the probabilistic ap-
proach, it is necessary to find an appropriate UQ method for the propagation of uncertainties.
These methods can be either intrusive or non-intrusive. The latter are chosen in this thesis
since they do not require to code inside the solver and can deal with any model as a black-box.
In this thesis, there are several UQ studies on computational simulations, with FLUENT
(swirling jet flows), elsA (under-expanded jets) and Pasteq (jet stability analysis), as well
as on the test cases. To carry out an intrusive approach with each of them would be time
consuming, complicated and the codes could not be recycled for all these three solvers. Next,
popular probabilistic methods will be described.

Sampling Methods

Sampling methods are a very reliable non-intrusive technique, since they deal with the
solver/model as a black-box, simply requiring many model evaluations to construct the
desired output statistical information. Undoubtedly, the namely Monte-Carlo simulations
[152] are a very popular and well established sampling method. This well-known method is
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generally described by representing the solution of a problem as a parameter of a hypothetical
population, and using a random sequence of numbers to construct a sample of the population,
from which statistical estimates of the parameter can be obtained [89]. In other words, the
objective is to compute the i-th statistical moments, µ(x,ξ )y

i , of the output, y, based on a
random sampling on the input uncertainties, in order to obtain enough output data to develop
an accurate statistical analysis.

Let us consider the differential operator on an output of interest of a stationary problem,
y (x, ξ (η)) as

L (x,ξ (η);y(x,ξ (η))) = Q(x,ξ (η)), (2.3)

with L and Q differential operators on D ×Ξ, where x ∈ D ⊂ Rd , d ∈ {1,2,3}. η denotes
events in the complete probabilistic space (Ω̂,F̂ , P̂), with F̂ ⊂ 2Ω̂ the σ -algebra of subsets
of Ω̂ and P̂ a probability measure. Ξ ⊂ RNξ , is the stochastic space on which the random
variables ξ (η) are defined and Nξ stands for the number of random variables, which defines
the order of the stochastic space.

The objective is to find, by random sampling, the i-th statistical moments, µ(x,ξ )y
i , of

the output, y, by

µ(x,ξ )y
i =

∫
Ξ

y(x,ξ )i fξ (ξ )dξ , (2.4)

with fξ (ξ ) standing for the density function fξ : ξ 7→ R+. In many applications, to only
compute the statistical moments is not enough and incomplete information of the variable
of interest is given. The reason is that two very different probabilistic distributions can
have, e.g., the same mean and standard deviation. Therefore, this can be misleading when
further information is required, such as finding out whether the solution is multimodal or not.
Consequently, the probabilistic distribution of y(x, ξ ) is often also seeked and by sampling
techniques the output distributions can be easily generated.

There is a huge amount of work on the application of the Monte-Carlo technique. Some
examples can be found in [168, 216, 59, 68]. The Monte-Carlo approach basically consists
in a random sampling, since it is based on the idea of generating random points with values
of the input parameters to sample the stochastic space evaluating the model. As many data
points are inputs for the model, it produces many output points for each output variable
under study. From this data, useful statistical information can be found such as means,
variance, standard deviation, build probabilistic distributions of the outputs, etc. The more
points, the better, since the more the input stochastic space is sampled and therefore the
statistical moments are reliable. This can be described as a seek of convergence, since the
statistical moments must not significantly change when more points are added to the sampling
campaign. Despite of the popularity of the method, the weakest fact of this approach is the
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randomness and the large number of samples (usually) required to achieve convergence in
non-linear problems. This essentially affects to the stratification of the samples: because
of the random nature, it can happen to have points clustering and vice versa, affecting the
convergence. As the convergence of the Monte-Carlo method is of order O(1/

√
Ns), with Ns

the number of samples, in order to reduce the size and increase the efficiency, some other
sampling techniques are available in literature.

Very popular ones are Latin Hypercube (LHS) [93], quasi-random Halton [64], Hammers-
ley [187] and Sobol sequences [29], that are often referred to as Quasi-Random Monte-Carlo
and low-discrepancy sequences. An illustration of the distribution of samples with the differ-
ent methods can be seen in Fig. 2.1. These sampling techniques optimise the sampling by
taking also into account previous positions of the samples in the stochastic space (hence, they
are not entirely random), and the convergence can be essentially considered as a O(1/Ns)

[15].
LHS differs from Monte-Carlo in the fact that the sampling is more stratified. The range
of each variable ξi is exhaustively divided into Nint disjoint intervals of equal probability
and one value is selected at random from each interval. The Nint values thus obtained for
ξ1 are paired at random without replacement with the Nint values obtained for ξ2. These
Nint pairs are combined in a random manner without replacement with the Nint values of ξ3

to form Nint triples. This process is continued until a set of Nint Nξ -tuples is formed [93].
When Monte-Carlo or LHS methods are deployed, one has to set an initial budget for the
Design of Experiment (DoE), which must be developed taking into account different number
of samples to compare their performance. Then, when a larger/smaller number of samples is
required to perform a convergence analysis, LHS does not solve the Monte-Carlo’s drawback
of unintentional "clustering/holey" with the increase that takes place if the previous samples
are kept. Moreover, in a LHS, to join two or more different sample campaigns would lead to
a new sample without the initial LHS stratification property. This is something that sequences
solve, keeping the former samples in its place (nested). An example is shown in Fig. 2.1 for
Sobol sequences, where one can see that when increasing the number of samples, one can
keep the former ones with a nested approach. Moreover, it is observed a sampling that is
distributed following a repetitive pattern (giving the name of sequence). The type of pattern
is different for each method, but the convergence rate is the same in practice.

In the analysis presented in this thesis, as LHS and sequences convergence rate is pretty
similar, if the model or solver evaluations are not expensive (it is the case when sampling
surrogate models), it is not a crucial thing and Monte-Carlo and LHS are still a very powerful
and recommended sampling method. Good examples of application of LHS can be found in
[84, 39, 171].
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It is important to remark that these improvements are only noticed for moderate dimen-
sions of the stochastic space, as for high dimensional problems these sampling techniques
behave similarly to Monte-Carlo (which is dimension independent).

Figure 2.1 Comparison of sampling techniques. Image created with several images from
https://people.sc.fsu.edu/:jburkardt

Stochastic Collocation Method (SCM)

Sampling based methods are, as aforementioned, a good choice for UQ. However, they
usually require a large number of model evaluations (thousand of them). This is an enormous
disadvantage when performing UQ in CFD, as each model evaluation takes too long, being in
most cases unaffordable. To overcome this drawback, Stochastic Collocation Method (SCM)
[149] can be implemented. This method allows to calculate the statistical moments of the
output, µ(x,ξ )y

i in Eq. (2.4), by dedicated quadrature rules on grid points.
The non-intrusive Stochastic Collocation Method (SCM) was developed by Mathelin and
Hussaini [149] at NASA to improve the high costs of other UQ methods. SCM outperforms
sampling methods especially for low dimensions in the stochastic space, being an accept-
able method for up to 5 uncertain inputs in most cases. When the dimension is high, the
computational cost leads to the so-called Curse of Dimensionality [22, 56], as the number
of collocation points to evaluate increases exponentially and it is preferable to look at other
methods.
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SCM undergoes convergence when the input uncertainty is modelled by uniform prob-
abilistic distributions. When implementing the algorithm, special attention must be paid
on the probabilistic density function of the random variables ξ ∈ Ξ, as we have to per-
form a mathematical transformation from the physical random variable space to an artificial
stochastic space, known as α-domain or α-space (Eq. (2.5)), and this depends on how the
probabilistic distributions are chosen. This transformation is a difference with respect to
other UQ methods as the stochastic space α̂ is defined according to the appropriate domain
of Lagrange interpolating polynomials in [−1,1]1. It is hence interesting to observe that, for
each collocation point, the CFD problem is solved deterministically and the solution can be
reconstructed by ŷSC as

α̂ = S (ξ ), (2.5)

ŷSC(x, α̂)≃
Nq

∑
j=1

y j(x) l j(S
−1(α̂)) =

Nq

∑
j=1

y j(x) l j(α̂), (2.6)

where y j(x) are the deterministic solutions from y(x,ξ j) now transformed into y(x, α̂ j), Nq

the number of collocation points and l j the Lagrange interpolation polynomials defined in the
new stochastic space. Note that S −1(α̂) denotes the inverse mathematical transformation to
α̂ ∈ Γ. The integral of Eq. (2.4) can now be approximated as

µ(x, α̂)ŷSC

i =
Nq

∑
j=1

y j(x)i
∫

Γ

l j(α̂) fξ (α̂) J(α̂)dα̂, (2.7)

where J(α̂) the Jacobian of the differential transformation. The integral of Eq. (2.4) can now
be numerically computed by quadrature:

µ(x, α̂)ŷSC

i ≃
Nq

∑
j=1

y j(x)i
Nq

∑
k=1

l j(α̂k) fξ (α̂k) J(α̂k) zk, (2.8)

with zk and α̂k standing for the quadrature weights and points respectively. Both the quadra-
ture and collocation points can be chosen to coincide. Moreover, Lagrange interpolating
polynomials are defined in the transformed space with the property of li(α̂ j) = δi j for
i, j = [1,2, ...,Nq], which states that at collocation points the values of y and ŷ coincides.
Therefore, with these assumptions, the integral from Eq. (4.2) above can be finally rewritten
as, i.e. for an uniform probabilistic input defined in [−1,1], as

µ(x, α̂)ŷSC

i ≃ 1
2

Nq

∑
j=1

y j(x)iz j. (2.9)

1It is interesting to point out that in several papers [149] [139], α̂ is referred to as an artificial stochastic
space, but the space is in fact Γ, as α̂ ∈ Γ. In this work, we are going to refer to Γ as the α-space in order to be
consistent with the existing notation in literature.
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SCM has been successfully used in many applications such as elliptic partial differential
equations with random input data [16], supersonic aircraft jets [84] or cardiovascular research
[208]. Another advantage of using SCM is that the response can be approximated (Eq. (2.6))
and sampling techniques can be applied on it. Proceeding this way, statistical information
such as the probabilistic distributions of the outputs, which were missed when focusing
only on the statistical moments, can now be generated. An extension of this method for
non-uniform random inputs is the Probabilistic Collocation Method (PCM)[139]. As the
data analysis in this work is mostly related to uniform probabilistic inputs, and in such case
both PCM and SCM coincide, the method is not going to be discussed here. For further
information, the reader is suggested to see [139, 138, 255, 25].

Non-Intrusive Polynomial Chaos

The approach presented in this section is the Polynomial Chaos method. This method was
developed to solve Stochastic Differential and Partial Equations (SDE and SPDE, respec-
tively) [225]. It was firstly introduced by Wiener [251], in order to model through Hermite
polynomials stochastic processes with gaussian random variables. Lately, Xiu & Karniadakis
extended the original version of Wiener to a wider family of basis functions leading to the
known concept of generalised Polynomial Chaos (gPC) [258]. It is also known as Askey-
Chaos, due to the fact that is formed by the complete set of orthogonal polynomials from the
Askey scheme [14]. The objective of such extension is that for non-gaussian random inputs,
the convergence of the Hermite-chaos is low, and in some cases, disastrous.

Polynomial Chaos is a spectral method and as such, an important advantage is that one
may decompose a random representation into deterministic and stochastic components as

ŷgPC(x,ξ ) =
∞

∑
j=0

ym j(x)Ψ j(ξ ), (2.10)

where ym j are the deterministic coefficients (also called modal coefficients) with x the spatial
coordinates and Ψ j(ξ ) is the orthogonal base (constructed using the well-known three term
recurrence relation), in a tensor-like form by 1-D products of the orthogonal polynomials,
satisfying the orthogonality relation〈

Ψi,Ψ j
〉
=

〈
Ψ

2
i
〉

δi j, (2.11)

with δi j the Kronecker delta function and ⟨·, ·⟩ the inner product. For instance, in Legendre-
chaos, by applying the three-term relation it can be generated the firsts five Legendre
polynomials as

Ψ0(ξ ) = 1, (2.12)
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Ψ1(ξ ) = ξ , (2.13)

Ψ2(ξ ) =
1
2
(3ξ

2 −1), (2.14)

Ψ3(ξ ) =
1
2
(5ξ

3 −3ξ ), (2.15)

Ψ4(ξ ) =
1
8
(35ξ

4 −30ξ
2 +3), (2.16)

Ψ5(ξ ) =
1
8
(63ξ

5 −70ξ
3 +15ξ ). (2.17)

In Eq. (2.10), the expansion has infinite terms. For practical reasons, this expansion has
to be truncated accounting Nt −1 terms, with

Nt =
(Nξ +P)!

Nξ ! P!
(2.18)

and P standing for the maximum order of the expansion. So that, the chaos expansion is
finally expressed as

ŷgPC(x,ξ ) =
Nt−1

∑
j=0

ym j(x)Ψ j(ξ ). (2.19)

In the following, it will get rid of x and ξ just for sake of notation. Polynomial Chaos
can be either an intrusive or non-intrusive approach. In this thesis it is only implemented as
non-intrusive, due to the fact that it takes into account the solver as a black-box not requiring
to code inside each CFD software. The deterministic coefficients, ym j , are computed as

ym j =

〈
y,Ψ j

〉〈
Ψ2

j

〉 . (2.20)

The evaluation of Eq. (2.20) is in fact the computation of the multidimensional integral
over the domain Ω̂, on which deterministic simulations of y from the CFD solver are required
under prescription of the collocation scheme. Moreover, this inner product is based on the
measure of weights according to the choice of the orthogonal polynomials Ψ, as the weight
function is in fact the probabilistic distribution function. Thus, it is necessary to compute
two integrals in Eq. (2.20). Focusing on the numerator, the inner product integral is〈

y,Ψ j
〉
=

∫
Ξ

y(x,ξ )Ψ j(ξ ) fξ (ξ )dξ , (2.21)

which has to be numerically solved, being intended to compute by quadrature techniques
the expression
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〈
y,Ψ j

〉
≃

Nq

∑
j=1

y j(x)i
Nq

∑
k=1

Ψ j(ξk) fξ (ξk) J(ξk) zk, (2.22)

with zk and ξk standing for the quadrature weights and points in the discretisation
respectively. Similarly, the denominator in Eq. (2.20) can be written as〈

Ψ j,Ψ j
〉
=

∫
Ξ

Ψ j(ξ )Ψ j(ξ ) fξ (ξ )dξ , (2.23)

and it is not compulsory to solve the integral by quadrature techniques, since it can be
tabulated due to the properties of orthogonal polynomials.

With gPC, depending on the random input distribution, different polynomial basis func-
tions must be chosen. The recommended choice can be seen in Table 2.1.

Table 2.1 Correspondence of the type of Wiener–Askey polynomial chaos to the type of
random inputs (N > 0 is a finite integer) [258].

Random inputs Wiener-Askey chaos Support

Continuous

Gaussian Hermite-chaos (−∞,+∞)
Gamma Laguerre-chaos [0,+∞]

Beta Jacobi-chaos [a,b]
Uniform Legendre-chaos [a,b]

Discrete

Poisson Charlier-chaos {0,1,2, ...}
Binomial Krawtchouk-chaos {0,1, ...,N}

Negative binomial Meixner-chaos {0,1,2, ...}
Hypergeometric Hahn-chaos {0,1, ...,N}

Once the coefficients are computed, the mean and the variance can be found by

E(ŷgPC) = ⟨y⟩= ym0, (2.24)

V(ŷgPC) =
〈
(y−E(ŷgPC))2

〉
=

Nt−1

∑
j=1

y2
m j

〈
Ψ

2
j
〉
. (2.25)

Polynomial Chaos has been a popular method in the recent years with many successful
applications in literature [43, 142, 58]. An advantage of gPC that cannot be found in SCM
is that sensitivity analysis is straightforward (costless in fact) from the uncertainty analysis.
This will be further discussed in Section 2.2.
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Numerical Integration by Quadrature

For both Non-Intrusive Polynomial Chaos and Stochastic Collocation, the choice of colloca-
tion points is a very important matter. The aim of the data analysis is to compute the statistics
of the outcomes, i.e. the mean and variance as

E(y) =
∫

Ξ

y(x,ξ ) fξ (ξ )dξ , (2.26)

V(y) =
∫

Ξ

(y(x,ξ )−E(y))2 fξ (ξ )dξ . (2.27)

These integrals can be computed by using quadrature rules, as explained in the previous
subsections. It is hence intuitive to think that it is possible to perform such task with any of
the well-known available possibilities.

Newton-Cotes formulas are a very popular method in academic degree studies. Examples
of this formula are the Simpson or trapezoidal rules. The most relevant feature of these
methods is that the chosen nodes for the numerical integration are equidistant. The poly-
nomial exactness of the formula is Nq − 1, being Nq the number of points. Despite their
easy construction, these methods have the drawback of being numerically unstable for large
number of points [119] and non-nested. By nested, it is referred to a quadrature rule with
a grid that satisfies Γl ⊂ Γl+1, being l the desired level of accuracy in the integration. In
other words, the number of grid points has to be included in the next sets generated when
increasing the accuracy (the number of nodes). This is an important fact, since only the new
points have to be solved with the CFD software, using this way previous simulations.

Gaussian quadrature is also a very popular and effective method for numerical inte-
gration. This rule generates the quadrature points and weights in order to maximise the
accuracy of the integration (maximises the order of the polynomial to be exactly integrated).
The polynomial exactness of the method is greater than the one present in Newton-Cotes
formulas, being 2Nq+1. For the case of the unit weight function, the abscissas are the zeroes
of the Legendre polynomials and the weights are computed by integrating the associated
Lagrange polynomials [77]. However, these classic gaussian formulas are in general not
nested either. Patterson [185, 77] iterated Kronrod’s scheme [120] recursively and obtained a
sequence of nested quadrature formulas with maximal degree of exactness, leading to the
so-called Gauss-Patterson rule.

Clenshaw-Curtis rules [40] are also a very reliable choice for our quadrature purposes.
They use non-equidistant abscissas given by the zeros of the Chebyshev polynomials defined
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in [-1, 1]

ξ
( j)
i = cos

jπ
Nq

. (2.28)

The Clenshaw-Curtis rule is nested and the polynomial degree of exactness is Nq−1. A good
property of this formula is that the abcissas at the boundary can be included in the collocation
grid, which is a property not always available for other rules.

In the extension to multiple dimensions, if tensor grids built by a tensor product are
chosen for numerical integration, the computational cost would be very high, especially when
Nξ is not low, since many simulations would be required and the problem of the Curse of
Dimensionality would be present. To overcome this problem, a very efficient alternative is the
use of sparse grids. As in a tensor-like construction many "useless" grid points are generated,
a good approach is to test different levels of accuracy in a sparse grid set. By accuracy
it is referred to how close to the exact value the calculation of the statistical moments is.
Remember that in uncertainty quantification, the practical target is to give evidence about
how confident on the performance one can be, as a consequence of the variability in the
input data. That is to say, how much one can trust in the performance under uncertainty.
Therefore, if the method is very accurate, this leads to the possibility of measuring with
precision by simulations the confidence in our real-life fluid dynamics design. If this can be
made also at a reasonable cost, even better. Sparse grids are a good alternative that combine a
computationally cheaper approach than tensor grids, but accurate. This method is explained
next.

Use of Sparse Grids for Quadrature

When performing an uncertainty analysis on CFD simulations, as each collocation point
prescribes a particular CFD simulation, it is very useful to reduce the analysis to the lowest
number as possible of collocation points, but yet keeping a desired accuracy. This is often
referred to as the available computational budget, that is the answer to the question of how
many model evaluations can we afford?

Sparse grids are built under the so-called Smolyak construction [219]. The main idea
behind this approach is to construct a multidimensional grid based on linear combinations of
the tensor product interpolants, building this way a coarser grid. Once the collocation points
and weights are computed, the integrals can be solved by quadrature and convergence can be
checked. If the function is relatively smooth, a quick convergence is expected by means of
this approach.
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For the sake of clarity, the linear combination will be better explained with examples 2.
Let assume that a sparse grid to exactly integrate all monomials up to order five is desired for
a 2D case. As can be seen in Fig. 2.2, a rule that could integrate up to fifth order would need
to capture the monomials shown in blue. However, if a tensor grid is constructed, one would
be also generating the monomials in red. It is hence clear that with a full tensor product one
would require to compute (many) nodes that are not affecting at all to the accuracy. With a
sparse grid construction, we would need only those in blue.

Figure 2.2 Monomials for integration of polynomials of order Pp [30].
.

Another important property that we can get from the sparse grids is the nested rule. As
mentioned already, a grid will be nested if satisfies Γl ⊂ Γl+1, being l the desired level of
accuracy in the integration. Let illustrate this with an example.

Suppose that it is desired to integrate up to first order in a 2D problem. This would
require a lineal combination of 1,x and y, avoiding xy. Let Θ represent a family of 1D
quadrature rules in [0,1], so that Θ(l) can integrate polynomials of degree l exactly. As l = 1
and with each 1D quadrature rule containing 2 points; instead of using the tensor product rule
Θ(1,1) = Θx(1)⊗Θy(1) that requires four points, could be tried the following combination
of three rules

A (l = 1, Nξ = 2) = Θ(1,0)+Θ(0,1)−Θ(0,0). (2.29)

This combination requires only three points. Suppose now that the 1D rules are nested,
so the second rule includes the point used in the first rule, the third rule includes the two
points in the second and so on. For this example, one might have

Θ(0,0) = a f (0,0), (2.30)

2The examples presented in this section are mainly extrated from [30] and [5], combined in a coherent way
and extended to explain the construction as clear as possible, since it is less straightforward to follow from the
available formal mathematical descriptions in literature.
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Θ(1,0) = b f (0,0)+ c f (1,0), (2.31)

Θ(0,1) = d f (0,0)+ e f (0,1), (2.32)

where a,b,c,d and e are appropriate weights. If we compute the three quadrature rules as
separate computations, and then combine the numeric results, the computation does indeed
require five function evaluations. But if we take advantage of the nesting, we can get the
same result as with a tensor grid by substituting in Eq. (2.29)

A (l = 1, Nξ = 2) = (b+d −a) f (0,0)+ c f (1,0)+ e f (0,1). (2.33)

Now we only need three function evaluations, and have a rule precise for the constants
and linears. This is the basic idea of Smolyak sparse grids, to combine the low-order rules
in order to achieve a desired accuracy in the integration while saving the cost of evaluating
useless points that do not contribute to the precision. Smolyak also developed a general
formula [218] for the integral A of a function with sparse grid construction as a weighted
sum of Nξ -dimensional product rules

A (l, Nξ ) = ∑
l−Nξ+1≤|l|≤l

(−1)l−|l|
(

Nξ −1
l −|l|

)(
Θ

l1 ⊗·· ·⊗Θ
lN

ξ

)
. (2.34)

The level l sparse grid in Nξ dimensions is formed from low order product rules (Θ),
each defined by a level vector l = l1 + ...+ lNξ

, where l j is the level or index of the j-th 1D
rule. While the individual product rules may be anisotropic, the indexing on the sum allows
the resulting grid to be isotropic, following the above mentioned procedure for the examples.

Following this methodology, one can easily construct the sparse grid for any monomials
in the stochastic domain {ξ1,ξ2, ...,ξNξ

} by following the steps presented in Fig. 2.3 for a
2D case. With this procedure, it is demonstrated that the quality of the sparse grid is the
same but with less cost than directly using the 5×5 tensor grid. For the sparse grid, only
combinations of 3×1, 1×3, 5×1, 1×5 and 3×3 rules have been enough. The construction
for this 2D case is then:

A (l = 0, Nξ = 2) = Θ
0
ξ1
⊗Θ

0
ξ2
, (2.35)

A (l = 1, Nξ = 2) = Θ
1
ξ1
⊗Θ

0
ξ2
+Θ

0
ξ1
⊗Θ

1
ξ2
−Θ

0
ξ1
⊗Θ

0
ξ2
, (2.36)

A (l = 2, Nξ = 2) = Θ
2
ξ1
⊗Θ

0
ξ2
+Θ

1
ξ1
⊗Θ

1
ξ2
+Θ

0
ξ1
⊗Θ

2
ξ2
−Θ

1
ξ1
⊗Θ

0
ξ2
−Θ

0
ξ1
⊗Θ

1
ξ2
. (2.37)

Bear in mind that, for dimensions greater than 2, the weights are not ±1, but they are
also constructed by combinatorials. For sake of demonstrating a practical case, in Fig. 2.4
the evolution in the construction for the Clenshaw-Curtis nested rule [238] is shown up to the
fourth level for Nξ = 2. The sparse grids have been generated from combinations to decrease
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Figure 2.3 Smolyak construction for Pp = 2 and Nξ = 2. It can be noticed that with the lower
triangular set of rules the grid can be constructed without the upper ones. Image from [30]
with minor modifications.

the number of points as explained for the general case, in contrast to the tensor grid shown in
Fig. 2.5.
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Figure 2.4 Clenshaw-Curtis Smolyak’s nested Sparse Grids for different levels of accuracy.
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Figure 2.5 Clenshaw-Curtis tensor grid construction.

Regarding the choice of the quadrature rule for the sparse grid, there is some freedom.
Depending on the distribution of the input variables, there are some recommendations. If
the random parameter is uniform, Clenshaw-Curtis or Gauss-Legendre are recommended. If
gaussian, Gauss-Hermite. For gamma distributed parameters, Gauss-Laguerre. And finally,
for beta distributions, Gauss-Jacobi. Most of the work in this thesis has been focused on
uniform probabilistic distributions, so Clenshaw-Curtis sparse grids has been the preferred
choice. It is worthy to remark that an advantage of this sparse grid is that the points at the
limit bounds are included, in contrast with Gauss-Legendre quadrature. Clenshaw-Curtis
sparse grids are always nested, so that the level of accuracy l is always including the lowest
levels. Moreover, this sparse grid is able to exactly integrate polynomials of order Pp = 2l+1
or lower.
As each direction of the sparse grid can be treated differently, in some case scenarios, it
might be also interesting to construct an anisotropic sparse grid. As this was not present in
any purpose of the thesis, this type of sparse grid is not described here but the author suggests
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to see [78, 167] for further information.

To wrap-up the use of sparse grids, it is interesting to say that they are present in many
interesting applications such as data analysis [74, 125, 192] and of course uncertainty quan-
tification [84, 116, 70, 2, 183] and sensitivity analysis [26, 84]. Despite they are a known
quadrature method with successful applications in the uncertainty and sensitivity analysis
field, it is not common to find it in literature and many researchers still prefer the less efficient
use of full tensor rules.

Surrogate-based Uncertainty Quantification.

The use of surrogates is a popular inverse approach to expensive problems or when most of
the information available is only output data. In some case scenarios, such as optimisation or
UQ in CFD problems, a simulation is too costly to be repeated a large number of times for
the purpose.
The term ‘costly’ stands for ‘long time run simulation’ throughout this thesis. This is the
common issue in CFD involving complex physics, models and/or large simulation domains
as those appearing in this manuscript. The computational efforts to model the turbulent
properties and solve the discretised Navier-Stokes equations in 2D/3D domains are intensive.
Sometimes, as in the study of the swirling flow to be used as impinging jet, the problem
has to be split in two simulations, being even a more expensive calculation. In UQ of CFD
problems, the reduction of the computational time is the greatest challenge. Some type
of simulations in fluid dynamics (such as Large Eddy or Direct Numerical Simulations)
usually require more than a month for each deterministic simulation in High Performance
Computing centers, being uncertainty analysis discarded. In this thesis, Reynolds-Averaged
Navier-Stokes equations are employed, so the computational cost of each deterministic
simulation is sensitively lower, but far from being fast (around half a week with our regular
computational resources). Therefore, as more than one costly simulation is required in UQ,
to be able to build an almost immediate equation to generate the desired output is really
helpful.

With enough information, a costless model can be found using some specific techniques
or approaches. These are the nick-named surrogates (also known as metamodels or Response
Surfaces). These models have the form

y(ξ ) = ŷ(ξ )+ ε(ξ ), (2.38)

with y being the exact model, ŷ the surrogate model and ε the difference between the surro-
gate and the exact formulation.
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For the construction of metamodels, several possibilities are available in literature. Among
them, perhaps the most popular one is the use of polynomial fits (see Appendix B for a
practical example), which requires to simply model the surrogates as n order polynomials
and the objective is to find the coefficients by means of inverse techniques. The problem
with these techniques is that for high-dimensional non-smooth case scenarios can become
too costly, and in addition to this, the algorithm implemented for the coefficient calculation
could not be very robust. The reason is that some algorithms such as steepest descent or
conjugate-gradient method [96] suffer a strong dependence with respect to the initial guess.
Another drawback for polynomial fitting is that it is very case dependent. If a problem has
a very changing behaviour, as it does happen with the Mach number evolution along the
centerline (Fig. 5.11 in Chapter 5), it becomes complicated to find a global polynomial fit
configuration for such non-smooth behaviour.

It is also very important to remind that from the SCM and gPC studies, one can not only
make a direct computation (by numerical integration) of the statistical moments, but also to
reconstruct the output with Eqs. (2.6) and (2.19). These surrogates are then at our disposal to
be sampled if desired. These models have been even used for optimisation purposes [118].

Other more popular methods for surrogate modelling are Multivariate Adaptive Regres-
sion Splines (MARS), Radial Basis Functions (RBF) and Kriging.

MARS [71] are considered an extension of regression analysis. This method produces a
kink in the prediction ŷ to create an adaptation to non-linear data sets, produced by hinge
functions. A hinge function has the form max(0,x−constant) or max(0,constant −x) [232].
This is one of their main advantages, in addition to their easy implementation.

RBF [28] uses the Euclidean norm to evaluate the distance between points in the inter-
polant

ŷ(ξ ) =
N

∑
i=1

ςiφ(∥ξ −ξi∥)+ f̂ (ξ ), (2.39)

where the constant ς ∈ R, f (ξ ) stands for a polynomial approximation and the so-called
radial function φ can be of different types (linear, multiquadratic, cubic, gaussian or thin
flat spline) [198]. RBF are a very powerful technique and have been used not only for
optimisation or uncertainty analysis but also for other interesting applications such as Neural
Networks for classification [164] or 3D image reconstruction [34].

Kriging surrogates have some extra features with respect to the others, as making predic-
tions with uncertainty estimates or compensating the effects of data clustering. The selection
of an appropriate surrogate method must be done taking into consideration the nature of
the problem and can be also a personal preference (i.e. because of easier implementation).
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In this thesis, due to the flexibility and robustness of the method with respect to others, as
well as the possibility of generate good fits with few points, Kriging has been the preference
and will be described as follows. There is some literature such as [232, 214, 63] that shows
comparisons among these methods and descriptions for further interest.

Surrogate-based Uncertainty Quantification by Kriging Interpolation

Kriging (also known as Gaussian Process interpolation and in this thesis under the acronym
KG) is a Machine Learning interpolation surrogate method to approximate sets of data and it
has been widely used in literature, specially for tasks involving costly computational analysis
that by other methods would be expensive. Examples of this are CFD optimization [128, 85],
sensitivity analysis [245], topography [133] or prototyping [97].

In essence, Kriging is a two-step process: first a regression function f̂ (ξ ) is generated
based on the data set, and from its residuals a Gaussian process Z(ξ ) is built, as can be seen
in Eq. (2.40)

ŷKG(ξ ) = f̂ (ξ )+Z(ξ ) =
k

∑
i=1

γi fi(ξ )+Z(ξ ), (2.40)

where f (ξ ) stands for the k×1 vector of basis regression functions [ f1(ξ ) f2(ξ )... fk(ξ )] and
γi denotes the coefficients. Depending on the regression function, Kriging can be baptised
with different names. Universal Kriging defines the trend function as a multivariate poly-
nomial, as described in Eq. (2.40). Simple Kriging refers to the use of a known constant
parameter as regression function, i.e. f̂ (ξ ) = 0. A more popular version is Ordinary Kriging,
which also assumes a constant but unknown regression function f̂ (ξ ) = γ0. Another interest-
ing type of Kriging interpolation is the namely Gradient-Enhanced Kriging (also referred
to as Co-Kriging) [128, 90, 56, 51]. The improvements that this technique introduces is the
possibility of using information of the gradient to reduce the number of samples. For Kriging
interpolation, the same MATLAB toolbox [140] used by the first author in [85] has been
utilised here.

