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Abstract

Periodical applications of immunotherapy=and.chemotherapy play signif-
icant roles in cancer treatment and studies have shown that the evolution
of tumour cells is subject to random eyents: In order to capture the ef-
fects of such noise we developed a‘stochastic tumour-immune dynamical
model with pulsed treatment te,describe combinations of immunotherapy
with chemotherapy. By using theorems of the impulsive stochastic dynami-
cal equation, the tumour free selution and the global positive solution of the
proposed system were investigated. We then show that the expectations of
the solutions are bounded. Furthermore, threshold conditions for extinction,
non-persistence in.the mean, weak persistence and stochastic persistence of
tumour cells aredprovided. The results reveal that comprehensive therapy or
noise can dominate the evolution of tumours. Finally, biological implications
are addressed and a conclusion is presented.
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1. Introduction

The malignant tumours of cancer result from the abnormal proliferation
of cells. Cancer remains a worldwide aggressive disease and its treatment
is still fraught with challenges. Traditional methods of treatment usually
include surgery, radiotherapy and chemotherapy. However, these méthods
either cannot completely clear cancer cells or cause many negative side ef-
fects in the patients. To overcome these drawbacks, new treatments based
on immunotherapy, intended to stimulate a strong immune #esponse’ to its
target tumours, has been used to cure cancer [1, 2]. Pre-clinical data and
phased clinical studies have emphasized that immunotherapy may not only
clear the tumour cells, but can also enhance the efficacy of ehemotherapy or
radiotherapy [3-5].

Mathematical models have been used to study the interactions between
tumor cells and immune cells [6-9]. In 1994, Kuznetsov constructed a novel
tumour-immune dynamical model and thewesults showed how the tumour
growth stimulated the immune response and*how dormancy in tumours oc-
curs [10]. The simple model consisted of tweserdinary differential equations,
where the effector cells (such as Tk or \NK cells) act as role of predator,
while the tumour cells play the.role of-the prey. Many phenomena were
studied, such as immunostimulatien of tumour growth, sneaking through of
the tumour, and formation-efia tumour dormant state. Later, Kirschner and
Panetta extended this tdmour-immune model by introducing immunother-
apy [11]. The continu6us,injeetions of interleukin-2 (IL-2) were investigated
and the conditionsAer short-term oscillations for tumour cells and for long-
term tumour relapse were provided. Wei and Yang later studied pulsed
tumour-immune models with immunotherapy and chemotherapy applied pe-
riodically [42, 13]. The conditions for the tumour free periodic solution were
obtaineddand'it\was confirmed that Adoptive Cellular Immunotherapy (ACI)
applied more frequently than inputs of IL-2 were a better way to cure cancer.
Moreover, Tang and co-authors developed a series of tumour-immune mod-
¢ls incorporating comprehensive therapy [14-16]. Surgery together with ACI
and IL~2 were implemented once tumour cells or effector cells reached critical
values. Periodic solutions and bifurcations were studied and the biological
significance of the results for cancer treatment was also addressed.

A very important assumption in the above studies is that the growth
of both tumour cells and effector cells follow deterministic laws. But most
natural phenomena are influenced by stochastic processes rather than only



by strictly deterministic laws [17], and the tumour cells are no exception
[18]. For instance, changes in the environment can lead to changes in the
enzymatic activity of proteins, which will affect the growth of tumour cells
[19]. Thus, it is more reasonable to describe the growth of tumour cells by
using stochastic differential equations. Li and Cheng considered a stochastie
tumour growth model and obtained conditions for extinction and persistence
of tumour cells [19], and Caravagna investigated the effects of<stochastic
oscillations on tumour suppression [20]. Wang and co-authors=studied how
environmental fluctuations affected the dynamics of tumour cells+{21}.

However, there are few stochastic tumour-immune medels with compre-
hensive therapy. In experimental and clinical studies, immunotherapeutic
drugs and chemotherapy drugs are often injected at _fixed periods to cure
cancer [22, 23]. Such pulsed treatments, which cansbe described by impul-
sive differential equations [24, 25], have proved“te be éssential for governing
whether the comprehensive treatment was successtulror not [9]. Therefore, it
is necessary to consider both environmentalfluctuations and pulsed therapy
in a tumour-immune model, and furtherto address how random noise and key
factors (including the period of therapy,\a’clear rate representing the inten-
sity of treatment and the growth ratestimulated by immunotherapy) affect
the outcomes of the treatment:Fhereby, we propose a stochastic tumour-
immune model with pulsed comprehensive therapy to solve these problems.
And such stochastic systems with pulsed control have been widely applied
in many fields and sciencesy such as in predator-prey systems [26-28], virus
dynamical systems [29], and epidemic dynamical systems [30].

The structure©f this,paper is divided into the following sections: Some
important definitions,and lemmas about the impulsive stochastic dynamical
equation aredntroduced in section 2. In section 3, the existence and unique-
ness of a global positive solution for system (2.2) will be studied. In section
4, the conditions for the extinction and persistence of the tumour cells and
effector cellsjare provided. Numerical investigations are carried out in sec-
tion 5. In_section 6, biological implications about the cancer treatment are
addressed, followed by concluding remarks.

