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Abstract

A stochastic tumour-immune dynamical system with pulse immunotherapy
and chemotherapy is proposed to study how environmental noise affects the
evolution of tumours. Firstly, the explicit expression of tumour free solution
is obtained and then we show that the proposed system exists a globally
asymptotically stable positive solution under certain conditions. Secondly,
threshold criteria ensuring the eradication and persistence of tumours are
provided. Moreover, numerical investigations are carried out to address the
effects of key factors on the tumours. The results reveal that noises can
dominate all dynamics of tumours, and the comprehensive therapy can not
only accelerate the eradication of tumours, but also avoid the disadvantages
of a single therapy.
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1. Introduction

Cancer remains one of the fatal public health problems in the world [1],
and traditional treatment like surgery, radiotherapy and chemotherapy usu-
ally can not result in the eradication of tumours. Immunotherapy, which
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aims at enhancing the effectiveness of the immune system, is quickly becom-
ing a significant method to treat certain types of cancer [2-4]. Many studies
have demonstrated that immunotherapy in combination with chemotherapy
provides a more effective therapeutic protocol to treat cancer than a single
therapy [5-7].Thus, there are of great clinical significance to investigate the
effects of comprehensive therapy on the prevention and treatment of tumours.

The aim of mathematical modelling of tumour-immune interactions is
to provide better insight into the evolution of tumours from the view of
qualitative and quantitative analysis, and try to give some advices on the
treatment of tumours. The tumour-immune dynamical models with therapy
have attracted a lot of attention [8-12]. A largely influential tumour-immune
dynamical model proposed by Kuznetsov [13], consists two variables: tumour
cells and effector cells, can be described by the following differential equations

d‘;(;) = ra(t)(1 = (1)) — ax()y(t),

dy(t)  bx(t)y(t)
=== m — cx(t)y(t) — dy(t),

(1.1)

where x(t) and y(t) represent densities of tumour cells and effector cells at
time ¢. r denotes the intrinsic growth rate of tumour cells, 1/7 is the carrying
capacity of tumour cells, a is the rate at which the effector cells bind to the
tumour cells, ¢ is the inactivation rate of effector cells, d denotes the death
rate of effector cells, b is the maximum accumulated rate in the presence of
tumours and w for the steepness of immune response.

For system (1.1), Kuznetsov studied the dynamics of immunogenic tu-
mours, and the phenomena of oscillatory and dormancy of tumours were
also examined [13]. Kirschner and Panetta investigated the effects of contin-
uous injections of interleukin-2 (IL-2) on the dynamics of system (1.1), they
also discussed the short-term oscillations and long-term relapse for tumour
cells [14]. Tang and his coauthors extended system (1.1) that govern cancer
growth with immunotherapy to include chemotherapy and surgery [15-20].
Particularly, pulsed comprehensive therapy was applied at fixed periods or
once tumour cell (or effector cell) reached a threshold, conditions for the ex-
istence of periodic solutions and bifurcations were provided and they further
showed how kev parameters of treatment affected the outcomes of cancer
treatment. These results were obtained based on the assumptions that the
tumours are not affected by environmental random fluctuations.



However, all living things in nature are subject to the environment fluc-
tuations including temperature, nutrition, oxygen and so on [21], and the
tumours are also inevitably influenced by noise [22, 23]. Using stochastic dif-
ferential equation to model evolution of tumours will not only seize the main
features of tumour growth, but also provide the basis for the implementa-
tion of the treatment [23]. Based on these facts, Caravagna showed that the
stochastic eradication of tumours was possible under certain conditions [23].
Aisu pointed that increasing the period would result in the eradication of tu-
mours [22]. Li and Cheng studied one dimension tumour system with noise
and gave sufficient conditions for tumours to be stochastically eradicative
and persistent [24].

The experimental and clinical studies indicated that pulsed immunother-
apy in combination with chemotherapy are often used to cure cancer than
a single therapy [25, 26]. This raises several questions: (1) How to de-
scribe such pulsed treatment? (2) How do control parameters including noise,
chemotherapeutic drug response, intensity of immunotherapy and impulsive
period affect the outcomes of cancer treatment? (3) What is the best treat-
ment strategy for patients? To conquer these questions, we develop a novel
mathematical model based on system (1.1), in the form of a system of im-
pulsive stochastic differential equations (ISDEs), governing the evolution of
tumours with combination of immunotherapy and chemotherapy,

dr(t) = [re(t)(1 = na(t)) — ax(t)y(t) — ki (D)x()]dE + 612(t)dBy (1),
dy(t) = [ — co(Oy(t) — dy(t) - ka(O)y(t)| dt + Say(t)aBy(t), (F# T

AD(®) — D).

z(nT*) = x(nT),

y(nT+) = (1+ R(nT))y(nT), t=nT,
D(nT*)=D(nT) +,

(1.2)
where D(t) is the concentration of chemotherapeutic drug at time ¢, p is
the degradation rate. 47 and 43 are the intensity of the noise on the tumour
cells and effector cells, B;(t) and Bs(t) denote the independent Brownian
motions with F(B;(t)) = 0. T is the period of pulsed therapy, n is the
positive integers. R(nT') denotes the recruitment rate of effector cells when
immunotherapy is initiated. T is dosage of chemotherapeutic drugs injected
at impulsive point series nT. k;(t) = d; D(t)(z = 1,2), d; is the rate at which
chemotherapeutic drug inhibits the tumour cells and effector cells with dif-



ferent clearance rate. The main object of this paper is to explore how pulsed
comprehensive therapy and environmental fluctuation affect the evolution of
tumours. Therefore, in order to carry out mathematical analyses and further
provide biological implications of tumour treatment, the simple system (1.2)
is emploved. Such stochastic system with pulsed control has been widely
applied in many fields and sciences, such as in predator-prey systems [27-29],
virus dynamical systems [30], and epidemic dynamical systems [31].