The Gaussian process Z(ξ ) is prescribed to have mean zero and cov(Z(ξi),Z(ξ ′
i )) =

σ2
pRc(θ ,ξi,ξ

′
i ), where σ2

p is the process variance and Rc(θ ,ξi,ξ
′
i ) is the correlation model or

spatial correlation function (SCF).
In order to create an accurate Kriging surrogate it is important to pay attention to the

correlation function. This function only depends on the distance between the two points ξi

and ξ ′
i , and, for the general exponential case introduced in Eq. (2.41), also on pKG. The

smaller the distance between two points, the higher the correlation and, hence, the more the
Kriging predictor is influenced by the other. By the same token, if the distance gets bigger,
the correlation drops to zero. For these reasons, it is not typically worthy to put several
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data points together, as the prediction would not be influenced. Several correlations can be
tried, but in the present work the generalised exponential worked very well and was the final
choice.

Rc(θ ,ξi,ξ
′
i ) = e−θ |ξi−ξ ′

i |pKG (2.41)

Once the Kriging surrogates are available, the sampling techniques described in Section
2.1.4 are affordable. Generally speaking, sampling techniques evaluate the models ŷKG for
different inputs ξ , obtaining in that way the model predictions ŷi of a system

ŷi = ŷKG(ξi). (2.42)

The goal of uncertainty analysis is to determine the uncertainty in ŷKG that results from
uncertainty in the elements of ξ . These input uncertainties are represented by probabilistic
distributions, on which the sampling is done for the evaluations ŷi. From the evaluations of
the model, a mapping of the performance is generated, and a simple way of representing the
output uncertainties can be to compute mean and variance as

E(ŷKG) =
1
Ns

Ns

∑
i=1

ŷi, (2.43)

V(ŷKG) =
1

Ns −1

Ns

∑
i=1

(ŷi −E(ŷKG))2. (2.44)

It must be noticed that to compute EKG(ŷ) and VKG(ŷ) can be an incomplete representation
of uncertainty in some cases, as two probabilistic distributions can have same mean and
variance but very different shape.

2.2 An Overview of Sensitivity Analysis

An extension of UQ is the Sensitivity Analysis (SA) [205]. The idea when developing a
SA is to apportionate the output variance. In other words, what one is trying to find is the
relevance of each uncertain input factor in the variation of an output of interest. Other side
benefits that one can obtain are the possibility of reducing the dimension of the problem
(non-influential parameters can be fixed) and of course support decision-making (future
efforts and investment should be applied to minimise output uncertainty by tackling the
influential factors).

SA can be split into local or global methods. Local methods perform the sensitivity
analysis by varying, commonly around a 5%, 10% or a value decided with the experience of
the scientist, the nominal value of a parameter in order to see how the output changes. This
deterministic approach aims to exactly calculate or estimate the first-order partial derivatives
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of the model at the nominal value point. An adjoint-based approach allows not only to process
models with a large number of input variables, but also to compute this sensitivity coefficient
efficiently and exactly [13], contrary to the finite-difference approach which would closely
estimate the derivative with higher costs.
On the other hand, the global analysis methods perform a sensitivity measurement not taking
into account only the impact of the variation of one parameter, but also the higher-order
effects in a wider range of the sampling. Despite of that, in literature is very common to
see the use of local sensitivity analysis or OAT (One-factor-at-A-Time) methods [160]. This
method has to be used very carefully, since when used, it is assumed that the model presents
linearity, neglecting higher-order interactions. For further discussion between local and
global methods, see [110].
There are different methods for global sensitivity analysis, such as screening method (as
Morris method), Derivate-based Sensitivity Analysis or Variance-based Analysis.

In practice, Morris screening method [159] is a very popular approach. The idea of
the technique is to discretise the stochastic space into several points. Then, several OAT
realisations can be developed at each design point and the elementary effect of each input can
be calculated. Then it is possible to determine the non-influential parameters by plotting the
mean against the standard deviation of the elementary effects. Despite of the better deal with
higher-order effects, this method is not providing a reliable measure for all problems. This
approach is particularly recommended for a large number of input factors, as it can give an
impression of what input parameters can be fixed for dimension reduction, in order to apply
more reliable but computationally cost methods such as Variance-Based ones [206, 102].

Derivate-based sensitivity analysis can be seen as a less coarse version of Morris screen-
ing [103]. In the original paper by Kucherenko & Sobol [121], some interesting conclusions
have been presented: (i) a link between sensitivity indices and measures based on partial
derivatives is established, (ii) it is proved that small values of derivative based measures
imply small values of one-dimensional total sensitivity indices, (iii) the importance criterion
in Morris can be improved by using squared partial derivative rather than its absolute value
and (iv) it is shown that for highly non-linear functions the ranking of important factors using
derivative based importance measures may suggest false conclusions. These conclusions,
may lead to better developments to develop global sensitivity analysis in high-dimensional
case scenarios [102].

Other popular sensitivity measurements can be found in Regression-based methods.
From a regression work, the Pearson Product Moment Correlation Coefficient, Spearman
coefficient, Standardized Regression Coefficient (SRC) and Standardized Rank Regression
Coefficient (SRRC) can be computed. According to [230], the Pearson Correlation Coeffi-
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cient measures the usual linear correlation coefficient between the output y and a given input
ξi (as sensitivity index strictly applied to linear models). Spearman is essentially the same as
Pearson’s coefficient, but using the ranks of both y and ξi instead of the raw values. SRC
gives the strength of the correlation between y and ξi through a linear regression model. The
reliability of the SRC strongly depends on the R̂2 (coefficient of determination) of the linear
model. SRRC is used instead of SRC when R̂2 is low. In this case, the input and output
variables are replaced by their ranks, and the regression is then performed entirely on these
ranks. SRRC is better than SRC if the model output varies non-linearly, but monotonically
with each independent variable. In [230] a comparison with other methods revealed that
these regression-based coefficients encountered difficulty with non-monotonic problems,
showing hence that these measures are very model-dependent, as expected.

The scientist should choose the appropriate one depending on the non-linearity, desired
reliability, computational cost, dimension of the problem or the expected output, among
others. There is no general framework for this, which makes important for the scientist to
understand all the possibilities and drawbacks. For the purposes of this thesis, a Variance-
Based Sensitivity Analysis has been chosen [205, 230]. The main reasons for the choice
are:

• The input stochastic space is entirely sampled.

• Can deal with models as black-box.

• Can deal with any model: linear, non-linear, non-monotonic, etc.

• First-order and higher-order interactions can be both computed.

• Total sensitivity indices can be computed too.

• When using sampling methods, for low-dimension problems is not excessively costly
and gets more accurate results than other methods in literature.

• Possibility of ranking the influence of the input factors by sensitivity indices and fixing
non-influential input parameters.

This procedure is developed from the popular ANOVA High-Dimensional Model Rep-
resentation (HDMR) [221] for the decomposition of the total variance. This model repre-
sentation states that given a model of the form y = y(ξ1,ξ2, ...,ξk), with y a scalar, can be
decomposed as

y = f y
0 +

Nξ

∑
i=1

f y
ξi
+

Nξ

∑
i=1, j>i

f y
ξi j

+

Nξ

∑
i=1,k> j>i

f y
ξi jk

+ ... (2.45)
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with
f y
0 = E(y) (2.46)

f y
ξi
= E(y|ξi)−E(y) (2.47)

f y
ξi j

= E(y|ξi,ξ j)− fξi − fξ j −E(y) (2.48)

In these equations, the multiple subscripts refer to first, second, third or higher order
interactions, depending on the number of subscripts. Following the logic, the variances of the
terms in Eq. (2.45) are proposed as measures of sensitivity. This leads to the decomposition
of the variance shown in Eq. (2.49), and the sensitivity coefficients can be computed as in Eq.
(2.50). Si and STi , in Eq. (2.51), are the first-order and total sensitivity index respectively.

V(y) =
Nξ

∑
i=1

Vξi +

Nξ

∑
i=1, j>i

Vξi j +

Nξ

∑
i=1,k> j>i

Vξi jk
+ ... (2.49)

The values at the right hand side of the expression are the first and higher order contributions
to the total variance. Dividing by the total variance, the sensitivities can be computed as

1 =

Nξ

∑
i=1

Si +

Nξ

∑
i=1, j>i

Si j +

Nξ

∑
i=1,k> j>i

Si jk + ...+Si jk,...,Nξ
. (2.50)

This leads to the following expresion for the total sensitivity index for the i-th parameter

STi = Si +Si j +Si jk + ...+Si jk...m, (2.51)

where the right hand terms are the so-called Sobol sensitivity coefficients [220]. The first
order sensitivity coefficient is computed as

Si =
Vξi(Eξ∼i

(y|ξi))

V(y)
, (2.52)

where ξi is the i-th factor and ξ∼i denotes the matrix of all factors but ξi. This index indicates
by how much one could reduce on average the output variance if a parameter could be fixed.
On the other hand, the total effect index can be computed as

STi =
Eξ∼i

(Vξi(y|ξ∼i))

V(y)
. (2.53)

STi measures the total effect, i.e. first and higher order effects (interactions) of factor ξi. It
represents a good measure to determine if a parameter is influential or not, and whether could
be neglected from the model.
The use of this sensitivity technique can be seen in many fields such as solar energy [213],
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wastewater treatment [215], or heat exchangers [67].

The computation of the sensitivity coefficients in the Variance-based method can be done
by different ways. The two most popular approaches are Fourier Amplitude Sensitivity Test
(FAST) [49, 207] and through sampling (Monte-Carlo, Latin Hypercube, etc). Both provide
reliable results and a very similar computational cost. For this reason, and considering that
sampling was already made for UQ purposes, the sampling one is preferred in this thesis.
Being clear about the above presented idea, it is now time to introduce the two approaches
developed in this thesis for global sensitivity analysis, and that have a clear connection with
the previous UQ described methods: Use of gPC coefficients and Kriging surrogates. It is
very important to remark that the use of two different approaches is aimed to compare results.
In gPC, quadrature with sparse grids is applied to perform numerical integration, in contrast
to the possibility of also generate a surrogate to sample like with Kriging, whose analysis
would be substantially more costly.

Generalised Polynomial Chaos for Sensitivity Analysis

One of the interesting features of gPC is the possibility of performing sensitivity analysis
straightforward after uncertainty quantification. For such task, it is not difficult to realise
that there is a clear relation between Eqs. (2.25), (2.49) and (2.50). Eq. (2.25) can thus be
rewritten as

1 =
1

V(ŷgPC)

Nt−1

∑
j=1

y2
m j

〈
Ψ

2
j
〉
, (2.54)

and the first and higher-order sensitivity indices can carefully be extracted from the expression
above since the literal part of each monomial gives the hints of the interaction.
This approach to compute the sensitivity coefficients is for free. From the uncertainty
analysis, all the required information is available for the sensitivity. If on the contrary we rely
on the generation of a gPC surrogate, it would be necessary to perform a sampling campaign
as the one to be explained in the following for Kriging surrogates.

Use of Surrogates for Sensitivity Analysis

Since the Kriging surrogates, ŷKG, are available from the uncertainty quantification study
described in Section 2.1.4, it is now possible to compute the sensitivity indices in Eqs. (2.52)
and (2.53) by means of a sampling approach.
In order to compute Si, ξi has to be fixed in several points ξi = ξ ∗

i along the possible values
of the random variable and then compute the mean individually for a further computation
of Vξi . This would require a very large number of calculations, since the number of fixed
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points has to be great enough to compute reliable statistics. A less expensive method has
been coded in MATLAB by a Latin Hypercube Sampling (LHS) and following the suggested
procedure in [105]. This way of computing the sensitivities is analysed in [204], comparing
it with other estimators like [220, 222, 100] demonstrating very good results in different
tests and concluding it as a recommended approach. Following this method, the first order
sensitivity sampling Kriging surrogates, SKG

i , and the total effect, SKG
Ti , can be computed as

SKG
i =

1− 1
2Ns

Ns
∑
j=1

(
ŷKG(B) j − ŷKG(ABi) j

)2

V(ŷKG)
, (2.55)

SKG
Ti =

1
2Ns

Ns
∑
j=1

(
ŷKG(A) j − ŷKG(ABi) j

)2

V(ŷKG)
. (2.56)

In these expressions, ŷKG(A), ŷKG(B) and ŷKG(AB) are model evaluated matrices, product
of decomposition of the original matrices which contain the sample campaign. These two
original matrices, A and B, correspond to two different independent samples on the same
surrogate and random variables, with Ns ×Nξ dimensions.
Eqs (2.55) and (2.56) are built upon the original sensitivity indices shown in Eqs (2.52) and
(2.53). These numerators come from the known identity

V(y) = Vξi(Eξ∼i
(y|ξi)) + Eξi(Vξ∼i

(y|ξi)). (2.57)

The first element at the right hand side of Eq (2.57) is the expected reduction in variance
that would be obtained if ξi could be fixed. The second element at the right hand side of Eq
(2.57) is the expected variance that would be left if all factors but ξ could be fixed. Hence,
Vξ∼i

(Eξi(y|ξ∼i)) is the expected reduction in variance that would be obtained if all factors
but ξi could be fixed.

The aforementioned elements need to be integrated. Applying the well-known V(y) =
E(y2)−E2(y) relation, the integral of the numerator of the first-order sensitivity index takes
the form of

Vξi(Eξ∼i
(y|ξi)) =

∫
E2

ξ∼i
(y|ξi)dξi −

(∫
Eξ∼i

(y|ξi)dξi

)2

, (2.58)

and the first integral can be rewritten and numerically computed by sampling techniques
taking into account the following decomposition in 2(Nξ −1) variables

E2
ξ∼i

(y|ξi) = Eξ∼i
(y|ξi) Eξ∼i

(y|ξi) =∫ ∫
y(ξ1,ξ2, . . . ,ξi, . . . ,ξNξ

)× y(ξ ′
1,ξ

′
2, . . . ,ξi, . . . ,ξ

′
Nξ
)dξ∼idξ

′
∼i
,

(2.59)

and finally the integral over 2Nξ −1 variables
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∫
E2

ξ∼i
(y|ξi)dξi = Eξ∼i

(y|ξi) Eξ∼i
(y|ξi) =∫ ∫

y(ξ1,ξ2, . . . ,ξi, . . . ,ξNξ
)× y(ξ ′

1,ξ
′
2, . . . ,ξi, . . . ,ξ

′
Nξ
)dξ dξ

′
∼i

(2.60)

which is computed by means of the evaluations of the sampling matrices, A and B, and
their resampling with replacement, ABi and BAi . A very similar procedure must be developed
for the numerator of STi . This improvement can be found in [105], where the numerators of
the sensitivity indices are found to be best computed as

Vξi(Eξ∼i
(y|ξi)) = V(y)− 1

2Ns

Ns

∑
j=1

(
y(B) j − y(ABi) j

)2
, (2.61)

Eξ∼i
(Vξi(y|ξ∼i)) =

1
2Ns

Ns

∑
j=1

(
y(A) j − y(ABi) j

)2
. (2.62)

For the sake of practical clarification, the developed procedure on the surrogates is broken
down as follows:

1. Generate two independent Design of Experiment with LHS: A and B.

2. For the i-th sensitivity index, only the i-th column in matrix A is swapped with the i-th
column in matrix B. The new matrix is referred to as ABi. This new version of the
A matrix clearly preserves its Ns ×Nξ structure and can still be considered a sample
matrix, but without the original properties of a LHS.

3. Evaluate the Kriging surrogates with the elements from the matrices A, B and ABi.

4. Compute the sensitivity coefficients in Eq. (2.55) and (2.56). j stands for the row of
the matrices.

This alternative dramatically decreases the number of model evaluations in comparison
to brute force method.

2.3 Conclusions and Critique on the Different Probabilis-
tic UQ Methods

Once several options have been introduced, one has to choose the most appropriate method for
the specific purpose. Amongst the two large groups (probabilistic and non-probabilistic),
the drawbacks of the non-probabilistic approach are very clear: these methods require minor
knowledge on the inputs, since error bounds are used omitting details of the input/output
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variability, but the information that they provide to the analyst is more reduced (and sometimes
very misleading). This methodology is acceptable for early design stages. For a full analysis,
probabilistic methods are the recommendation in literature. However, there is no perfect
method, and some details make preferable either a method or another in our application:

• Direct sampling. Monte-Carlo, Latin Hypercube or Sobol sequences, for instance,
are very popular approaches, but these have to be carefully applied. If the model
is expensive (that is, each sample comes from a long time run), this approach is
unaffordable. In order to use these methods, some actions must be taken such as i) find
a way to reduce the computational cost of the model (use coarser meshes, lower-fidelity
models, etc.) and/or ii) develop ‘artificial’ quick models to be sampled: surrogate
models. It is important to point out that, if the problem is high-dimensional, direct
sampling is as efficient as any other probabilistic method because of the dimension-
independence.

• Surrogate models. These models have the advantage of being ‘equations’ that pro-
duce the output instantaneously. Built upon an increasingly number of deterministic
simulations, it is then only necessary to control the accuracy of the surrogate, and
for this purpose the Kriging interpolation lets compute the Root Means Square Er-
ror (RSME). Once the surrogates are available, they can be easily cost-free sampled
(Monte-Carlo, LHS, etc.) and uncertainty or sensitivity analysis can be developed.
Despite of their good performance, in order to obtain the statistical moments, inte-
grals must be computed and quadrature rules in gPC/SCM/PCM are more accurate.
However, if probabilistic distributions of the output are sought, sampling is the way.

• Stochastic Collocation Method. To compute the integrals by means of any quadrature
rule is an efficient idea, and if a nested rule is chosen with sparse grids, convergence
can be quickly found in moderate dimensions (around six or lower for a smooth
problem), being a demonstrated faster approach than direct sampling. However, this
method only allows the use of uniform probabilistic distributions.

If probabilistic distributions or histograms of the outputs are desired, surrogates by La-
grange interpolation can be generated and sampled. It does happen also for sensitivity
analysis, since the surrogates need to be sampled more times than in UQ to generate
the Sobol indices. With generalised Polynomial Chaos, sensitivity analysis can be
made for free (not requiring extra sampling) after UQ.

• Generalised Polynomial Chaos. SCM has the advantage of needing only to control
the number of collocation points to increase the accuracy. In gPC, also the order of the
expansion P has to be controlled, but it is worthy to pay such price when a sensitivity
analysis can be continued with no extra deterministic simulations. Simply from the UQ
study. This feature made polynomial chaos a very interesting and popular approach.
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The most relevant drawbacks of the method with respect to SCM are i) the achievement
of convergence, since to control both P and Nq can be sometimes complicated, and ii)
the requirement of computing integrals with orthogonal polynomials.

gPC can be extended to other probabilistic distributions than uniform, following the
Wiener-Askey polynomial basis functions, and for these, quadrature rules can be
applied for exact computations of the statistical moment integrals.

It is thus clear that the main points to take into account in order to chose the suitable
approach are the knowledge about the random inputs (can I construct the probabilistic
distributions? are they uniform/normal/etc.?), computational budget/computational cost
(how many simulations can I afford? how long does a deterministic run take?), intrusiveness
(is it worthy to code inside the solver?), desired accuracy (is precision a crucial thing for my
approach? can I use approximations?), and the desired outputs (is the mean and variance
enough? sensitivity analysis? probabilistic distributions?).

In the following section, examples of application of the discussed techniques will be
presented for the sake of testing and demonstration of capabilities.

2.4 Some Model Case Studies

In this section, two test cases (a damped sinusoidal function for UQ and a benchmark model
for global sensitivity analysis) are studied to show the performance of the main methods
used for stochastic analysis in this thesis. The main intention is to apply the methods on very
simple test cases to show the goodness f each UQ and SA methods. More advanced work on
engineering applications will be lately presented in the following chapters.

2.4.1 Applying Uncertainty Quantification to a Damped Sinusoidal Func-
tion with Mach Effect Resemblance

As a first toy problem, a damped sinusoidal equation has been tested with the uncertainty
quantification algorithms. This test is the exact solution of the following Partial Differential
Equation (PDE):

∂u
∂ t

=
∂ 2u
∂x2 +S(x, t;A,ωx),

S(x, t;A,ωx) = Ae−
1
2 x(2πsin(ωxx)cos(2πt)− sin(2πt)

((
1
4
−ω

2
x )sin(ωxx)− 1

2
ωx cos(ωxx))),

0 < x < L; t > 0,

u(0, t) = 0; u(x,0) = 0; u(1, t) = 0.

(2.63)
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The exact solution of the equation is uexact = Ae−
1
2 x sin(ωxx)sin(2πt). The deterministic

base values of the parameters are A = 0.3, ωx = 3π . In Fig. 2.6, the exact solution can be
seen for L = 8 and 0 < t < 4.25. This equation uexact has been chosen for the tests with
the purpose of using the UQ methods on a model with a behaviour resemblant to the Mach
number in compressible jets in the presence of shock-cells (see Chapter 5). The resemblance
between the shock-cell patterns and the output of the PDE is shown in Fig. 2.7.

Figure 2.6 Solution of the PDE.

For the uncertainty quantification comparison, Monte-Carlo (MC), Latin Hypercube
Sampling (LHS), Stochastic Collocation (SC) and generalised Polynomial Chaos (gPC) with
Clenshaw-Curtis sparse grids have been tested on the exact solution of Eq. (2.63). Kriging
surrogates have not been analysed here since the Matlab Kriging Toolbox [140] has been
successfully earlier tested by other researchers and, as surrogates require to be sampled, the
sampling is already done with MC and LHS. Moreover, in this thesis the accuracy of Kriging
will be mostly controlled by the number of points in the sparse grid datasets, which will be
firstly checked by SC and gPC.
In this UQ test case, the inputs are two uniform probabilistic distributions as source of
uncertainty, as in the study in Chapter 5. Following this idea, both A and ωx are varied
±10% and ±10% respectively, since they can be considered interesting as they control the
amplitude and spatial shift. The parameters of interest to check the accuracy are the mean
and variance in the testing, shown in Tables 2.2-2.5, for the specific performance point
(x, t) = (4.25,2.125). Of course this can be extended to any point, but it is preferred to
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(a)

(b)

Figure 2.7 (a) Experimental results from Andre Benoit’s PhD thesis[8] and CFD simulations
performed at CERFACS with the Onera’s elsA solver. (b) Analytical solution of the prescribed
PDE in Eq. (2.63) at t = 2.125.
.
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rather focus on a point to give more exhaustive details with convergence tables. The exact
computation of these statistical moments for a benchmark reference is

E(u) =
∫ 1.1·0.3

0.9·0.3

∫ 1.1·3π

0.9·3π

uexact(x = 4.25, t = 2.125) fA fωxdωxdA =−3.400955E−3, (2.64)

V(u) =
∫ 1.1·0.3

0.9·0.3

∫ 1.1·3π

0.9·3π

(uexact(x = 4.25, t = 2.125)−E(u))2 fA fωxdωxdA =

= 3.104486E −04,
(2.65)

and in the limits of the integral 0.9 and 1.1 stand for the ±10% of variation of the determin-
istic base case values of A = 0.3 and ωx = 3π .

Starting with a comparison between the two most popular sampling methods in both
industry and academia, Monte-Carlo (MC) and Latin Hypercube Sampling (LHS), results
can be checked in Tables 2.2 and 2.3. MC is possibly the most common practice in literature,
mainly because the simplicity on developing a quick random algorithm for sampling, but its
convergence is slower than LHS, as earlier discussed in 2.1.4. Actually, it can be observed
that with 20000 samples, which is a large number of deterministic runs, the stochastic
statistical moments in MC did not fully converge, and LHS did with few thousands. This is
because of the effect of the stratification of the samples in LHS, since MC performs a random
sampling. Despite of this, MC is still a very valuable approach, as there are applications
such as biological models, chemical reactions or available low-cost surrogates which allow
a large number of model evaluations without high computational resources. Moreover, if
the dimension of the stochastic space (that is, the number of random variables) is large, the
difference between LHS and MC is negligible. This is currently leading to a very interesting
research trend in the Curse of Dimensionality [22, 56] and the so popular Big Data.

Table 2.2 Comparison of stochastic means with sampling methods in the test case at the point
x = 4.25 and with t = 2.125.

Ns = 20 Ns = 50 Ns = 1000 Ns = 5000 Ns = 20000
MC -2.752E-03 6.645E-04 -3.019E-03 -3.040E-03 -3.352E-03
LHS -3.662E-03 -3.514E-03 -3.398E-03 -3.407E-03 -3.401E-03

Table 2.3 Comparison of stochastic variances with sampling methods in the test case at the
point x = 4.25 and with t = 2.125.

Ns = 20 Ns = 50 Ns = 1000 Ns = 5000 Ns = 20000
MC 2.85E-04 3.47E-04 2.97E-04 3.14E-04 3.10E-04
LHS 3.098E-04 3.204E-04 3.130E-04 3.105E-04 3.105E-04
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In Tables 2.4 and 2.5, Stochastic Collocation (SC) and generalised Polynomial Chaos
(gPC) are compared, both using Clenshaw-Curtis sparse grids for quadrature nested rules.
Taking also into account the outcome of sampling methods, it is surprising to see how quick
the convergence is in the computation of the mean by the chosen quadrature rules. With
only 29 samples, one can compute the exact value of the mean, and the gPC expansion is
independent on the order.

However, in the computation of the stochastic variance, gPC needs some extra care, due
to the fact that the order P of the expansion affects the convergence of the numerical integrals.
The earliest exact computation takes place with 145 collocation points and an order of the
expansion P = 6. But, acceptably accurate computations took place with e. g. 65 samples
and P = 5. The quick convergence of SC makes it attractive, however, one has to take into
account that for a latter sensitivity analysis it is better to choose gPC, since its calculation
is immediate from UQ output as discussed earlier in this chapter when SC and gPC were
introduced. This feature also provides to gPC of a great popularity in large-run simulation
problems under uncertainty in both industry and academia. Nevertheless, this method is
sometimes ‘blindly applied’ in literature, possibly driven by its popularity, not considering
that SC can be an advantageous approach with uniform distributions.

Table 2.4 Comparison of stochastic collocation and generalised Polynomial chaos for the
stochastic mean on the test case at the point x = 4.25 and with t = 2.125. The number of
collocation points for level 2, 3, 4 and 5 are 13, 29, 65 and 145 respectively. Obviously, for
higher values of P, the mean from gPC is the same as it is the first term of the expansion.

level = 2 level = 3 level = 4 level = 5
SC -2.711E-03 -3.401E-03 -3.401E-03 -3.401E-03
gPC -2.711E-03 -3.401E-03 -3.401E-03 -3.401E-03

Table 2.5 Comparison of stochastic collocation and generalised Polynomial chaos for the
stochastic variance in the test case at the point x = 4.25 and with t = 2.125. The number of
collocation points for level 2, 3, 4, 5 and 6 are 13, 29, 65, 145 and 321 respectively.

level = 2 level = 3 level = 4 level = 5 level = 6
SC 3.147E-04 3.104E-04 3.104E-04 3.104E-04 3.104E-04

gPC

P=2 1.292E-03 6.086E-04 4.933E-04 1.348E-04 1.348E-04
P=3 4.443E-04 2.583E-04 2.535E-04 2.535E-04 2.535E-04
P=4 1.074E-03 6.765E-04 3.008E-04 2.993E-04 2.993E-04
P=5 1.129E-03 8.360E-04 3.181E-04 3.090E-04 3.090E-04
P=6 1.211E-03 6.478E-04 2.187E-04 3.104E-04 3.103E-04

In this section has been shown the advantage of using quadrature rules with sparse grids
in UQ. Now, it is time to compare them with sampling in sensitivity analysis.
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2.4.2 Comparison of Global Sensitivity Analysis Methods

In this section, a comparison between global sensitivity analysis methods is carried out.
For this purpose, the previously studied unsteady heat diffusion problem is not going to
be taken into account, since a more intuitive analytic problem would be better to visualise
the interaction between variables. The former example has no higher-order interaction, and
hence only first-order indices would be computed.

Let us consider the following model as toy problem for sensitivity analysis:

y = 4ξ
2
1 +3ξ

2
2 +5ξ1ξ

2
2 +2.7, (2.66)

with ξ1 and ξ2 uniform probabilistic distributions in (−1,1). In the next steps, the perfor-
mance of sampling and gPC for global sensitivity methods is going to be compared via
benchmark solution.

For the exact solution, the mean and variance are our first step, calculated by the integrals

E(y) =
∫ 1

−1

∫ 1

−1
y(ξ ) fξ (ξ )dξ = 5.0333, (2.67)

V(y) =
∫ 1

−1

∫ 1

−1
(y(ξ )−E(y))2 fξ (ξ )dξ = 3.888. (2.68)

Then, the terms of the ANOVA HDMR decomposition from Eq.(2.45) are computed by

f y
ξ1
= E(y|ξ1)−E(y) =

1
2

∫ 1

−1
y(ξ )dξ2 −E(y) = 4ξ

2
1 +

5
3

ξ1 +3.7−E(y) (2.69)

f y
ξ2
= E(y|ξ2)−E(y) =

1
2

∫ 1

−1
y(ξ )dξ1 −E(y) =

4
3
+3ξ

2
2 +2.7−E(y) (2.70)

f y
ξ1,ξ2

= y(ξ )− f y
ξ0
− f y

ξ1
− f y

ξ2
= 5ξ1ξ

2
2 −3.7− 5

3
ξ1 −

4
3
+E(y), (2.71)

and the sensitivity indices can be easily computed from their variances by means of

Sξ1
=

V( f y
ξ1
)

V(y)
=

∫ 1
−1

∫ 1
−1 fξ (ξ )( f y

ξ1
)2dξ

V(y)
= 0.60381, (2.72)

Sξ2
=

V( f y
ξ2
)

V(y)
=

∫ 1
−1

∫ 1
−1 fξ (ξ )( f y

ξ2
)2dξ

V(y)
= 0.20571, (2.73)

Sξ1,ξ2
=

V( f y
ξ1,ξ2

)

V(y)
=

∫ 1
−1

∫ 1
−1 fξ (ξ )( f y

ξ1,ξ2
)2dξ

V(y)
= 0.19047, (2.74)
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where one has to be careful with the integrands, since fξ (ξ ) stands for the density functions
and f y

ξi
are the terms of the HDMR decomposition.

In the table below it is now shown the comparison of the computation of the first-order and
total sensitivity indices for each method, following the procedures already introduced earlier
in this chapter. The convergence study is not shown here for sake of simplicity and it can be
noticed that all the indices are pretty close to their exact value. In fact, the gPC ones coincide,
demonstrating how efficient the method is with only 145 deterministic evaluations (level 5 of
accuracy in the Clenshaw-Curtis sparse grid).

Global sensitivity analysis is a very valuable tool in both industry and academia. There
are plenty of applications of sensitivity to reduce the number of terms in equations for
modelling in chemical reactions, selection of relevant features in ground water modelling
and model complexity reduction in stochastic ecological models. Moreover, as humankind is
nowadays dealing with increasingly more and more data, especially in Big Data contexts,
to be able to reduce the number of variables required to feed machine learning algorithms
is a remarkable advantage to prevent overfitting and develop reliable predictions. Sensi-
tivity analysis represents, therefore, the icing on the cake in models with stochastic behaviour.

Table 2.6 Comparison of sensitivity analysis results by means of sampling (Jansen Sobol
indices with Latin Hypercube Sampling and 5000 samples), generalised Polynomial Chaos
(gPC with P = 4 and 145 samples) and exact values.

