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Abstract. Ultrasonic guided wave inspection is one of the non-destructive testing (NDT) 

techniques available for the structural health monitoring (SHM) of engineering structures. 

Compared with other NDT techniques, guided waves can propagate over tens of metres with a 

relatively high sensitivity to defects in the structure. The general sensitivity range of the 

operation is up to 3% reduction of the cross-sectional area, depending on the signal-to-noise 

ratio. However, optimisation of guided wave testing method is still a requirement, as the 

technique is currently subject to a complex analysis due to wide number of guided wave modes 

generated. This can be done by optimising the transducer array design. In this paper, it is 

described the behaviour of a set of piezoelectric transducer arrays upon excitation in a tubular 

structure with simulated defects. This is achieved through a combination of finite element 

analysis (FEA) and experimental testing. The core objective of the work is to optimise the 

design of transducer arrays aimed at exciting the T(0,1) mode with a significant level of mode 

purity. This will significantly reduce the complexity of guided wave analysis, enhancing 

effectively the structural health of structures and subsequently reduce the industry maintenance 

cost. 

1. Introduction 

Structural integrity evaluation of oil and gas pipelines with NDT and SHM techniques is particularly 

attractive in industrial fields, since serious accidents of pipe failures have occurred due to its wall-

thickness loss by corrosion or fatigue cracks, commonly. In NDT techniques, mostly used methods 

include acoustic emission (AE), X-ray inspection, ultrasonic testing (UT) and guided wave (GW) 

testing. For a long range ultrasonic testing, guided wave with a lower operation frequency range from 

20 kHz to 100 kHz [1] has a high sensitivity and low attenuation when compared with UT under ideal 

conditions. Generally, the sensitivity of GW testing is working for reducing up to 3% of cross-

sectional area depending on the signal-to-noise ratio [2]. The selected wave modes for guided wave 

excitation in pipe inspections are longitudinal wave modes L(0,1) and L(0,2), and torsional wave 

mode T(0,1). Gazis [3] investigated the propagation of these three wave modes with their flexural 
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mode families F(n,1), F(n,3) and F(n,2), respectively. The dispersion curves were generated to 

describe a relationship between the selected modes and their flexural wave modes in a frequency range 

from 0 to 50 kHz [4] as shown in paper [5]. The constant phase velocity of torsional wave T(0,1) is 

3260 m/s from dispersion curves in the frequency range.   

In this paper, the finite element model is based on commercially available tool incorporating three 

circumferential arrays ‘rings’. 24 transducers in each ring excited the torsional wave mode T(0,1). As 

with the tool, the numerical simulation in ABAQUS was set up with a 33-degree spacing between the 

start and end transducers of the ring. Ideally, transducers are equally spaced around a pipe that can 

excite a pure wave mode T(0,1) propagation without any other wave modes [6]. However, the 

torsional type flexural wave mode F(1,2) as shown in Fig. 2 and its higher order modes were also 

generated to interact with the wave mode T(0,1) by a transducer array with a 33-degree gap [7]. The 

transducer array was modelled to study its sensitivity analysis for circumferential notch detection [5]. 

This paper presents wave mode T(0,1) which was excited to propagate on a 4.45 m long, 8-inch (219.1 

mm outer diameter), schedule 40 (8.18 mm wall thickness) steel pipe using the transducer array with a 

33-degree gap and then verified through experimental validation. Also, its sensitivity analysis was 

evaluated for circumferential crack detection.  

2. Modelling of transducer array sensitivity for circumferential crack detection 

 

 

Figure 1. Guided wave testing of finite element model for 8-inch, 

schedule 40 steel pipe. 