The paper is organized as follows. In section 2, we introduce a series of
useful definitions and lemmas of ISDEs. In section 3, we discuss the global
positive solution of system (1.2). In section 4, we study the eradication and
persistence of the tumours. In section 5, biological implications about the
cancer treatment are addressed.

2. Preliminaries

Throughout the paper, (€2, F, {F:}i0, P) is denoted as a complete prob-
ability space with a filtration {F;},-o, and the independent Brownian motion
B;(t) is defined on this probability space. If the number of factors is zero,
then we call this product equals unity. The following definitions are very
important in the rest of paper.

Definition 1. ([32]) X(t) = (z(t),y(t))T,t € R, = [0, +oc), is a solution of
ISDE (1.2) with initial condition X (0) = Xy > 0 provided

(1) X(¢t) is absolutely continuous on (0,7] and (T, (n+ 1)T7;

(2) X(nT™) = limy_p7- X(¢) and X (nT) = lim,p7+ X(¢) and X(nT) =
X (nT~) hole true for any nT;

(3) X(t) obeys system (1.2) for every ¢ € Ry \{nT} and the pulsed point nT
satisfies the impulsive conditions.

Definition 2. ([33, 34]) Let X(¢) = (z(t),y(t))T be a solution of ISDE (1.2):
(1) if limy sy oo z(t) = 0, then x(t) becomes extinctive;

(2) if lim,_,, ot~ fot r(s)ds = 0, then z(¢) becomes nonpersistent in the mean;
(3) if imsup,_,, . z(t) > 0, then z(t) becomes weakly persistent;

(4) for any = € (0,1), there are two constants 5 > 0 and § > 0 such that

]2mj11f?7{x(t) >p3p>1- E,lngrinf'P{:i:(t) >80} >1—¢,
then x(t) is called stochastically persistent.
Definition 3. Let X (¢), Xs(t) be any two solutions of ISDE (1.2) with

Xi(0) > 0, X5(0) > 0, if limyy 4o | 21(¢) — 22(t) [= 0 and limg oo | w1 (2) —
y2(t) |= 0, then ISDE (1.2) is globally attractive.
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Lemma 1 [35]. Let f(t) € C(2 x Ry, R, —0),

(1) if there are constants (p,t; and ¢ > 0 such that f(¢) satisfies In f(¢) <
Ct— ¢ fot f(s)ds + 37, B;B;(t) for any ¢ > ty, 3; is also a constant, then
limy s 4o sup%f; fls)ds < _an_

(2) if there are constants (y, t; and ¢ > 0 such that f(t) satisfies In f(t) = (t—
Go fof f(s)ds+3""_, 3;Bi(t) for any t > . then lim;_, ;,, sup + fot f(s)ds = C—i

3. Global positive solution

3.1. Tumour free solution
The dynamics of chemotherapeutic drug are given by

{ dD(t) = —uD(1), t#nT, (3.1)
D(nT*)=D(nT)+r, t=nT. ‘

By calculation we obtain the explicit expression of the T periodic solution
DT (t) of (3.1) with
DT(t) — TEXp(—,L!-(f — RT))
1 —exp(—uT)
where t € (nT, (n+ 1)T], DT (nT") = 7/(1 — exp(—pT)).
Lemma 2 ([36, 37]) DT(#) is a unique positive periodic solution of system
(3.1) which satisfies limy_,o, D(t) = DT(t), and for any € > 0 we have

¢
DT(t)—e < D(t) < DT(t) +¢ and lim — / D7 (s)ds = —. (3.2)
tstoo t fg uT
An extreme case is considered and we study the tumour free solution of
system (1.2). To do this, assume that the tumours will be eradicated during
treatment, let 2(¢) = 0 and then system (1.2) is simplified as the following
subsystem:

dy(t) = [~dy(t) — duD(t)y(t)] dt + Say(t)dBa(t),
aD() = —ub(), ’ }t 7

(nT+) = (14 R(nT))y(nT),
L[,)(n.]”') = D(nT) + ij } t =nT,

(3-3)

Since the explicit expression of D)(t) has been solved mathematically, system
(3.3) can be reduced to the following system:

{900 =0 - BDOUOLLs 0B 0T,
y(nTt) = (1+ R(nT))y(nT),t = nT, ’
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Theorem 1. For any initial value y(0") = y(0), there is a unique global
positive solution y(t) of system (3.4), where

yt)= T (1+ROT))y(0)expl(—d — dyD(t) — 0.583)t + 6,B(¢)]. (3.5)

O<nT <t

Proof. For any ¢t € (nT, (n + 1)T], defining an Lyapunov function V (t) =
Iny(t). Make using of the Itd’s formula leads to

dIny(t) = (—d — doD(t) — 0.563)dt + 62d Bs(t).
From nT to ¢, the integral of the above equation yields
Iny(t) —Iny(nl) = (—d — dyD(t) — 0.563)(t — nT') + &3(B,(t) — By(nT)),
thus,
y(t) = y(nT) exp[(—d — dy D(t) — 0.562)(t — nT') + 85( By(t) — By(nT))].
At impulsive point ¢ = nT", after one time immunotherapy we get
y(t) = (1+R(nT))y(nT) exp|(—d—dy D(t)—0.563) (t—nT) 485 ( By (t)— By (nT))].
Mathematical induction leads to

)= ] @+ RT))w(0) expl(—d — dzD(t) — 0.562)t + 6,B5(1))-

0<nT <t
This completes the proof.