LHS gPC Exact
Sξ1

0.60778 0.60381 0.60381
Sξ2

0.22130 0.20571 0.20571
Sξ1,ξ2

0.17883 0.1905 0.1905
Sξ1

+Sξ2
+Sξ1,ξ2

1.0079 1 1
STξ1

0.78661 0.79428 0.79428
STξ2

0.39477 0.3962 0.3962

2.5 Current Research Trends and Needs in the Field

It is certainly an exciting moment for statisticians, data scientists and researchers who deal
with statistics in their jobs, since we are currently experiencing a great impact of fields
such as statistics and data handling from Machine Learning and Big Data in our lives. As
earlier discussed, in Big Data and other high-dimensional contexts, to reduce the number
of variables to input to the algorithms that extract meaningful information is a valuable
advantage, as otherwise the analysis can be sometimes even infeasible.

Likewise, the reduction of dimensions is a very promising current research trend in
uncertainty quantification, where Machine Learning algorithms are also used. To be able
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to decrease the size of the stochastic space has a dramatical effect on the applications. On
this topic, sampling methods are still a very useful approach, which gained popularity in
the last decade in applications reducing the number of parameters, such as in biological
models or chemical reactions [215]. Also, investigations in the sampling of high-dimensional
analysis can be found in [66], where a geometrical sampling is developed or with surrogates
in regression-based approximation techniques as in [136].

In long-time run simulations (costly simulations according to the definition earlier given
in this thesis), a new constrain is that the computational budget is more reduced. This
basically led to the use of the sparse grids in nested quadrature rules as discussed earlier in
this section. However, to reduce the number of variables to participate is complicated and
represents a big challenge. In engineering problems involving many uncertain input factors,
to find a reduction of the original set is highly valuable, since at the moment uncertainty
quantification, optimisation and global sensitivity analysis in such problems is typically
accounting few variables, restricted by the elapsed time of the simulations. For this reason,
this is a key topic of research nowadays in these fields, which suffers from the so-called
Curse of Dimensionality [22, 56].

It is not usual to find papers on uncertainty quantification dealing with more than 5-6
variables in collocation approaches, such as in [141], where 12 variables are used, with a
large number of model evaluations required. For this reason, some actions must be taken.
The dimension reduction by means of Active Subspaces [46] is very interesting. This field,
whose term was originally introduced by Dr. Paul Constantine, aims to obtain a reduced
dimension set of features from the original one by identifying the most relevant directions in
the parameter space, especially for long-run simulations. This approach has been successfully
applied already to few engineering applications such as [47, 143].

In the same line, there are other studies that deal with the adaptivity of the sparse grids
to high-dimensional problems [91, 192]. With this approach, it is intended to reduce the
number of points in the sparse grid by starting from simple functions in each direction of the
parameter space, increasing the approximation until the best is reached, adding points in the
most steeped parts. This certainly decreases the number of impractical model evaluations
in smooth regions, and thus the computational times. This, therefore, takes on the Curse of
Dimensionality in a very efficient way.

To sum up, the efficient computation for costly simulations involving a large number of
parameters (high-dimensional problems) is the current necessity. In fact, in recent relevant UQ
conferences this was of large interest from the audience. For example, in SIAM Conference on
Uncertainty Quantification held in Lausanne (Switzerland) last April 2016, high-dimensional
analysis was one of the main interests, and the next SIAM one to be held in April 2018 in
California (USA) will have the application of UQ in Machine Learning as one of the central
topics, where surely Big Data will play a relevant role.
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2.6 Summary

An overview of both UQ and SA has been developed in Section 2.1 and 2.2, where the types
of uncertainty and probabilistic/non-probabilistic methods are discussed and the probabilistic
approach is the suggested one according to literature. This decision is also obvious, since
the probability theory provides a more robust framework for uncertainty management than
simple vague descriptions typically found in non-probabilistic approaches such as Fuzzy or
Interval analysis. Fo this reason, probabilistic methods received a more sounded discussion
and were applied to test cases in Section 2.4.

In Section 2.3, these methods have been discussed and critically analysed, commenting
their advantages and drawbacks. Lately, the methods were followed by examples of applica-
tion in Section 2.4, where it is concluded that the choice of the UQ/SA approach will always
be driven by the knowledge about the random inputs, computational budget/computational
cost, intrusiveness, desired accuracy, and the desired outputs.
Finally, in Section 2.5 the current research trends and necessities are discussed, showing
that the reduction of the number of parameter and adaptive sampling in high-dimensional
problems is a very relevant topic, especially for long-time run simulations to deal with the
Curse of Dimensionality.

In the following chapters, the methods are to be applied to realistic cases in fluid dynamics,
providing a better illustration of their performance and aiming to improve the deterministic
approaches by means of stochastic frameworks.
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Chapter 3

A Swirling Flow Generated by a
Rotating Pipe for Heat Transfer by
Impingement Under Uncertainty. Part I:
CFD Modelling

It is well known that impinging jets are widely used in industry for heat transfer purposes in
different fields, especially in manufacturing and cooling of electronics. Due to this fact, it is
interesting to understand more about the influence of possible modifications in the design.
This leads to the present chapter, where computational simulations of Reynolds-Averaged
Navier-Stokes (RANS) equations are used to model a swirling jet generated by the rotation of
a pipe by means of the commercial software FLUENT. The computational domain has been
split in two simulations: Simulation 1, for the flow in the rotating pipe, and Simulation 2, for
the impinging jet implemented as inlet condition. The best turbulent model performance has
been found for the Reynolds Stress turbulent Model (RSM) with swirl conditions, as the most
popular and less complex eddy-viscosity turbulent models in RANS fail when simulating
the swirl. However, for the impinging jet simulations, the SST k−ω turbulent model has
been found the best. For coupling both problems, mathematical models for the velocity and
turbulent profiles from Simulation 1 have been also found.
In addition to this, a comparison with other popular swirl generation mechanisms from
literature has been done, showing the advantages and disadvantages in the use of rotating
pipes, such as the possibility of varying the swirl intensity while keeping the mean flow
velocity fixed.

For sake of clarification, this chapter is presented as follows: In Section 3.2, the difficul-
ties performing the CFD simulations and descriptions of the turbulent models are broken
down for a better understanding. The mathematical models are suggested and implemented
in Section 3.4. The chapter ends with a comparison with other swirl generation mechanisms
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from literature in Section 3.5, and in Section 3.6 the relevant conclusions are given.

3.1 Introduction and Motivation

Swirling flows in pipes can be found in many industrial applications, such as in erosion
damage reduction [257], chemical engineering [53] or dehydration systems in multi-phase
flows [94]. Recent applications of this type of flows are heat transfer by impingement. In
that sense, impinging jets have been extensively studied for cooling in electronic components
[99, 129], surface varied plates [177] or impinging gases and flame jets [148, 236], among
others.

The improvement of the existing impinging jet mechanisms has been a matter of research
in literature. As result of an extensive literature search, there is no work regarding the
effect of using rotating pipes for swirling flow generation as impinging jet flows, and this
is the main motivation for the present study. The objective of this work is also to discuss
the drawbacks and advantages in comparison with other swirl flow generators: the use
of pipes with spirals or vane-type swirl generators [130], swirl strips in pipes [248], angled
blades to force rotation [174, 173] and the use of tangential jets to impart the swirl [260].

When the motivation is to produce swirl in flows to improve the heat transfer as demon-
strated in several papers [248, 18, 130, 174, 177, 3], it is surprising that such a simple mech-
anism as a rotating pipe was not previously analysed. Amongst the aforementioned available
options, to use a pipe with a forced angular velocity seems to have less complications
in manufacturing and it can be affordable to any experimental lab, not requiring ma-
chining or assembly of extra complex components. Also, there is, in principle 1, a great
range of swirl intensity available since one only needs to increase the angular velocity
of the pipe by means of a motor. With other mechanisms, as the oriented blades or angled
spirals, there is a maximum angle that cannot be surpassed. In other words, the suggested
mechanism can represent a more flexible method so this supports the interest in the present
novel computational study.

In this chapter, the impinging swirling jet is created by means of a rotating pipe with
fully-developed condition at the outflow. The inflow velocity field is uniform with an imposed
flow-rate corresponding to a Reynolds number Re = 23000. Due to the fact that the walls
are rotating with a Swirl number, S, set to 1, the outflow is turbulent and swirling at the exit.
This flow is spreading from the pipe (nozzle) and impinges on the heated flat plate located

1Large values for the angular velocity have a remarkable impact on vortex breakdown and jet spreading
angle among others, completely changing the flow physics. This is out of the scope of this thesis, and only
moderated values from literature are under study.
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at a dimensionless distance H/D, where H stands for the nozzle to plate distance, and D is
the diameter of the pipe. The simulation of swirling flows in ducts is not straightforward
in CFD. In this piece of work, Reynolds-Averaged Navier Stokes (RANS) were solved, as
Direct Numerical Simulations (DNS) and Large Eddy Simulation (LES) represent a very
expensive way to simulate turbulent flows, and for further uncertainty quantification studies
it becomes unaffordable, since several deterministic CFD simulations are required.

3.1.1 Literature Review

There is a large amount of work regarding the experimental analysis of confined swirling
flows. One of the first attempts on swirling flows was [250], showing experimentally that
the flow is stabilized when the pipe is rotated about its axis. In [163], a long smooth pipe
rotating about its axis was analysed and changes of the flow pattern, together with hydraulic
loss within the pipe, were examined by measuring the velocity and pressure distributions
across sections at various distance from the pipe entrance. In [114], the mean velocities and
Reynolds stress components were preliminary studied by means of the hot wire experimental
technique. A further continuation of these works on swirling flows is [101], which is the
reference work for the validation of the computational results in this thesis. In this paper,
an experimental study with LDV measurements was carried out in order to measure mean
velocity profiles, distributions of five components of the Reynolds stress, and velocity fluctu-
ations. This paper hence provides a more complete analysis on the turbulent properties of the
swirling flow.

Regarding the computational simulations of swirling flows, there is a vast literature
[98, 104, 117, 60, 80, 166] about the turbulent models to be used for confined swirling flows
when the RANS equations are used, and the general viewpoint is that the RSM performs the
better. However, in [117] a modified k− ε turbulence model is used for a swirling flow in
a straight pipe, based on the improvement of the existing k− ε by reconsidering of the as-
sumption of isotropic turbulence, which is analysed from the anisotropic viewpoint. Despite
the modifications of turbulent models in FLUENT [69] not being considered in this work,
this motivated the trial of several turbulent models in this manuscript, in order to have a deep
insight and extract conclusions not only with the recommended turbulent model. In [104],
a test for several types of rotating and swirling flows for a range of Reynolds numbers and
swirl intensities have been studied computationally, aimed at identifying specific features that
require special consideration in turbulence modeling. For this aim, several turbulent models
were tried and the conclusions reveal that k− ε models are not appropriate when simulating
swirling flows, and RSM represents a more efficient way. Similarly, in [60] can be found
the comparison of two turbulence models (Re-Normalization Group RNG k− ε model and
RSM) and their effects on modelling the developing turbulent swirling flow inside a straight

52



3.1 Introduction and Motivation

pipe arriving to the same conclusions. In [166], the turbulent swirling decay pipe flow is
investigated analytically and computationally. And for the validation of results, RSM was
used in FLUENT, showing a very good agreement. Other successful applications of RSM on
swirling flows are shown in [80] for a swirling flow within two concentric cylinders, in [196]
for the numerical flow prediction in torus reactors with swirl using FLUENT, or in [109]
about highly swirling turbulent flows in cyclones, where several turbulent models were tested.
For higher fidelity simulations, not intended here due to a further uncertainty quantification
would be too expensive, DNS of swirling flows in pipes can be found in [169, 62, 172] and
LES results in [65, 57]. A description of the turbulent models and their properties will be
given in Section 3.2.

After the generation of the swirling flow, once it exits the pipe, it will impact on a flat
plate for heat transfer purposes. The improvement of the heat transfer due to impinging
jets has been also addressed in literature. There is a large amount of work on non-swirling
impinging jets [20, 4, 87, 265, 203], and it has been demonstrated in both experimental
[248, 18, 130] and computational [174, 177, 3] studies that the addition of swirl to these
jets can increase the heat transfer.

The number of experimental studies on swirling jet flows greatly surpass the compu-
tational ones. The swirl for impinging jets can be generated by different ways, such as
by means of spiral ducts (also referred to as helical generators or swirling strips), angled
blades at the tip, agitation by stirrer blades (perhaps too intrusive for this purpose), use of
tangential jets to impart the swirl or by rotating pipes. Some closely related works, shown
for comparison and discussion in Section 3.5, are the following.

In [130] and [18] the swirl is generated by pipes with spirals and the swirl number is
based on geometrical parameters as in [112], being the swirl independent of the Reynolds
number. Despite the swirl devices are similar in both papers, in [18] the hub was extended
with a conical tip in order to avoid a sudden expansion, that is affecting the jet and then
producing such a different behaviour in the heat transfer.

Another experimental work is [20]. Here only non-swirling round jet flows are studied,
but they are good for comparison with our non-swirling simulation, despite the Reynolds is
slightly greater (Re = 23700), but with a reported uncertainty of a 2.3%.

A similar but computational work is [21], where only non-swirling flows data is available.
In this paper, the turbulence model used is V 2 f (k− ε is employed too, but with a very poor
performance). The turbulence model has a good performance for large H/D distances, but
not soo good for small. No uncertainty is reported on the simulation, and the importance of
this will be discussed in Chapter 4, since it is a regular missing step in CFD.

Finally, in [260] several swirl intensities are imparted by three tangential jets separated
by 120 degrees. These results have been tried to be computationally simulated by other
researchers in literature [231, 259].
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Depending on the employed mechanism, the generated jet will have different patterns
and hence, the way it spreads downstream will be different. This spreading is influential
for the impinging conditions affecting the heat transfer as in the swirling jet, the degrees
of jet growth, entrainment of ambient air, and jet decay are affected by the degree of swirl
[18, 195] and other perturbations from generation mechanisms. In [202] has been reported
that even the addition of light swirl can change significantly the behaviour of the jet. Also, in
[195] in a similar configuration as in [202] it has been carried out a complete experimental
characterisation of the swirling jet flow showing that the swirling flow jet generated by the
rotation of a pipe has a more remarkably spreading angle than the non-swirling one (almost
twice in their experiments).

Regarding the computational work in literature, especially relevant for our choice of the
turbulent model for the RANS simulations of impinging jet flows with swirl, only few works
can be found in literature at the moment, despite the fact that some papers on heat transfer in
the rotating pipe can be found [210]. One can point out the work in [4], where the RNG k−ε

are used for the simulations. Also, another recent paper is [7], where a RANS simulation
with RNG k− ε is again developed for a jet flow whose swirl is generated by means of a
twisted tapes via numerical approach, showing that the addition of swirl is beneficial for heat
transfer. A more recent paper [106] employs the SST k−ω in FLUENT for a jet, whose swirl
is again added by means of twisted tapes. In addition to these, the V 2 f turbulence model
has been applied to previous works with a relatively good match in some comparisons with
swirling jet experiments [259, 21], but its performance was not always successful, especially
in short H/D distances as reported in [226, 21]. This makes sense since at far distances, the
swirl effect is less notable due to mixing. In any case, since V 2 f model is not available in our
commercial version of FLUENT and other methods had a good performance, it is discarded
in this work.

In this thesis, the SST k−ω turbulence modelling as in [177, 174, 176, 106] has been
repeated and details about the CFD set-up will be given in Section 3.2. This choice was based
on the successful computational simulations achieved and also their possibility of imposing
the suggested velocity and turbulent profiles at the exit of the pipe as in [177, 173, 174, 176]
(see Section 3.4) by means of User-Defined Functions in FLUENT.

3.1.2 Methodology and Challenges

All along the investigation, there are several drawbacks that must be solved to finally obtain a
reliable computational simulation of the mechanism, as expressed in the literature review. The
main difficulties are to find an appropriate turbulence model for both Simulation 1 and
Simulation 2, to couple both CFD simulations and to try to minimise the computational
costs, since this is essential for uncertainty quantification (and optimisation) in Chapter 4.
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As the main scientific interest in this type of jet is an experimental trend (especially for
fluid characterisation purposes), there are few computational papers on impinging swirling
jets, as fluid characterisation by computational analysis requires very advanced computing
resources such as LES or DNS. As the main objective in this work is focused on RANS,
alternatives are thus investigated.

Since in literature one can only find the rotating pipe as an independent study, and im-
pinging studies with different jet flows, an efficient way to compute the whole system has
to be found and results have to be validated at each step too. The suggested framework for
the simulation of the set-up is to split in two simulations: Simulation 1 (generation of a
swirling flow by means of a rotating pipe) and Simulation 2 (simulation of the impingement
and heat transfer). This let us try different turbulent models for each simulation in FLUENT.

In Simulation 1, due to the complexity in computing the swirling behaviour by common
turbulence models in RANS as discussed in Section 3.1.1, the most expensive turbulence
model in RANS, the Reynolds Stress Model (RSM), was used. It is undoubtedly agreed in
literature that it is an accurate model for this type of flows. However, for sake of curiosity
and double-checking purposes, other turbulence models were tested and the results validated
with the experimental results from Imao et al. [101].

Moreover, as a fully-developed flow is desired, a very long pipe should be computed.
To carry on the simulation there are two options: to mesh a long pipe and simulate up to
fully-developed state (this would require around 50−60 times the nozzle diameter, with a
fine mesh for the boundary layer, requiring a large computational elapsed time) or to simply
take a short piece of pipe with periodical boundary conditions. This type of condition is
available in FLUENT, and it refers to the continuous use of the outflow as inflow until the
velocity profile does not change anymore (fully-developed flow). For practical reasons, the
short pipe steady simulation is chosen, discarding the expensive approach.

Regarding Simulation 2, the use of RSM turbulent model for impingement is inefficient
and less computational demanding models are preferable,since the domain for this simula-
tion is large and with a fine mesh nearby the jet spreading region to properly simulate the
flow. Following the existing literature the eddy-viscosity models provided, in some case
scenarios, a good performance. Concretely, in [177, 176, 173, 10] the Shear Stress Transport
(SST) k−ω turbulent model has demonstrated to be accurate, and the same steps have been
reproduced here. Also, another turbulent model, V 2 f , has been reported in literature with
a relatively good match with swirling jet experimental results [259], but as V 2 f model is
not available in our commercial version of FLUENT, and SST k−ω performed very well in
previous developed works, the choice is obvious.
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As to make repeatable simulations is a must for optimisation or uncertainty analysis, and
CFD is a computationally expensive way of modelling, some extra work can be done to
save some computational resources. For this purpose, to find mathematical models for the
fully-developed swirling flow (Simulation 1) and to include uncertain conditions in the study
(as done in the following chapter), will provide a useful outcome of the analysed scenario.
The models have been designed following the same practice as in [175], and which were
also successfully input in CFD simulations of impinging swirling jets [177, 173, 174]. These
models are a very useful tool to save computations, but one has to bear in mind that they
are mere generalised fit approximations, and they are not derived from the Navier-Stokes
equations or any other fluid equation. They simply play the same roll that surrogate models
play in any other UQ or optimisation problem.

3.2 Setting-Up the CFD Simulations

3.2.1 Simulation 1: CFD Simulations of a Fully-Developed Turbulent
Flow in a Rotating Pipe.

As described in the introduction, the swirling jet is to be produced in a separated simulation
of a rotating pipe (Simulation 1), with an uniform non-swirling flow as inlet, in order to
generate its swirl by the pipe rotation. In Fig. 3.1, the pipe problem is depicted, for which a
2D RANS simulation was developed in FLUENT. The reason of using FLUENT is simply
that it is a powerful available commercial CFD software, very popular in both industry and
academia and well established, with its features extensively documented in the FLUENT
User’s Guide [69].

The flow under study goes out of the pipe fully-developed, what requires to have a long
enough pipe length. In order to avoid such an expensive simulation, a piece of pipe has been
simulated instead with periodic boundary conditions, where a mass-flow rate is imposed
according to the desired Reynolds number Re = 4ρQ

πDµ
= 23000 and under rotating conditions

set by the unity Swirl number S = ΩD
2U = πD3Ω

8Q = 1, where ρ is the density of the fluid, Q the
volume-flow rate, U the inflow velocity, µ is the dynamic viscosity, D the diameter of the
pipe and Ω the angular velocity of rotation of the pipe. The impinging jet is air with Prandtl
number Pr = 0.71.

One of the biggest issues when simulating a flow is the choice of the turbulence model.
The k−ω and k− ε turbulent models have been widely used in CFD RANS simulations
with very good agreement with experimental results in many problems and there is a vast
literature with practical applications. But under some circumstances, these models can not
accurately simulate the physical behaviour of fluids. The simulation of a swirling flow is a
particular application where simple turbulence models fail, meaning with simple to those
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Figure 3.1 Sketch of the swirling flow generator by a rotating pipe. The flow enters the pipe
with a uniform profile and swirless, and leaves the pipe as turbulent fully-developed with
swirl.
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Figure 3.2 Sketch of Simulation 1 & 2. Note that the x and r axis are the same in practice and
with origin in the axisymmetry axis, but for the sake of avoiding confusion in the following
plots and data tables, r is used in Simulation 1 and x for Simulation 2.

that do not take into account the anisotropy of the turbulence as the eddy viscosity ones.
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To overcome this problem, several turbulent model configurations and wall treatments
were tested in this work to simulate the swirling flow confined in the rotating pipe with the
computational mesh shown in Fig. 3.3. In CFD is common practice to test as many options
as possible since there is not a general turbulence model that works for all case scenarios.
The intention is, therefore, to see if remarkable differences and similarities are drawn and
check at the same time the grid convergence, as relevant errors can be derived from the mesh
as well. Specifically, the nodal distribution for the boundary layer and the wall treatment
functions used make a strong difference since it is a complex thing to model in the physics of
fluids. In computational fluid dynamics, the boundary layer cannot be exactly computed and
wall approximations are always present.

The size of the computational grid has been chosen as [nr × nz] = 68 × 450 cells, with ni

the number of computational cells in the i direction, and being the first computational cell
at a dimensionless wall distance of y+ < 1 along the walls of the pipe. The uncertainty and
convergence of the mesh are also analysed in Section 3.2.2.

Figure 3.3 Computational grid for the pipe.

A detail of the evolution of the velocity profile along the pipe and the imposed boundary
conditions can be seen in Fig 3.4. Note that, despite of the fact that in the figure the inlet
axial velocity appears as constant profile, this profile becomes the same as the outlet one
because of the use of the periodic boundary condition between the pipe inlet and outlet to
obtain a fully-developed swirling turbulent flow.

The physics are governed by the Navier-Stokes Equations, solved numerically by the
CFD code FLUENT in a 2D axisymmetric domain. For the tested turbulence models, the best
results took place with variants of k− ε , k−ω and RSM, for which both axial and azimuthal
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Axis

Wall

Inlet Outlet

Figure 3.4 Detail of the evolution of the axial velocity profile along the pipe and boundary
conditions imposed. The red colour scale stands for the radial distance with the maximum
exit velocity and the blue colour scale stands for the lowest.

dimensionless velocity profiles have been validated with the experimental results by Imao
et al [101], where Re = 20000 and S = 1 was used and thus, imposed now in our turbulent
model validations. The corresponding turbulent model results, in terms of the axial (vz) and
azimuthal (vt) velocities and the friction factor (λ ) on the wall, will be compared with those
from [101] and depicted in Figs. 3.5-3.7. The turbulent models used and their limitations are
analysed in the following.

k− ε turbulence model

After averaging the Navier Stokes equations, due to unknown velocity fluctuations, a tur-
bulence model is required for the problem closure. The k− ε is one of the most popular
turbulence models. This model requires the use of only two closure equations: one for the
turbulent kinetic energy, k, and another one for the rate of dissipation, ε .

There are three formulations of k− ε turbulent models available in FLUENT: Standard,
RNG and Realizable. Among them, the one that provided the better results was the Realizable
one with Enhanced Wall Treatment.

The term "realizable" means that the model satisfies certain mathematical constraints on
the Reynolds stresses, consistent with the physics of turbulent flows: the positivity of normal
stresses and the Schwarz inequality for Reynolds shear stresses .

Enhanced wall treatment is an option to better solving the flow for a coarser mesh than
the usually required to solve the laminar sublayer, thanks to a near-wall formulation. This
would be equivalent to the implementation of a very fine mesh but with less computational
cost and a small error difference. For further information, the author suggest to see [69] and
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[73].

The model has been extensively validated for a wide range of flows [115, 212], including
rotating homogeneous shear flows, free flows including jets and mixing layers, channel and
boundary layer flows, and separated flows. The better performance of this model in our
problem under study is not surprising, since it more accurately predicts flows involving rota-
tion, boundary layers under strong adverse pressure gradients, separation, and recirculation.
According to [69], for all these cases, the performance of the model has been found to be
substantially better than the one with the standard k− ε model. But unfortunately, this model
provides a poor approximation to the velocity profiles when comparing with experimental
data [101] in Figs. 3.5-3.7. with this model, the numerical axial velocity profile is notably
deformed, and the numerical azimuthal velocity profile provides a solid rigid body rotation
( vt

U = Ω
r
R , with R the radius of the pipe), so for this high swirl the results show that, according

to this model, the flow is behaving like a solid in the azimuthal direction, being obliged to
discard this model.

k−ω turbulence model

The k−ω turbulence model has a similar computational cost than with respect to the k− ε ,
as again two closure equations are required to compute the turbulence: one to compute the
turbulent kinetic energy, k, and another one to compute the specific turbulent dissipation rate,
ω . In this work, both the Standard and Shear Stress Transport (SST) k−ω models have been
tested.

The standard k −ω model in FLUENT is based on the Wilcox k −ω model [252],
which provides an accurate formulation in the near-wall region being recommended for
wall-bounded flows. The SST k−ω model was developed by Menter [151] to merge the
standard k−ω goodness in the near-wall region with the k− ε model goodness in the far
field. The SST model is similar to the standard one, but it includes, besides the blending
function for the k−ω/ε merging, a damped cross-diffusion derivative term in the ω equation
and a modification to account for the transport of the turbulent shear stress.

Despite these features make the SST k−ω model more accurate and reliable for a wider
class of flows than the standard one, for the simulations of the rotating pipe we obtain pretty
similar results than with k− ε for both the axial and azimuthal velocity profiles, as one can
see in Fig. 3.5.

RSM turbulence model

In the case under study, as the Reynolds number is large and wall effects are present, the
contribution of several physical mechanisms to turbulence processes changes with respect to
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the lower-Reynolds reliability case [194]. If engineers want to simulate the turbulence in the
most reliable way, DNS would be the best. LES would be a cheaper option, but simulations
still take a long time and this cannot be afforded for uncertainty quantification and modelling
purposes in this work. For this reason, the RSM [79, 127] is the most reliable turbulence
model that can be used in FLUENT with RANS. Its name is owed to the fact that Reynold’s
stresses are used to obtain closure for the Reynolds’ averaged momentum equation. RSM
closes the RANS equations by solving the transport equations for the Reynolds stresses,
together with an equation for the dissipation rate. Despite of this model is very accurate
(specially for swirling flows as commented also below) the computational cost is larger, as
five additional transport equations are required in 2D flow domains and seven additional
transport equations must be solved in 3D.

Since RSM takes into account the anisotropy of turbulence generation (that is to say,
directional effects of the Reynolds stress fields), it has greater potential to give accurate
predictions for complex flows but the fidelity of predictions is still limited by the closure
assumptions employed to model some terms in the exact transport equations for the Reynolds
stresses.

While effective viscosity models have led to satisfactory predictions of many two-
dimensional thin shear flows, their use in 3D flows and other flows with more than a single
significant component of mean velocity gradient has achieved, at best, only moderate success.
One may cite turbulence-driven secondary flows in non-circular ducts or the influence of
high swirl as examples of phenomena which cannot satisfactorily be predicted with models
of the effective-viscosity type [126]. This leads to making numerical calculations of such
complex flows by carrying on the exact computation of Reynolds stresses.

The exact transport equations for the transport of the Reynolds stresses ρv′iv
′
j (note that

the sub-index i j is used in this section for the sake of simplicity, with i and j the coordinates,
and v′ stands for the fluctuations of velocity) may be written, in essence, as follows:

Local Time Derivate+Ci j = DT,i j +DL,i j +Pi j +Gi j +φi j − εi j +Fi j +Suser, (3.1)

where Ci j is the convection term, DL,i j equals the turbulent diffusion, DT,i j stands for the
molecular diffusion, Pi j is the term for stress production, Gi j equals buoyancy production,
φi j is for the pressure-strain, εi j stands for the dissipation and Fi j is the production by system
rotation. As there is a vast literature to find the equations (see for instance [69] and [126]),
no further descriptions of the equations will be developed here.

As mentioned above, the RSM includes the effect of anisotropy of turbulence, which
yields it superior to models based on the Boussinesq approach (effective viscosity models)
when simulating highly swirled flows and stress-driven secondary flows. However, as of
the various terms in Eq. (3.1), Ci j, DL,i j, Pi j, and Fi j do not require any modeling but, DT,i j,
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Gi j, φi j, and εi j do, the accuracy of the RSM is limited by these closure assumptions [60].
Particularly, the modeling of the pressure-strain and dissipation-rate terms is challenging,
and often considered to be responsible for compromising the accuracy of RSM predictions
[244].

There are many examples in literature where using RSM is recommended for swirling as
cyclone flows, highly swirling flows in combustors, rotating flow passages, and the stress-
induced secondary flows in ducts [69]. RSM is hence used for high swirl confined flows, as
the case under study, and the plots in Fig. 3.6 reveal that it has been the only tested model
able to properly catch up the curved shape of the azimuthal velocity profile.

In CFD, the validation of simulations has to be against analytical results, a benchmark
study or experimental data. Sometimes, another simulation with a very fine mesh or DNS (no
turbulent model required) can be sufficient if other sources are not available. As only experi-
mental data is available in literature for validation purposes, the procedure is to compare both
the computational and experimental results. Then, it is possible to check what configuration
(turbulent model, solver, mesh, and wall functions) of the CFD problem offers the closest
performance to the experiment. For a reliable validation, the values of the Reynolds and
swirl intensity have to be the same for both the computational and experimental study, for
obvious reasons.

In order to improve the quality of the simulation results, several options of RSM available
in FLUENT were tried. The Linear Pressure-Strain (LPS) option refers to the modelling the
pressure strain-term in Eq. (3.1) by a lineal sum of a slow-pressure strain, a rapid-pressure
strain and a wall-reflection term. The Quadratic Pressure-Strain (QPS) option refers to an
improved modelling of the pressure-strain that does not require a correction to account for
the wall-reflection effect and use to provide better results for a wide range of flows.

From the wall treatment viewpoint, what is an important feature in our pipe, four options
are available to combine with RSM:

• Standard Wall Functions (st.). This is the classic choice for industrial flows. The
logarithmic law for mean velocity is known to be valid for 30 < y∗ < 300, where
y∗ is the dimensionless wall unit. In the CFD solver, the log-law is employed when
y∗ > 11.225. When the mesh is such that y∗ < 11.225 at the wall-adjacent cells, the
solver applies the laminar stress-strain relationship that can be written as U∗ = y∗. The
use of this near-wall treatment has provided the worst results for the axial velocity
profile when the QPS is used, as can be seen in Figs. 3.5 and 3.6. However, this is
because the QPS tends to overestimate the axial velocity profile values even if the
boundary layer was well solved. With LPS, the numerical profiles were good.
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• Scalable Wall Functions (sc.). When using a very fine grid, the usage of wall functions
may lead to misleading results due to the fact that what was suppose to be modelled by
wall functions is refined until having the first point in the sublayer. The scalable wall
function model avoids such problem on grids with y∗ < 11. For coarser grids (y∗ > 11),
the results are identical to the ones from Standard Wall Functions. This option has
been worst to solve the boundary layer by far, as in Fig. 3.5 and 3.6 can be appreciated
that for both the LPS and QPS options the boundary layer has an inaccurate behaviour
for the velocity profiles.