20 "Mathematical Model

2.1. Model formation

Let z(t) be the tumour cells and y(t) be the effector cells include cytotoxic
T-cells, macrophages, and natural killer cells that act on the tumour cells.
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Assume that the tumour cell and effector cell play the role of the prey and
predator, then the tumour-immune dynamical model proposed by Kuznetsov
can be described by [10],

B o)1~ ) — an(t)ylr),

d?iiit) _ fﬁy% — ca(t)y(t) — dy(t),

(2.1)

where 7 is the intrinsic growth rate of tumour cells, 1/7 is the carrying
capacity of tumour cells, a is the rate at which the effector cells bind to the
tumour cells, ¢ is the inactivation rate of effector cells, d is*the death rate
of effector cells, b denotes the maximum immune“xesponse rate due to the
presence of tumour cells and w is the steepnessf thesimmune response.

Based on system (2.1), we propose a stochasticstumour-immune dynam-
ical model concerning pulsed treatment, so‘thesextended model (2.1) is

da(t) = [ra(t) (1 = na(t)) — ab(OuU1dE + 82()dBy (¢),
bz (t)y(t t#nT’

dy(t) = [$958 — colt)y@pmllylh)| di + oy ()dBs (1),

(nTh) = (1= a(nDa(nT)¥|

)~ (1 sty | =

(2.2)
where 07 and 62 are the ifitensity of the noise on the tumour cells and effector
cells, respectivelysand Bi(t) and Bs(t) denote independent Brownian motions
with B;(0) = 0«1 is the period for the pulsed therapy, n is a positive integer.
In reality, the'ehemotherapy drug kills both the tumour cells and the effector
cells, butsalthough the killing rates for them will differ, we do not take this
into aceeunt. a(n7’) is the killing rate of the chemotherapy, b(nT") denotes the
net growth rate of the effector cells stimulated by immunotherapy. b —c¢ > 0
for biological significance.

2.2, Preliminaries

In the rest of the paper, let (2, F,{F:}i>0, P) be a complete probabil-
ity space with a filtration {F;};>o which satisfies the usual conditions. We
assume that the independent Brownian motion B;(t) is defined on this prob-
ability space. If the number of factors of a product is zero then we assume



that this produc equals unity. Now we introduce some useful definitions of
the paper.

Definition 1. ([31]) X(¢) = (z(t),y(t)",t € Ry = [0,400), is called a
solution of ISDE (2.2) with initial condition X (0) = Xy > 0 if the following
holds:

(1) X(t) is absolutely continuous on (0,7 and (nT, (n + 1)T7;

(2) for any nT', we have X (nT~) = limy_,,,7— X (¢) and X (nT") = litn;_, g+ X (t)
and X (nT) = X(nT™);

(3) X(t) obeys system (2.2) for every t € R, — nT and at pulsedspoint nT’
satisfies the pulse condition.

Definition 2. ([32, 33]) Let X (¢) = (z(¢),y(¢))" be a solution of ISDE (2.2):
(1) x(t) is called extinctive if lim;, o0 2(t) = 0;

(2) x(t) is called non-persistent in the mean if lim; Sy o 5 f(f x(s)ds = 0;

(3) x(t) is called weakly persistent in the mean if Tim,_, | 4 sup 7 f(f x(s)ds > 0;
(4) if for each € € (0,1), there exists § > 0 and*d_>0"so that

lim inf P{e(t) > 5} > 1 — &, liminf Pda(t) <0} > 1 -,

then z(t) is called stochastically persistent.

Remark 1. Biologically, these definitions are very important to explain three
phases of cancer immunoediting, i.ess the extinction, weakly persistence and
stochastic persistence correspond to the phase of elimination, the phase of
equilibrium and the phase of escape, respectively. Besides, extinction means
non-persistence in theumean, ’but the reverse is not true.

Definition 3. Suppose that X, (t), Xs(¢) are any two solutions of ISDE (2.2)
with X7(0) > 0,X5(0) > 0, if limy, 1 | 21(t) — 22(t) |= 0 and lim; 4o |
y1(t) — y2(t)4= 0, then ISDE (2.2) is called globally attractive.

Lemma 1 [34]."Let f(t) € C(2 x Ry, Ry —0),

(1) if thered@re constants (o, t; and ¢ > 0 such that f(t) satisfies

nf@) < ct—o [ s+ Y ABE

=1

for any t > tq, [3; is also a constant, then we have

lim supl/tf(s)ds < (£
0 0

t—+00 t



(2) if there are constants (o, t; and ¢ > 0 such that f(t) satisfies

In f(t) > ¢t —Go /Ot f(s)ds + ZﬁiBi(t)

i=1

for any ¢t > t;, then we have
1 [t ¢
li - ds > —=.
e | Sz

3. Global positive solution

3.1. Tumour free solution

We first consider a special case. Suppose that chemotherapy and im-
munotherapy are very effective and that the tumout.eells can then be erad-
icated by effector cells in a short time. Leti@m(¢)== 0, then system (2.2) can
be reduced to the following simple subsystem:

{ dy(t) = —dy(t)dt ¥0y(£)dBa(t), t+# nT,

y(nT*) = (1 +.(nT))y(nT), t =nT. (3.1)

We show that system (3.1) has a“global positive solution based on refer-
ence [27].
Theorem 1. System/(3.1)%has a unique global positive solution y(¢) with
initial value y(0") ="7(0) which can be expressed by

y(t) = ] (4t b(nT))y(0) expl(—d — 0.503)t + 62 Ba(2)]. (3.2)

o<nT<t

Proof. Tet AV (t)'= Iny(t) for any t € (nT, (n+ 1)T]. By using It6’s formula
we optain

Integrating the above equation from nT' to t yields
Iny(t) — Iny(nT) = (—d — 0.565)(t — nT) + 62(By(t) — By(nT)).
At time t = nT", immunotherapy is applied once and then

y(t) = (1+b(nT))y(nT) exp[(—d — 0.583)(t — nT) + 05(Ba(t) — Ba(nT))].



It follows by induction that we get the global positive solution y(¢) of system
(3.1)

y(t)= T (1 +b(nT))y(0) expl(—d — 0.562)t + 65 B5(t)).

o<nT <t

This completes the proof.

3.2. Global positive solution of system (2.2)

Now, we need to show that the solutions of system (2.2)“should.be non-
negative, which are very useful for the rest of the paper.
Theorem 2. System (2.2) has a global unique positive selution (z(t), y(t))
for any initial point (x(0),y(0)) € RY = {(z(t), y(t))|x(t)=> 0,y(t) > 0} and
the solution (z(t),y(t)) will remain in R2.
Proof. To show the existence of solutions of system (2.2), we focus on the
following auxiliary SDE without pulsed effects:

dxy (t) = CEl[T - H0<nT<t(1 - a<nT))x1 —a H0<nT<t(1 + b(nT))yl]dt
+0111d By (1),

bl locnr<i(1—a(nT))
dn(t) = |l e T (1 — olnT))o — d] de

+09y1dBa(t),

(3.3)
where the initial point is defined as (z1(0),41(0)) = (2(0),y(0)). Note that
Liu and Wang showed that,system (3.3) has a unique global positive solu-
tion (z1(t),y1(t)) bydusing theories of SDEs [27]. Denote by (z(t),y(t)) =
(Moenreel — (N O Lo (1+ Ty (6) with (2(0), y(0)) as ini-
tial point, it follows from the absolute continuity of (x; (), y:1(t)) that (z(t), y(t))
is also absolutely continuous for any ¢t € (nT, (n + 1)T] C [0, +00), n € N.
For t # nT, taking the derivatives of (z(t),y(t)) and combining model (3.3)
yields

d(t) = HO<nT<t(1 —a(nT))dz,(t)
= HO<nT<t(1 —a(nT))xi[r — H0<nT<t<1 —a(nT))x;
—a[locppe (1 +0(nT))y1]dt + 6121d By (t)
= [ra(t)(1 — na(t) — ax(t)y(t)]dt + &12()dBi (1),
dy(t) = HO<nT<t(1 +b(nT))dy: (1)

bl locnrei(1—a(nT))z
y(t)[l—l—w ](l[<0<7:;t<t(1—a(nT))1:c1 o CHU<nT<t(1 - a’<nT))$1 - d]dt

+(52y1d32 (t)
= [ — cx(t)y(t) — dy(1)|dt + Sy(t)dBs(t).
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Moreover, for any t = nT', we obtain

e(nT") = limypr+ [Tocire, (1 — a(iT))z1(t) = [ocir<nr(1 — a(iT))z1(nT),
y(nT™) = limy 7+ HO<iT<t(1 +0(iT))yi(t) = HO<iT§nT(1 + 0(iT))y1 (nT),

besides,
x(nT) = 1_[0<1‘T<t<1 - a(iT))xl(nT), (3 5)
y(nT) = (L+0(iT))y: (nT), '

From (3.4) and (3.5), we get
2(nT) = (1 = a(nT)z(nT),y(nT™) = (1 + b(nT)y(nT’);

0<iT<t

Therefore, system (2.2) has a global unique positive sglution"which is defined

a5 (2(8),9(8)) = (Lgrres(l — a(nT))1(), Lozl T+ BnT))ys (1)), This
completes the proof.

Theorem 3. If rn — b+ ¢ > 0, then the solution of system (2.2) is globally
attractive.