3.2. Global positive solution of system (1.2)

To investigate the global dynamics of system (1.2), we just need to pay
attention to the following equivalent subsystem (3.6) because the dynamics
of the chemotherapy drugs are discussed,

da(t) = [ra(t)(1 —ne(t)) — ax(t)y(t) — ku(t)(t)]dt + 61x(t)d By (1),

nT,
du(t) = [0 _ cafe)y(t) — dy(t) — ka(0)u(t)] it + s (®)iBa(e), [ o
z(nT") = z(nT), o
y(nT*) = (14 R(T))y(nT), } =
(3.6)



For simplicity, we define an SDE without pulsed immunotherapy accord-
ing to system (3.6) which is very helpful for the rest of the paper.

dzy(t) = m[r(l—n21) = alocprer(1+ BTy — k(D)

+51:I‘1d.81(t}, [3?)
dn(t) = u [fE2 — er— d— k() di + 0 dBy (o)

with (21(0),91(0)) = (2(0),y(0)) € R% = {(x(t), y(£))[x(t) > 0,y(t) > 0}.
Theorem 2. For any initial value (x(0),y(0)), a global unique positive
solution (z(t),y(t)) of system (3.6) exists and it remains in R?%.

Proof. By using the same methods as shown in [28], we can prove that the
SDE (3.7) has a positive solution (z(¢), 1y (¢)) which is globally unique. Let

(x(t). y(t)) = (:rl(tL 11 (1+R(HT))yl(t))= (3.8)

O<nT <t

then the absolutely continuity of (r,(¢),y(¢)) leads to the absolutely con-
tinuity of (z(t),y(¢)) for any ¢ € (rT,(n + 1)T] C [0,4+<), n € N. Once
t # nT, the derivatives of (3.8) along SDE (3.7) yield

dz(t) = dzi(t) = 21[r(1 = n21) — a[[ocnree (1 + R(nT )y — ki(t)]dt
+61T1d81 (t}
= [re(t)(1 —nz(t)) — ax(t)y(t) — ki(t)z(t)]dt + d12(t)d By (t),
dy(t) = Tlocuro (14 B(nT))dy(t)
y(t)[ by — Cry — d — kg(t)]dt + (Sgylng(f)

14wz

[T — ca(t)y(t) — dy(t) — ka(t)y(t)]dt + 6py(t)dBy(1).

When ¢ = nT,
x(nTh) = lmy_,p+ 2(t) = 21(nT)
= I(HT)
y(nT7) = lmnp+ [[ooipe (1 + RET)y (1) (3.9)

= (1+R(nT) [Jocircnr(l + RET)y1 (nT)
= (1+ R(nT)y(nT),

Therefore, there is a global unique positive solution of system (3.6). This
completes the proof.

Theorem 3. The solution of system (1.2) is globally attractive provided
m—b+c>0.



Proof. To show that the solution of system (1.2) is globally attractive, it
is only necessary to discuss the global attractivity of the solution of equiv-
alent system (3.6). To do this, chosen any two solutions (z,(t),y,(t)) and
(z2(t), y2(t)) of system (3.6) with =(0) > 0 and y(0) > 0, a Lyapunov fune-
tion is constructed to verify the global attractivity of the solutions of system
(3.6), once t £ nT and for all ¢ > 0, let

V(t)=|Inz(t) —Inza(t) | + | Inyy(t) — Inya(t) | .

By taking the upper right derivative d*V (t) of V(#) and employing It&’s
formula, we obtain

d*V(t) = sign(z(t) — za(t))d(lnz () — Inxa(t))
+sign(y (t) — ya(t))d(In vy () — ny,(t))
= sign(z1(t) — 2(8)) (—rn(z1(t) — 22(t)) — alw: (t) — v2(t)))dt
(

. bz —
sign(y(t) — va(t)) (s s — ol (1) — 2a(1)) ) dt

< [=rn=b+o) | 2i(t) —22(t) | —a | 0 (t) —2(t) []dt
< —p(| 2a(t) — za(t) | + [ 0n(t) — w2(t) )dt = —pV(t)dt,
(3.10)
where p = min{rn — b+ c,a}. If t = nT, then
V(inT"T) = |lnoy(nT") —Inze(nTH) | + | Iny (nTH) — Inye(nT ") |

(
= |Inz(nT) —Inzy(nT) |

+ | In(1 + R(nT))yi(nT) — In(1 + R(nT))ya(nT) |
= |Inz(nT) —Inzy(nT) | + | Iny (nT) — Inyy(nT) |= V(nT).

Integrating the inequality (3.10) from 0 to ¢ and then by calculating mathe-
matical expectation we have

t
Vit) < V(0) — pf V(s)ds.
0
That is .
V() + p] V(s)ds < V(0) < oc.
0
Thus, lim,_,, ., V(#) = 0 because V(t) > 0 holds, it implies

Im |2(t) —a2(t) [=0 and Lim |y (f) —w(t) [=0.
t—+oo

t—+oo



According to Definition 3, the solution of system (1.2) is globally attractive.
This completes the proof.