• Non-Equilibrium Wall Function (neq.). The key elements in the non-equilibrium wall
functions are the use of Launder and Spalding’s log-law for mean velocity sensitized
to pressure-gradient effects and the two-layer-based concept is adopted to compute
the budget of turbulence kinetic energy in the wall-neighboring cells [69]. For these
reasons, this function is usually useful in cases where complex scenarios such as
separation, impingement or sudden pressure changes appear. As this is not our case
scenario, it is not wise to use such wall function. By using this option, it can be
observed that for both the LPS and QPS options the axial velocity profile is not well
validated, but for the QPS one, the azimuthal velocity profile provides good match.
It is interesting to see that for the LPS case, it provides almost identical results than
when Standard Wall Function is active and the biggest error of the friction factor with
respect to experimental data (see Fig. 3.7).

• Enhanced Wall Function (enh.). This option has been already explained in Section 3.2.1.
This was the option that has better performed when the LPS is used but when using the
QPS, the CFD code convergence was slow and at a certain point even blew up. The
good performance with LPS is not surprising since we used a very fine mesh (y+ < 1)
and for such, the Enhanced Wall Function allows to resolve the viscous sublayer [38].
The azimuthal velocity profile (Fig. 3.6) has a good match with experimental results,
and the axial velocity profile (Fig. 3.5) has a perfect fit. Regarding the friction factor,
in Fig. 3.7 can also be observed that is the one that has the closest to experiments.

Therefore, due to its better agreement with experimental data, the turbulent model finally
chosen was the RSM with Linear Pressure-Strain and Enhanced Wall Function.

Regarding the solver configuration, as we are modelling an incompressible flow, a pres-
sure based formulation is used. The pressure-velocity coupling is done by SIMPLE (Semi-
Implicit Method for Pressure-Linked Equations) algorithm [184]. The spatial discretisation
of convection terms was done with Second Order Upwind methods. When second-order
accuracy is desired, quantities at cell faces are computed using a multidimensional linear
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reconstruction approach [19]. In this approach, higher-order accuracy is achieved at cell
faces through a Taylor series expansion of the cell-centered solution about the cell centroid.
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Figure 3.5 a) Plot of the axial velocity profiles of the fully-developed turbulent swirling flow
for several turbulence models and validation with Imao et al [101]. b) Zoom of the boundary
layer. Re = 20000 and S = 1.

3.2.2 Grid uncertainty

The uncertainty of the grid has been also analysed for the CFD simulation of the pipe and
the impinging problem following the Grid Convergence Index (GCI) procedure described in
[35], which has been developed from Richardson extrapolation. The parameter under study
is the friction factor, λ , as it is a good measure for checking whether the boundary layer has
been solved properly. Once the CFD simulations of the rotating pipe are ready, the GCI can
be computed. Its value is shown in Fig. 3.8 for λ , where a discretization error of only a 0.2%
is achieved with 200 iterations per minute in our [nr × nz] = 68 × 450 cells mesh shown
in Fig. 3.3. Despite of the simulations of the impinging jet are described in the following
section, it is worthy to mention here that their discretisation error has been studied already in
[177], with a 0.4% of error.
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Figure 3.6 a) Plot of the azimutal velocity profiles of the fully-developed turbulent swirling
flow for several turbulence models and validation with Imao et al [101]. b) Zoom of the
boundary layer. Re = 20000 and S = 1. Ur stands for the solid rigid body rotational velocity
Ur = ΩR.

Figure 3.7 Plot of the errors of relevant parameters of the simulation for several turbulence
models, with respect to the minimum value of the error (the RSM linear enh.). The error
measure is the euclidean norm.
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Figure 3.8 Grid Convergence Index to quantify the discretization errors and Richardson
Extrapolation. The iterations per minute and the corresponding error are also included in the
figure for each grid.

3.2.3 Simulation 2: CFD Simulations of the Heat Transfer to a Heated
Solid Flat Plate from an Impinging Swirling Jet

Impinging jets for heat transfer have an extensive number of applications, as introduced
in Section 4.1. The plate under consideration is fully flat (no roughness) and the distance
between the exit of the pipe and the plate is constant at H/D = 5, although the validation
of the simulations was done for H/D = 2, as it is a more unfavourable case and there are
existing results from different authors in literature to compare with. The corresponding
velocity and turbulent profiles at the exit of the rotating pipe are now used as inflow bound-
ary conditions. The simulations have been developed as axisymmetric 2D RANS in FLUENT.

A detail of the meshed domain and the boundary conditions can be seen in Fig. 3.9. The
size of the grid is [nx × nh] = 140 × 250 cells, with a y+ < 1 along the plate. In practice, the
x axis is the same as the r one when the pipe was analysed, but it is preferred to use different
notation in order to avoid confusion between the parameters at the exit of the pipe and on the
flat plate. Part of the rotating pipe was also incorporated in the computational domain of the
impingement for a less abrupt coupling of the profiles from the pipe.

Regarding the turbulence model, the SST k−ω has been chosen. This choice, already
demonstrated in [177] and [173], has been validated with the experimental data of impinging
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H bc
H 

Figure 3.9 Computational grid for the CFD simulations of the impinging jet and boundary
conditions imposed. Hbc stands for the height of the upper boundary condition, that can be
different than H. The size of the pipe wall is kept fixed at a length D.

jets in [130] and [20], as can be also seen in Fig. 3.10, where the results obtained with
different options for SST k−ω model have been included. For H/D = 2, it is known that
there is a secondary peak in the Nusselt number. It can be guessed that this secondary peak is
attributed to the transition from laminar to turbulent boundary layer in the spreading wall
jet as suggested by [75, 131]. This transition seems to be triggered by disappearance of
the pressure gradient which exists in the stagnation region. The pressure gradient serves to
stabilize the laminar boundary layer, despite of high turbulence levels in the free jet stream
[113]. By our numerical experiments this has in fact been validated with the results shown in
Fig. 3.11, where it can be observed that there is a peak in the turbulent intensity on the plate
coinciding with the position of such peak in the Nusselt. This peak is not captured when the
transition option is not activated in the turbulent model (SST k−ω conf. 1 in Fig. 3.10).
For further information about the computational features of the simulation, including the
discretization error and the selection of the SST k−ω turbulence model, the author suggest
to see [177]. In Fig. 3.12 is shown the velocity contour plot at Re = 23000 and S = 1 of the
simulation with H/D = 5.

When simulating high Reynolds jets, it is common to have a pressure suction area that
takes place because of the difference in velocity between the jet and the surrounding flow.
This can affect somehow the jet development, and therefore, the heat transfer. For this
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Figure 3.10 Validation of the turbulent model for H/D = 2. The different configurations of
the SST k−ω turbulence model correspond to conf. 1: with transitional flow (old model
in FLUENT version 6.3), conf. 2: with Low Reynolds correction, conf. 3: without Low
Reynolds correction, conf. 4: Transition SST with the Production Kato-Launder option and
conf. 4: Transition SST with the Production Limiter option. The chosen option was SST
k−ω with the Production Kato-Launder option.
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Figure 3.11 Graphs of the friction factor on the plate (left), turbulent intensity (centre) and
Nusselt number (right).

reason, it is also interesting to see how the boundary conditions can affect the simulations.
To that end, it was tested how the height of the upper boundary condition could affect the
computation for different values of Hbc, as described in Fig. 3.9 . The effect is minimum
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Figure 3.12 Velocity contour plots made dimensionless with the mean velocity U. Re= 23000,
S = 1 and H/D = 5.

even for the unfavourable case of H/D = 2, as it can be observed in Fig. 3.13, where the
evolution of the Nusselt number was plotted for three different values of Hbc. Because it
makes no effect, the initial configuration in Fig. 3.9 with Hbc = H is kept.

3.3 Coupling the Two-Step CFD Simulations

As the turbulence model used for the pipe and the one used for the impinging heat transfer
problem are both different, a single simulation of the two-case scenario cannot be developed.
Moreover, the complexity of the problem would be unnecessarily increased as the pipe may
be long enough to guarantee the fully-developed flow, being necessary a massive domain to
simulate.
To overcome this drawback, the two-step CFD simulations were coupled in the following
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Figure 3.13 Effect of the possition of the upper boundary condition in the Nusselt number.

way: firstly, the CFD simulations of the swirling flow confined in a rotating pipe with the
RSM turbulent model were developed (Simulation 1), and secondly, the velocity and k−ω

profiles at the exit of the pipe are imposed as inlet boundary conditions for the heat transfer
simulation (Simulation 2). For the purpose, the turbulent parameters are defined as

k =
2
3
(UI)2, (3.2)

ω = ρ
k
µ
(

µt

µ
)−1 = ρ

k
µ

β
−1, (3.3)

where k is the turbulent kinetic energy, I is the turbulent intensity, U is the average velocity
of the flow, ρ is the density of the fluid, ω is the turbulent dissipation rate and µt/µ is
defined as the turbulent viscosity ratio, represented by β throughout this thesis. The turbulent
kinetic energy is available from the RSM simulations, but the turbulent dissipation rate is not,
therefore has to be evaluated by Eq. (3.3) in order to be a boundary condition for Simulation 2.

In order to couple the two simulations for modelling, two options have been tested in this
work for the Simulation 2 as shown in Fig. 3.14. The first one is to impose as inlet conditions
the simulated profiles exiting the rotating pipe, what requires to perform both Simulation 1
and 2 for every required deterministic simulation for uncertainty quantification. The second
option is to develop several mathematical models for different magnitudes at the exit of the
pipe that let us avoid Simulation 1. For some further studies like uncertainty quantification,
every time the accuracy of the uncertainty prediction is to be increased, new simulations are
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required, making the use of models very attractive. These models are introduced in the next
section and applied to uncertainty quantification in Chapter 4.
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Figure 3.14 The two possibilities: by using the CFD profiles at the exit of the nozzle to
impose, or by modelling them.

3.4 Proposed Mathematical Models for the Dimensionless
Profiles From the Rotating pipe

In some applications involving expensive runs or complicated couplings, it is necessary to
run CFD simulations or experiments for which lower cost models could be found in order
to skip such tedious part of the study. In this section, four dimensionless models are given:
for the axial velocity (vz), azimuthal velocity (vt), kinetic turbulent energy (k) and turbulent
viscosity ratio (β ) profiles, all of them for the fully-developed turbulent swirling flow case.
Those models will approximate the response of the CFD RANS simulations for the different
Q and Ω. In literature one may find that inlet boundary conditions for turbulence are simply
modelled as a percentage, so to give also an equation for both the kinetic turbulent energy
and viscosity ratio represents an accurate insight. It is certainly a cheap way to evaluate
computationally cost codes in some fields as, e. g., CFD optimisation, prototyping or UQ, as
it can be sampled almost costless.

The models have been designed following the same practice as in [175], and which were
also successfully input in CFD simulations of impinging swirling jets in [173, 174, 177].
These models are composed of several functions chosen according to the features of the
profiles and validated with CFD results as will be shown in this section and in Section 4.3.
It is true that a very accurate model to fit the profiles could be obtained by interpolation.
However, a new model should be built for each CFD simulation profile losing any possible
generality. For this reason, a coefficient dependent approach is preferred, being possible to
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link the coefficients to the physical parameters Q and Ω as in Section 4.3. The coefficients
are found by a MATLAB main custom code which calls Curve Fitting Toolbox functions
that use a Non-Linear Square method with Trust-Region algorithm [44]. The introduced
models in this thesis can be implemented to obtain quick dimensionless profiles in tasks like
increasing the accuracy of surrogates models, as it has been done in [85], where it has been
also demonstrated the validity of the models for wider intervals (needed for optimisation).

The process of finding the appropriate models for the velocity and turbulent profiles
was developed as follows. First, an analytical solution based on physics ground was not
considered and this is the main limitation of this approach, as the flow is turbulent and this
makes a pure mathematical analysis very complex for the purpose. Here it is only intended
to find mathematical models to avoid the repetition of Simulation 1 every time Q and/or
Ω is varied. Therefore, mathematical custom regression fit models were tried as done in
[175] and successfully implemented in [177, 173, 174]. The use of such modelling is in
fact a very popular approach in industrial practice, and one can find this often i.e. in techni-
cal engineering documentation sheets and predictive modelling in other fields such as finance.

Several options were tested for the axial and azimuthal velocities as shown in Fig. 3.15.
For the axial velocity profile, it can be observed that the shape is non-linear with different
piecewise curvatures. It is specially relevant the proper modelling of the boundary layer, since
it plays an important role in the further development of the flow. This led to the modelling
with a hyperbolic tangent in vz/U (1),vz/U (2),vz/U (best). Despite that it is not clear under
which conditions the hyperbolic tangent shape is taking place, it has been formerly observed
by other researchers that the boundary layer flow profile looks close to this mathematical
function [146, 175] in flows under rotation, and in jet flows this is also observed since a
simple scenario of hyperbolic tangent profile takes place when two flows are in contact with
different but constant velocities [153]. To model the flow velocity as a fully parabolic profile
like in Hagen-Poiseuille flows (fully-developed, incompressible, newtonian and laminar flow
in a non-rotating pipe) will be mistaken, since the shape is not parabolic at all. This was even
tried with a cubic polynomial in vz/U (3), which requires only three constants to estimate
with a poor performance. Amongst vz/U (1) and vz/U (2) there are some clear differences. A
power effect in vz/U (1) is introduced to deal with the non linearity, which is not introduced
in vz/U (2), undergoing a bad fit. The combination of the power function featured in vz/U (1)

with the flexibility of the third order polynomial vz/U (3) led to the selected model in Eq.
(3.4), the vz/U (best), which undergoes a very good match.
The procedure for the azimuthal velocity was simpler. It was already suggested in [101]
that the profile is closely parabolic. However, due to its also possible exponential behaviour,
this was also tried. In Fig. 3.15, it is shown that the power function fitted the best, and the
predicted values of the constants are a = 0.9709 and b = 2.0052, thus vt/Ur ∼ (r/R)2. The
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constants of the discarded models can be found in Table 3.1.
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Figure 3.15 Axial and azimuthal velocity profiles from CFD and tested mathematical models.

Table 3.1 Fitting coefficients of the discarded mathematical models for the axial and azimuthal
dimensionless velocity profiles.

Model a b c d
vz/U (1) 1051 -1048 -0.1276 32.230
vz/U (2) -596.3 599.5 2.980E-03 24.710
vz/U (3) -2.682 2.174 -0.819 1.539
vt/U (1)

r 5.032E-02 3.009 - -

The modelling of k/U2 was the most complicated of them all. The tried fits can be seen
in Fig. 3.16. The procedure for this fitting search was similar to the one followed for vz/U .
Again, the best function for the region near to the wall was the hyperbolic tangent, although
k/U2 (2) did not undergo a bad fit over there without that term. However, its fit was too
bad for the rest of the profile. For these reasons, some effort was focused on improving the
exponential term of k/U2 (1). Several tests were done on a function with the form of k/U2 (3).
As one can see in the Fig. 3.16, its graph is far from the training points. This is because the
MATLAB curve fitting algorithm had problems to fit the k/U2 data with four coefficients,
being required to reduce the dimension in the search space. An accurate initial guess would
solve this issue, but even with the k/U2 (best) coefficients as initial guess, the fitting search
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was impossible. By tuning manually k/U2 (3), it was observed that the a coefficient tended
to be a value close to 0.05327. Despite the fact that the fitting is very accurate, to fix the
0.05327 and 1.2 coefficients in the equation is reducing the flexibility of the model to adapt
to changes in Q and Ω. This is going to be further tested in Section 4.3. The constants of the
discarded models can be found in Table 3.2.
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Figure 3.16 Dimensionless kinetic energy profile and tested mathematical models.

Table 3.2 Fitting coefficients of the discarded mathematical models for the kinetic energy
dimensionless profile. k/U2 (3) does not appear because the search was not possible.

Model a b c d
k/U2 (1) 5.190E-03 -14.090 - -
k/U2 (2) -4.552E-17 33.140 5.883E-03 0.6341

The turbulent viscosity ratio, β , was also modelled with several custom functions and their
performance can be seen in Fig. 3.17. The analysis firstly started with an exponential decay,
β (1), which imitated well the shape of the profile. The power function inside helped to recreate
the curvatures. As the shape in the intermediate region is similar to the shape experienced
in the axial velocity profile, the same power functions were tried with a hyperbolic tangent
in β (2), but the fit close to the wall was fully linear, with no curvature approaching β = 0.
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This happened even when changing the hyperbolic tangent by an exponential function, so
this obliged to a different custom function. For this reason, in β (3) a set of exponentials were
tried, as in β (1) this function showed a promising curve shape. Some difficulties in fitting
the r/R < 0.8 region were noticed and the addition of a coefficient d in the power of the left
hand exponential solved that successfully. In order to reduce the dimension in the search
space, the former d coefficient in β (3) has been now manually controlled and fixed to 13, as
it mainly controls the curvature approaching β = 0. The fitting coefficients of the discarded
models are shown in Table 3.3.
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Figure 3.17 Viscosity ratio profile and tested mathematical models.

Table 3.3 Fitting coefficients of the discarded mathematical models for the turbulent viscosity
profile.

Model a b c d
β (1) 4.681 7.743 - -
β (2) -4.561 221.5 0.8234 4.513
β (3) 5.785 0.458 3.975 10.170

75



3.4 Proposed Mathematical Models for the Dimensionless Profiles From the Rotating
pipe

After fitting the numerical profiles with different custom mathematical models as dis-
cussed above, the proposed ones are those labelled as best
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=
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β
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e−cβ (( r
R )
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)
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The coefficients of the mathematical models, addressed for sake of notation as γi, where
γ = a,b,c,d and i = z, t,k,β , are shown in Table 3.4. In Figs. 3.18-3.20 the goodness of the
models is revealed through the 95% prediction bound and goodness indicators described in
the following. In addition to the fitting described here, the model with bigger uncertainty in
the prediction is k/U2. The model for vt/U has some slight uncertainty in the prediction as
well, but we decided to keep it as simple as possible (with only two unknown coefficients).
More coefficients could be added and the fitting could be improved, but the trend is clearly
a power function and it would unnecessary complicate the model and the performance for
wider intervals.

It is important to ensure that their values are enclosed in a short confidence bound. This
means that the uncertainty in the prediction of the fitting coefficients is small, giving a sense
of robustness and reliability (that can be a special need for the greater domains appearing in
optimisation problems). The confidence bounds for the coefficients are calculated as

cb = γi ± t0.95, vSEγi, (3.8)

where t0.95, v refers to the two-tailed value of the inverse of t-Student distribution for v degrees
of freedom and a 95% level of confidence, and SEγi refers to the estimated standard error of γi.

The results can be seen in Table 3.4 for the deterministic base case (Re = 23000 and
S = 1). These values, as well as those from Table 3.5, were monitored for all the fittings of
the collocation points for the Sparse Grids required simulations in Chapter 4 when studying
the propagation of uncertainty, showing almost identical results for the goodness and variance
in the confidence bounds.

In Table 3.5 it can also be found the goodness indicators of the fit for the deterministic
base case. As the coefficient of determination (defined in this thesis as R̂2 in order to not

76



3.4 Proposed Mathematical Models for the Dimensionless Profiles From the Rotating
pipe

Table 3.4 Fitting coefficients of the dimensionless profiles for the deterministic base case.

Coefficient Value, γi 95% confidence bound, cb
az -1.0474 (-1.1231, -0.9718)
bz 3.0230 (3.0169, 3.0291)
cz -0.6538 (-0.6765, -0.6310)
dz 34.1414 (32.6899, 35.5929)
at 0.9709 (0.9563, 0.9854)
bt 2.0052 (1.9048, 2.1056)
ak -0.1708 (-0.1815, -0.1602)
bk -0.0880 (-0.0890, -0.0870)
ck -1.6985 (-1.7538, -1.6432)
aβ 1.9314 (1.7141, 2.1486)
bβ 0.7933 (0.7712, 0.8154)
cβ 4.0472 (3.9363, 4.1581)
dβ 1.8621 (1.8048, 1.9194)

confuse with the radius of the pipe) is not the best measure for the goodness of a fit, specially
in non-linear cases or experiencing overfitting, the Sum of Squares due to Error (SSE),
Adjusted-R̂2 and Root Mean Squared Error (RMSE) are also given. These are typically
defined as

R̂2 =
Sum of Squares of Regression (SSR)

Total Sum of Squares (TSS)
=

∑
Nt
i=1(ŷi − ȳ)2

∑
Nt
i=1(yi − ȳ)2

= 1− SSE
T SS

, (3.9)

Ad justed − R̂2 = 1− SSE
T SS

(Nt −1)
v

, with v = Nt −m, (3.10)

SSE =
Nt

∑
i=1

(yi − ŷi)
2, (3.11)

RSME =
√

MSE =

√
SSE

v
. (3.12)

In Eqs. (3.9)-(3.12), Nt stands for the number of training points (Nt = 69 from r/R = 0
to r/R = 1), v indicates the number of independent parts for N data points (also called degree
of freedom for error), m the number of coefficients to calculate, yi the values of the training
points (CFD data), ŷ the values of the models at the training points and ȳ the mean value.
When increasing the number of terms in the models, R̂2 is increasing despite of the model
can be overfitted. It is hence important to consider the Adjusted-R̂2, whose value in case of
overfitting starts to decrease. As Adjusted-R̂2 is always less or equal to R̂2, and in Table 3.5
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they are both very close each other, it has been accepted as an indicator of good fitting.

 

r

Figure 3.18 Axial and azimuthal velocity profiles from CFD and mathematical model fits
with prediction bounds.
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Figure 3.19 Dimensionless kinetic energy profile from CFD simulations and mathematical
model fits with prediction bounds.

It can be noticed that the models do not directly depend on any input parameter, hence
Eqs. (3.4)-(3.7) can be written as

(vz/U, vt/Ur, k/U2, β )T = F(γi), (3.13)
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Figure 3.20 Turbulent viscosity ratio profile from CFD simulations and mathematical model
fits with prediction bounds.

Table 3.5 Goodness fitting of the dimensionless profiles for the deterministic base case.

Profile SSE R̂2 Adjusted−R̂2 RMSE m v
vz/U 0.0044 0.9997 0.9997 0.0082 4 65
vt/Ur 0.0536 0.9947 0.9946 0.0283 2 67
k/U2 3.9766e-06 0.9865 0.9861 2.4546e-04 3 66

β 16.6794 0.9999 0.9999 0.5066 4 65

with T denoting transpose. In order to provide input-dependent mathematical models,
polynomial regressions can be also built for the coefficients, so that γi would depend on Q
and Ω. This can be found in Chapter 4, where an application to Uncertainty Quantification is
given, as well as the dependency of the models on input uncertain parameters rather than
coefficients γi.
For implementation of the models as boundary conditions in FLUENT, in Appendix A an
User Defined Function (UDF) is given, in order to facilitate the use of these models in future
works. This function is coded in C, but it could be easily exported to any other coding
language.
In Fig. 3.21 a comparison of both the use of Simulation 1 and the models as inlet boundary
conditions is shown for the Nusselt number along the plate. It can be noticed that the errors
are not very substantial and the models slightly overestimate the numerical Nusselt values.
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Figure 3.21 A comparison between the use of Simulation 1 and the models as inlet boundary
conditions. Re = 23000, S = 1 and H/D = 5.
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Figure 3.22 Comparison of Nusselt at stagnation point and various swirl numbers with other
existing data in literature, with different swirl generation mechanisms for a) H/D = 2.5,
and b) H/D = 10. In the legends, exp and CFD stands for experimental and computational,
respectively.
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In literature, despite of several comparisons when using different positions of jets, shape
of the nozzle or surface variations in the plate can be found, there is no comparison among
the best mechanisms for swirling generation to enhance heat transfer results to author’s
knowledge. In this work, the addition of the swirling has been made by means of a rotating
pipe but, as described in Section 3.1, the most popular mechanisms for swirl generation in
impinging jet flows are the use of pipes with spirals or vane-type swirl generators [130], swirl
strips in pipes [248], angled blades to force rotation [174, 173] and the use of tangential jets
to impart the swirl [260].

In Fig. 3.22, the heat transfer at the stagnation point with the rotating pipe mechanism has
been compared with these experimental mechanisms from literature, as well as computational
ones2. In such plot, both a near and a far H/D distance is under analysis, since its impact in
the heat transfer is enormous, because it affects the jet development. Actually, it has been
reported in literature that for H/D > 10 the effect of swirl is unseen [131]. The region of
highest interest for comparison is the stagnation region (the quantity of interest to report is,
thus, the Nusselt at the stagnation point Nu0), since it is the region where the swirl effect is
most noticeable [260]. Moreover, only the Nusselt at this point was checked since the Nusselt
average on the plate depends on the length of the tested surface. For a clear and meaningful
comparison, the plotted literature results will be also briefly explained. The comparisons are
all made with air jets at a short (H/D = 2.5) and a far (H/D = 10) distances and Re = 23000
as benchmark, from the following papers:

• Lee et al, 2002 [130]: Re= 23000 with swirl generated by pipes with spirals (vane-type
swirl generators), whose swirl number is based on geometrical parameters [112] of the
swirl generators independent of the Reynolds number. Data reported at different swirl
intensities. The Nusselt is always decreasing, independently of H/D, when the swirl
intensity is increased. The reported experimental uncertainty for the Nuselt is 3.3%.
The results of this thesis for S = 0 match very well their experiments.

• Baughn and Shimizu, 1989 [20]: The Re = 23700 is a bit higher than the benchmark
one (Re = 23000), but as the Re uncertainty is 2.3%, it is still good for comparison.
In this work only S = 0 is measured and that is the reason of having a single point in
the figures. There is a greater discrepancy in H/D = 10 with respect to other works,
perhaps because that small difference in Re is more sensitive for larger H/D = 10. The
Nusselt uncertainty is 2.4%, as reported in the paper.

• Bakirci, 2007 [18]: Only H/D = 10 experimental data reported with Re = 20000 and
several swirl intensities generated by helical swirl generators (spirals inside the pipe)
plus a conical tip. The Re is slightly smaller than the benchmark one, but useful for
comparison, as Re uncertainty is 3.7%, so the real Re is in the range [19260,20740].

2The uncertainty bars shown in the rotating pipe simulations have been obtained in Chapter 4, and the
procedure to obtain them will be discussed throughout the chapter.
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The Nusselt uncertainty is a 6.8%. The swirl intensity has been obtained by the
same equation from [112] utilised in Lee et al., 2002. In Bakirci, 2007, r1 = 1.25mm,
R = 7.5mm and l = 0.123cosΘ, following the notation in the paper. The experimental
results have the lowest Nu0, with a large difference with respect to the others. Despite
the devices are similar to the ones used in the also compared Lee et al., 2002, the hub
was extended with a conical tip in order to avoid a sudden expansion, that is affecting
the jet and then producing such a different behaviour in the heat transfer. It is important
to point out that in both Bakirci & Bilen, 2007 and Lee et al., 2002 plotted results, the
S = 0 case is consequence of a round jet, not the spirals with zero angle, because the
idea is to compare the match with the non-rotating pipe simulations and experiments.

• Behnia, 1998 [21]: Only Re = 23000 with S = 0 data available, as only non-swirling
flows are under study. In this computational work, the turbulence model used is V 2 f
(k− ε is employed too, but with a very poor performance). The greater discrepancy
with the rotating pipe data is in H/D = 2.5, but in their paper can be observed that the
turbulence model is not very accurate at such distance. With H/D = 10 the match is
almost perfect. No uncertainty is reported on the simulation, and as it will be discussed
in Chapter 4, this is a regular missing data in CFD, that is reported in this thesis for the
rotating pipe approach.

• Yan & Saniei, 1998 [260]: In this work, Re = 23000 and several swirl intensities
imparted by tangential jets are reported. In these results, the Nu0 decreases when S is
increased, for a given H/D. However, is interesting to see the sudden peak in S = 0.21
for H/D = 2.5. These results have been tried to be simulated by other researchers too
[231, 259].

Therefore, having a look at Fig. 3.22, some conclusions can be drawn from the rotating
pipe option.

The suggested mechanism always provides the highest heat transfer and the best control
of the swirl. It is relevant also the fact that for near distances between the nozzle and the plate,
the higher the S, the greater the Nu0. This does not happen with other mechanisms compared.
This is likely consequence of the jet spreading: the swirl generation mechanism plays a very
relevant role on this. Depending on the employed mechanism, the generated jet will have
different patterns and hence, the way it spreads downstream will be different. This spreading
is influential for the impinging conditions affecting the heat transfer as in the swirling jet, the
degrees of jet growth, entrainment of ambient air, and jet decay are affected by the degree
of swirl [18, 195] and other perturbations from generation mechanisms. In [202] has been
reported that even the addition of light swirl can change significantly the behaviour of the jet.
In the rotating pipe, it would be expected to have a decay in the heat transfer at H/D = 2.5
if a certain value of S is surpassed, as the vortex breakdown and spreading angle would be
highly influenced.
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The reason according to flow physics behind the improvement of the heat transfer by increas-
ing S is not clear. A detailed experimental study of the flow structures should take place,
comparing with the other methods too. However, there are some hints, according to detailed
experimental results reported in [61, 62]. These results demonstrate that in a swirling jet
flow from a rotating pipe at a similar Reynolds (Re = 24000) to the benchmark, the jet flow
experiments:

• Increase in the spreading angle.

• Increase in the turbulent intensity.

• Increase of the turbulent intensity in both axial and orthogonal velocity components at
the centreline,

• Entrainment increases with rotation as compared with the non-rotation case, since
rotation makes the potential core break down faster.

• Azimuthal velocity changes sign in the core of the jet at H/D > 5.

• Interesting differences between the the non-swirling and swirling jets with regard to
large scale structures inside the jet.

All these bullet-points represent special features of a swirling jet generated by a rotating pipe,
and the behaviour of other mechanism can be completely different and be affected by the
a short H/D distance. For example, the jet centreline development is different when spiral
vanes are used as in Lee et al., 2002 and Bakirci & Bilen, 2007. These two mechanisms have
no flow in the centreline at the exit of the pipe, what dramatically affects the heat transfer at
the stagnation point, which is at the centreline. This is an important effect in near distances
such as H/D = 2.

For larger distance (H/D = 10), even having a negative slope in the evolution for higher S,
the Nu0 with a rotating pipe exhibits a weaker decay. The worst results took place in Bakirci
& Bilen, 2007 paper, where the Re was slightly lower than the benchmark (Re = 20000).
In such piece of work, a conical tip was placed at the end of the helical generator in order
to reduce the sudden expansion. That was not placed for the similar helical mechanism in
Lee et al., 2002, so it would be interesting to explore whether is negatively affecting to heat
transfer at far H/D distances. Moreover, in Lee et al., 2002 eight grooved channels instead
of four where used, so the gap may be also due to either the blockage at the centre of the
swirl generator for larger swirl angle and/or the high spreading rate for high swirl angles, as
especified in Bakirci & Bilen, 2007. In the generation of swirl by a rotating pipe,

These comparisons led to a further study to see the behaviour at different conditions. A
helpful picture of this scenario can be seen in Fig. 3.23(a).
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Figure 3.23 a) Evolution of the optimal Nu0 with Re = 23000, and different Ω and H/D. b)
Correlation fit Ω−H/D.

This plot has been built from several simulations (each blue point stands for a CFD
simulation). There, it can be observed that for Ω = 0, the optimal value of the Nusselt is near
H/D = 6, as reported in many literature sources. When Ω is increased, the best option is a
very close nozzle-to-plate distance. It is also very interesting to see that the evolution of the
optimal Nu0 points have a very linear trend as shown in 3.23(b). From this plot, it is easy to
get the best Ω for a specific H/D and vice versa, in order to get the highest Nu0.

To show the qualitative improvements of a rotating with respect to other methods in
literature, the differences amongst mechanisms can be broken down as:

1. When using helical (or vane-type swirl) generators as in Lee et al., 2002 and Bakirci
& Bilen, 2007 or longitudinal swirling strips as in [248], a new pipe device must
be mechanised and it experiments always lower heat transfer than the rotating pipe.
Moreover, as can be seen in the paper, it is important to remark that with this swirl
generation mechanism the heat transfer at the stagnation point for small H/D decreases
when increasing the swirl.

2. When using oriented blades as in [175, 174, 173] for a water jet flow, in non-swirl
conditions (blades at zero angle but affecting the jet) the flow performs poorly the
heat transfer. In the paper can be read that when increasing the Reynolds number, the
heat transfer is enhanced but, as the swirl is strongly Reynolds number dependent(S =

S(Re)), it cannot be controlled independently. A similar case is Yan & Saniei, 1998,
where three tangential air mini-jets impart the swirl.