Proof. Without loss of generality, we assume that (z1(¢), y1(t)) and (z2(t), y2(t))
be any two solutions of system (2.2) with initial conditions z(0) > 0, y(0) > 0.
To show the global attractivity of the solution, we resort to constructing a
Lyapunov function which is defined hy the following equation:

V(t) =| Inzy(t)— Inas(t) | + | Inyi () — Inya(t) |,

where ¢t > 0 and ¢ # n7T.,.On the one hand, we calculate the upper right
derivative d*V (t) of ¥ (t).andthen make use of 1t6’s formula along the solu-
tions of system (2.2},

dtV(t) = sign(xat) — xo(t))d(Inz(t) — Inxs(t))
t51gn (91 () — y2(1))d(In g (1) — Inys(1))
= y.sign(a(t) — fz(t))( ri(21(t) — xa(t)) — alyi(t) — 4a(2)))dt

. b(x x
Psign(yi (1) = (1)) (a2l s — e(ai (1) — w3(1) ) db

)
[~(rn—=b+c) | 1|(t) —2a(t) | —a | yi(t) — ya(2) [Jdt

s
< =pllan(t) = 2t) [+ [ a(t) — ga(t) dt = —PV(t)dt,
(3.6)
where p = min{rn — b+ c¢,a}. On the other hand, for t = nT we obtain

V(nTT) = |Inzy(nTT) —Inze(nT™) |+ | Inyy(nTF) — Inya(nT™) |
= | In(1 = a(nT))z1(nT) — In(1 — a(nT"))z2(nT) |
+ | In(1 4+ o(nT))y1 (nT) — In(1 4 b(nT))y2(nT) |
= |Inzy(nT) —Inze(nT) | + | Inyy (nT) — Inye(nT') |= V(nT).
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Integrating equation (3.6) from 0 to ¢ and taking expectation yields

V) < V(0) - p /0 V(s)ds.

Thus, .
V(t) + p/ V(s)ds < V(0) < oo.

Moreover, V (t) > 0 always holds which leads to lim;_,, V(£).=/0. In other
words,

lim | z1(t) —22(t) |=0 and lim | y;(t) 2 y(8).|= 0.
t—00 t—00

This completes the proof.
Theorem 4. For 0 < s < t, if [[,.,r, (Lt bnT)) < B (B > 0) and
1 —d <0, then any solution X (t) = (z(t),y(t)) of system (2.2) satisfies the
following inequality:

lim E | X ({){<.AB.

t—o0

_ =901y
where A = (=90

Proof. We denote Vi (t) = cz(t)4ésy(t), here ¢y =b—c > 0and ¢y = a > 0.
For any ¢t € ((n — 1)T,nT], it.follows from the 1td’s formula for system (2.2)
that we obtain

dVi(t) = crdx(t) +eody(t) = LV (t)dt + c1012(t)dB1(t) + ooy (t)dBs(t),
with

ba(t)y(t)

LV (t) = calra(t)(1—nx(t) —ax(t)y(t)]+co T+ we(t)

—cx()y(t) —dy(t)| .

Furtliermoreytve consider another Lyapunov function V3 (t) = €'V;(t) and the
application of Ito’s formula leads to

dVo(t) = e'Vi(t)dt + etdVi(t)
= e'Vi(t)dt + e {LV (t)dt + c1612(t)dB1(t) + caday(t)dBa(t)}.

Integrating the above equation from (n — 1)T" to ¢ and then calculating the
corresponding expectations yields

Ee'Vi(t) = e TVi((n = )T) + E [(,_pyp e Vi(s) + LV (s)]ds.  (3.7)

10



Note that
LV +V;

cifrz(1 — nx) — axy] + ¢ [liwx —cxy — dy| + a1z + cay
ci(re —mz? + ) + (co(b — ¢) — cra)zy + (1 — d)y
(r+1)? _ (b=o(r+1)? - 4

INIA I

14y 4rn (3,8)
From equations (3.7) and (3.8) we obtain
et EVi(t) < e DT (Vi((n — 1)T) — A) + et A. (3.9)
Using It6’s formula for (3.9) leads to
dEVi(t) < (A — EVi(t))dt. (3.10)
When t = nT,
EVi(nTT) = cE(x(nT))+ coE(y(nTh))
— (1 anT) EG0T) e HOT)EGT)
< (L4 0(nT)) (e E(x(nTHt caE(y(nT))) '
= (1+406(nT))EVi(rd).
Equations (3.10) and (3.11) can‘be.rewritten as
dEVi(t) <AAw— EVi(t))dt, t #nT, 519
EVi(nT< (14 b(nT))EVi(nT), t=nT. (3.12)

To show the boundedness of system (3.12), we need to consider the fol-
lowing new systems

d=(t) = (A — =(1))dt, {4,
{ 2(nT+) = (1+b(nT))z(nT), t=nT. (3.13)

The wnique solution of system (3.13) is given by

z(t) = z(0)m(t,0) + A/O m(t, s)ds,

where m(t, s) = [ [,<,p(14+0(nT)) exp(—(t—s)). Then we have lim; , y 2(t) =
AB. Tt follows from comparison theorems of impulsive differential equations
[24, 25] that we obtain

lim EVi(t) < lim z(t) = AB.

t—-+o0 t—-+oo
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This completes the proof.

Remark 2. Theorem 4 shows that the solutions of system (2.2) have upper
bound in terms of expectations under certain conditions. Biologically, if
pulsed perturbations are bounded or follow after finite pulse immunotherapy,
then the tumour cells will be controlled and will not grow indefinitely.