Theorem 4. For any 0 < s < ¢, under the condition of J[._ (1 +
R(nT)) < k1 (k1 > 0), the solution X(t) = (z(¢),y(t)) of system (3.6)
satisfies the following inequality:

lim F | X(t) |< k1k2,
t—oo

2

: .o |, _ T exp(—puT) o T exp(—puT)
where ko = frln (r +1 d171—cxpp(—#pr)) + cotio (1 d d?71—exi(—#pr))'
Proof. Defining a Lyapunov function Vi (t) = c1x(t)+coy(t) with ¢; = b—c >
0 and ¢; = @ > 0. In the light of system (3.6), when t € ((n — 1)1, nT] we

employ the It6’s formula

dVi(t) = cydx(t) + cody(t) = LV (t)dt + 10,2 (8)d By (t) 4 ead,y(t)d By (t)

where

LV(t) = efra(t)(1 — na(t) — ax(t)y(t) — ka(£)(0)]
ez [ONS — cx(t)y(t) - dy(t) — ka(B)y(t)] -

Defining another Lyapunov function Vi(t) = €'V (¢) and making using of the
[t6’s formula follows
dVia(t) eVi(t)dt + e'dVi(t)
= eVi(t)dt + e"{LV (t)dt + c1612(t)dB1(t) + c2doy(t)dBa(t) }.

Integrating both sides of ahove equation from (n — 1)T to ¢ and then calcu-
lating the expectations we obtain

EeVi(t) = e VTVi((n = )T) + E [{,_, e [Vi(s) + LV (s)lds.  (3.11)

Once the tumours attack the effector cells, the effector cells in the course
of treatment can not exceed a certain level, i.e., y(t) < yy. Notice that

LV 4+ WV = efrz(l —nz) —ary — ki(t)z] + ¢ [% —czy — dy — ka(t)y]
+a T+ ey
< o(rz—rmz® —k(t)z + )
+(ca(b—c) — cra)zy + Czyz(l —d — ky(t))
< o (Hl_dlﬂnﬂ + Gt (1 _d_dzﬂnﬁ) = ey

4ry 1—exp(—puT) 1—exp(—pT)

(3.12)



Based on equations (3.11) and (3.12) we have
BV (t) < e T (Vi((n—1)T) — ky) + €'xa. (3.13)
By taking the derivative of (3.13), a simple calculation leads to
dEVI(t) < (ke — EVi(t))dt. (3.14)
For t = nT, by calculating mathematical expectation of V4(¢),

EVi(nT") = e E(z(nTh)) + caE(y(nTH))
c1E(z(nT)) + (1 + R(nT))E(y(nT))

< (1+R@D)(@E((nD) + eB@mT) 1)

= (14 R(nT))EVi(nT).

Combining equation (3.14) with (3.15), then
{ dEVi(t) < (kg — EVi(t))dt, t #nT, 216
EVi(nTH) < (1+ R(nT))EV,(nT), t—nT. (3.16)

In order to determine the boundedness of EVi(t), we consider the follow-
ing impulsive system:

{ dz(t) = (kg — z(t))dt, t £ nT,

2(nT+) = (1 + R(nT))z(nT), t=nT. (3.17)

The unique solution of system (3.17) is obtained as follows

z(t) = z(0)m(t,0) + ﬁg/ﬁ m(t, s)ds,

where m(t,s) = [[ .7, (1 + R(nT))exp(—(t — s)). Thus, lim,_,, . 2(t) =
fi1kiz. In view of the comparison theorems of impulsive differential equations
38, 39],
lim EVi(t) € lim z(t) = Kirs.
t——+oo t——+oo

This completes the proof.
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4. The extinction and persistence of tumours

Since we have studied the uniqueness, global attractivity and bounded-
ness for the solutions of stochastic model (1.2), the coming section will focus
on how key parameters including the impulsive period, immune strength,
doses of chemotherapy drugs and stochastic Huctuations affect the extine-
tion and lonmterm survival of tumours. To this end, we denote f.(t) =
hmﬁ_H,me fo s)ds and f*(t) = lim,_, ., sup ¢ fo s)ds for simplicity,
and then pr0v1de the following preparations by vn‘tue of the 1t6’s formula.
In the light of system (3.7), we define a Lyapunov function V(t) = Inz,(t)
and make using of the Ito’s formula yields,

dinzy(t) = [r—rgr; —al]j (1 + R@T))y, —d D(2)
—103)dt + 61dBi (1) (4.1)
= [r—rygz(t) —ay(t) —d, D(t) — %5?‘]!1? + 6,dBy (1),

by using mathematical integration method and notice that x(t) = z,(t) we
obtain

lnf(a%— ( — 301 )tfrqfo s)ds — d; fu faf[;y(s)derﬂ-ﬂ(t),
(4.2)
denote M;(t fo 80;dB;(t)(i = 1,2). Similarly, we get

In y_(%))_ = Yoenre M1+ R(nT)) — (d+183) t —c [] x(s)ds
—dy [ D(s)ds +b [ =2 _ds + My(t).

Trwz(s)

(4.3)

Theorem 5. (1) If r < %5% + i‘—;, then the tumour cells become extinct.

(2) Ifr= éc‘i + E% then the tumour cells are nonpersistent in the mean.

(3) Ifr > 167 + i]—T and limy_,_, ., sup

the tumour Ce]]s become weakly persistent in the mean.

Proof. (1) Based on (4.2),

Pnenrer M(1+b(0T)) 2 dot
SOl < d 305 + ST, then

T tx(s)ds t D(s)ds
%l]] M _ (T‘——(Sz)— Jo i) _dlfn tl)

=(0) (4.4)

_adivois
: .

3

Because of < M;(t), M;(t) >= fo 2ds and the strong law of large numbers
for local martingales we obtain

MO = . (4.5)

llmt—>+oc
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When ¢ — +00, the superior limit of equation (4.4) yields

1111115_>+x,&.upﬂil <r—3i67— #T —rnz.(t) — ay.(t) < 0.

Thus, lim,_, , ., z(t) = 0 reveals that the tumour cells becomes extinct.