3. Taking into account the devices of the items above, some other issues are addressed by
the rotating pipe option:
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• If a single non-swirling round jet flow is desired in the experiments, the mech-
anisms at zero angle are still affecting the flow. This could only be avoided by
dismantling.

• The helical guide-ways and the blades can be oriented for a desired swirl intensity,
but there will be a maximum angle at which the swirl cannot be increased any
more. With a rotating pipe, there is no limitation in principle and the pipe can
spin at any desired angular velocity with a fixed Reynolds number. The big
disadvantage is that the rotating pipe must be very long (55−60D), and not all
the experimental rigs may allow such a long pipe.

To sum up, the use of a rotating pipe for impinging heat transfer provides some flexibility
versus costs advantage (a motor would be needed for the rotation, but this would be less
expensive than mechanising several spiral ducts and one can control more swirl intensities).
Some future investigations can be linked to this swirl generation mechanism or even mixing
this method with other existing in literature to enhance the swirl number ranges or swirl
properties.

3.6 Conclusions

An intensive study of CFD simulations of a swirling impinging flow from a rotating pipe have
been done in the presented chapter. A big emphasis has been laid on the proper simulation of
the swirl of the flow confined in the pipe and on getting the mathematical models for both
the velocity and turbulent profiles at the exit of the pipe, being the turbulent ones a repetitive
lack in literature as researchers tend to impose a turbulent intensity value.

Regarding the simulations of the rotating pipe, the best performance was found with the
Reynolds Stress turbulence Model, as eddy viscosity models tended to simulate the azimuthal
velocity profile as solid rigid body rotation. This is because of this turbulence model takes
into account the anisotropy in the generation of turbulence (directional effects of the Reynolds
stress fields). Some RSM configurations did not properly mimic the experimental results
and some were particularly problematic to solve the boundary layer. The best performance
took place with Linear Pressure Strain and Enhanced Wall Function. This simulation was
addressed as Simulation 1 throughout the document.
Regarding the imposition of models as inlet conditions for Simulation 2 (use of the swirling
flow as impinging jet), four models have been found for the fully-developed state of the
swirling flow confined in the rotating pipe (dimensionless profiles vz/U,vt/Ur,k/U2 and
β ). These models mimic very accurately the computational and experimental results from
bibliography.
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For the simulations of the impingement, the Transition SST k−ω with the Production
Kato-Launder option was the best one. This was not surprising since there are previous
papers suggesting the good performance of this turbulent models in impingements. The
Production Kato-Launder modification is very useful for this kind of problems since the
regular k−ω and k− ε models tends to generate excessive turbulent energy in stagnation
point overproducing turbulent viscosity. In this simulation, it has been also demonstrated that
for small H/D distances, the secondary peak in Nusselt number is in fact product of laminar
to turbulent transition, as a sudden increase in the turbulent intensity reveals. During these
simulations it was also tested how the upper boundary condition of the domain affects the
heat transfer, arriving to the conclusion that is not an influential factor.
A comparison between the use of former Simulation 1 and the investigated models was done
showing that the models are an interesting application. These models are undeniable useful
for further studies requiring several evaluations of the CFD problem such as uncertainty
quantification, sensitivity analysis or CFD optimisation, as Simulation 1 is not required any
more.
It has also been demonstrated that the use of this mechanism for swirling generation has
several advantages with respect to other methods from literature, with the remarkable good-
ness of the possibility of increasing the swirl whilst keeping the Reynolds number fixed.
This is particularly beneficial for close nozzle-to-plate distances, since increasing the swirl
by increasing the rotation of the pipe, the heat transfer is also increased. Other methods in
literature require an increase of Reynolds number, what might be impossible under some
circumstances and/or increase the angle of blades/spirals of ducts, which is constrained to a
maximum angle and manufacturing costs. On the other hand, the bigger disadvantages of the
rotating pipe are that the pipe must be very long (55−60D) to achieve the fully-developed
state, and not all the experimental rigs may allow such a long pipe. Also, a motor must be
purchased, but this should be cheaper than designing and manufacturing the other existing
devices in literature.

Despite in this chapter the CFD problem has been modelled and discussed, there is an
important missing part: the addition of experimental uncertainty to CFD simulations. And
this is an important regular lack in computational literature. To improve this is the objective
in the next chapter, which completes the earlier computational runs by a dedicated stochastic
approach to measure the impact of uncertainties in the performance of both Simulation 1 and
Simulation 2, as well as when the mathematical models are used to avoid the first simulation.
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Chapter 4

A Swirling Flow Generated by a
Rotating Pipe for Heat Transfer by
Impingement Under Uncertainty. Part II:
Uncertainty Quantification

The investigation in this chapter can be considered an extension of the work in Chapter
3, where the reader is redirected for the state-of-the-art literature review. In this part, the
modelling under uncertainty is the core topic, with application to the CFD simulations and
the impact with mathematical models. The structure is as follows.

In Section 4.2, the uncertainty quantification process is described, in order to better
understand Stochastic Collocation Method and the usage of sparse grids. The decision on
which UQ method can be chosen is also explained. In Section 4.3, the coupling between
Simulation 1 and Simulation 2 and the found models was explained, for a further comparison
between the resulting uncertainties with and without implementing the models for the profiles
in Section 4.4 in this chapter. In this section, different probabilistic distributions for the
inputs are also tested. Finally, in Section 4.5, the relevant conclusions of this piece of work
are given. In Appendix A, expressions for the coefficient of the models are given, and in
Appendix B a piece of code is available for implementation as User Defined Function in
FLUENT, in order to facilitate the use of the models and reproducible research.
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4.1 Introduction and Motivation for Uncertainty Quantifi-
cation

In experimental work, uncertainty and error measurements are often given but, when per-
forming CFD simulations, this is not a common practice. If one needs to provide reliable
results, this should be a must to offer the most complete overview.
Generally speaking, in CFD simulations, boundary conditions and geometries are imposed,
ignoring any fluctuation or inaccurate description that can be noted in real performance
scenarios. This therefore rise the need of carrying out these tasks under stochastic analysis
instead of a deterministic approach. For this reason, uncertain inputs are mathematically
modelled by probabilistic distributions from experiments. This is often unavailable and
modellers themselves tend to provide the assessment of input uncertainties by means of
intervals as well as the study of this propagation, based on expertise.

The introduction of experimental uncertainties for a probabilistic approach to the compu-
tations let us know also how robust an experimental design can be prior the construction. In
the present case scenario, there is a rotating pipe available at the University of Málaga, that
may be used for heat transfer by impingement with swirl. Prior the construction of the test
rig, it is possible to develop computational simulations to see whether such rotating
pipe is robust enough or not, being necessary a better calibration or new devices. This
is a reason why currently the computational approaches under uncertainty are gaining
popularity, as discussed in Section 1.1 in Chapter 1.

4.1.1 Methodology and Challenges

In Uncertainty Quantification (UQ) the aim is to determine how likely the outputs of a model
are when the inputs are not precisely defined. Once the input uncertainties are modelled
under a probabilistic approach, it is necessary to find an appropriate UQ method.

The uncertain inputs in this study are the volume flow-rate, Q, and the angular ve-
locity, Ω. Initially, it was intended to deal with both the Reynolds number, Re, and Swirl
Intensity, S, as uncertain, but this would complicate the problem as these two parameters
share Q in their formulas, being necessary to take into account the correlation between
Re and S. Both the volume-flow rate and the angular velocity of the pipe are independent
uncertain inputs. Uncertainties in these parameters of the pipe are translated into propagated
uncertainties in both the exit of the pipe and heat transfer, which is quantified by the Nusselt
number, Nu. Despite the fact that only two variables may seem a small size problem, in
uncertainty analysis in CFD it is a common stochastic space dimension and the problem is
computationally expensive already (a single two-steps CFD run takes around half a week,
depending on the mesh size).
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4.1 Introduction and Motivation for Uncertainty Quantification

In this work, the impinging swirling jet is created by a rotating pipe with the fully-
developed flow at the exit and under the conditions discussed in Chapter 3. To remind the
highlights, the inlet is a uniform flow with Reynolds number Re = 4ρQ

πDµ
= 23000, whilst

the outflow is turbulent at the exit. The Swirl number is set to S = πD3Ω

8Q = 1 with Q the
volume-flow rate and Ω the angular velocity of the pipe. The simulations are developed as
2D steady Reynolds-Averaged Navier-Stokes (RANS) equations with a SST k−ω turbulence
model.

In order to choose the most efficient method, one has to take into account the knowl-
edge about the random inputs (can I construct the probabilistic distributions? are they
uniform/normal/etc.?), computational budget/computational cost (how many simulations
can I afford? how long does a deterministic run take?), intrusiveness (is it worthy to code
inside the solver?), desired accuracy (is precision a crucial thing for my approach? can I use
approximations?), and the desired outputs (is the mean and variance enough? sensitivity
analysis? probabilistic distributions?).

Explaining in a nutshell the content in Chapter 2, the probabilistic methods can be either
intrusive or non-intrusive. In this chapter, a non-intrusive approach is chosen since does
not require to code inside the solver and can deal with any model as a black-box (FLUENT
software in this case). On that basis, Monte-Carlo simulations [152] are the most popular
approach in literature because of the easy implementation [168, 216, 59, 68]. This non-
intrusive method is based on a random sampling on the input uncertainties in order to obtain
enough outputs to build the desired probabilities. As the convergence of the method is slow,
being of order O(1/

√
Ns), with Ns the number of samples, in order to reduce the number of

model evaluations and increase the efficiency, some other sampling methods are available in
literature such as Latin Hypercube [93] or quasi-random Halton [64] and Sobol sequences
[29] amongst others. These sampling techniques optimise the Design of Experiment by taking
also into account previous positions of the samples in the stochastic space, and the error can
be essentially considered as a O(1/Ns). It is important to point out that this efficiency is
only really noticed for moderate dimensions of the stochastic space, as for high dimensional
problems they behave similarly to Monte-Carlo (which is dimension independent).

Sampling based methods are then a reliable choice for UQ. However, they normally
require many model evaluations. This is an enormous disadvantage in CFD, as each
model evaluation takes too long, being often unaffordable. To overcome this drawback,
Stochastic Collocation Method (SCM) [149] is implemented in this work. This method
allows to calculate the statistical moments of the output by quadrature rules with specific
collocation schemes that require few CFD model evaluations, outperforming sampling
methods especially by choosing sparse grids for low dimensions in the stochastic space.
When the dimension is high, the cost leads to the so-called Curse of Dimensionality, as the
number of collocation points to evaluate increases exponentially, and it is preferable to keep
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a sampling-based approach.
As remarked above, an efficient way to mitigate the needs of using many collocation points
is the usage of sparse grids [218], for which the accuracy (that is to say the number of
collocation points) can be increased with great control until achieving convergence.

The use of SCM is not a brand new thing. Actually the non-intrusive method has
been successfully applied in many problems such as elliptic partial differential equations
with random input data [16], supersonic aircraft jets [84] or cardiovascular research [208].
However, there is no application to problems like the one presented in Chapter 3, and its
application in a two-step approach is very interesting, since the output of Simulation 1
becomes the input of Simulation 2, being uncertainty propagated. The choice of SCM obliges
to discard other methods such as generalised Polynomial Chaos (gPC) or Kriging surrogates
(KG). SCM is simpler than gPC, because the mean and variance can be computed simply
by Eq. (4.2), and there are no expansion terms in the formulation to be computed, so the
accuracy can be controlled just by the number of collocation points. The gPC would be
recommended in test cases that sensitivity analysis is important too, but in this application is
not necessary as by simple parameter exploration, one can see that Q is more influential than
Ω. SCM is also preferred than KG because it is more accurate and surrogates can be also
built by Eq. (2.6).

When using SCM, as discussed for KG, the exact response can be approximated and
sampling techniques can be applied on it, recovering more statistical information such as
probabilistic distributions of the outputs. For this reason, two types of input probabilistic
distributions were tested for the random inputs: uniform and normal. As experimental
uncertainty data is not available to built the approximate probabilistic functions, at least to
try two different distributions based on expertise provide more information about the impact
of uncertainty on the CFD simulation. The random variables are sampled to evaluate the
SCM surfaces by means of LHS, as it was discussed in this section that it converges faster
than brute-force Monte-Carlo. For more details about the choice of the methods, one can see
Section 2.3 in Chapter 2.

A very important issue in UQ in CFD, and also in optimisation, is the computational cost
of the deterministic runs. Since the swirling flow generation in Simulation 1 is decoupled
from Simulation 2, it would be very useful to find a way to quickly generate the flow profiles
input in Simulation 2. That is the purpose in Sections 4.3 and 4.4.3, where the mathematical
models introduced in Chapter 3 are used to avoid CFD Simulation 1, in order to speed up
the uncertainty analysis process. The UQ results obtained by the application of the models
will be compared with the direct CFD simulation ones.
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4.2 Uncertainty Quantification

4.2.1 Stochastic Collocation Method and Sources of Uncertainty

The method here implemented for UQ is the Non-Intrusive Stochastic Collocation Method
(SCM) developed by Mathelin and Hussaini [149] at NASA. SCM represents a very efficient
option for lower dimension problems in comparison with sampling techniques such as Monte-
Carlo. By means of this method, the aim is to compute the integral of the i-th statistical
moment approximated as

µ(x, α̂)ŷSC

i =
Nq

∑
j=1

y j(x)i
∫

Γ

l j(α̂) fξ (α̂) J(α̂)dα̂, (4.1)

where J(α̂) is the Jacobian of the differential transformation, α̂ the alpha-space, y j(x) the
deterministic CFD solutions from y(x,ξ j) now transformed into y(x, α̂ j), Nq the number of
collocation points and l j the Lagrange interpolation polynomials. The integral in Eq. (4.1)
can be numerically computed by quadrature:

µ(x, α̂)ŷSC

i ≃
Nq

∑
j=1

y j(x)i
Nq

∑
k=1

l j(α̂k) fξ (α̂k) J(α̂k) zk, (4.2)

with zk and α̂k the quadrature weights and points respectively. Both the quadrature and
collocation points can be chosen to coincide. Moreover, Lagrange interpolating polynomials
are defined in the transformed space with the property of li(α̂ j) = δi j for i, j = [1,2, ...,Nq],
which states that at collocation points the values of y and ŷ coincides.

The choice of collocation points is an important matter. If tensor grids are chosen, the
computational cost would be very high, especially when Nξ is not low. A very efficient
alternative is the use of sparse grids. In this analysis, the collocation points of the sparse
grids have been determined according to the Clenshaw-Curtis (C-C) quadrature nested rule
[238] and Smolyak construction [219]. With sparse grids, several levels of accuracy were
tried in the problem, in order to test the convergence as it will be shown in the following
chapters. For further information on these methods, the reader is kindly suggested to have a
look at Chapter 2.

Regarding the sources of uncertainty, these have been based on a mix of literature review,
conversation with experimentalists with conservative insights and the mechanical characteris-
tics of a similar rotating pipe facility at University of Málaga. Depending on the facility and
method used to measure, one may have different uncertainties in the experiments, but the
idea of this research is to understand the propagation of uncertainties in the computational
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problem that mimic the physics of the flow in order to improve the deterministic simulations.
This is an important thing when engineers need to provide reliable results of their compu-
tations, based on realistic uncertainties from literature in the case when uncertainties from
experiments are not available. For that aim, have been taken under consideration papers as
[43], where a 2.5% of variance in uniform distribution in the swirl number and inlet velocity
was applied, that is a 2.5% of variance for Q; [27], where a ±3% of variation as uniform
inlet velocity was applied; or [17], where a maximum of a ±1% error for the velocity has
been found for the described measurement techniques. For this reason, a conservative value
of uncertainty for Q has been chosen as a 5% of variance. In addition, in the Fluid Mechanics
laboratory at University of Málaga, the error of the available rotating pipe was analysed by
engineers and it was found a 0.5% of variance as uncertainty for the angular velocity.

In the present problem, the Reynolds number under study is Re = 23000, as studied in
[130], and the Swirl number is S = 1. For this situation, where the inflow is a uniform flow,
the deterministic mean values of our two uncertain parameters are denoted by Q̄ and Ω̄.
Within that framework, and trying to be conservative with respect to the literature results
as explained in the paragraph above, the source of uncertainties have been determined as
the uniform distributions Q ∼ Uni f (0.95Q̄, 1.05Q̄ ) and Ω ∼ Uni f (0.995Ω̄,1.005Ω̄). The
motivation of modelling the inputs by this type of distribution is conservativeness. The same
probability is assigned to every possible value in the ranges of the variables, so it is ensured
that the worst performance scenario is analysed. This is a frequent approach when enough
information about the probabilistic distribution is not given.

The turbulent intensity has been discarded from the uncertainty analysis as the flow
confined in the pipe is fully-developed and the uncertainties in the turbulent intensity will not
vary the results of the output parameters under study.
A good point of dealing with Q as stochastic input is that several uncertainties such those
related to measurement tools tolerance, pipe diameter, loss of pressure or density variations
can be accounted in only one parameter. That is why being conservative is a good viewpoint.
If one wants to study each parameter separately, the dimension of the stochastic space would
be unnecessarily increased and correlated sampling techniques must be used, and there is no
correlation amongst the chosen random variables. That is, both the cost and difficulty would
increase.

4.3 Coupling the Two-Step CFD Simulations For UQ pur-
poses

The problem under analysis is the CFD simulation of an impinging swirling flow for heat
transfer, generated by a rotating pipe as nozzle. A detailed description of the simulations
and how to proceed can be found in Chapter 3 and it is not going to be taken into detailed
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consideration in this chapter. However, a sketch of this set up is shown in Fig. 4.1.

Ω

r

z

Q

             Inlet 

(laminar, no swirl)

                         Outlet 

(turbulent, fully-developed, swirl)

Q

x

Simulation 1

Simulation 2 

Figure 4.1 Sketch of Simulation 1 & 2. Note that the x and r axis are the same in practice and
with origin in the axisymmetry axis, but for the sake of avoiding confusion in the following
plots and data tables, r is used in Simulation 1 and x for Simulation 2.

It is also important to point out prior to any uncertainty quantification that, as the turbu-
lence model used for the pipe and the one used for the impinging heat transfer problem are
both different, a propagation of uncertainty is taking place from one simulation to another.
The two-step CFD simulations were coupled in the following way: firstly, the CFD simu-
lations of the swirling flow confined in a rotating pipe with the RSM turbulent model were
developed (Simulation 1), and secondly, both the velocity and some turbulent dimensionless
profiles at the exit of the pipe are used as inlet boundary conditions for the heat transfer
simulation (Simulation 2). This was explained already in Section 3.3, and the coupling of the
turbulent models is taking place in the same way. Again, to couple the two simulations for
the modelling, two options have been tested for the Simulation 2 as shown in Fig. 3.14.

To develop UQ, the four dimensionless models given by Eqs (3.4)-(3.7) are used for the
purpose. These models can be defined as metamodels. They conduct a cheap way to evaluate
costly computations or experiments in some fields as, e. g., CFD optimisation, prototyping
or UQ, as it can be sampled with no cost.
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A detailed description of the models has been given in Section 3.4, but the application to a
more general case scenario (varying also the input conditions and then, the fitting coefficients)
was not studied. For this reason, in this section is now shown the behaviour of the proposed
models within the uncertainty space domain.

In Fig. 4.2, 4.3 and 4.4 the goodness of the models is revealed through the good fitting
when Q and Ω are varied in the prescribed intervals. The model with greater uncertainty
in the prediction is k/U2 and for greater values of Ω (see Fig. 4.5) has been noted that its
modelling is performing slightly worse than the others, thus future works can be linked to
improve it. The model for vt/Ur has some notable uncertainty in the prediction as well, but
we decided to keep it as simple as possible.
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Figure 4.2 ( • ) Axial velocity profile from CFD. ( ∗ ) Azimutal velocity profile from CFD. (-
-) Mathematical models for the Clenshaw-Curtis sparse grid with level 2 of accuracy. Each
plot corresponds to a deterministic run and its fit.

One can notice that the models in Eqs. (3.4)-(3.7) do not directly depend on Q and Ω. To
overcome this problem, new simple fitting models based on polynomial regression can be
built. By means of these new models, now the original models for the profiles can be linked
to the input uncertain variables and can be rewritten as

(vz/U vt/Ur k/U2
β )t = F(γi) = G(Q,Ω). (4.3)

These polynomial fits are shown in Appendix B, with the correspondent equations, fitting
goodness and plots. In addition to this, it is recalled that in Appendix A the UDF for its
implementation is given, in order to facilitate the task of using these models in future works
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Figure 4.3 ( • ) Turbulent kinetic energy profile from CFD. (- -) Mathematical models
for the Clenshaw-Curtis sparse grid with level 2 of accuracy. Each plot corresponds to a
deterministic run and its fit.
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Figure 4.4 ( • ) Turbulent kinetic energy profile from CFD. (- -) Mathematical models
for the Clenshaw-Curtis sparse grid with level 2 of accuracy. Each plot corresponds to a
deterministic run and its fit.

for other researchers.

Despite a very accurate model to fit the profiles could be found by numerical interpo-
lation, a new model should be built for each CFD simulation profile losing any possible
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generality. In other words, those original models could not be used for non-simulated cases
of Simulation 1, as we would not have data to feed the predictor. On the other hand, the
introduced models in this work can be implemented to obtain quick dimensionless profiles in
tasks like increasing the accuracy of surrogates models, as it has been done in [85], where it
has been also demonstrated the validity of the models for larger intervals than the ones in
UQ (see Fig. 4.5). The domain of Eqs. (3.4)-(3.7) for the uncertainty analysis is constrained
by Q ∈ [0.95Q̄,1.05Q̄] and Ω ∈ [0.995Ω̄,1.005Ω̄], which is set by prescribed uniform input
uncertainties and it is not guaranteed the good performance for greater domains, except for S
varied from 0 up to 1.5 as demonstrated in Fig 4.5. As mentioned in Chapter 3, one of the
advantages in the use of a rotating pipe to generate swirl is that by increasing the angular
velocity one can obtain a wide range of values of S to test the models.

4.4 Uncertainty Quantification Results of the Two-Step CFD
Simulation

As for uncertainty analysis purposes several simulations are required, they were run at the
computational clusters at University of Málaga, with the support and collaboration of Dr
Joaquín Ortega-Casanova.

4.4.1 Simulation 1. Uncertainty Quantification on the Fully-developed
Turbulent Swirling Flow Generated by the Rotation of a Pipe

Simulation 1 comprises only the flow confined in the rotating pipe not simulating the imping-
ing jet, as explained in Section 3.3. Further information in relation to the CFD simulations
can be seen in Chapter 3 but, in order to provide a brief description in this work as well, it can
be remarked that the computational grid is [nr × nz] = 68 × 450 cells, having a dimensionless
wall distance of y+ < 1 along the walls of the pipe.

Regarding the uncertainty quantification process, in Section 4.2 the Stochastic Colloca-
tion method’s results from analysing Simulation 1 are shown in Table 4.1 & 4.2. It can be
observed that since using few points for the C-C Sparse Grid, the results are not changing
that much. This is a common conclusion in uncertainty analysis when input uncertainties
are based on experimental error, where, under good practice, they use to be very small and
hence the interval under analysis has an almost linear behaviour. This makes unnecessary
in practice to try many collocation points (or accuracy levels) from SG, but as the initial
computational budget for the Design of Experiment (DoE) was established in 65 points (that
is, 65 CFD simulations running for around a week and a half), it has been kept in this piece
of work. The reason behind the 65 points is that a more remarkable non-linear behaviour
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Figure 4.5 Dimensionless profiles from CFD and their models for (a) axial and azimuthal
velocity, (b) turbulent kinetic energy and (c) turbulent viscosity ratio, for optimisation
purposes in [85], where S was varied from 0 up to 1.5.

was erroneously expected, dedicating a more ambitious DoE.
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Table 4.1 Stochastic means of the friction factor (λ ), turbulent intensity (I) , dimensionless
axial (vz/U) and azimutal (vt/U) velocity at r/R = 0.5, at the exit of the rotating pipe.

Level Points λ r/R=1 I(%) r/R=0.5 (vz/U) r/R=0.5 (vt/Ur) r/R=0.5
1 5 0.01373401 8.45783368 1.28350388 0.26677295
2 13 0.01373399 8.45774137 1.28350593 0.26676999
3 29 0.01373404 8.45773429 1.28350567 0.26676957
4 65 0.01373401 8.45773957 1.28350436 0.26676961

Table 4.2 Stochastic variances of the friction factor (λ ), turbulent intensity (I) , dimensionless
axial (vz/U) and azimutal (vt/U) velocity at r/R = 0.5, at the exit of the rotating pipe.

Level Points λ r/R=1 I(%) r/R=0.5 (vz/U) r/R=0.5 (vt/Ur) r/R=0.5
1 5 0.22152010E-06 0.72630289E-03 0.75705236E-04 0.22938667E-03
2 13 0.22059469E-06 0.72520829E-03 0.75256672E-04 0.22639809E-03
3 29 0.22066632E-06 0.72553382E-03 0.75245877E-04 0.22636540E-03
4 65 0.22067550E-06 0.72554659E-03 0.75261365E-04 0.22636600E-03

The most important outputs from Simulation 1 are the dimensionless velocity and tur-
bulent profiles at the exit of the pipe, as the pipe will become the nozzle for the impinging
problem and these profiles will be used as inlet boundary conditions. For sake of convenience,
a quantification of their uncertainties has been also done along the profile as can be seen in
Fig. 4.6 and 4.7, where the mean and standard deviation envelopes of those profiles are shown.

4.4.2 Simulation 2. Uncertainty Quantification on the Impinging Swirling
Jet for Heat Transfer: Boundary Conditions Imposed from Sim-
ulation 1.

In Simulation 2, a heat transfer process took place on a heated flat plate due to a jet impacting
on it. For uncertainty quantification purposes, the so-called Stochastic Collocation method
with Clenshaw-Curtis nested rule with sparse grid quadrature points is developed again, in
order to be consistent with the deterministic simulations from the rotating pipe with relation
to the Q and Ω uncertain parameters. For the deterministic simulations of the impinging jet
domain, the correspondent velocity and turbulent profiles at the exit of the rotating pipe are
used as inflow conditions. The CFD simulations have been conducted as axisymmetric 2D
RANS in FLUENT.
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Figure 4.6 Radial distribution of the axial (◦) and azimutal (2) dimensionless velocity profiles
at the exit of the pipe for the level 4 of the C-C Sparse Grid.
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Figure 4.7 Radial distribution of the Turbulent Kinetic Energy, k, and the Turbulent Viscosity
Ratio, β , at the exit of the pipe for the level 4 of the C-C Sparse Grid.

In Fig. 4.8, the detail of the mesh as well as the boundary conditions are depicted. The
computational mesh for the Finite Volume code is [nx × nh] = 140 × 250 cells, ensuring an
y+ < 1 all along the plate. The dimensionless distance is H/D = 5 and the length of the wall
boundary condition with rotation (rotating pipe) is D, in order to facilitate adaptation of the
inlet flow from Simulation 1. In practice, the x axis is the same as the r one when the pipe was
under study, but it is preferred to use different notation in order to avoid confusion between
the parameters at the exit of the pipe and on the flat plate. Regarding the turbulence model, the
SST k−ω has been chosen and validation has been carried out against experimental data of
impinging jets in as in [177]. For further information about the computational features of the
simulation, including the discretization error and the selection of the SST k−ω turbulence
model, the authors suggest to see Chapter 3 and [177].
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Figure 4.8 Computational grid for Simulation 2 and boundary conditions imposed. Note that
D is the diameter of the pipe but D is also the length of the wall pipe in the computational
domain.

With this built-in framework, uncertainties are propagated from the pipe inputs until the
development of the boundary layer on the flat plate responsible of the heat transfer quantified
through the Nusselt number at the stagnation region and its averaged value on the plate,
computed as

Nuavg =
1

πR2
int

∫ Rint

0
Nu(x′)2πx′ dx′, (4.4)

where Rint stands for the radius for integration of the Nusselt number on the plate and its
value is set to 7.5D. The mean and variance results for the SCM are presented in Tables 4.3
& 4.4. The evolution of the Nusselt number along the plate is shown in Fig. 4.9, where it is
represented with its standard deviation as uncertainty measurement. It can be observed that
the most sensitive part to the input uncertainties is the stagnation area, and for x/D values far
from the stagnation, the input uncertainties are irrelevant.

As it happened when performing UQ on Simulation 1, it can be noted that since using
few points for the C-C Sparse Grid, the results are practically converged. This is again due to
the fact that input uncertainties are extracted from experimental error, that is very small and
hence the interval under analysis has an almost linear behaviour, especially for the Nusselt
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average. This is something that not always happens, since small errors could lead to great
changes in some case scenarios. Regarding the convergence, as the Nusselt average is an
integrated quantity, it is normal to suffer light variations that are not really representing any
oscillation in the convergence of the UQ technique but only small precision errors.

Table 4.3 Stochastic means of the Nusselt number at the stagnation point and its average
value along the flat plate.

Level Points Nu0 Nuavg
1 5 187.8183333 51.45473951
2 13 187.7914166 51.45413825
3 29 187.8031984 51.45457487
4 65 187.7993255 51.45497083

Table 4.4 Stochastic variance of the Nusselt number at the stagnation point and its average
value along the flat plate.

Level Points Nu0 Nuavg
1 5 15.24348189 1.50945541
2 13 15.56881637 1.50878302
3 29 15.47284719 1.50909036
4 65 15.47621431 1.50822473

In order to give a wider insight of the propagation of uncertainties, it is recommended to
plot the Probabilistic Distribution Functions (PDF) of the outputs. One reason is that, if we
focus only in the variance and the mean, two PDFs can be different but share the same mean
and different variance, leading to wrong conclusions. This can be seen, e.g., in multimodal
distributions. To obtain such information, Latin Hypercube Sampling (LHS), as can be seen
in Fig. 4.10, has been applied on the construction from Eq. (2.6). With this technique, several
number of samples have been tried up to achieve convergence (Ns = 50,100,500,1000,2000).
The PDFs for the Nusselt average and at stagnation point are plotted in Fig. 4.11. The output
PDFs accurately fit a Nu0 ∼Uni f (180,195) and Nuavg ∼Uni f (49,53.7) distribution. The
reasons of having a uniform distribution for the output variables might be that we only
have two uncertain parameters, small input uncertainties leading to linearity and uniform
distributions for them. However, in order to gain more knowledge on the propagation of
uncertainties and certify our guesses regarding the linearity, the input uncertain parameters
have been also modelled as normal distributions to check their impact in the probabilistic
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Figure 4.9 Evolution of the stochastic mean of the Nusselt number along the plate ± its
stochastic standard deviation for level 4 of the C-C sparse grid.

functions of the output. For such constructions, the definition of the input has been chosen as

Q = Q̄+σQθ , (4.5)

Ω = Ω̄+σΩθ , (4.6)

with
θ ∼ N(0,1), (4.7)

σQ =CoVQ Q̄, (4.8)

σΩ =CoVΩ Ω̄, (4.9)

where N refers to normal distribution, CoV the coefficient of variation (2.5% for Q and 0.25%
for Ω), θ the chosen probabilistic distribution and σQ and σΩ the standard deviation of the
variables. These values have been chosen as half of the variations used in the definitions of
the uniform probabilistic distributions as otherwise many values in the sampling would be
out of the domain on which the surrogate is defined (that is in fact the domain defined by the
former uniform distributions). Even in such scenario some values, mostly at the tail of the
normal distributions, are still out of the range. For such reason, the sampling has been done
only in the region enclosed in the domain Q ∈ [0.95Q̄,1.05Q̄] and Ω ∈ [0.995Ω̄,1.005Ω̄], as
can be seen in Fig. 4.12. The values of Ns where chosen as Ns = 100,500,1000,2000,4000,
but substracting the points outside the ranges (in the tails), the sampling up to convergence
became Ns = 90,453,915,1828,4556.
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Figure 4.10 Sampling with Ns = 2000 samples.
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Figure 4.11 PDFs for Nu0 (left) and Nuavg (right). The greater the Ns, the better the uniformity
in the PDF. However, as the problem under study has a notable linearity, since a low number
of samples the shape of the PDF is not changing anymore.