4. Extinction and persistence

Since we have incorporated stochastic effects into model (242),/we want to
explore the conditions for the extinction and persistence of the tumour cells
and the effector cells. To show these, we first need to give the following results
by using It6’s formula. Defining a Lyapunov functigon V(#)»= Inz;(t) and

noting that z(t) = [[,.,.ro,(1—a(nT))z1(t), y(t) =Tlo<,ror(1+0(nT))y1 (1),
then applying It6’s formula to the first equationfof system (3.3),

dlnz, (t) = [T - H0<nT<t(1 o a(nT))zl ~a HO<nT<t(1 + b<nT))y1
—207]dt + 61dB ()
= [r—roz(t) — ay(t) — 308)dt +6,d B (t),
(4.1)
integrating the above equation from'\0'o ¢ yields

Inzy(t) —Inz(0) = (r— 152)t—rnf0 ds—afo s)ds + M (t),

(42)

where M;(t fo 3;dB(t) (= 1,2). Taking the pulsed effects of system (2.2)
into equatlon (4.2) yields

> o<nt<t (1 —@(ul’)) +In JUl(t) In(0)
=S penre WB— a(WT)) + (r — 362) t — v [5 2(s)ds — a [ y(s)ds + My(t).
(4.3)
Simplification of €quation (4.3) yields following lemma.
Lemma 2.3For system (2.2) the tumour z(t) satisfies

Ingigy’ = Zo<nT<t1n<1— () + (= 301) L= fya(ohds
—a fo s)ds + Mi(t).

By applying the same methods we obtain
Lemma 3. For system (2.2) the effector cell y(t) satisfies

25 = Yoo n(1+b(nT)) = (d+303) t = [y a(s)ds

y(0)
t  x(s
+b fy Trdsds + My(t),

12



Po<nr<t n(1—a(nT))
t

Theorem 5. (1) If lim;_, o, sup +r < 167, then the tumour

cells become extinct.
(2) If lim;_,, o sup Z°<"T<t1?(17a(nT)) +
non-persistent in the mean.

r = 167, then the tumour cells are

(3) If
. ZO<nT<t In(1 — a(nT)) 1,
g sup EOBLLZE=I > 56
and In(1+ b(nT |
t—+o00 t 2

then the tumour cells become weakly persistent in thesxmean.
Proof. (1) It follows from (4.4) that we have

=

z(t) _ Zo<nr<in(1—a(nl)) 1 ¢ [La(s)ds
lnm _ 0<nT<t + (7« A 551) N 14/,70T (46)

=

t
_ g lay()ds 4 M)
t t .

Note that < M;(t), M;(t) >= fot 62ds,\because of the strong law of large
numbers for local martingales we obtain

L 240 — (), (4.7)
Taking the superior limit of«(4.6) gives
Inz(t) 2o<nT<t In(1—a(nT))

limy oo SUp =5 <0y 4 o SUP 7
—rnz.(t) — ay.(t) <0,

+r— 367

where @, (t) = lith, e inf f(f z(s)ds and y,(t) = limy_, ;o0 inf 1 fot y(s)ds. Tt
indicates thatylim, , o, xz(t) = 0, thereby the tumour cells becomes extinct.
(2) For any fixed-¢ > 0, there exists a constant ¢; so that the following
inequalities‘hold true for all ¢ > ¢;:

In(1—a(nT . In(1—a(nT . R
2 o<ntki t( (nT)) < hmt—H—oo sup 2o<nT<t t( (nT)) + 3 Mlt(t) < :
combining with (4.6) yields
%ln % _  2Zocar<in(l—a(nT)) + (7“ _ %5%) _ T’77f0 xis)ds

t
_gduy@ds | M)
t

t
hmt—>+oo sup 2o<nT<t 1?(1*a("T)) + (”I“ o %5%)

—rn} [ a(s)ds +e.

IN
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When ¢ is small enough, owing to Lemma 1 we have

lim¢—s 4 o0 SUP

> In(1—a(nT))
0<nT<t - +(T_%5%>

lim; o sup ¢ fo s)ds < —0. (48)

™

Notice that z(¢) > 0 always holds and it implies that lim; , o sup ¢ fo $)ds'=
0. Therefore, lim;_, o sup ; fo s)ds = 0 and thus the tumour Cells are non-
persistent in the mean.

(3) Assume that lim;_, ., sup @ < 0, by calculating the superior limit of
(4.6) yields

ZO<nT<t1n(1 a(nT))

rnz*(t) + ay*(t) > limy_ 4o Sup
+r — 267 — limy_, 4 sup lnz(t) > 0,

where 2*(t) = lim;_ ;o sup ; fo s)ds and y*(t) s lin;_ o sup ; fo s)ds.
It implies z*(¢) > 0. Otherw1se for any.7_e~{z*(t,7) = 0}, we obtam
y*(t,7) > 0. However, it follows from the superior limit of (4.5) and note
that x*(t,7) = 0 that one obtains

Iny(t,r P oznr<i M(1+b(nT))
ygt) < 0<T<t _(d+%5§)<0

limg 4 oo SUp limy_, 4 o SUP:

which means that y *(t,7) = 0, which contradicts y*(¢,7) > 0. Therefore,
limy , o0 SUp ¢ fo t)dt >/0. Thereby the tumour cells become weakly per-

sistent in the mean. ThlS completes the proof.
Theorem 6. (1) If

ZD<nT<t1n(1_a(nT)) Tr< %5%’

hmt-—>+o<> sup t
ZO<nT<t1;1(1+b(nT)) < d+ %6%,

lim; %, 4 oo SUP

then the effector cells become extinct.
(2) If limy_, 9 sup E°<"T<"1tn(1_a(nT)) +r = %5%, then the effector cells are

non-persistent in the mean.