(2) For any small positive € > 0, there is a positive t; such that for all t > ¢,
we have

LD S)ds dir e Mi(t) - ¢
hit=F—>HF -5 <5
in view of equation (4.4),
2(t f‘ z(s)ds [ D(s)ds
Tl xLLOJ = (T__‘SE) At a— — i

_olivois | e
< (r— —52) - “‘1—7 — it [oz(s)ds + UL(” + e

According to Lemma 1, for a sufficiently small € one gets

. _lsa 4T
limy_, 4o SUP % fé r(s)ds < (TQ% = 0. (4.6)
Note that z*(f) = 0 and so lim, , o sup ¢ fo s)ds = 0, i.e., the tumours

are nonpersistent in the mean.
(3) If l]111c_,+,<,f>up£(ﬂ < 0, then the superior limit of (4.4) yields

rzt(t) + ay*(t) = r — 167 — d” — lim,_, . sup ]”m > 0.

It means 2*(t) > 0, otherwise, for any t* € {z*(¢,1*) = 0} we have y*(¢,t*) >
0. If 2*(¢,¢*) = 0, then the superior limit of (4.3) leads to

Iny(

iJ < limy, 4o sUD

Tty 4 oo SUP Zo<nT<ch:(1+R(nTJ) —(d+ %55) N % <0

It indicates that y*(¢,#*) = 0 which contradicts with y*(¢,¢*) > 0. Therefore,
lim; . sup —= ( ) > 0, i.e., the tumour cells become weakly persistent in the
mean. This Completes the proof.

Theorem 6. (1) If

Socarc WUROT) g | 152 | dor

%6 —&—il—; and  lim;_, . sup i

then the effector cells become extinct.
(2)Ifr = %5% + %, then the effector cells are nonpersistent in the mean.
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(3) I

]imta+oo sup ZD<nT<th;(l+R("‘T)) - (d+ %63 + %) - b.,;? ( 52 fi];) > 0,

then the effector cells become weakly persistent in the mean.
Proof. (1) In the light of (4.3), we have

1 ¥ _ ZD<nT<21“U+R(”TJJ 152y _ .1t
o = LUt (o)) N {? Ma(e) ® A
(s 8
—dz fo d +b IIJ l+wr(s)d s+

The superior limit of (4.7) leads to

lny{ L < lim,, .o sup —Z”“”Tﬁl?(umnr)} — (d+ 182+ d”)
+(b—c)x*(t),

It follows from Theorem 5 that x*(t) < 0, thus,

Iny(t
lim sup ny(t)
t—+o0 t

lim;_, | o, sup

< 0.

So we obtain lim, , , . y(t) = 0, i.e., the effector cells become extinct.
(2) For any sufficiently small = > 0, a 5 exists and for any ¢ > ¢ we obtain:

t
GEPEE g a0 e
in view of (4.4),
1 - ! 2(s)ds ' D(s)ds
a.% foty(s)ds = —%]n%(%% + (r— édf) — r-r]fU E) - d1f° t()
Mi(t
+ i
S(T7702 d17)+p
The superior limit of above equation gives
limg ¢ oo sup ¢ fu s)ds < 0. (4.8)
During the immunotherapy, lim,_, ., sup ; .fo s)ds > 0 due to the recruit-
ment of the effector cells. Therefore, we have limy ;1o sup fo s)ds = 0

which reveals that the effector cells is nonpersistent in the mean.
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(3) From (4.7) we have

=

]n!%(%)}— > Zncure, MA+RET)) ‘h;(HR(”TJ) — (d—i— %63) —(b+ C}% f[: x(s)ds
—dy [3 D(s)ds + 228,

t

(4.9)

then (4.4)+(4.9) and the superior limit of the above inequality leads to

ul fm > limy, 4 o sup Zvcor< MIHHAT) ]:(HR(HTJ) - (d +162 + ‘%) + (-r — 15— “E—JI)
—(rn = b+ c)z*(t) — ay* (1),

and it follows from (4.6) that we obtain

ay*(t) >l yop sup DicaratMOCROT) _ (d +162 4+ dL)

_bee 152  dir
- (r 261 #T) = 0.

which means that y*(t) = lim; , | sup f; y(s)ds > 0. This completes the
proof.

Assumption 1. There are two positive constants m, and M, such that
Ty S HO(nT(t(]‘ + R(RT)) S .L‘L{l

Theorem 7. Based on assumption 1, if & = mingq[r— %6% —dr

T —(].ﬂ‘fl'yo] >
0, then the tumour cells are stochastically permanent.

Proof. In the light of Definition 2, We first show that there exists a constants
§ > 0 such that liminf, , . P{z(¢) > 5} > 1—< when ¢ € (0,1). To do this,
we define a Lyapunov function V1(x) = 1/z; (z; > 0) and the application of

the It6’s formula to system (3.7) yields

dVizy) = —VYaxy)[r —rpz, —d,D(¢) — aHo<nT<:(1 + R(nT))y,|dt
_~_]/’1 (11)5%0% — L’l(zl)ﬁldBl (t)

For arbitrary positive constant 1 so that & > 0.5067, we let V() = (1 +
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V(z))" and make use of the Itd’s formula results in

dVi(z;) = (14 Vi(21))"dV (2,) +0.59(9 — (1 + V(1)) 2(dV (21))
= D1+ V)" H{-V(21) = (VN21))[r — gz — diD(2)
—a[Tperrar(1+ R(nT))yl] + Vo) (V)
+U J( — 1)(V1 fI‘l Oz}l‘jt — 1 + Vl(.’r]_))ﬂ lVl(Tl)dldBl( )
= (14 Vi) 2{~( ))3[r — 0.562 — d, D(t) — 0.5052
aHanT<t 1 + R(HT))L“]
+V 1 (xy)[— r+rn+aHD<nTﬂ 1+ R(nT))y, +d, D(t) + 67]
+ntdt — 3(1+ Vi (z1))" 'V (21)61d By (1)
Vo) VT 0] £ v oyl
+{ll‘|.fflyg -+ 6% le] —+ T'?]}df — + Vl (Tl))g_llf'fl(ffl)éldBl (t)