The distributions of the output variables are plotted in Fig. 4.13 for different num-
ber of samples in order to achieve convergence in LHS method. The output variables
are now, aproximately, following the distributions Nu0 ∼ N(187.841,8.9155) and Nuavg ∼
N(51.4658,0.863819). One can see in Table 4.5 and 4.6 a comparison on using uniform and
gaussian input uncertainties and it can be noticed in Table 4.6 that variances are almost the
half than for the uniform case. As half of the coefficient of variance used for the uniforms
was used for the gaussian ones, this is suggesting us that, due to the linearity, the features are
preserved.
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Figure 4.12 Sampling with Ns = 4556 samples.
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Figure 4.13 PDFs for Nu0 (left) and Nuavg (right) when sampling the normal probabilistic
distributions.

Table 4.5 Stochastic means of the Nusselt number at the stagnation point and its average
value along the flat plate for the two different input uncertainties tested on the construction
of the surrogate.

Input uncertainties Nu0 Nuavg
Uniform 187.7993255 51.4549708
Gaussian 187.8407596 51.4657798
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Table 4.6 Stochastic variance of the Nusselt number at the stagnation point and its average
value along the flat plate for the two different input uncertainties tested on the construction
of the surrogate.

Input uncertainties Nu0 Nuavg
Uniform 15.47621431 1.50822473
Gaussian 8.91549584 0.86381887

4.4.3 Simulation 2. Uncertainty Quantification on the Impinging Swirling
Jet for Heat Transfer: Use of Models for Outputs from Simula-
tion 1.

To quantify the propagation of uncertainties when implementing the models given by Eqs.
(3.4)-(3.7) in a User-Defined Function code in FLUENT, SCM has been applied again for
levels 1 and 2 in the Clenshaw-Curtis sparse grid, in order to compare with the CFD inlet
condition case (coupling between Simulation 1 and Simulation 2). Proceeding this way, the
results will show not only the propagation of the experimental uncertainties, but also of the
modelling errors. The obtained results are shown in Tables 4.7 and 4.8. Notice that negative
values in the relative error reveal an increase of the Nusselt number in the modelled case. It
can be seen that, despite the models have fitted very accurately with CFD data profiles in
the modelling phase, the small fitting errors are propagated through the simulation having a
relative error of almost an 8.7% in the Nusselt number at the stagnation point by using the
CFD inlet condition case as reference result. This error could seem large, however, if both the
results of the simulation of the Nusselt number with the CFD profiles and the models as inlet
conditions are plotted (Fig. 4.14), it can be noted that the results are not that different and the
8.7% of variation in the variance is not that relevant. This difference is even smaller than any
other taking place in these computational simulations with a slightly coarser but valid mesh,
for instance. In CFD validation against experimental data, errors usually are remarkably
greater. Other relative errors in the tables can be considered negligible according to the same
reference. It has been hence demonstrated that the use of the mathematical models is not
introducing a dramatical source of errors as well as reducing the computational budget at
the same time. It is therefore recommended its implementation in further works involving
swirling flows generated by rotating pipes when initialisation of RANS/LES/DES/DNS simu-
lations, prototyping, optimisation, uncertainty quantification or sensitivity analysis purposes
are desired.
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Table 4.7 Stochastic means of the Nusselt number case at the stagnation point and its average
value along the flat plate. Relative error (in %) between the CFD and model input results.

Level Points Nu0 Nuavg Nu0,model Nuavg,model εr,Nu0(%) εr,Nuavg(%)

1 5 187.81833 51.454739 188.886500 51.245621 -0.5687 0.4064
2 13 187.79141 51.454138 188.859827 51.244494 -0.5689 0.4074

Table 4.8 Stochastic variances of the Nusselt number case at the stagnation point and its
average value along the flat plate. Relative error (in %) between the CFD and model input
results.

Level Points Nu0 Nuavg Nu0,model Nuavg,model εr,Nu0(%) εr,Nuavg(%)

1 5 15.243481 1.509455 16.467074 1.521298 -8.026989 -0.784601
2 13 15.568816 1.508783 16.930460 1.521590 -8.745970 -0.848853
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Figure 4.14 Comparison between Nusselts when using the CFD profiles and models for the
inlet boundary conditions.

4.5 Conclusions

CFD simulations of a two-step heat transfer process have been carried out for modelling
and uncertainty quantification purposes. The outflow from Simulation 1 (generation of
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a fully-developed swirling turbulent flow due to the rotation of a circular pipe) has been
mathematically modelled, in order to provide reliable equations without the needs of simulat-
ing the physics when requiring new profiles to impose in Simulation 2 (application of the
swirling flow as impinging jet onto a heated flat plate). These models have been also used
for uncertainty quantification purposes as they require several runs of the simulations whose
computational cost would be reduced.

The key contribution of this chapter is to complete the deterministic CFD simulations
in Chapter 3 by a quantification of physical uncertainties. This analysis has been extended
not only to the simulations, but also to the application of suggested mathematical models to
avoid the so-called Simulation 1. This chapter is a very usual lack in computational research
in heat transfer and fluid dynamics, since these studies tend to develop just deterministic
simulations.

The Stochastic Collocation Method with Clenshaw-Curtis nested rule has been applied
for uncertainty quantification to the two-step CFD simulation, reducing the number of collo-
cation points with sparse grids. The main purpose of this study is to improve the deterministic
approach presented in Chapter 3. The input uncertainties have been the angular velocity Ω

and the volume flow rate Q. An advantage in studying Q as uncertain is that several uncer-
tainties such those related to measurement tools tolerance, pipe diameter, loss of pressure or
density variations can be accounted in only one factor. If one wants to study each parameter
separately, the dimension of the problem under study would unnecessarily be increased and
also correlations would complicate the problem not being a simple Stochastic Collocation
approach feasible.

From the UQ study on Simulation 1, results have shown that the physical uncertainties in
Q and Ω slightly vary the friction factor, λ , and the turbulent intensity, I. In the dimensionless
velocity profiles, it was noticed that the most sensitive part of the dimensionless axial velocity
profile is r/R = 0, and r/R = 1 for the azimuthal one. For the dimensionless turbulent kinetic
energy, k/U2, the most sensitive area is the one located at the beginning of the decay, due to
the strong effect of the wall. For the laminar to turbulent viscosity ratio, β , the sensitivity
trend is pretty similar to the dimensionless axial velocity one, having around the axis the
largest variances. This is the most sensitive profile to the input uncertainties.

The UQ study on the heat transfer process in Simulation 2 was developed in two different
ways: by imposing the dimensionless outflow profiles from Simulation 1 and by imposing its
models by User Defined Functions as inlet boundary conditions.
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In both cases it has been observed that the input uncertainties have some impact on the
Nusselt number along the plate, but not very remarkable. It was also noticed that Q was
the most influential parameter, as Ω had a very light contribution to uncertainty, so this is
revealing that in an experimental facility the engineers have to put more effort in reducing
the variance in the volume-flow rate by i. e. avoiding pressure loss or mechanical tolerances
manufacturing the nozzle. It has been also studied how the output of the problem changes
when using two different probabilistic distributions: uniform and gaussian. These results
have shown that the probabilistic distribution of the Nusselt number is almost uniform when
both input uncertainties are uniform, and gaussian when both input uncertainties are gaussian
as well, and this conclusion is product of the linearity existing under the uncertain conditions.
In all the uncertainty studies presented in this work can be observed that since using few
points for the C-C sparse grid, the statistical moments are not changing dramatically. This is a
common conclusion in uncertainty analysis when input uncertainties are based on experimen-
tal errors, which under good practice, usually are pretty small and hence the response under
analysis has the commented linear-like behaviour. This is often an advantage in problems
where other approaches such as sensitivity-based uncertainty are carried out, since exact
sensitivities can be calculated from an adjoint approach and costless Taylor expansions can
be built for sampling purposes.

Regarding the imposition of models as inlet conditions for Simulation 2, four models
have been given for the fully-developed state of the swirling flow confined in the rotating
pipe (dimensionless profiles vz/U, vt/U, k/U2 and β ). These models fit very well with
the computational results and a study of the propagated errors when implementing them
in the uncertainty quantification by Stochastic Collocation Method has been given. It has
been demonstrated that the evolution of the Nusselt number is almost insensitive to the
modelling uncertainty and one can avoid to run the CFD solver for Simulation 1 every time a
deterministic case is required for higher levels in the sparse grid.

In Chapters 3 and 4 it has been addressed the modelling under uncertainty of a swirling
flow generated by a rotating pipe for heat transfer by impingement. As earlier said in Chapter
1, there is another industrial jet flow of interest in this thesis: an aircraft under-expanded
jet. In the next chapter, a framework for the propagation of uncertainties in the research
modelling of these jets involving several stages will be shown.
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Chapter 5

A Framework for Uncertainty
Propagation in Under-expanded Single
Jet Simulations

A classic approach to computational fluid dynamics is to perform simulations with fixed
parameters and boundary conditions in order to model a specific case-scenario. However,
this is not accurate enough, due to the fact that under realistic conditions, some parameters
may vary. In recent years, the interest of undertaking the simulations under uncertainty is
increasing, but is not yet a common rule and ‘incomplete’ simulations are still taking place.
This procedure could be missing information such as whether mechanical tolerances are
influential in dramatic parts of the flow or the relevancy in accurate tuning of turbulence
models. Taking this knowledge into consideration, Non-Intrusive Uncertainty Quantification
has been applied to 3D Reynolds-Averaged Navier-Stokes simulations of an under-expanded
jet, in order to understand the impact of input uncertainties. Results show that some regions
of the jet plume simulations are very sensitive to a combination of both physical and turbu-
lence model variance, obtaining an visualisation of the propagation of uncertainties in the
computational domain.

The last part of the framework deals with the Parabolised Stability Equations, which are
considered for an approach under uncertainty. As these equations do not deal with turbulence
nor stagnation pressure as inputs, this framework provides a new way to quantify the impact
of earlier stages uncertainty on jet instability.
Breaking down this chapter into sections, Non-Intrusive UQ methods have been applied to
3D steady Reynolds-Averaged Navier-Stokes (RANS) simulations with elsA solver [32],
whose set-up is described in Section 5.3. Due to the fact that common sampling methods
such as Monte-Carlo are impractical in terms of computational cost, UQ will be deployed
with two different approaches. First, generalised Polynomial Chaos [258] is applied in order
to quantify the uncertainty in Section 5.4.2. Second, in order to have another method for
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comparison, Kriging surrogates are built to ensure the quality of the analysis. In Section
5.5, a sensitivity analysis is conducted with both methods, in order to assign to each input
uncertainty its contribution to the total variance. In Section 5.6, Stochastic Collocation is
applied to PSE to quantify the impact of framework’s input uncertainties on jet stability.

5.1 Introduction and Motivation

A framework for propagation of uncertainties in the research of under-expanded jet flows is
presented in this chapter. The analysis begins with the experimental uncertainty agreed with
experts and its propagation through 3D CFD simulations. A latter use of the base-flows for
Parabolised Stability Equations (PSE) in order to perform a stochastic analysis on stability is
also developed. Experimentalists tend to provide error analysis in their research but compu-
tationalists do not normally. This study aims to offer an alternative to this lack, especially
missed in stability analysis literature. This framework is developed to show an approach to
the common deterministic one in computational research of jets, due to the fact that sampling-
based approaches on the simulations are computationally expensive and time demanding.
Thus, this approach is specially interesting in the current trend, as computational approaches
are becoming more and more relevant, even changing the former classical approach in
design of aircraft engines. Formerly these designs used to require a 90% of experimental
tests and 10% of computational approach, but nowadays the situation has been inverted [157].

5.2 Literature Review

There are many papers dealing with UQ in CFD and other computational problems, where
sampling approaches are not practical. However, there are few references on applications
closely related to this work. The Non-Intrusive UQ methods used in this chapter were
the so-called generalised Polynomial Chaos (gPC) and Kriging surrogates, as well as the
Stochastic Collocation method, already introduced in previous chapters of this thesis.

Interesting literature about gPC whose application can serve as guidance for this work are
the sensitivity analysis of the impact of impurities in CO2 pipeline failure [26], uncertainty
analysis of the effect of inlet uncertainties in pipes [43], comparisons with other UQ methods
such as Stochastic Collocation [58, 2], uncertainty in hot gas turbines [183] or sensitivity
analysis for parametric uncertainty in turbulent computations [142].

On the other hand, several works can also be found where Kriging surrogates are con-
ducted such as in CFD optimization of combustion chambers [55] and aerodynamic opti-
misation of civil structures via CFD and Kriging surrogates [24], variance-based sensitivity
analysis in structural failure [242], and of course UQ [56, 108, 137], but in general trend is
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not as popular for uncertainty analysis as gPC.

To the knowledge of the author, there is no literature about UQ on aircraft thrust
jet flows in the presence of shock-cells, despite that it has been already applied to CFD
simulations of synthetic jets as in [1], by means of polynomial chaos, and underexpanded
jest in a crossflow for turbulent mixing [82], to quantify physical uncertainties in transonic
airfoils to point out the importance of the sensitivity of shocks [253] or to uncertainties in the
turbulence models for transonic wall-bounded flows [211]. All these works have similarities
with the one here treated in terms of the stochastic approach in CFD. Some of them are
even dealing with the well-known uncertainty implicit in turbulence modelling as it is going
to be done here with the laminar to turbulent viscosity ratio. In [157] one can also find
several approaches to aircraft engines, which might seem closer to this work in thematic, but
different as it focuses on the turbomachinery side.

In compressible supersonic jet flows, UQ is a particularly interesting analysis, as the
imperfectly expanded conditions generate shock-cells. It is also a concern that small
changes in input parameters may lead to sensitive variations in shock-cell position and
then to noise emission [227, 180, 182], which currently represents a major concern in robust
design because of environmental regulations and the challenge of perceived noise reduction
of 65% by 2050 with respect to the values dated from the year 2000 [42].

In the under-expanded condition, the flow exits with a pressure pe greater than the ambi-
ent one, pamb and obliges the flow to adapt to the ambient pressure. This adaptation is carried
out through series of expansion fans and oblique shocks, originating the so-called shock-cell
pattern as shown in Fig 5.1. In the figure, (+) stands for the regions where pe > pamb, (+)
refers to the regions where pe = pamb and (-) where pe < pamb. The pressure mismatch leads
to expansion fans attached to the lip of the nozzle. These are refracted at the jet mixing layer
as compression waves, which collapse forming an oblique shock. Both oblique shocks, one
corresponding to the upper side of the nozzle and the other to the lower side, will meet at
an interception point P. This point indicates the end of the expansion zone in the cell. The
oblique shock will impinge on the jet boundary at the reflection point Q, marking the end of
a shock-cell [86, 33].

The last part of the framework is about using the stochastic base-flow from the former UQ
on RANS to stretch the propagation of uncertainty up to the latest design phase of Parabolised
Stability Equations (PSE) [95] for stability analysis. As stability analysis, in this work is
interpreted the study of the evolution of the growth rate and spatial wavelength of Kelvin-
Helmholtz instabilities [237, 154]. This type of instability is a growth of perturbations at the
interface between two fluids due to shear. Such perturbations grow and become unstable
typically by forming waves, powered by the kinetic energy of the shearing motion and
difference in velocities. In the absence of viscosity and gravity, only inertia can exert a
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Figure 5.1 Shock-cell pattern [33].

stabilizing influence on perturbations and damp oscillations before growth commences [200].
A detail of their generation is depicted in Fig. 5.2.

(a)

(b)

Figure 5.2 a) Generation of Kelvin-Helmtholtz instabilities (Image from [165]). b) Detail of
shear-layer Kelvin-Helmholtz instabilities in a round jet (Image from [122]).

There are several works on the use of PSE for stability analysis as in optimisation in
control of Tollmien-Schlichting waves [240] or the to be presented case of jet flow instability
[261, 13, 12, 11]. However, to the knowledge of the author, there is no stochastic approach
for PSE on jets in literature, despite the fact that one can find few papers on the application
of UQ on PSE such as in roughness modelling in crossflow disturbance generation [161] and
assessing the boundary layer instability [147].
This approach is therefore a light step beyond in the field and it can be repeated for more
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exhaustive analysis by practitioners in order to develop more robust designs. This can also
become in an interesting initial contribution to determine the impact of uncertainty in the
noise emission, since it has been demonstrated that instability plays an important role
in noise emission [227, 193, 135].

5.2.1 Methodology and Challenges

The current trend in industry and academia related to under-expanded jets is to focus on
deterministic simulations, either in CFD or PSE, as noticed in the literature review. When UQ
is applied to CFD simulations, in industry is also frequent to see mostly surrogate-based
approaches, being Kriging the most applied method. Surrogates have the advantage of
flexibility, since they can be randomly sampled, and if the dimension is increased (that is,
more variables are added to the stochastic space), the new samples does not require special
needs as in quadrature rules. If not only UQ but also optimisation is a purpose in the industrial
problem, surrogates are then a quite flexible tool, but less accurate than collocation rules. It
is nowadays also frequent to see industrial research on the appplication of polynomial chaos
expansions, possibly because in academia became very popular (even trendy) and some
codes, toolboxes and packages are available for any purpose.

To develop a framework for the propagation of uncertainties in modelling of under-
expanded jet flows is a multi-step task that was not handled before, but certainly has a
great both industrial and academic interest. The tested procedure is summarised in Fig. 5.3.

Figure 5.3 Sketch of the uncertainty propagation through experiments, CFD simulations and
PSE equations.

The first step is to model the experimental and turbulence model uncertainty. One
of the greatest sources of uncertainty that one can recognise in these jet flows is the mass-flow
rate, which is in fact related to other variables such as the nozzle diameter or stagnation
pressure, being such pressure a chosen random input. As the test rig was not yet built to
measure the stagnation pressure (ps) uncertainty, it was agreed with the experts to set a
specific value based on a range to compute the input uncertainty by a conservative uniform
distribution. The same approach was followed for the second source of uncertainty, the
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laminar viscosity ratio (Rt), which was identified by computational tests.

The second step involves the computation of UQ and sensitivity analysis in the CFD
simulations of the jet flow. As earlier discussed in the literature, there is no previous
bibliography on the analysis of uncertainties in aircraft under-expanded jet flow com-
putations, despite the fact that helpful information regarding the quality of the simulations
can be extracted, since some regions are critical to be accurately computed if reliable conclu-
sions based on the simulations are desired. This analysis hence pretend to fill the gap with
some contributions, providing metrics to measure the impact of uncertainty.

Non-Intrusive UQ methods have been applied to 3D steady Reynolds-Averaged Navier-
Stokes (RANS) simulations with elsA solver [32], whose set-up is described in Section 5.3.
Due to the fact that common sampling methods such as Monte-Carlo are impractical in terms
of computational cost, UQ will be deployed with two different approaches. First, generalised
Polynomial Chaos [258] is applied in order to quantify the uncertainty in Section 5.4.2.
Second, in order to have another method for comparison, Kriging surrogates are built to
ensure the quality of the analysis. The Stochastic Collocation Method (SCM) could also
be applied, but it was discarded since its results would be quite similar to the ones with gPC,
but without the possibility of computing a sensitivity analysis instantaneously. The direct
sampling methods were discarded because they are unaffordable: their convergence rate
is too slow and it is not possible to have such a large computational budget in this problem.
Each CFD simulation takes half a week with the advanced available computational resources
at CERFACS.

Kriging surrogates were also tried because in Section 5.5, a sensitivity analysis is con-
ducted with gPC and results looked misleading. Then, to try a second approach was important
to figure out what is happening, and the Kriging surrogates were sampled by Latin Hyper-
cube Sampling (LHS). With the sensitivity analysis, the objective is to assign to each input
uncertainty its contribution to the total variance at each point of the domain.

The third step deals with the impact of the prescribed uncertainty in jet stability. In
Section 5.6, SCM is applied to PSE to quantify the impact of framework’s input uncertainties
on jet stability. This method is chosen because this third part of the analysis depends on
the computational budget in the second step, and SCM tends to require the same or less
collocation points than gPC to exactly compute the integrals, and it is not necessary to tune
the order of an expansion. Since the PSE formulation does not deal with turbulence,
there is no approach in literature to measure the impact of turbulence modelling in
stability, and to fill this gap is an interesting motivation. Turbulence is a crucial part of fluid
dynamics simulations and, as PSE uses their output as input (or rather, as starting point), the
accuracy of the stability computations is undoubtedly linked to the accuracy of the base-flows.
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5.3 CFD simulations

5.3.1 Numerical formulation

The full three-dimensional compressible Reynolds-Averaged Navier-Stokes equations have
been solved by using the Finite Volume multi-block structured solver elsA (Onera’s software
[32]) at the Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique
(CERFACS) in Toulouse (France) by Carlos Pérez Arroyo [189–191], and will be briefly
explained here. The turbulence model used in the computations of this work is the one-
equation Spalart-Allmaras standard model [224]. Other popular turbulence models were
tried in elsA, but for fluids with shocks, k−ω is not a recommended practice [81]. By using
the k−ω turbulence model, the convergence was extremely slow and finally the simulation
did not even converge. With k− ε convergence was achieved, but only the first shock was
captured, obtaining therefore an inaccurate simulation. According to these results, the Spalart-
Allmaras model had the best performance, as it was able to accurately simulate the first
three shock-cells, known as the most interesting ones in jet analysis [180]. Spalart-Almaras
is in fact a recommended turbulence model in cases with shocks and less demanding in
near-wall resolution [81]. Some examples of the application of the chosen turbulence model
in supersonic/transonic flows can be found in [256, 72, 186, 145]. The convective flux is
computed using an upwind approach based on the Roe’s approximate Riemann solver [201].
The scheme’s accuracy is increased by the use of either a second order MUSCL extrapolation
[233] coupled with the minmod limiter or a third order extrapolation technique [36]. The
implicit system is solved at CFL = 100 with a LU −SSOR algorithm with four sweeps [246].
In order to accelerate the convergence for all the conditions, a converged deterministic base
case solution has been used as initial solution.

5.3.2 Simulation set-up

The case of study is the cold supersonic under-expanded single jet that was tested experi-
mentally by André [9]. The jet is produced from a convergent nozzle with an exit diameter
of D = 38.0mm and a modelled nozzle lip thickness of t = 0.125D. The nozzle is operated
under-expanded at the stagnation to ambient pressure ratio NPR = ps/pamb = 2.27, with ps

the stagnation pressure and pamb the ambient one. The Reynolds number, Re, based on the
jet exit diameter is 1.25×106 and the fully expanded jet Mach number is M j = 1.15. The
perfectly expanded Mach number, i.e. the Mach number that would be reached if the jet was
able to expand further to ambient conditions, is related to the total pressure by

NPR =
ps

pamb
=

(
1+

γ −1
2

M2
j

)γ/(γ−1)

. (5.1)
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Figure 5.4 Mesh cuts representing every fourth cells in the plane (a) z/D = 0 and the plane
(b) x/D = 0. Image courtesy of CERFACS.

For the boundary conditions used in the computations, the interior/exterior and lip walls
of the nozzle are computed with adiabatic no-slip wall conditions. A characteristic approach
is chosen to define the inflow conditions outside the nozzle. Such a condition works for all
configurations (inflow/outflow, subsonic/supersonic): the number of fields to impose (1, 4
or 5) is chosen according to the local analysis of the waves that travel across the interface.
The remaining lateral and outlet boundary conditions are set to a subsonic characteristic one,
where the reference ambient pressure is defined.

The computational domain used for the RANS simulations extends 100D in the axial
direction and 50D in the radial direction. The interior of the nozzle is modeled up to 6D
while the exterior up to 9D.

5.3.3 Mesh generation

The converged mesh developed in CERFACS consists of a butterfly type mesh to avoid
the singularity at the axis as shown in Fig. 5.4 (b). It contains 20×106 cells with roughly
(900×300×64) cells in the axial, radial and azimuthal directions respectively forward to
the nozzle exit plane, (220×120×64) inside the nozzle and (170×100×64) outside.

The nozzle is wall-resolved for all the conditions with y+ ≈ 1 and radially stretched up
to the end of the domain at a rate of 10% as can be seen in Fig. 5.4 (a). Axially, the mesh
is uniform at the exit of the nozzle, then it is stretched at 6% up to 0.25D. Next, it is kept
constant up to 10D, in order to have a minimum of around 40 cells per shock-cell (measured
at the last cell, which due to the flow physics, it is the most shortened shock-cell). The mesh
is axially stretched again up to the end of the domain at a rate of 10%.
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Figure 5.5 Mach number profile relative error of the deterministic base case at the centreline
for (a) different azimuthal discretizations, where each line represents the number of azimuthal
nodes, and (b) different axial discretizations, where each line represents the starting position
where the mesh is uniform. The refined mesh has been used as converged solution. Image
courtesy of CERFACS.

To have a converged mesh for all deterministic simulations required for uncertainty
quantification is a must. This need is specially important for flows containing shocks. In
this under-expanded jet, the shock-cells are actually a series of expansion and compression
waves that look like widen shocks. The above mentioned mesh has been thoroughly obtained
with the following convergence procedure using as reference parameter the Mach number
profile at the axis for the deterministic base case and conditions with a higher NPR. First, the
mesh has been converged azimuthally with 64 cells, obtaining a relative error with respect to
a refined mesh of less than 0.15% as shown in Fig. 5.5 (a). Second, the axial discretization
is taken into account by varying the starting position, where the mesh topology is uniform.
Axial convergence is obtained with an error of 0.2% with respect to the most refined mesh
for the position of 0.25D as shown in Fig. 5.5 (b). Finally, the y+ has been checked so
that it still lays in the range smaller than unity for the range of working conditions. The
validation with the available experimental results of the jet centreline is also showing that the
first three shock-cells, which are the most influential ones in the jet physics features such
as noise emission [180], are accurately reproduced (see Fig. 5.8). Also a contour plot of
the definitive CFD simulation can be seen in Figs. 5.6 and 5.7, where only a region of the
extensive computational domain is shown.
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Figure 5.6 CFD RANS simulation of the Mach number from the deterministic base case of
the under-expanded jet in elsA. Image courtesy of CERFACS.
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Figure 5.7 CFD RANS simulations of the deterministic base case of the under-expanded jet
in elsA. The shown parameters are (a) the dimensionless axial velocity profile, v∗x = vx/cre f ,
(b) dimensionless radial velocity profile, v∗r = vr/cre f and (c) dimensionless static pressure,
p∗ = p

γre f pre f
, with γ = 1.4 the specific heat ratio, pre f = 98000 Pa the reference pressure and

cre f = 340.26 m/s the reference speed of sound.

5.4 Uncertainty Quantification on 3D RANS simulations

The main purpose of this work is to compute both the impact of uncertainty from a jet facility
and the computational injection of turbulence, that give a stochastic point of view to the
problem, rather than the classical deterministic one. This leads to the concepts of Uncertainty
Quantification and Sensitivity Analysis, which involves the study of how uncertainty in
the output of a model (numerical or otherwise) can be apportioned to different sources of
uncertainty in the model input [206]. In this section, the input uncertainties are described as
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well as the mathematical methods used for their handling.

5.4.1 Tests and Prescription of Uncertainties

The parameters treated as stochastic inputs for uncertainty quantification are the stagnation
pressure, ps, and the turbulent to laminar viscosity ratio, Rt = µt/µ , that are both imposed
at the inlet of the nozzle. These parameters have been selected because of their stochastic
behaviour in nature. Other parameters could also be selected, but these are the most relevant
ones according to our experience and quick tests.
The stagnation pressure is used to model the uncertainty in the mass-flow rate. Such deci-
sion is based on suggestions from the experimentalists at von Karman Institute for Fluid
Dynamics. For them, during a single run, notable pressure variations are not yet expected
due to emptying of the tanks. However, these are expected during repeated tests. This is
because of the membranes of the valves are opening and closing several times, and the
displacements of these membranes can be slightly different for each run, leading to vari-
ations in the mass-flow rate. Moreover, we have to take into account the uncertainty of
the measurement devices (pressure sensors). Consequently, a conservative range of ±5%
has been agreed with experimentalists. To sum up, the chosen probabilistic distribution is
ps ∼U(0.95 p̄s,1.05 p̄s) =U(211337,233583)Pa, where p̄s refers to the deterministic base
value p̄s = 222460 Pa.
The second parameter is the laminar to turbulent viscosity ratio, Rt = µt/µ , used for the
injection of turbulence in the Spalart-Allmaras model [224], which is in fact a computational
input for the turbulence at the exit of the nozzle. This parameter stays fixed when simulating
the operating conditions of an experimental facility. However, treating it as a deterministic
parameter is not appropriate, as the flow properties can be sensitive. Thus to quantify the
change in the simulations is relevant. Therefore, the variation of the parameter has been
carefully chosen based on several tests on the CFD solver, for which the solution is close to
experimental results. By increasing this parameter at the inlet, it increases also the maximum
non dimensional turbulent wall unit, y+, achieved at the wall near the exit. Nevertheless, the
y+ remains of order unity changing from 1 to 6 for the highest Rt value. Figs. 5.8 and 5.9
show the Mach and Rt profiles for different Rt inlet values, respectively. Fig. 5.10 shows
the impact on the axial velocity profile at x = 2mm, and it is compared with the available
experimental data. The values are non-dimensionalized by the maximum values due to the
fact that the experimental data corresponds to a subsonic test case with a Mach number at the
exit of the nozzle of Me = 0.9. The chosen probabilistic distribution is Rt ∼Uni f (2.2,220).
This is because for smaller values of Rt the change in the injection of turbulence is too small
and there is no need to include it in the study. The deterministic base value is Rt = 2.2, as this
was the value used by the authors in the initialisation of the flow for a Large Eddy Simulation
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[191, 190].
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Figure 5.8 Mach number profile of the deterministic base case at the axis for different Rt inlet
values in a (a) general and a (b) detailed view. Experimental ×, Rt = 0.022 �, Rt = 0.22 ◦,
Rt = 2.2 △, Rt = 22 ▽, Rt = 220 �, Rt = 2200 D. Results by elsA software, run at CERFACS facilities.
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Figure 5.9 Rt profile of the deterministic base case at the axis for different Rt inlet values in a
(a) general and a (b) detailed view. Rt = 0.022 �, Rt = 0.22 ◦, Rt = 2.2 △, Rt = 22 ▽, Rt = 220
�, Rt = 2200 D. Results by elsA software, run at CERFACS facilities.

5.4.2 Uncertainty Quantification Methods: Generalised Polynomial Chaos
and Kriging Surrogates

Uncertainty quantification (UQ) has become a very influential field, due to the fact that
methods developed in recent years bring the possibility of understanding how the behaviour
of expensive (normally in terms of computation) mathematical models can be affected by
imprecisely defined inputs.
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Figure 5.10 Axial velocity profile of the deterministic base case at the axis for different
Rt inlet values in a (a) general and a (b)&(c) detailed view. Experimental ×, Rt = 0.022 �,
Rt = 0.22 ◦, Rt = 2.2 △, Rt = 22 ▽, Rt = 220 �, Rt = 2200 D. Results by elsA software, run at CERFACS
facilities

The first approach implemented in this section is the Polynomial Chaos method. This
method has been developed to solve Stochastic Differential and Partial Equations (SDE and
SPDE, respectively)[225]. Xiu & Karniadakis extended the original version of Wiener [251]
to a wide family of basis functions leading to the known concept of generalised Polynomial
Chaos (gPC) [258]. Polynomial Chaos is a spectral method and as such, an important ad-
vantage is that one can decompose a random representation into deterministic and stochastic
components. Moreover, from a Polynomial Chaos Expansion a global sensitivity analysis is
straightforward from its results at zero cost. This will be discussed in Section 5.5. The scripts
for gPC utilised in this thesis were coded in MATLAB. For detailed information regarding
the gPC method, please see Chapter 2.