 

Finite element analysis in ABAQUS have been undertaken on a 4.45 m long, 8 inches, schedule 40 

steel pipe model for guided wave testing as shown in Fig. 1. The steel pipe was modelled as a linear 

isotropic material with a mass density ρ = 7932 kg/m3, Young’s modulus E = 216.9 GPa and Poisson’s 

ratio υ = 0.2865. At the left pipe end, three transducer rings were installed to cancel the transmitted 

signal from the back of transducer arrays. The ring spacing is 30 mm. As with the tool, each ring has 

24 transducers equally spaced on the pipe circumference except for a 33-degree gap between the 

transducers No.1 and No.24. The transducers were all simulated as point sources. The receivers, 

composed of 24 equally spaced points, are placed at 2 m away from the left pipe end. A part-

circumferential crack, 0.5 mm width in the axial direction and through-thickness, is located at 1 m 

away from the array of 24 receivers. An average mesh size of 4.5 mm in the axial direction and 5 

elements in the radial direction were meshed with a total of 810,950 Hex elements. The transmitted 

signal was excited by a 10-cycle Hanning windowed pulse. The pulse signal is with the centre 

frequency of 35 kHz and frequency bandwidth of ±7 kHz. A concentrated force at each point source in 
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the circumferential direction was used to excite the torsional wave T(0,1). The excitation was inverted 

by the middle ring, and the unconverted signal had a time-delay (9.2 us) that was excited by the back 

ring.   

 

 

 

Figure 2. Normalised displacement in time 

domain.  

 Figure 3. Polar plot of normalised maximum 

circumferential displacements. 

 

Transducer arrays with no transmission at No.1, 4, 7, and No.10 of each ring were simulated to 

detect different circumferential crack sizes including C15 (15 degrees), C45 (45 degrees) and C75 

(degrees). Figure 2 gives results for the wave modes T(0,1) with F(n,2) amplitude of normalised 

circumferential displacements at No.1 receiver in the case with crack C15 (No.1 Rx), and a single 

T(0,1) normalised circumferential displacement amplitudes by summing up the results at 24 receivers 

in the cases with cracks C15/C45/C75 (24 Rx Sum). From the results in the case with a part-

circumferential crack 15 degrees on the top of pipe, the wave mode T(0,1) interacts with undesired 

flexural wave modes F(n,2) since the transducer spacing is non-uniform. The normalised amplitudes 

of circumferential displacement reduce by cancelling flexural wave modes. From the cases with 

different crack sizes, the related values increase when the crack size is extended in the circumferential 

direction. Figure 3 shows that the maximum amplitude of normalised circumferential displacement 

decreases when no transmission at that position and the total energy also reduces when compared with 

the maximum displacement amplitudes upon the initial status of transducer arrays. For sensitivity 

analysis of transducer arrays with a 33-degree gap and no transmission at No.1, 4, 7 and No.10, the 

reflection coefficient for the T(0,1) mode upon the increased through-thickness crack size is 3.5%, 

16% and 24%, respectively whereas the reflection coefficient for the T(0,1) with F(n,2) modes  is 11%, 

44% and 56%, respectively. Results show that a 0.5 mm width, through-thickness crack size can be 

detected by exciting wave mode T(0,1) at 35 kHz in numerical simulations, even the detection is 

without complete signal transmission from the transducer arrays. The sensitivity of transducer arrays is 

around 4% for inspecting the simulated flaw. Further experimental measurements will be evaluated in 

the future work.  

3. Experimental validation 

To verify the related finite element models, an experimental set-up was designed as shown in Figs. 4-

5. The torsional wave mode T(0,1) was excited by a piezoelectric transducers collar (part of Teletest® 

MK3 system). In this experiment, each ring was set with a gap of 33 degrees between transducer 

modules No.1 and No. 24. A 4.45 m, 8-inch, schedule 40 steel pipe without defects was used as 

specimen. A non-scanned laser vibrometer which was used to measure the circumferential 

displacements at 24 equally spaced receivers, were located at 2 m away from the left pipe end. Figure 

6 shows a good agreement between experimental and FEA results. The numerical modelling for 

guided wave propagation are then verified from the experimental measurement. 
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Figure 4. Experimental setup.  Figure 5. A detailed sketch of experimental setup. 

 

 

Figure 6. Comparison between Experimental and FEA results. 

4. Conclusion 

The numerical simulations of guided wave testing in ABAQUS have been verified from the 

experimental validation. The torsional wave mode T(0,1) interacts with the flexural wave modes 

F(n,2) that shows higher sensitivity when compared with the single mode T(0,1) by cancelling flexural 

modes for a part-circumferential through-thickness crack (0.5 mm width in the axial direction) using 

transducer arrays with non-uniform transducer spacing on the circumference. 
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