IA

Subsequently, choosing a £ small enough such that
D — 0.5067 > 5 > 0. (4.10)
Again let V3(z) = exp(£t)V?(x,) and by using the Ito’s formula we obtain

dV3(zy) Eexp(Et)V2{(xy)dt + exp(£t)dV 2 (z1)

Dexp(&t) (L + V1 ()" (LS — (11(2,))2(® — 0.5053]
+V ) [y + aMyye + 67 + %] + rn}dt

—dexp(&t)(1 + Vl(i”l))ﬂ_lvl(i’l)éldBl(f)

= exp(&t)q(z1)dt — D exp(Et)(1+ VI {(z1))" =V (21)01d B (t),

Al

with

gler) = 91+ V(@) 2{~[@ - 0.508F — §](V'(21))?
+[rnp + aMiyy + 62 + '?TT + ZVi(z)) +rp + S}

Let Cy = & — 05087 — 5, Co = ry+ aMyyo + 67 + %2 + % and Cs = ry + &,
from (4.10) we know C} > 0, Cy > 0 and Cs > 0. Note that V() = 1/z;
and ¢(z1) can be rewritten as

1 . (& C .
q(z1) = (1 + —)2 {——; + =+ cs} = qi(z1).
Ty Ty Ty

If z; > 0, then f(z;) is upper bounded. In fact, if - L > CotyCRHCC

20
then g(z;) < 0. If 0 < 1—1] < Ay, then ¢ (z;) < ACLfé:rC ) Furthermore, if

15



0 > 2, then 9(1 4+ )72 < 9(1 4+ A)" 2 if & < 2, then ¥(1 + )72 < 0.

T
4C1C3+C3
40

max{d, (1 + A;)?~2}, which means ¢(z;) is upper bounded. Furthermore,
dV3(z)) < exp(&t)q(x)dt — P exp(E6) (1 + V' {ay)) V1 (21)8:d By (t)
< goexp(§)dt — Dexp(Et)(1+ VH(2y))" "V (21)d,d By ().

Therefore, for any z; > 0 we have ¢(z;) < gy = Ay with Ay =

From 0 to ¢ integrating above equation and taking the expectation we obtain
- 4
BIV3(z:(t))] < V3(2:(0)) + fexp(ft),

notice that V3(z,(t)) = exp(£t)(1 4+ Vi(z(1)))7,

E[V3(x,(1))] Elexp(&t)(1 + V(x1(1)))”]
V3(2,(0)) + 2 exp(ét)
(1+V1(21(0)))” + % exp(£2).

A

The superior limit results in

lim sup, , o, E[(V!(z1 (f)})ﬂ}

limsup, , o, E[ =
< limsup, , ., E[(1+ V'(z:(1)))"] < %-

1
x1 (1)"]

If follows from (3.8) that we have x(f) = z1(t),
lim sup,_, , ., E[Wl)a] = limsup,_, . E[ﬁ] < };—0 = qum.
1
For any £ > 0, let 7 = E%/ qyr, thus the Chebyshev’s inequality leads to

limsup, ,,  P{z(t) < 8} = limsup, . ]P’{z,,—l(t) > 45}
1

. =o
< limsup,_, ., —,,:—;f“j

lim sup,_, . 3‘9}_7,'[;}(7)] =c.

Therefore, iminfe ..o P{x(t) > 3} > 1 —=.

Now, we only need to prove that there is a p > 0 such that lim inf, .. P{2(t) <
0} = 1—&. To this end, defining another Lyapunov function Vz(z,(t)) = 2 (¢)
(z1 > 0) and making use of the Itd’s formula to system (3.7) yields

dVs(z:1(1)) hVs(z1(t))[r — rnza(t) — diD(t) — a [[ocpr (1 + R(nT))un(2)
+0.5(h — 1)6f]dt + hé, V3(x1(t))dB ()

hVa(z,(t)[r — oz () — i‘—; +0.5(h — 1)67)dt

+hd V(2,1 (t))dBy(t),

IA
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integrating above equation from 0 to f and the expectation leads to

E[Va(1(t))] = E[Va(21(0)] < h [y B{Va(z1(s))[r — ryz1(s) — 5
+0.5(h — 1)6%] }ds,

the derivative of the above formula yields

dE|[V. t d,

dE[Vs(z: ()] < hE[Va(x1 ()] [-r — i +05(h— 1)5f:| — hrn B[z (1)].
dt ur

Applying the Holder’s inequality results in

htl

LN < RE[Va(aa(1)] [r — &7 +0.5(h — 1)32 ] — hrnBla (1)) F".

Denote ¢(t) = E[V3(z,(t))],

da(t)
dt

I A

ho(t) |r — 4 +0.5(h — 1)87 h-rn¢%(t)]
< ho(t) |r — f—; + 0.5h87 — hrr)qﬁa;%[t)} .

It follows from the standard comparison theorem that we have

limsup,_,, . Bz (t)] limsup, ,,  E[Va(z,(t))]

limsup,_, , o, &(t)

T h
- (= T +0.5h57
— hrn .