The second approach is Kriging interpolation. Kriging (also known as Gaussian Process
interpolation, and in this chapter under the acronym KG) is an interpolation surrogate method
to approximate sets of data and it has been widely used in literature, specially for tasks involv-
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ing costly computational analysis that by other methods would be expensive. Examples of this
are sensitivity analysis [245], topography [133] or prototyping [97]. Despite of the fact that
surrogates can be also constructed with the Polynomial Chaos Expansion, the main idea of us-
ing Kriging is to try another method for a quick comparison in this chapter with the available
budget. For Kriging interpolation, the MATLAB code[140] used by the first author in [85]
has been utilised here. For further information on the method, it is suggested to see Chapter 2.

In order to generate an accurate Kriging surrogate, it is important to pay attention to
the correlation function. The generalised exponential worked very well and was the final
choice. From Eq. (2.41), exponential and gaussian correlations were not appropriate for
the complicated surrogates since during tests these gave some bumped areas in the spaces
between collocation nodes. Because the shock-cells could create abrupt changes in some
features, the generation of surrogates has been carefully tested. The best performance was
observed for the general exponential correlation, whose results for complicated data sets
to be interpolated can be seen in Fig. 5.11. It can be noticed that the surrogates have a
smooth shape, so it is not expected to have substantial erratic contributions in uncertainty
quantification when sampling across inter nodal areas. Once the Kriging surrogates are
available, sampling techniques are affordable. Latin Hypercube Sampling [92] and Random
Sampling Monte Carlo are widely used non-intrusive methods for propagation of uncertainty
in models. These methods have been used for many applications in science and a vast
literature can be found.
In Sections 5.4.3 and 5.5, the application of sampling techniques for UQ and sensitivity
analysis on Kriging surrogates is developed and a comparison between both Kriging and
gPC results is discussed.

5.4.3 Comparison and Discussion of Uncertainty Quantification Re-
sults

The first step for uncertainty quantification was to test the convergence of each method
with our computational budget. The idea behind using two different methods with different
procedures (Kriging surrogate by sampling and gPC by quadrature on collocation points) is
to provide a comparison. When focusing only on one method, any incoherent feature in the
analysis or the codes could be taken as a conclusion that cannot be contrasted with any other
result. However, if a second approach is giving similar outputs, a more consistent feedback
can be extracted.

For this purpose, several samplings were tried on KG surrogates by Latin Hypercube
Sampling (LHS) and the results were compared with the gPC expansion of 4th order (as
Nξ = 2, only 21 terms are required in the expansion). The accuracy of the methods has been
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Figure 5.11 Examples of Kriging surrogates at several x/D distances on data sets with
challenging shape. The blue points correspond to the deterministic CFD solutions from the
fourth level of accuracy in the Clenshaw-Curtis sparse grid. In the plots Cps stands for the
coefficient of variation for ps (±5% ).

tested along the lipline for the dimensionless axial velocity, v∗x , and along the centreline for
the Mach number, as these are the most relevant parts of the jet (along the centreline the
shock-cells are strong and preliminary tests revealed that the nozzle lipline could be sensitive
for v∗x). To compute the integrals for the statistical moments of gPC, a sparse grid of 65
collocation points based on Clenshaw-Curtis (C-C) nested rule was used (the 65 collocation
points correspond to the fourth level of accuracy), having a good match with Kriging sampled
surrogates as shown in Figs. 5.12 and 5.13. The required number of collocation points was
tested in [83], computing the convergence of statistical moments with Stochastic Collocation
Method, so that level of accuracy of the sparse grid was intended here for gPC.

For convergence of gPC, the order of the expansion, P, and the number of collocation
points, Nq, have to be controlled. If Nq is fixed to the fourth level of accuracy (lvl4) as
aforementioned, it is now necessary to focus on the order of the expansion, P, to compute the
statistical moments. These undergo convergence up to P = 4. However, if P > 4, there is
divergence and this is due to the fact that more collocation points are needed to compute the
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integrals. This has been tested numerically by means of generating artificial deterministic
solutions from Kriging surrogates (see Fig. 5.14). With this procedure, the extra deterministic
solutions of the sparse grid required for the fifth and sixth level of accuracy (lvl5 arti f and
lvl6 arti f in the legend of the plots) are artificially generated and higher orders in the gPC
expansion are tested. These plots are revealing that in fact in the region of 3 < x/D < 4 more
collocation points would be required with higher P. As for lvl5 and lvl6 are required 145
and 321 collocation points respectively with a not very relevant improvement in the accuracy,
it is not worthy to perform such a large number of simulations with the CFD code and lvl4 is
assumed to be enough. Moreover, an adaptive refinement method[254] would not be worthy
since the surrogates are different at each point of the domain.

Regarding the convergence of sampling on Kriging surrogates, even with a reduced
number of samples, converged statistical moments can be obtained. This is because LHS is a
sampling strategy more efficient than Monte-Carlo and also due to the fact that the stochastic
dimension is low, requiring to sample less dimensions. Absolute errors are shown in the
comparisons with gPC.
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Figure 5.12 Evolution of the v∗x stochastic means (a) and standard deviations (b) along
the lipline for LHS on Kriging surrogates with different number of samples, Ns, and its
comparison with gPC results. Even for a small number of samples, LHS is undergoing very
good convergence.

For the purpose of visualising uncertainty, the contour plots of the stochastic mean and
variance are represented for both methods. In Figs. 5.15, 5.16 and 5.17 these values are
plotted for v∗x , v∗r and p∗ for Kriging surrogates only, as well as the absolute error with respect
to gPC, which is showing the small difference in the results between both methods.

Despite the absolute error in the variance can seem slightly notable, it is just illustrative.
If attention is paid, i.e. on v∗x along the lipline close to the nozzle in Fig. 5.15.d, the absolute
error seems to be notable, but in Fig. 5.12 the difference is practically negligible.
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Figure 5.13 Evolution of the Mach stochastic means (a) and standard deviations (b) along the
centreline for LHS on Kriging surrogates for different number of samples and its comparison
with gPC results. Even for a small number of samples, LHS is undergoing very good
convergence.

The objective of the analysis is to determine the regions of the jet which are more sensitive
to the input uncertainties in the CFD simulation. From the task of understanding the physical
meaning of the plots above, one can extract the following relevant information:

• For the dimensionless axial velocity, v∗x , the most sensitive region is along the lipline,
close to the nozzle lip (see Fig. 5.15.b). This uncertainty is in fact very high, as can
be more clearly observed in Fig. 5.18.b. Such large sensitivity nearby the nozzle lip
makes sense due to the fact it is well-known that small variations in the nozzle diameter
(in this work uncertainty in stagnation pressure and turbulence vary the mass-flow rate
similarly) modifies features that takes places in the nozzle lip/lipline regions, such as a
consequence of the perturbations in the shear layer that leads to the feedback loop for
screech noise [181]. Along the centreline some uncertain regions can also be detected,
but they can be better explained when describing the variance in p∗.

• Regarding the dimensionless radial velocity, v∗r , the most sensitive region is immedi-
ately below the lipline (see Fig. 5.16.b). It can also be observed that the second and
third shock-cell compression are notoriously the most sensitive to input uncertainty,
where screech jet noise is usually generated [180].

• For the dimensionless static pressure, p∗, the most sensitive region is along the centre-
line (see Fig. 5.17.b). This is also observed for the Mach number in Fig. 5.18.a, where
can also be noticed relevant uncertainty in the position of the shocks. The envelopes
show a variation in both the amplitude and position of the shock-cell which makes
sense due to the fact that shocks have a strong relation with the variations in stagnation
pressure, according to basic fluid dynamics of compressible flows. The prescribed
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Figure 5.14 Evolution of (a) Mach stochastic standard deviation for different P and levels of
the sparse grid and (b) a zoom of the hardest part in the convergence analysis. These results
are compared with Kriging surrogates sampled by means of LHS with Ns = 2000.

uncertainties would therefore, as expected, be affecting the robustness of the simulated
case scenario.

• As one of the major purposes of this type of studies is also to check how the input of
uncertainty would make the simulation be closer to real performance, one can also look
at Fig. 5.19, where the first shock-cells are shown. In this figure, the standard devia-
tion envelopes show that, despite the fact that the CFD RANS with Spalart-Allmaras
(deterministic simulation) was accurate, and the addition of uncertainty (deterministic
simulation ± std) perfectly wraps the experimental data, the stochastic plot envelopes
(stoch mean ± std) are not able to cover all the experimental data after the first peak.
This is not surprising, since CFD simulations are rarely able to undergo a perfect match
with experiments (especially in high-speed flows with shocks), and the most relevant
peaks are more or less captured or close to the envelopes, not being remarkable outliers.
On the other hand, the feature that they cover accurately is how the position of the
shock-cell is being varied by uncertainty in ps and Rt . In fact, it can be observed that the
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Figure 5.15 Contour plots of v∗x (a) stochastic mean and (b) variance by means of LHS on KG
surrogates. Contour plots of the absolute error between (c) stochastic mean and (d) variance
between KG and gPC methods.

bigger the input uncertainty, the more disturbed the oscillatory pattern is downstream,
as consequence of the variations in the shock-cell positions and dissipation. Obviously,
the aim is not to always wrap the experimental data in any case (as otherwise very
large input uncertainties would be desired), but to show a more complete description
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Figure 5.16 Contour plots of v∗r (a) stochastic mean and (b) variance by means of LHS on KG
surrogates. Contour plots of the absolute error between (c) stochastic mean and (d) variance
between KG and gPC methods.

for validation of the CFD simulation and how sensitive to relevant input uncertainty is.
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Figure 5.17 Contour plots of p∗ (a) stochastic mean and (b) variance by means of LHS on KG
surrogates. Contour plots of the absolute error between (c) stochastic mean and (d) variance
between KG and gPC methods.

5.5 Global Sensitivity Analysis by Means of Generalised
Polynomial Chaos and Kriging Surrogates

As explained in Chapter 2, an extension of UQ is the global sensitivity analysis. There
are different methods for global sensitivity analysis, such as Screening Method, Derivate
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Figure 5.18 Stochastic mean and standard deviation envelopes with gPC for (a) Mach along
centreline and (b) dimensionless axial velocity, v∗x along the lipline.

Based Sensitivity Analysis or Variance-Based Analysis [230]. The analyst should choose
the appropriate one depending on the computational cost, dimension of the problem or the
expected output, among others. For the purposes of this work, a Variance-Based Analysis
has been chosen [204]. One of the main reasons of using this method is the possibility of
ranking the influence of the input factors by sensitivity indices.

As the sensitivity indexes have relation with UQ, the approaches from Section 5.4 have
been used in this section as well. Particularly, the Kriging surrogates are sampled according
to [105] and the coefficients from gPC are used to compute the sensitivity indexes. Despite
that sampling could also be done on the Polynomial Chaos Expansion, it is worthy to remind
that a second objective in this work is to have two different methodologies to compare results
(sampling and quadrature based approaches).

We have proceeded in this way due to the fact that one of the interesting features of
gPC is the possibility of performing sensitivity analysis straightforward after uncertainty
quantification. For such task, it is not difficult to realise that there is a clear relation between
Eqs. (2.25), (2.49) and (2.50), as commented in Chapter 2.

Regarding the Kriging surrogates, ŷKG, as they are available from the former uncertainty
analysis, it is now possible to compute the sensitivity indices from Eqs. (2.52) and (2.53). A
very efficient method has been coded in MATLAB by following the suggested procedure in
[105], which can be extended to any other surrogate or mathematical model as it is based on
a sampling. With this method, the first order sensitivity with Kriging surrogates, SKG

i , and
the total effect, SKG

Ti , can be computed as already explained in detail in Chapter 2.
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Figure 5.19 Validation of computations with the Mach number along the centreline. The
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Clenshaw-Curtis sparse grid.

5.5.1 Comparison and Discussion of Global Sensitivity Analysis Re-
sults

As uncertainty quantification results were compared by means of Kriging surrogates and
Polynomial Chaos in Section 5.4, attention is now focused on the sensitivity contours with
both methods for the dimensionless static pressure, p∗, plotted in Figs. 5.20 and 5.21.

One of the motivations of using two methods for sensitivity analysis purposes is that the
resulting contours for the sensitivity indices were not intuitive, which could be product of
errors when implementing the codes. Fortunately, both methods provided similar solutions,
discarding that. The explanation behind the contours appearance can be that, when performing
sensitivity analysis, all the sensitivities of the domain are quantified simply providing a ‘ratio’
of contribution of uncertainty at every cell of the CFD domain.
A solution to provide a more intuitive and useful insight is to show the contribution to the
total uncertainty by each parameter as shown in Figs. 5.22-5.24. To the knowledge of the
author, there are not previous works showing such pictures to visualise the impact of each
uncertainty in each area of the computational domain, despite how helpful is it for engineers.

For representation of the quantities of interest, now only gPC results will be shown, as
the errors between the implemented methods were checked in Section 5.4 and they were
practically negligible.

In a similar manner than for uncertainty quantification, in this section several interesting
patterns have been found linked to apportions to the input uncertainties:
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Figure 5.20 Sensitivity indices contour plots by means of Kriging for p∗. a) and b) are the
first-order sensitivities and c) the higher-order interaction.

• For the dimensionless axial velocity, v∗x , the most sensitive region was detected along
the lipline, close to the nozzle lip (see Fig. 5.15.b). This uncertainty is mainly due to
uncertainty in the laminar to turbulent viscosity ratio, Rt , from the Spalart-Almaras
turbulent model (see Fig. 5.22.b). The stagnation pressure uncertainty, ps, is also
playing an influential role (Fig. 5.22.a), but its impact is not as high as by Rt in the
area immediately at the exhaust exit. The contribution to uncertainty in the shock-cell
areas is done only by means of ps uncertainty.

• Regarding the dimensionless radial velocity, v∗r , the most sensitive region is immedi-
ately below the lipline (see Fig. 5.16.b). This uncertainty is undoubtedly linked to ps

as seen in Fig. 5.23.a.

• For the dimensionless static pressure, p∗, the most sensitive region is along the cen-
treline (see Fig. 5.17.b). As can be seen in Fig. 5.24.a, ps uncertainty is again the
most influential one and the influence of Rt uncertainty is practically null. Closer to
the lipline, Rt uncertainty is greater, but not very significant.

This analysis suggests that ps uncertainty is a common factor in the three analysed uncertain
flow parameters (dimensionless axial velocity, radial velocity and static pressure) and espe-
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Figure 5.21 Sensitivity indices contour plots by means of gPC for p∗. a) and b) are the
first-order sensitivities and c) the higher-order interaction.

cially influential in the area where the shock-cells are located.

5.6 Uncertainty Quantification on Parabolised Stability Equa-
tions (PSE) Applied to Stability Analysis

The last part in the uncertainty quantification framework is the PSE analysis. Here, the earlier
introduced Stochastic Collocation Method (see Chapter 2.1) will be applied. The main idea
behind this approach is to use a previously generated stochastic base-flow from CFD as input
for PSE. So that, the contribution of the input uncertainties can be artfully accounted in the
PSE approach for stability analysis. This can be a useful tool in order to understand how
noise emission is being affected by uncertain flow instability when an acoustic analogy is
available [227, 135].
The Parabolized Stability Equations [95] approach (PSE) consists of solving a set of Partial
Differential Equations (PDE) mostly parabolic in the streamwise direction. Contrary to
Linear Stability Theory (LST), where local parallel flow is assumed, PSE take into account
also the small streamwise variations of the base flow and of the disturbances directly in the
formulation.
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Figure 5.22 Contribution to the total variance of a) stagnation pressure, b) laminar to turbulent
viscosity ratio and c) their interaction, for v∗x .

For this analysis, the PSE are derived from the Linearized Euler Equations (LEE) in cylin-
drical coordinates (x,r,θ). The total flow field q0 is built by the superposition of two parts:
a base flow q̄ = (ūx, ūr, ūθ , ρ̄, p̄)t and a small perturbation quantity q′ = (u′x,u

′
r,u

′
θ
,ρ ′, p′)t ,

and the t exponent denoting transpose. Any perturbation is assumed to have a like-wave
exponential term χ(x)exp(i(mθ −ϑ t)) and a x-slowly amplitude function q(x,r):

q′ = q(x,r) χ(x) exp(i (mθ −ϑ t)), with χ(x) = exp
[

i
∫ x

x0

α(s)ds
]
, (5.2)

where α(x) is the complex axial wavenumber. The imaginary part, αi(x), can be defined
as a growth rate and 2π/αr(x) corresponds to a spatial wavelength. m is the fixed integer
azimuthal wavenumber (m = 0 in our application), the real number ϑ is the fixed angular
frequency of the disturbance and x0 is the inlet of the computational domain. Substituting Eq.
(5.2) into LEE we obtain the so-called Parabolized Stability equations (PSE):

LPSE q = 0. (5.3)

From Eq. (5.2) it can be noticed that the streamwise change of the disturbance can be
described by the product of the amplitude function and the exponential term. This ambiguity
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Figure 5.23 Contribution to the total variance of a) stagnation pressure, b) laminar to turbulent
viscosity ratio and c) their interaction, for v∗r .

must be resolved by the introduction of an additional equation, called normalization or
closure relationship, which imposes that the growth of the disturbance is absorbed by the
wave function part of the decomposition χ(x), making sure that the shape function q(x,r)
stays slowly varying in x [95]. It is then set

Nimp(q,x) =
∫

∞

0
¯̄qt ∂q

∂x
r dr = 0, (5.4)

where t denotes transpose and double over-bar, complex conjugate. Eqs. (5.3) and (5.4)
are solved using a streamwise marching solution starting from the initial condition at x = x0

which is the solution of the local approach (LST). The PSE solver ’Pasteq’ designed by the
ONERA stability team [134] is used by Tobias Ansaldi at the partner Institute de Mecanique
de Fluides in Toulouse (IMFT) for the required deterministic simulations for uncertainty
quantification presented in the next section. For further information regarding the theory
behind PSE, the reader is suggested to see [11], where the theoretical description here shown
can also be found. The theory introduced in this section is merely informative as the PSE is
entirely handled as a black-box model.

135



5.6 Uncertainty Quantification on Parabolised Stability Equations (PSE) Applied to
Stability Analysis

 gPC  V
p

s

 for p* 

x/D
0 1 2 3 4 5 6 7 8 9 10

r/
D

0

1

2

3
×10-3

2

4

6

8

10

gPC  V
R

t

 for p*

x/D
0 1 2 3 4 5 6 7 8 9 10

r/
D

0

1

2

3
×10-4

1

2

3

4

gPC V
p

s
-R

t

 for p*

x/D
0 1 2 3 4 5 6 7 8 9 10

r/
D

0

1

2

3
×10-5

2

4

6

8

0.5 1 1.5 2 2.5 3
0

0.4

0.8 a)

b)

c)

Figure 5.24 Contribution to the total variance of a) stagnation pressure, b) laminar to turbulent
viscosity ratio and c) their interaction, for p∗.

5.6.1 Results from Uncertainty Quantification on PSE from a Stochas-
tic CFD Base-flow

Without the framework presented in this part of the thesis, it would be impossible to quantify
the experimental and turbulent uncertainties on PSE analysis, as it is not possible to directly
deploy the mentioned random inputs on the PSE formulation. The quality of the results
depends not only on the correct development of the PSE analysis, but also on how the base
flow from CFD is. So that, if the base flow is stochastic, the deterministic approach of PSE
can be turned into stochastic as well.
An approach similar to the one presented for the CFD simulations is deployed here. In
Section 5.4, some deterministic simulations (collocation points) were run based on the
input uncertainties, and the deterministic outputs were used to compute the statistics for the
stochastic analysis. Such deterministic base-flows from CFD are used as input for PSE, so
that, several deterministic PSE outputs are generated. Then, Stochastic Collocation (see
Chapter 2 for a theoretical definition and Chapter 2.4 or 4 for applications) can be applied for
this continuation of the propagation of uncertainties, in order to obtain the statistical moments.
With this approach it is possible to quantify how the experimental and turbulent uncertainties
affect not only the CFD simulations, but also the development of Kelvin-Helmholtz (K-H)
instabilities (see Fig. 1.6). The converged results of the uncertainty analysis on PSE with the
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fourth level of the Clenshaw-Curtis sparse grid (from the CFD design of experiment) can be
seen in Fig. 5.25.
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Figure 5.25 Impact of input uncertainties on α(x) for St = 0.4. The real part, αr, is related to
the spatial wavelength of the instabilities and the imaginary part, αi is related to the growth
rate.

In these plots can be observed that, for the Strouhal number under consideration St =
f D/U = 0.4, with f the frequency at which there is a maximum in the noise emission (a
shock-cell noise peak in fact) [8] and U the mean velocity of the flow, the spatial wavelength
of the K-H instabilities is starting to be affected by uncertainties after x/D = 7. This
uncertainty is increasing the farther one goes along x/D, together with the natural increase of
αr. For the results of αi under uncertainty, it can be noticed a ‘noisy‘ behaviour for x/D < 5,
where results present some variance because of a high sensitivity to input uncertainty in the
birth area of K-H instabilities. For x/D > 5, the flow becomes stable and input uncertainties
are not affecting at all on the instability growth rate. As the RANS simulation started to be
dissipative after the fourth shock, the jet flow after x/D = 3 still have some greater influence
of the shock-cells and in this stability analysis the ‘noisy‘ behaviour for x/D < 5 might be
present up to a further x/D value. Also the stability of the flow could be delayed. This could
be only demonstrated with higher-quality CFD simulations unaffordable here.

5.7 Conclusions

The main objective of this analysis has been to assess computationally the propagation of
uncertainties in the computation of under-expanded jet flows in order to improve the popular
deterministic approach. This represents a novel study in jets in the presence of shock-cells
and the framework here introduced determines the only possible way to quantify the impact
of experimental and turbulent model uncertainty on stability analysis through PSE. This
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study can lead to a better understanding about how uncertainty at different design stages can
affect to the analysis to be validated against experimental results, to improve the current trend
of deterministic approaches in simulations and to create more robust designs in jet flows and
aeroacoustics research.
Non-Intrusive Uncertainty Quantification techniques have been applied to 3D RANS CFD
simulations of a supersonic under-expanded jet, accurately simulating the most relevant
shock-cells, in order to understand the impact of input uncertainty (experimental and in
turbulence modelling) affects to flow properties. A global sensitivity analysis was also carried
out to understand the relevance of each random input in the output uncertainty. The results
from the application of both methods (generalised Polynomial Chaos and Kriging with Latin
Hypercube Sampling) have undergo a good match in the shown comparisons.

It has been relevant to extend this study to the whole CFD domain instead of relevant
points, since some interesting regions such as the centre and lipline are sensitive and this
study can lead to a more detailed understanding of the CFD simulations of jet flows to
motivate future investigations or paying more attention to development of more robust
designs. Especially if in a near future Large Eddy or Direct Numerical Simulations are
affordable for uncertainty analysis in shock-cell noise, since more trustworthy conclusions
regarding the physics of the flows could be summarised. From the analysis on the CFD
simulations , the following conclusions can be drawn:

• Despite the fact that shock-cells could be problematic in catching the features in un-
certainty quantification, convergence was achieved with only 65 collocation points.
The shape of the Kriging surrogates looks appropriate to interpolate the training data,
as convergence was achieved, providing also the same results as Polynomial Chaos.

• Shock-cell position and amplitude is highly sensitive to input uncertainty. The
evolution of the Mach number was checked and its standard deviation has clearly
revealed that fact. This effect was also noticed in the contour plots of the variance in
v∗x , p∗ and v∗r . Under a sensitivity analysis it has been observed that the uncertainty
below the lipline (where the shock-cells are located) is mostly due to the uncertainty in
the stagnation pressure.

• The area immediately after the nozzle lip is highly sensitive to input uncertainty.
This outcome can be observed in the variance of v∗x , where this interesting behaviour
can be product of the pressure suction effect. The uncertainty in that region is some-
thing interesting to take into account, since this is the location of the jet where the
screech feedback loop takes place, and uncertainties in the simulations can have in-
fluence in computational approaches. However, from a steady RANS simulation this
cannot be concluded and future work would be necessary on LES with this drawback
in mind. From sensitivity analysis, it has been also demonstrated that both the injection
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of turbulence and stagnation pressure imprecisions are actively contributing to that
feature in the computational simulations. Besides that, it can be observed in v∗r a
high uncertainty immediately below the lipline and in this, the variance of stagnation
pressure is the most influential parameter. This shows that the simulated stochastic
behaviour of the jet is affecting the uncertainty spreading in the radial velocity at the
lipline in the presented computational simulations.

• As one of the aims of UQ is also to check how the input of uncertainty would make
the difference in the deterministic simulation, the analysis along the Mach centreline
(the hardest part to be validated due to the shock-cells) has been checked against
the experimental data. The standard deviation envelopes show that, despite the fact
that the CFD RANS with Spalart-Allmaras was accurate for the first shock-cells, the
stochastic plot envelopes do not cover all the experimental data after the first peak.
This is not surprising, since CFD simulations are rarely able to undergo a perfect
match with experiments (especially in high-speed jet flows), and the most relevant
peaks are more or less captured or close to the envelopes, not being considered far
outliers. However, the position of the shock-cell is being varied by uncertainty in
ps and Rt , having such effect now covered in the simulations, and then providing a
more trustworthy validation of computational results. Obviously these results could
be improved with high-fidelity simulations such as LES, unaffordable yet for such
computationally demanding task.

In addition, the stochastic base-flows generated are also employed for uncertainty quantifica-
tion on Parabolised Stability Equations, that model the jet flow instabilities. Once a stochastic
base-flow is available, it can be used as input for stability analysis. The results have shown
that for the Strouhal number St = 0.4, the spatial wavelength of K-H instabilities is sensitive
in far x/D distances, but it is slightly influenced by input uncertainties closer to the nozzle.
With respect to the growth rate of the instabilities, the region near the nozzle is showing a
‘noisy’ behaviour where input uncertainties are influencing the growth rate. But when the
flow becomes stable, uncertainties are not influencing anymore. However, as the CFD RANS
simulation was not very accurate after the fourth peak, this stability analysis might be slightly
changed. This could imply a longer noisy area for αr and αi, and a light delay of the stability
in the αi plot.

These results support the utility of the presented framework for propagation of uncertain-
ties, since it has been possible to measure the contribution of uncertainties from experiments
and turbulence modelling on Parabolised Stability Equations for the K-H instabilities study,
with an extensive analysis on CFD simulations in between. From this work, future research
is encouraged based on the unavoidable drawbacks here commented, as discussed in the final
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chapter on conclusions and future work (Chapter 6). This framework is specially interesting
for industrial design life cycles in aeronautical or aerospace thrusts involving computational
simulations of flows.

Regarding the engineering applications under study in this thesis, this is the last chapter,
where a framework for propagation of uncertainties in under-expanded jets has been investi-
gated. In the next chapter, the most relevant conclusions in this thesis and suggestions for
future work will be discussed.
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Chapter 6

Conclusions and Suggested Future Work

This chapter aims to synthesise the most important conclusions drawn from the investigations
in this thesis, as well as to suggest future work based on the limitations of the followed
methodology, other possible applications or extensions of the approaches. Few details on
the methodology can be discussed here, but the reader is suggested to see Chapter 2 for
mathematical descriptions on the UQ/SA methods, and the sections ‘Methodology and
Challenges’ in Chapters 3, 4 and 5 for the industrial jet investigations.

6.1 CFD Simulations and UQ for Uncompressible Swirling
Impinging Jet Flows with Heat Transfer Purposes.

6.1.1 Conclusions and Contribution to Knowledge

The work presented in Chapter 3 addresses a novel computational approach for swirling
impinging jet flows. There is no literature on such flows generated by rotating pipes for
heat transfer, despite the fact that the addition of swirl has been noticed as beneficial for
heat transfer enhancing in both experimental [248, 18, 130] and computational [174, 177, 3]
studies.

The novelty of the approach mainly relies on the two-step simulation developed. Regard-
ing the computational simulations of swirling flows (Simulation 1), there is a vast literature
[98, 104, 117, 60, 80, 166] about the turbulent models to be used for confined swirling flows
when the RANS equations are used, and the general viewpoint is that the RSM performs the
better, as concluded in an extensive numerical test in this work with several turbulent models.
However, RSM is too expensive for Simulation 2, and also to have such a large picture as
the two simulations together in the same computational domain requires a very long pipe to
achieve the fully developed flow. These are the main motivations to split in two parts, and it
has been proven that is suitable.
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By this suggested approach, it was possible to use a short pipe for Simulation 1 imposing
periodic conditions and validating these results with [101]. Also, the k−ω turbulent model
was employed in Simulation 2, having an enormous computational cost saving in both
simulations.

The generation of swirl with a rotating pipe for impingement jets has not been addressed
before, but other methods were tested in literature. Depending on the system, the jet has
different patterns and hence, the spreading will be different. This is influential for the
impinging conditions affecting the heat transfer as in the swirling jet, the degrees of jet
growth, entrainment of ambient air, and jet decay are affected by the degree of swirl [18, 195]
and other perturbations from generation mechanisms. In [202] it has been reported that even
the addition of light swirl can change significantly the behaviour of the jet. However, as seen
in the aforementioned papers, this is also influenced by the nozzle-to-plate distance. In this
work, the closer the nozzle-to-plate distance, the most influential the swirl is to enhance the
heat transfer, as can be seen in Fig. 3.23.

By comparing this mechanism with other methods from literature, there are some advan-
tages that demonstrates that this can be simpler but efficient. There is a remarkable benefit in
the possibility to increase the swirl when keeping the Reynolds number fixed. Other methods
in literature require an increase in Reynolds number, which might be impossible under some
circumstances and/or increase the angle of blades/spirals of ducts, what is constrained to a
maximum angle and manufacturing costs.

The second part of the analysis is presented in Chapter 4. This chapter complements
Chapter 3 by the addition of experimental uncertainty, that is not yet a popular add-on to
CFD analysis. Experimental random variables are taken into consideration, leading to a
complete computational analysis, not assessing the quality of the approach only under a
deterministic framework. This chapter addresses the quantification of uncertainties by means
of the so-called Stochastic Collocation Method, which is applied on the two-steps numerical
simulation.

To carry out an UQ study is very expensive, since several simulations are compulsory.
For less computational cost, some mathematical models are also suggested for velocity and
turbulent profiles, in order to avoid running Simulation 1 when increasing the number of
collocation points for uncertainty quantification.

To make these models also available to other researchers, User Defined Function (UDF)
codes in C are given ready to be imposed in FLUENT. The quality of the given models for
the velocity and turbulent profiles has been tested by stretching also the values of S from 0
up to 1.5, with quite accurate performance.

Uncertainty is always present in test rigs and it is not a standard thing to implement them
into Computational Fluid Dynamic simulations. An advantage in studying the volume flow
rate, Q, as uncertain is that several uncertainties such as those related to measurement tools
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tolerance, pipe diameter, loss of pressure or density variations can be accounted in only one
factor.

In both cases (with and without imposed models) it has been observed that the input un-
certainties have a light impact on the Nusselt number along the plate, something expected for
a robust experimental facility. It was also noticed that Q was the most influential parameter,
as the angular velocity Ω had a very light contribution to uncertainty, so this concludes that
in an experimental facility, engineers must put more effort into reducing the variance in the
volume-flow rate by e. g. avoiding associated pressure losses.

Industrial applications of this type of jets are cooling of electronic components [99, 129]
or impinging gases and flame jets [148, 236] for instance, but it is not a very extended
method and most of the applications that can be found are in academic research. To show
the possibility of using such a simple device in this thesis, aims to encourage the use of
jets in industrial practice too. From a practical viewpoint, in order to make the presented
mechanism suitable for more industrial applications, some future research is suggested and
discussed.

6.1.2 Suggested future work

• Beating the size of design. Depending on the application, this approach might or
might not be eligible. This study is dimensionless (Re and S are chosen for dimension
independence), but the reader needs to remember that the pipe must be long enough
to achieve a fully-developed flow, and e. g. for small electronic devices this method
may not be convenient. Then, suggested work would be, for instance, to investigate
small rotating pipes, use of fans to induce swirl effects or the mix of rotation, blades
and fans, to produce a similar (or enhanced) swirl flow pattern.