() It

ZO<nT<tln(1+b(nT)) d+ 162
ZO<”T<tln(1 a(nT)) + ( . %(5%)) > 0’

limy 400 SUP

b—c 14
- (W lim;, o SUP

then the effector cells become weakly persistent in the mean.
Proof. (1) It follows from (4.5) that we have

14



1 lIl 5((8)) _ 2 0<nT<t 1?(1+b(”T)) (d + 15%) _ C% fot l’(S)dS (4 9)
Ma(t) )
+b fO 1+ww(s)d s+ 2

Taking the superior limit of (4.9) gives

Iny(t)
t

> ocnr <t In(14+b(nT))
cana BT (g )

< limy o0 SUP
+(b— c)z*(t),

by (4.8) we have z*(t) < 0, that is to say,

limg, 4 o SUp

Iny(t)

lim sup < 0.

t——+o00
Therefore, we have lim;_, o, y(t) = 0, which indicates\that the effector cells
become extinct.
(2) For any fixed € > 0, there exists a t, suchsthat. for all ¢ > ¢, we obtain:

Po<nr<t n(1—a(nT)

- Poxar<t B(1—a(nl)) + E Ml(t) <

£
t 27

) < limy 4 o0 SUP

combining with (4.6) yields

¢ cIn(1—a(nT t(s)ds
R R
+Ml(t)

t

< iy geoSup

2o<nr<t In(1—a(nT)) + (T’ o %5%) +e

t

When ¢ is small enoughy, taking the superior limit yields
limy_, 4 o0 SUD § fo s)ds < 0. (4.10)

Therefores lim; suso SUp % fo y(s)ds = 0 and thus the effector cells are non-
persistent in the mean.
(3) Hrom (4.9) we have

11 y(((t))) > ZO<nT<tln(1+b(nT)) (d—|— %55) (b+c) fo s)ds + Mz(t)
MiD
then (4.6) and (4.11) and taking the superior limit, there exists a t3 > 0 such
that

> o<nT<t M(14b(nT)) —(d + 15%)

t
T hmt—H—oo sup ZO<nT<z1?(1*a(nT)) + (’)” . %5%)
—(rn — b+ c)a(t) — ay* (1),

1 t .
20 > limy oo SUD

15



and it follows from (4.8) that we obtain

ay* (t) > 11mt*}+00 sup Po<nr<t n(1+b(nT)) (d + %53)

t
— (? lim;_, | o sup Z°<”T<t1:(17a(nT)) + (7’ — %5%» > 0.

which means that y*(t) = lim;_, o sup ; fo s)ds > 0. This completes the
proof.

During the whole stages of treatment, the times of pulsed.therapy are
limited. So the following assumption is reasonable.
Assumption 1. There exist four positive constants my, ms ,M; and M; such
that my < [[ycre;(1 —a(nT)) < My and mo <[], p (1 +0(nT)) < M.
Theorem 7. Based on assumption 1, if 7 = mingso[r— 167 =aM>] > 0, then
the tumour cells are stochastically permanent.
Proof. We first need to prove that there exists two'\constants § > 0 and
0 > 0 such that liminf;, , . P{xz(t) > S} > '~ ¢ and liminf, , . P{z(t) <
0} > 1—¢ for any € € (0, 1), which will be‘addressed step by step.

For the former, defining a Lyapunov,function V*(z) = 1/z; (z; > 0), and
then applying It6’s formula to the first equation of system (3.3) yields

dVizy) = =VHa)[r —rnlye il = a(nT))a
—a [[pengey(1 FO@TFNyi]dt + V' (z1)07dt — V' (z1)01d By ().

Choosing a positive constafit @ which satisfies 7 > 0.596?, we then define
another Lyapunov functiomV?(z;) = (1+V'(z;))?, again 1t6’s formula leads
to
dVi(x) = I+ Vi)' dVi(zy) + 0.59(9 — 1)(1 + V(1)) 72(dV(21))?
= NV ) — (V)]
8 T co(L+ BT ] + (V) + (V1 (1))
+0. 5( ( 1($1))252}dt - 19(1 -+ Vl(lj))ﬁ_lvl(l'l)(gldBl(t)
< Y1+ V)P 2{=(V(21))?[r — 0.502 — 0.5067
~aTTpenpar(1 4 0(nT))y]
V@) [=r + rnlocpre (1 — a(nT)
+allocnre (L +0(nD))yr + 67] + 10 [Toepro (1 — a(nT)) }at
— (1 + V1))V (21)0,d By (t)
< I+ V)" 2{=(V(21))?[r — 0.5967] + VY(xy)[rnM,
+(IM2 + (Sﬂ + TT]Ml}dt — 19(1 -+ Vl(lj))ﬁ_lvl(l"l)(sldBl (t)