Because x(t) = z,(t), thus

limsup, ., Elz"(t)] = limsup,, . Elz}(t)]

h
r—SLT +0.5h57
hrn :

Again, the Chebyshev’s inequality leads to

liminf P{z(t) < o} > 1—c.

i—+oo

In conclusion, in the light of the definitions the tumour cells are stochastically
permanent. This completes the proof.
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Figure 1: Extinction and weakly persistence of tumours. (a) Time series of tumour cell
x(t) with r = 2; (b) Time series of tumour cell z(t) with r = 2.2. We set initial values as
(z(0),»(0)) = (0.1,0.5) and all other parameters are fixed as: 5 = 0.002, a =1, b=1.131,
w=20.19, ¢c=0.00311,d=0.3,8, =2,0, =05, n=80,T=50,dy, =d =05, p=10.5,
7=0.2 and R(nT) = 0.05.
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5. Numerical results and biological implications

Since we have provided the conditions for the extinction and persistence
of tumours, numerical studies will be carried out not only to substantiate
theoretical results, but also to show how key parameters affect the evolution
of tumours. The baseline parameters of the stochastic system (1.2) in the
absence of periodical treatment can be found in the classical paper [13].

5.1. Numerical verifications of theoretical results

x 100 (=) ()
12 T T T 0.16 T T T
0.14 B
10
0.12 1
8 |
0.1 1
6 1 < oos B
0.06 1
) ' |
0.04 B
. | |
- M«;
o . \ . 0 \ . \
] 1000 2000 3000 4000 [ 1000 2000 3000 4000
t t

Figure 2: Stochastic persistence of tumours. (a) Time series of tumour cell x(t) with r = 3;
(b) Time series of tumour cell z(f) with » = 2. We set initial values as (z(0),y(0)) =
(0.1,0.5) and all other parameters are fixed as: 1 = 0.002, a = 1, b = 1.131, w = 20.19,
c=000311,d=03,6;, =15, 8, =05 n=40,T=100,d; =dy = 0.5, p =05, 7=0.2
and R(nT) = 0.02.

Fixed parameter values as shown in Fig.1(a) so that r < %6% + il—;, the

tumours go extinct in the presence of pulsed treatment. [t suggests to us that
by using the stochastic tumour-immune model, periodical applications of im-

munotherapy and chemotherapy result in the eradication of tumours. Howev-
er, increasing r such that r > %ﬁf + f—; and lim;_. |, sup M <
d - %53 + i?—]f, then the tumours become weakly persistent in the mean
(Fig.1(b)). Fixed parameters as shown in (Fig.2(a)), then ® = mingq[r —
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%5? — f—; —aMy] & 0.768 > 0, it is noticed that the dynamical behaviour of
system (1.2) is deeply different from Fig.1(b), the phenomenon of stochasti-
cally persistent for tumours can be observed. Otherwise, if we set r = 2 such
that ¢ &~ —0.232 < 0, then the dynamic behavior of tumours changes from
stochastically persistent to weak persistent in the mean (Fig.2(b)). These
results confirm the correctness of the obtained conditions for the extinction
and persistence of tumours.

5.2. The effects of noise on evolution of tumours
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Figure 3: The effects of d; on the evolution of tumours. (a)d, = 0; (b) §; = 2; (¢) §; = 2.7;
(d) 8, = 3. We set initial values as (2(0),y(0)) = (0.1,0.5) and all other parameters are
fixed as: » = 2.5, n = 0.002, e = 1, b = 1.131, w = 20.19, ¢ = 0.00311, d = 0.3, d = 0.5,
n=2380,T=50,d, =dy =05, p=05,7=0.2 and R(nT") = 0.05.

Notice that the growth of tumour cells is influenced by many factors such
as environmental noise [23, 24]. Inspired by this fact, we will perform a deeper
analysis on what changes in the dynamics of tumour cells will be present as
the noise term d; changes. To this end, fixed all other parameters as shown
in Fig .3 and a series of numerical simulations are carried out by varying 4,.
When §, = 0, we found recurrence of the tumour cells and finally the tumours
become stochastically persistent (Fig .3(a)). As é; increases, the dynamical
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behavior of tumours displayed dramatically changes. For example, if we set
0, = 2, then the tumours become weak persistent (Fig .3(b)). As 4, further
increases, the evolution of tumours changes from weak persistent to extinct
(Fig .3(c)), and the larger the noise é;, the shorter the extinction time for
tumours (Fig .3(c) and Fig .3(d)). The results confirm that noise dominates
all possible dynamics of tumours.

5.3. Chemotherapy alone or immunotherapy alone
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Figure 4: The effects of chemotherapy alone on the evolution of tumours. (a) 7 = 0.2 and
T =50 (b)r=2and T =50; (¢) T=02and T =20; (d) 7 = 0.2 and T = 80. We
set initial values as (x(0),y(0)) = (0.1,0.5) and all other parameters are fixed as: r = 2.2,
n=0002 a=1b= 1131, w= 2019, ¢ = 0.00311, d = 0.3, 6; = 2, 62 = 0.5, n = 80,
dy =dy =05, p=0.5 and R(nT) = 0.

Theoretically, noise can determine all the dynamics of tumours (Fig.3),
but in reality the changes in environment are limited so that the noise term is
not strong enough to control cancer. Therefore, combinations of chemother-
apy and immunotherapy are initiated to suppress the proliferation and mu-
tation of tumours. If only chemotherapy is applied, then the eradication
of tumours is observed (Fig.4). The feasible approaches to treat tumours
include increasing the doses of chemotherapy (Fig.4 (a) and Fig.4 (b)) or in-
creasing the frequencies of chemotherapy (Fig.4 (¢) and Fig.4 (d)). Further,
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a therapeutic regimen with smaller dose and more frequent deliveries is more

effective (Fig.4 (a) and Fig.4 (c)).
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Figure 5: The effects of immunotherapy alone on the evolution of tumours. (a) R(nT) =
0.05 and T = 50; (b) R(nT) = 0.15 and T = 50; (¢) T = 20 and R(nT) = 0.05; (d)
T =80 and R(nT) = 0.05. We set initial values as (x(0),y(0)) = (0.1,0.5) and all other
parameters are fixed as: r = 2.2, 7 =0.002, a =1, b = 1.131, w = 20.19, ¢ = 0.00311,
d= 0.3._ 151 = 2, 52 = 0.5, n = 80, dl = d-z =05,7=0 and o= 0.5.