Although electronics is not the particular scope of this work, this method could have a
nice impact in cooling electronics community, challenging other popular mechanisms.
The use of microjets/jets has been shown to be comparable to commercially available
electronic cooling fans [111] and sprays [264], so suggested improvements could help
for better developments. Jet impingement has been reported formerly as a great alter-
native to other cooling electronic methods, thanks to the also commented parametric
dependence: by flexibly controlling some parameters it is possible to optimise the
performance, making this approach very promising in the field [264].

• The impinging shape and distribution of jets. It is well-known in the heat transfer
field that the greater the surface, the greater the heat that can be exchanged. Also,
changes in shape can vary the flow behaviour (affecting the boundary layer separation
or turbulence energy, for instance), and this leads to variations in the Nusselt number
[177]. Very often, to change the impingement surface will not be possible, but other
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plausible options to research could be to make use of forced convection by swirl flows
travelling in-between objects. To the knowledge of the author, there is no literature on
a swirl approach in cooling electronics without fans.

A popular tested mechanism to improve the heat transfer by impingement is the use
of several jets together (jet arrays). The benefits are clear: the jet can impinge on the
desired points of the surface, where an enhanced heat transfer is desired. Some work
as guidance can be [76, 107, 247, 37].

• The shape of the nozzle. This feature has been formerly reported as influential in
the way the jet spreads and the heat transfer [235, 249, 217]. The addition of swirl to
different nozzle shapes or shape optimisation can be interesting and studies are highly
encouraged.

• Use of high-fidelity simulations and experimental research. To reproduce the CFD
simulations by LES, DES or DNS would provide better computational results. Also,
these numerical analysis could give more information not only about heat transfer, but
also flow physics, such as the evolution of vortical structures [88]. It would certainly
be very interesting to see how the vortex breakdown and spreading angle is affected at
a very high angular velocity. The impinging jet flows are a complex physics problem,
and there are still unknowns to solve, such as why the azimuthal velocity changes the
sign in the core for H/D > 5, as reported by [61, 62].

• Heat transfer optimisation. It would be possible to improve the mechanism here
presented by finding the optimal problem set-up (nozzle-to-plate distance, surface
variations, angular velocity, jet-to-jet distance in arrays, etc.) as initially suggested in
[85], and these steps have already led to further recent optimisation studies such as
[177, 176, 178].

6.2 Framework for Uncertainty Propagation in Aircraft
Under-expanded Jet Flows Research

6.2.1 Conclusions and Contribution to Knowledge

The main objective of the analysis in Chapter 5 has been to study the propagation of uncertain-
ties (from experiments and turbulent modelling) in computational research of under-expanded
jet flows, in order to improve the deterministic scenario, a common practice even in the
current state-of-the-art approaches. This framework represents a novel study in this type
of jet in the presence of shock-cells and the approach here introduced determines the only
possible way to quantify the impact of experimental and turbulent model uncertainties on
stability analysis through Parabolised Stability Equations, which can lead to more complete
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practices in the field, as presented in [83, 13].
In relation to the 3D Reynolds-Averaged Navier Stokes simulations, non-Intrusive Uncer-
tainty Quantification techniques (generalised Polynomial Chaos and Kriging interpolation)
have been applied in order to understand the impact of input uncertainty in the computed
flow properties. It has been very interesting to extend this study to the whole CFD domain
instead of relevant points or lines in the domain as most literature papers do, since some
interesting areas have been identified as sensitive and then it is possible to provide much
more complete information on the behaviour of the CFD simulation, which is pretending to
mimic the flow physics. Moreover, a global sensitivity analysis was also carried out after the
uncertainty quantification in order to understand the relevance of each random input in the
output uncertainty as presented in [84].
Generally speaking, to perform uncertainty quantification and sensitivity analysis is not a
new contribution itself, but one can conclude that the framework approach here presented
improves the common deterministic approach that researchers tend to develop in compu-
tational studies of high-speed jet flows, omitting the impact of uncertainties in a realistic
computational performance. This is the reason why uncertainty and global sensitivity analysis
are both very relevant topics nowadays.

6.2.2 Suggested Future Work

From this work, future research is highly encouraged. A suggested improvement can be
linked to the fact that the stochastic behaviour of the vortical structures that generate noise
when interacting with shock-cells cannot be captured by RANS method. It is well-known that
the interaction of the vortical structures and shock-cells drives acoustics and unfortunately
this can only be analysed by LES or DNS simulations (the noise emission models existing
for RANS are too empiric and poor to perform uncertainty analysis on them). That was the
main reason for not carrying out the analysis not only on the jet flow but also on jet noise
emission, which is a concern especially in aircraft cabin noise. Moreover, despite the fact that
shock-cells after the third one are not very relevant in the under-expanded jet flow features,
and with RANS they are difficult to be reproduced, LES would be suggested. Nowadays,
the computational resources to perform uncertainty quantification with such high-fidelity
simulations of flows in the presence of shock-cells are very limited, but can be something
achievable in a near future.

Other suggested improvements to the presented analysis would be to include more sources
of uncertainty or more realistic probabilistic distributions, that were not available during the
writing of this thesis. For this reason, a conservative approach with uniform probabilistic
distributions was applied to the random inputs.
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Publications

• F.-J. Granados-Ortiz, J. Ortega-Casanova, C.-H. Lai: “Uncertainty Quantification and
Modelling of CFD simulations of a Swirling Turbulent Jet created by a Rotating Pipe
for Application to Heat Transfer from a Heated Solid Flat Plate“. 1st International
Conference on Uncertainty Quantification in Computational Sciences and Engineering.
25-27 May 2015. Crete Island, Greece (SCOPUS published paper).

• F.-J. Granados-Ortiz, J. Ortega-Casanova, C.-H. Lai. “A Swirling Flow Generated by a
Rotating Pipe for Impingement Heat Transfer Under Uncertainty. Part I: CFD Set-up“.
International Journal of Heat and Mass Transfer. (Submitted).

• F.-J. Granados-Ortiz, J. Ortega-Casanova, C.-H. Lai. “A Swirling Flow Generated by a
Rotating Pipe for Impingement Heat Transfer Under Uncertainty. Part II: Uncertainty
Quantification and Use of Models“. International Journal of Heat and Mass Transfer.
(Submitted).

• F.-J. Granados-Ortiz, C.-H. Lai, C. Perez-Arroyo, G. Puigt, C. Airiau. “Uncertainty
Quantification and Sensitivity Analysis of an Under-expanded Jet“. AIAA Aviation
2016, 13-17 June 2016. Washington D. C., USA (AIAA paper).

• F.-J. Granados-Ortiz, C.-H. Lai. “A Novel Framework for Uncertainty Propaga-
tion in Multidisciplinary Design Life Cycle in Shock-cell Noise Research“. 22nd
AIAA/CEAS Aeroacoustics Conference, 30 May - 1st June, Lyon, France (AIAA
paper).

• T. Ansaldi, F.-J. Granados-Ortiz, C. Airiau, C.-H. Lai. “Sensitivity Analysis and
Uncertainty Quantification for jet noise analysis“. Congrès Français de Mécanique
2015, organised by L’Association Française de Mécanique. 24-28th August 2015,
Lyon (France) (Congress paper).

Presentations, Posters and Public Addresses

• F.-J. Granados-Ortiz, J. Ortega-Casanova, C.-H. Lai. Contributed paper talk: “Mod-
elling for Computational Cost Reduction and Optimisation of an Impinging Swirling
Jet created by a Rotating Pipe with Application to Heat Transfer from a Heated Solid
Flat Plate“. The 8th International Congress on Industrial and Applied Mathematics.
10-14 August 2015. Beijing, (China).

• F.-J. Granados-Ortiz, C.-H. Lai. “An optimisable jet noise design life-cycle“. One-Day
Workshop on Aircraft Noise and Aeroacoustics Research in the UK, 2nd April, 2014.
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146



6.3 Dissemination of Work to Date

• F.-J. Granados-Ortiz, C.-H. Lai, K. Pericleous. “Identification and assessment of the
impact of parameters in computer-based engineering processes“. One-Day Workshop
on Applied and Numerical Mathematics, 6th June, 2014. University of Greenwich
(UK).

• F.-J. Granados-Ortiz, C.-H. Lai, S. Davis. Presentation: “Uncertainty Quantification
in jet-noise design life-cycle“. Aircraft Noise and Aeroacoustics Research in the UK.
University of Greenwich. 20th April 2015.

• F.-J. Granados-Ortiz. “What can I do when data is expensive?”. Data Natives 2016.
6th May 2016, City University London, London, UK.

• F.-J. Granados-Ortiz, C.-H. Lai. Uncertainty Quantification in Jets. Aircraft Noise and
Aeroacoustics Research in the UK/EU 2016. 2nd June 2016, Lyon (France).
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in jets (I)“, NASA Langley Uncertainty Quantification Challenge – UK Reception.
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• F.-J. Granados-Ortiz, C.-H. Lai. “Propagation of uncertainty in jets (II)“, NASA
Langley Uncertainty Quantification Challenge – UK Reception. Pullman St Pancras,
London, 11th November 2015.

Public address:
F.-J. Granados-Ortiz. “Data analysis in the aerodynamic design industry“. 5th May 2016.
University of Greenwich, London, UK.

147



Bibliography

[1] Adya, S., 2011. Uncertainty quantification integrated to computational fluid dynamic
modeling of synthetic jet actuators.

[2] Ahlfeld, R., Belkouchi, B., Montomoli, F., 2016. Samba: Sparse approximation of
moment-based arbitrary polynomial chaos. Journal of Computational Physics 320,
1–16.

[3] Ahmed, Z. U., 2016. An experimental and numerical study of surface interactions in
turbulent swirling jets.

[4] Ahmed, Z. U., Al-Abdeli, Y. M., Matthews, M. T., 2015. The effect of inflow con-
ditions on the development of non-swirling versus swirling impinging turbulent jets.
Computers & Fluids 118, 255–273.

[5] Aichinger, C., 2013. A sparse grid stochastic collocation fem for uncertainty quantifi-
cation in a nanowire sensor model. Ph.D. thesis, University of Wien.

[6] Alefeld, G., Herzberger, J., 2012. Introduction to interval computation. Academic
press.

[7] Amini, Y., Mokhtari, M., Haghshenasfard, M., Gerdroodbary, M. B., 2015. Heat
transfer of swirling impinging jets ejected from nozzles with twisted tapes utilizing
CFD technique. Case Studies in Thermal Engineering 6, 104–115.

[8] André, B., 2012. Etude expérimentale de l’effet du vol sur le bruit de choc de jets
supersoniques sous-détendus. Ph.D. thesis, L’École Centrale de Lyon.

[9] André, B., Castelain, T., Bailly, C., 2013. Broadband shock-associated noise in
screeching and non-screeching underexpanded supersonic jets. AIAA Journal 51 (3),
665–673.

[10] Angioletti, M., Nino, E., Ruocco, G., 2005. CFD turbulent modelling of jet impinge-
ment and its validation by particle image velocimetry and mass transfer measurements.
International Journal of Thermal Sciences 44 (4), 349–356.

[11] Ansaldi, T., Airiau, C., 2015. Sensitivity analysis for subsonic jet using adjoint of non
local stability equations. In: 21st AIAA/CEAS Aeroacoustics Conference, Dallas TX,
USA.

[12] Ansaldi, T., Airiau, C., Pérez Arroyo, C., Puigt, G., 2016. PSE-based sensitivity analy-
sis of turbulent and supersonic single stream jet. In: 22nd AIAA/CEAS Aeroacoustics
Conference. p. 3052.

148



Bibliography

[13] Ansaldi, T., Granados-Ortiz, F.-J., Airiau, C., Lai, C.-H., 2015. Sensitivity and Uncer-
tainty Quantification for Jet Noise Analysis. In: 22ème Congrès Français de Mécanique
2015, organised by L’Association Française de Mécanique. Lyon (France). 24-28th
August 2015.

[14] Askey, R., Wilson, J., 1985. Some basic hypergeometric polynomials that generalize
Jacobi polynomials, vol. 319. Mem. Amer. Math., Providence, RI.

[15] Asmussen, S., Glynn, P. W., 2007. Stochastic simulation: algorithms and analysis.
Vol. 57. Springer Science & Business Media.

[16] Babuška, I., Nobile, F., Tempone, R., 2007. A stochastic collocation method for elliptic
partial differential equations with random input data. SIAM Journal on Numerical
Analysis 45 (3), 1005–1034.

[17] Bailey, S., Hultmark, M., Monty, J., Alfredsson, P. H., Chong, M., Duncan, R.,
Fransson, J., Hutchins, N., Marusic, I., McKeon, B., et al., 2013. Obtaining accurate
mean velocity measurements in high reynolds number turbulent boundary layers using
pitot tubes. Journal of Fluid Mechanics 715, 642–670.

[18] Bakirci, K., Bilen, K., 2007. Visualization of heat transfer for impinging swirl flow.
Experimental thermal and fluid science 32 (1), 182–191.

[19] Barth, T. J., Jespersen, D. C., 1989. The design and application of upwind schemes on
unstructured meshes.

[20] Baughn, J., Shimizu, S., 1989. Heat transfer measurements from a surface with
uniform heat flux and an impinging jet. Journal of Heat Transfer 111 (4), 1096–1098.

[21] Behnia, M., Parneix, S., Durbin, P. A., 1998. Prediction of heat transfer in an axisym-
metric turbulent jet impinging on a flat plate. International Journal of Heat and Mass
Transfer 41 (12), 1845–1855.

[22] Bellman, R., 1961. Adaptative control processes.

[23] Benhamou, F., Older, W. J., 1997. Applying interval arithmetic to real, integer, and
boolean constraints. The Journal of Logic Programming 32 (1), 1–24.

[24] Bernardini, E., Spence, S. M., Wei, D., Kareem, A., 2015. Aerodynamic shape
optimization of civil structures: A CFD-enabled Kriging-based approach. Journal of
Wind Engineering and Industrial Aerodynamics 144, 154–164.

[25] Bradford, J., Montomoli, F., D’Ammaro, A., 2014. Uncertainty quantification and
race car aerodynamics. Proceedings of the Institution of Mechanical Engineers, Part
D: Journal of Automobile Engineering, 0954407013514396.

[26] Brown, S., Beck, J., Mahgerefteh, H., Fraga, E., 2013. Global sensitivity analysis of
the impact of impurities on CO2 pipeline failure. Reliability Engineering & System
Safety 115, 43–54.

149



Bibliography

[27] Brugière, O., Balarac, G., Corre, C., Métais, O., Flores, E., et al., 2012. Numerical
prediction of a draft tube flow taking into account uncertain inlet conditions. In: IOP
Conference Series: Earth and Environmental Science. Vol. 15. IOP Publishing, p.
032039.

[28] Buhmann, M. D., 2000. Radial basis functions. Acta Numerica 2000 9, 1–38.

[29] Burhenne, S., Tsvetkova, O., Jacob, D., Henze, G. P., Wagner, A., 2013. Uncertainty
quantification for combined building performance and cost-benefit analyses. Building
and Environment 62, 143–154.

[30] Burkardt, J., 2010. Sparse grids: Mixed families, growth rules, anisotropy:
http://people.sc.fsu.edu/burkardt/presentations/icms 2010.pdf. In: Accessed 16th May
2015. Virginia Tech.

[31] Butchers, M., 2015. Annual report in uncertainty quantification and management in
high value manufacturing special interest group. In: Knowledge Transfer Network
and Innovate UK.

[32] Cambier, L., Heib, S., Plot, S., 2013. The Onera elsA CFD software: input from
research and feedback from industry. MI 14 (03), 159–174.

[33] Carlomagno, G., Astarita, T., 2009. Slides from the course on Gasdynamics, University
of Naples Federico II. Università degli Studi di Napoli Federico II.

[34] Carr, J. C., Beatson, R. K., Cherrie, J. B., Mitchell, T. J., Fright, W. R., McCallum,
B. C., Evans, T. R., 2001. Reconstruction and representation of 3D objects with radial
basis functions. In: Proceedings of the 28th annual conference on Computer graphics
and interactive techniques. ACM, pp. 67–76.

[35] Celik, I. B., Ghia, U., Roache, P. J., et al., 2008. Procedure for estimation and reporting
of uncertainty due to discretization in CFD applications. Journal of fluids. Engineering-
Transactions of the ASME 130 (7).

[36] Chakravarthy, S., 1988. High resolution upwind formulations for the Navier-Stokes
equations. In: Computational Fluid Dynamcis, VKI Lecture Series 1988-05, March
7–11.

[37] Chang, S. W., Jan, Y. J., Chang, S. F., 2006. Heat transfer of impinging jet-array over
convex-dimpled surface. International Journal of Heat and Mass Transfer 49 (17),
3045–3059.

[38] Chmielewski, M., Gieras, M., 2013. Three-zonal wall function for k-ε turbulence
models. Computational Methods in Science and Technology 19 (2), 107–114.

[39] Choi, S.-K., Grandhi, R. V., Canfield, R. A., Pettit, C. L., 2004. Polynomial chaos
expansion with latin hypercube sampling for estimating response variability. AIAA
journal 42 (6), 1191–1198.

[40] Clenshaw, C. W., Curtis, A. R., 1960. A method for numerical integration on an
automatic computer. Numerische Mathematik 2 (1), 197–205.

150



Bibliography

[41] Colyvan, M., 2008. Is probability the only coherent approach to uncertainty? Risk
Analysis 28 (3), 645–652.

[42] Commission, E., 2012. Flightpath 2050. Europe’s vision for aviation. Report of the
High Level Group on Aviation Research, Publications Office of the European Union,
Luxembourg.

[43] Congedo, P. M., Duprat, C., Balarac, G., Corre, C., 2011. Effects of inlet uncertainties
on prediction of turbulent flows using RANS and LES simulations. In: 20th AIAA
Computational Fluid Dynamics Conference. p. 3869.

[44] Conn, A. R., Gould, N. I., Toint, P. L., 2000. Trust region methods. Vol. 1. SIAM.

[45] Constantin, P., Foias, C., 1988. Navier-stokes equations. University of Chicago Press.

[46] Constantine, P. G., 2015. Active subspaces: Emerging ideas for dimension reduction
in parameter studies. SIAM.

[47] Constantine, P. G., Emory, M., Larsson, J., Iaccarino, G., 2015. Exploiting active
subspaces to quantify uncertainty in the numerical simulation of the HyShot II scramjet.
Journal of Computational Physics 302, 1–20.

[48] Cox, R. T., 1946. Probability, frequency and reasonable expectation. American Journal
of Physics 14 (1), 1–13.

[49] Cukier, R., Levine, H., Shuler, K., 1978. Nonlinear sensitivity analysis of multiparam-
eter model systems. Journal of computational physics 26 (1), 1–42.

[50] Datta, D., 2011. Non-probabilistic uncertainty analysis of analytical and numeri-
cal solution of heat conduction. International Journal of Energy, Information and
Communications 2 (4), 143–156.

[51] De Baar, J., Scholcz, T. P., Verhoosel, C. V., Dwight, R. P., van Zuijlen, A. H.,
Bijl, H., 2012. Efficient uncertainty quantification with gradient-enhanced Kriging:
Applications in fsi. ECCOMAS Vienna.

[52] De Luca, A., Termini, S., 1972. A definition of a nonprobabilistic entropy in the setting
of fuzzy sets theory. Information and control 20 (4), 301–312.

[53] Derksen, J., 2002. Confined and agitated swirling flows with applications in chemical
engineering. Flow, turbulence and combustion 69 (1), 3–33.

[54] Dessombz, O., Thouverez, F., Laîné, J.-P., Jézéquel, L., 2001. Analysis of mechanical
systems using interval computations applied to finite element methods. Journal of
Sound and Vibration 239 (5), 949–968.

[55] Duchaine, F., Morel, T., M. Gicquel, L., 2009. Computational-fluid-dynamics-based
kriging optimization tool for aeronautical combustion chambers. AIAA journal 47 (3),
631–645.

[56] Dwight, R. P., Han, Z.-H., 2009. Efficient uncertainty quantification using gradient-
enhanced kriging. AIAA paper 2276, 2009.

151



Bibliography

[57] Eggels, J., 1994. Direct and large eddy simulation of turbulent flow in a cylindrical
pipe geometry. Ph.D. thesis, Delft University of Technology, The Netherlands.

[58] Eldred, M., Burkardt, J., 2009. Comparison of non-intrusive polynomial chaos and
stochastic collocation methods for uncertainty quantification. AIAA paper 976 (2009),
1–20.

[59] Erkoyuncu, J. A., 2011. Cost uncertainty management and modelling for industrial
product-service systems. Ph.D. thesis, Cranfield University.

[60] Escue, A., Cui, J., 2010. Comparison of turbulence models in simulating swirling pipe
flows. Applied Mathematical Modelling 34 (10), 2840–2849.

[61] Facciolo, L., 2006. A study on axially rotating pipe and swirling jet flows. Ph.D. thesis,
KTH.

[62] Facciolo, L., Tillmark, N., Talamelli, A., Alfredsson, P. H., 2007. A study of swirling
turbulent pipe and jet flows. Physics of Fluids 19 (3), 035105.

[63] Fang, H., Rais-Rohani, M., Liu, Z., Horstemeyer, M., 2005. A comparative study of
metamodeling methods for multiobjective crashworthiness optimization. Computers
& Structures 83 (25), 2121–2136.

[64] Faure, H., Lemieux, C., 2009. Generalized Halton sequences in 2008: A comparative
study. ACM Transactions on Modeling and Computer Simulation (TOMACS) 19 (4),
15.

[65] Feiz, A., Ould-Rouis, M., Lauriat, G., 2003. Large Eddy Simulation of turbulent flow
in a rotating pipe. International journal of heat and fluid flow 24 (3), 412–420.

[66] Fernández-Martínez, J., Tompkins, M., Mukerji, T., Alumbaugh, D., 2010. Geometric
sampling: An approach to uncertainty in high dimensional spaces. Combining Soft
Computing and Statistical Methods in Data Analysis, 247–254.

[67] Fesanghary, M., Damangir, E., Soleimani, I., 2009. Design optimization of shell and
tube heat exchangers using global sensitivity analysis and harmony search algorithm.
Applied Thermal Engineering 29 (5), 1026–1031.

[68] Fiorentini, G., Lisi, E., Sarkar, S., Villante, F., 1998. Quantifying uncertainties in
primordial nucleosynthesis without Monte Carlo simulations. Physical Review D
58 (6), 063506.

[69] Fluent, 2005. Fluent 6.3 User’s Guide. Fluent Incorporated, Centerra Resource Park,
10, Cavendish Court, Lebanon (NH) 03766 USA.

[70] Franzelin, F., Diehl, P., Pflüger, D., 2015. Non-intrusive uncertainty quantification
with sparse grids for multivariate peridynamic simulations. In: Meshfree Methods for
Partial Differential Equations VII. Springer, pp. 115–143.

[71] Friedman, J. H., Roosen, C. B., 1995. An introduction to multivariate adaptive regres-
sion splines. Statistical Methods in Medical Research 4 (3), 197–217.

152



Bibliography

[72] Gacherieu, C., Weber, C., Coriolis, G., 1998. Assessment of algebraic and one-
equation turbulence models for the transonic turbulent flow around a full aircraft
configuration. AIAA paper, 98–32457.

[73] Galván, S., Reggio, M., Guibault, F., 2011. Assessment study of k-epsilon turbulence
models and near-wall modeling for steady state swirling flow analysis in draft tube
using fluent. Engineering Applications of Computational Fluid Mechanics 5 (4), 459–
478.

[74] Garcke, J., Griebel, M., Thess, M., 2001. Data mining with sparse grids. Computing
67 (3), 225–253.

[75] Gardon, R., Akfirat, J. C., 1965. The role of turbulence in determining the heat-transfer
characteristics of impinging jets. International Journal of Heat and Mass Transfer
8 (10), 1261–1272.

[76] Geers, L. F., Tummers, M. J., Hanjalić, K., 2004. Experimental investigation of
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Appendix A

User-Defined Functions to Implement
the Models

The models have been implemented in FLUENT through a User-Defined Function (UDF)
coded in C. In this appendix, a piece of code is given to show how to implement the UDF.

/****** UDF FOR THE PROFILES ******/
#include "udf.h"

#define az -1.0474
#define bz 3.0230
#define cz -0.6538 /* These are the constants for v_z/U */
#define dz 34.1414

#define at 0.9709
#define bt 2.0052 /* These are the constants for v_t/U */

#define ak -0.1708
#define bk -0.0880 /* These are the constants for k/U^2 */
#define ck -1.6985

#define avr 1.9314
#define bvr 0.7933
#define cvr 4.0472 /* These are the constants for \beta */
#define dvr 1.8621

#define rho <input_value> /* Density */
#define mu <input_value> /* Viscosity */
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#define D <input_value> /* Diameter */
#define Re <input_value> /* Reynolds number */

DEFINE_PROFILE(vz,t,i) /* Function for the v_z/U profile */
{
real x[ND_ND]; /* this will hold the position vector */
real r;
face_t f;

real U=Re*mu/(D*rho); /* Calculates the velocity from the Reynolds */

begin_f_loop(f,t)
{
F_CENTROID(x,f,t);
r = x[1]/(D/2);
F_PROFILE(f,t,i) = U*(az*pow(r,3)+bz*exp(-pow(cz*r,2)))*(-tanh(dz*(r-1.0)))/2.0;
}
end_f_loop(f,t)
}
DEFINE_PROFILE(vt,t,i) /* Function for the v_t/U profile */
{
real x[ND_ND];
real r;
face_t f;

real U=Re*mu/(D*rho);

begin_f_loop(f,t)
{
F_CENTROID(x,f,t);
r = x[1]/(D/2);
F_PROFILE(f,t,i) = U*at*pow(r,bt);
}
end_f_loop(f,t)
}
DEFINE_PROFILE(k,t,i) /* Function for the k/U^2 profile */
{
real x[ND_ND];
real r;
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face_t f;

real U=Re*mu/(D*rho);

begin_f_loop(f,t)
{
F_CENTROID(x,f,t);
r = x[1]/(D/2);
F_PROFILE(f,t,i) = U*U*(0.05327/(ak+exp(pow(r,1.2)*ck)))*(tanh(bk*(r-1)));
}
end_f_loop(f,t)
}

DEFINE_PROFILE(omega,t,i) /* Function for the \omega profile from k and
* \beta profiles, as the turbulence model to be used is k-\omega */
{
real x[ND_ND]; /* this will hold the position vector */
real r,k,tvr;
face_t f;

real U=Re*mu/(D*rho);

begin_f_loop(f,t)
{
F_CENTROID(x,f,t);
r = x[1]/(D/2);
k=U*U*(0.05327/(ak+exp(pow(r,1.2)*ck)))*(tanh(bk*(r-1)));
tvr=avr*exp(-bvr*pow(r,dvr))*(exp(-cvr*(pow(r,13)-1))-1);
F_PROFILE(f,t,i) = rho*k/(tvr*mu);
/* This is the expression to obtain \omega */
}
end_f_loop(f,t)
}
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Appendix B

Models for the Fitting Coefficients

As mentioned in Eq. (3.4)-(3.7) and in Section 4.4.3, the parameters γi, where γ = a,b,c,d
and i = z, t,k,β , are modelled by the following expressions Eqs. (B.1) - (B.13). The goodness
of the fits can be seen in Fig. B.1-B.4.
From these results, the equations to model vz

U , vt
Ur
, k

U2 and β are only dependent on Q and Ω,

and ready to be used for any purpose. Note the equations are normalised via Qn =
Q−Q̄

σ ′
Q

and

Ωn =
Ω−Ω̄

σ ′
Ω

, where overbar denotes mean values and σ ′ stands for the standard deviation.
In Table B.1 can also be found goodness indicators of the fit. As the coefficient of determi-
nation (R̂2) is not the best measure for the goodness of a fit, specially in non-linear cases,
the Sum of Squares due to Error (SSE), Adjusted-R̂2 and Root Mean Squared Error (RMSE)
are also given. Over-fitting has been avoided for all the fits by using the minimum order
polynomial that reasonably satisfied the goodness.

az =−1.048+0.001532Ωn −0.01444Qn − (4.147e−05)Ω2
n −0.0009388ΩnQn(B.1)

+0.01183Q2
n − (5.997e−05)Ω3

n +(3.648e−05)Ω2
nQn −0.0005627ΩnQ2

n

+0.005394Q3
n,

bz = 3.023+0.004779Ωn −0.05368Qn +(5.742e−06)Ω2
n −0.0005031ΩnQn (B.2)

+0.003906Q2
n,

cz =−0.6536−0.002857Ωn +0.03038Qn +(1.346e−05)Ω2
n +0.0003585ΩnQn(B.3)

−0.004234Q2
n,

dz = 34.16+−0.05319Ωn +1.362Qn +0.0008092Ω
2
n +0.02154ΩnQn −0.3225Q2

n(B.4)

+0.002316Ω
3
n +0.0001007Ω

2
nQn +0.01276ΩnQ2

n −0.1631Q3
n,
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at = 0.9708+0.003415Ωn −0.03677Qn −0.0001444ΩnQn +0.001342Q2
n, (B.5)

bt = 2.005−0.006083Ωn +0.06979Qn +0.0004104ΩnQn −0.004283Q2
n, (B.6)

ak =−0.1709−0.0001532Ωn −0.000986Qn +(7.86e−05)ΩnQn +0.0007671Q2
n(B.7)

−0.0001781ΩnQ2
n − (6.527e−05)Q3

n − (3.653e−05)ΩnQ3
n −0.0003428Q4

n

+(8.297e−05)ΩnQ4
n +0.0001397Q5

n,

bk =−1.698+0.001364Ωn −0.002698Qn +(3.023e−05)Ω2
n −0.0002644ΩnQn(B.8)

−0.002849Q2
n +(3.223e−05)Ω2

nQn +0.0001315ΩnQ2
n −0.001438Q3

n

−(6.665e−05)Ω2
nQ2

n +(7.724e−05)ΩnQ3
n +0.001602Q4

n,

ck =−0.08801+(5.075e−05)Ωn +0.0005716Qn +(3.703e−06)Ω2
n (B.9)

−(2.574e−05)ΩnQn +0.0001155Q2
n,

aβ = 1.932−0.01402Ωn +0.4053Qn −0.0006922ΩnQn +0.02551Q2
n, (B.10)

bβ = 0.7933+0.001219Ωn +0.003093Qn − (7.063e−06)ΩnQn +0.001437Q2
n(B.11)

+(1.968e−06)ΩnQ2
n −0.0002586Q3

n,

cβ = 1.862−0.000533Ωn −0.04129Qn −0.0002055ΩnQn +0.005018Q2
n, (B.12)

dβ = 4.047+0.008784Ωn −0.1622Qn −0.0009475ΩnQn +0.00729Q2
n. (B.13)
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Figure B.1 Models for the vz
U coefficients.

Figure B.2 Models for the vt
Ur

coefficients.
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Figure B.3 Models for the k
U2 coefficients.

Figure B.4 Models for the β coefficients.
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Coefficient SSE R̂2 Adjusted R̂2 RMSE
az 8.206e-05 0.9903 0.9887 0.001221
bz 4.892e-07 1 1 9.105e-05
cz 3.278e-05 0.9995 0.9994 0.0007453
dz 0.07246 0.9991 0.999 0.0363
at 6.173e-08 1 1 3.208e-05
bt 4.583e-07 1 1 8.74e-05
ak 3.357e-07 0.9904 0.9887 7.884e-05
bk 1.371e-05 0.9925 0.991 0.0005086
ck 1.238e-08 0.9994 0.9994 1.448e-05
aβ 4.878e-06 1 1 0.0002851
bβ 2.248e-08 1 1 1.969e-05
cβ 1.954e-06 1 1 0.0001805
dβ 7.532e-06 1 1 0.0003543

Table B.1 Goodness of the fitting for the coefficients of the models.
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