Further, we choose a sufficiently small & which satisfies

T —0.5067 > £ > 0. (4.12)
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And then define a Lyapunov function V3(x1) = exp(£t)V?(x1), using 1to’s
formula we have

dV3(xzy) = Eexp(&t)V3(zy)dt + exp(Et)dV?(xy)
9 exp(€t) (1 + V' (21))? 2 SR (11 ()2 [r — 0.506]
+V (1) [rnMy + aMoyo + 62] + rnM, }dt
— exp(é“t)(l + Vl (331))19_11/1 (371)51dBl (t)
= exp(§t)f(z1)dt — P exp(§t)(1 + V' (@1))" 'V (@1)01dBy (1)

IN

where

fle) = 91+ V(@) {=[r = 0.5067 — 5]V (1))
+[rnMy + aMayo + 03 + %]Vl(xl) +rndd A 5}
Let C; = 7 — 0.5007 — %, Cy = rnM; + aMy + 63 F % and C3 = rnM; + &
then C; > 0, Cy > 0 and C3 > 0 because all“parameéters are positive and
(4.12) holds true. Thus, we can rewrite f(x;) as

f(zy) =9(1 + i)H {—% o S + Cg} = fi(x1).

- Cat+/C3+4C1C5 .
Next we show that f(z1) is upper.bounded when z; > 0. If% > & 25?4 1C3

A1, then f(z1) < 0. If 0 < xil < Appthen fi(x) < 401%?022. Furthermore, if
0 > 2, then 9(1 + 2)2 LI + \)77% if 9 < 2, then 9(1 + 2)"2 < 0.

2
Therefore, for ;7 > 0 we always have f(z1) < fo = )\24014%I+CQ, where

Ay = max{d, 9(1 +A;)¢7?} }n other words, f(x;) is always upper bounded.
Moreover,

dV3(zy)

oxp(&t) f (1) dt — I exp(§t) (1 + V' (21))" 'V (21)01d By ()
foexp(&t)dt — Vexp(Et)(1+ Vi(zy))? 1V (21)6,d B (1).

We intégrate the above equation from 0 to ¢ and thereafter take the expec-
tation, which yields

<
<

E[V3(a ()] < V3(2:(0)) + §exp<ft>,

note that V3(z1(t)) = exp(&t)(1 + Vi(z1(¢)))?, thus we obtain
E[V3(21(t))] Elexp(&t)(1 + V! (21(1)))"]

Vi (0)) + £ exp(€r)

(1+ V! (1(0)))” + £ exp(&1).

A
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Taking the superior limit leads to

linsupy o Eldis] = limsup s o0 EI(V!(21(6)7)
< limsup, o BI(L+ V) (m2(1)7] < 2.
Due to z(t) = [[ocppet (1 — a(nT'))z1(t), it is clear that

1
H0<nT<t(1_a‘(nT))]ﬁ

limsup,_,, o E[ﬁ] = limsup,_, , [ E[wl(lt)ﬁ] < Tn% = Fr

1
For arbitrary ¢ > 0, we denote g = v /i It follows Afrom Ghebyshev’s
inequality that one gets
limsup,_, . P{z(t) < f} = limsup,_, & ]P’{xﬁl(t) > 6%9}
Bl 5]
ﬁfﬁ
lim sup, | o BﬂE[ﬁl(t)] =&

< limsupSy,

Therefore, liminf; , o P{z(t) > B} > L—c.
For the latter, we also define a Lyapunov function Vi(zi(t)) = ()

(x1 > 0), and the application of Itd’s formula to the first equation of system
(3.3) yields

dVs(z1(t)) = pVslenld))[r = rn [1ocpre (1 — a(nT))z.(t)
~a] o yr (1 +b(nT))yn(t) +0.5(p — 1)67]dt
< Vs (1)) [r — romax (t) + 0.5(p — 1)07]dt
+po1Va(z1(t))dBi(t),
integrating the above equation from 0 to ¢t and then taking the expectation
yields

E[Va(z1(t))]=E[Va(21(0))] < p/O E{V3(x1(s))[r—rnmaz:(s)+0.5(p—1)d7] }ds,

the derivative of the upper formula gives

dE[V3(21(t))]
dt

According to Holder’s inequality we obtain

< pE[Va(a1(t))][r + 0.5(p — 1)65] — promy B[27 (¢)].

T1 o
VO] < pE[Vy (21 (4))][r + 0.5(p — 1)87] — progmy E[22 (1)) 7.
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Let h(t) = E[V3(z1(t))] we obtain

dh(t)

i ph(t)[r + 0.5(p — 162 — promqh (1))

<
< ph(D)lr +0.5p5F — promihr (1)),
Making using of the standard comparison theorem yields

limsup,_, o E[z1(t)] = limsup,, . E[Vs(z1(t))]
= limsup,_,, . h(?)
< (r+0.5paf >p

promi
Due to z(t) = [[yc,pei(1 — a(nT))x1(t), thus

i sup o, B (0] = Timsupi (TTocygroaChafn)))” Bl (1)
< Mf (r+0.5p61> .

proym;

By using the same methods, it follows from €hebyshev’s inequality that

im 1 < >1—c.
I%LnﬁglofIP{x(t) <w>1-¢

Therefore, based on the definitions,the tumour cells are stochastically per-
manent. This completes the proof.