If only immunotherapy is initiated, then it is also possible to observe the
outcome of the tumour’s extinction (Fig. 5). For instance, we can achieve
the goal of controlling tumours by increasing the doses of immunotherapy
(Fig.5 (a) and Fig.5 (b)) or decreasing the periods of immunotherapy (Fig.5
(¢) and Fig.5 (d)). A small increases of doses will result in the rapid erad-
ication of tumours (Fig.5 (a) and Fig.5 (b)). While the effect of decreasing
the periods of immunotherapy on treating tumours makes no different from
chemotherapy (Fig.4 (¢) and Fig.5 (c)).

5.4. Combinations of chemotherapy and immunotherapy

Under certain conditions, periodical applications of immunotherapy alone
or chemotherapy alone could result in the eradication of tumours, but these
two kinds of treatments have their drawbacks including resistance, toxic re-
action and so on [25, 26]. To overcome these, immunotherapy is applied with
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Figure 6: The effects of comprehensive therapy on the evolution of tumours. (a) R(nT) =
0.15, 7 =2and T = 50; (b) R(nT)=0.05, 7 =0.2 and T' = 20; (¢) R(nT) =0.15, 7 =2
and 7" = 40. We set initial values as (2(0),y(0)) = (0.1,0.5) and all other parameters are
fixed as: r =22, 1 =0.002, a =1, b= 1.131, w = 20.19, ¢ = 0.00311, d = 0.3, §; = 2,
62 = 0.5._ = 80, d] = dg = 0.5 and = 0.5.

chemotherapy, such therapy can not only enhance the effect of chemother-
apeutic agents, but also kill tumour cells with resistance. Compared to
treatments with chemotherapy or immunotherapy alone, the eradication of
tumours can be easily observed by applying comprehensive therapy. If we
increase the dosages of immunotherapy and immunotherapy (Fig. 6(a)), or
decrease the periods of comprehensive therapy (Fig. 6(b)), or increase the
dosages and decrease the periods at the same time (Fig. 6(c)), then the tu-
mours are quickly extinct. Compared to Iig. 4 and Fig. 5, we found that
small changes in comprehensive therapy could accelerate the eradication of
tumours.

From the above analysis, the simulation results can not only substantiate
our theoretical works, but also confirm the effectiveness of comprehensive
treatments. Biologically, we also study how changes of the key parameters
affect the evolution of tumours, which is very helpful for treating cancer.

6. Conclusions

Recently, many works pointed out that the evolution of tumours is in-
evitably affected by environmental noise [23, 24]. Pulsed comprehensive ther-
apy is one of the feasible methods to treat tumours [12, 18, 19, 30, 31]. Howev-
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er, there are few studies about stochastic tumour-immune system with pulsed
comprehensive therapy. In this paper, we construct a stochastic tumour-
immune system with pulsed therapy to show how environmental noise and
pulsed treatment affect the evolution of tumours.

We first study the pharmacokinetics of the chemotherapeutic drug and
give the explicit expression of the tumour free solution. Under certain condi-
tions, the solution of system (1.2) is not only unique and globally attractive,
but also upper bounded in terms of expectation. It reveals that the tu-
mours can not grow indefinitely when pulsed immunotherapy is introduced.
By using theorems of ISDEs, we derive the sufficient conditions for tumours
to be extinct, nonpersistece in the mean, weakly persistence in the mean
and stochastically permanent almost surely. Then numerical simulations are
carried out to confirm the correctness of our results.

Under the influence of environmental noise, biological implications of
pulsed comprehensive treatment for the tumours are addressed. we found
that large stochastic fluctuations will result in the eradication of tumours and
small stochastic luctuations will lead to stochastical permanence of tumours,
and the larger the noise é,, the shorter the time for tumours to be eradicative
(Fig.3). In theory, noise can dominate the evolution of tumours. However, in
reality, environment noise is usually restricted so that it is not strong enough
to control cancer. Therefore, comprehensive therapy is introduced to inhibit
proliferation and mutation of tumours. If a single chemotherapy is applied,
then the eradication of tumours can be observed by means of increasing the
dosages and frequencies of chemotherapy, the results also show that small-
er dosages and more frequent deliveries are more effective for curing cancer
(Fig. 4). If a single immunotherapy is implemented, then large dosages will
result in the rapid eradication of tumours (Fig. 5). Though immunothera-
py or chemotherapy alone could result in the eradication of tumours, many
disadvantages result from these therapies are inevitable [25, 26]. Thus, the
effects of combinations of chemotherapy and immunotherapy on the tumours
are investigated. If we increase the dosages of comprehensive therapy, or
decrease the periods of combined therapy, or increase the dosages and de-
crease the periods at the same time (Fig.6), then the eradication of tumours
is easier to be observed than a single therapy. It is also concluded that the
comprehensive therapy could accelerate the eradication of tumours.

Many interesting topics need to be investigate. For example, system (1.2)
is proposed by autonomous differential equations, what happens if we take
the nonantonomous case into account [32]7 And what role does impulsive
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comprehensive therapy play in tumor eradication? It is hoped that such
research, planned for the near future and to be reported elsewhere, will be
useful for cancer treatment.
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