5. Numerical results

Since we have investigated the extinction and persistence for tumours, to
substantiate ourresults we carried out numerical simulations. In order to
show approximate solutions of system (2.2) with initial conditions, we use
the Milsteins higher order method [35], and then the discretization equations
of systemy(2:2) are

X1 = &g + xp[r(1 — nrg) — ayp] At + 012V AL, + %xk(&% — 1)At,

2
Yh+1 = Y + Yk [1ffka —cTp — d} At + (52yk\/ET]k + %yk(nﬁ — 1)At,
(5.13)
and at the impulsive point series nT system (2.2) experiences pulsed thera-
pies, i.e., if mod(k,T) = 0, then we have

{ T = (1 — ag)wy,

Y1 = (1 4 bi) Y,
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where &, and ni(k = 1,2,3,...) denote the independent Gaussian random
variables with distribution N (0, 1), we set time increment At = 0.01.

The baseline parameter values of the stochastic system (2.2) without
pulses were chosen from the classical reference [10], because these values
were not only obtained by parameter estimation based on experimental datay
but also addressed the biological implications. Therefore, we fix n = 0.002,
a=1,b=1.131, w = 20.19, ¢ = 0.00311 and d = 0.3. To be convincing the
logarithmic plots are carried out.

In Fig.1(a), we set r = 1.85, 6; = 2, d5 = 0.5, n = 100, 7/ =,1005a;, = 0.1
and b = 0.05, the initial values were fixed as (x(0),y(0)) = (04, 0.5) and

0<nT<t In(1-a(nT))

(2(0),4(0)) = (10,0.5). By calculation we have lim,_,, ;ssup -

> In(1 — a(iT)) + r — 307 &~ —0.149 < 0, in thelightyof Theorem 5 we
know that the tumours become extinct (Fig.1(a)). I we.set r = 2.5 and fix
all other parameters as shown in Fig.1(a), it wasifound that

In(1 — T 1
lim sup Loo<r<t 101 = a(nTY) br—=02~05>0
t—+oo t 2
and In(1 + b(nT 1
lim sup 20nr<e MY T 202 A0 —0.424 < 0,
t—00 t 2

by Theorem 5 we know that“the tumours become weakly persistent in the
mean (Fig.1(b)).

In Fig. 2(a), we set n,.= 38,0, = 1, o = 0.5, n = 100, T' = 100, a = 0.1
and b, = 0.05, thesinitial yalues were fixed as (x(0),y(0)) = (0.1,0.5) and
(2(0),y(0)) = (10,0.5), then 7 = mingso[r — 307 — aMs] ~ 1.53 > 0. It
follows from Theorem”7 that the tumour cells are stochastically persistent
(Fig. 2(a))~When 6, = 0, the amplitude becomes smaller (Fig. 2(b)). In this
case, periedical\applications of immunotherapy could kill a certain amount of
tumouts; but _the immune action is not strong enough to control the cancer
cells'and sg they are in an unstable state.

In Fig3(a), we set r = 1.85, 6; = 2, § = 0.5, n = 100, T'= 100, ar = 0.1
and by = 0.05, the initial values were fixed as (z(0),y(0)) = (10,5). By
simple calculation we can show that

limy_s oo SUP Zo<nT<t1?(17a(nT)) +r— %(5% ~ —0.149 < 0,
lim;_, | o, SUP Z°<"T<t1?(1+b(nT)) —d+ %5% ~ —0.424 < 0,
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then by Theorem 6 the effector cells become extinct. Moreover, if we set
by = 0.6 and fix others parameter values as shown in Fig.3(a), then we have

hthJroo sup 2o<nr<t n(1+b(nT)) - (d + %55)

t
_ (br;f lim, ;. sup Zoser<e 2022 o (- %@) ~60.2> 0,

by Theorem 6 the effector cells become weakly persistent in the meany(Fig:3(b)).

Under certain conditions, periodical applications of immun6therapy and
chemotherapy could clear a certain number of tumour cells but,¢anmot com-
pletely remove the tumours from the body, so the strength/of treatment needs
to be augmented in order to suppress the proliferation.and mutation of tu-
mours. For example, a feasible strategy can be implemented by adjusting
the key parameters of the pulsed comprehensive therapy.stuch as the dose of
immunotherapy and chemotherapy, the period,of'treatment and the number
of pulsed treatments. If we increase the dose of\the chemotherapy, then the
tumours can be eradicated (Fig. 4(a) and Kig. 4(b)). Similarly, increasing
the dose of immunotherapy may also leadsto the eradication of tumours and
we omit it. While decreasing the periodicity of pulsed treatment may also
control tumours (Fig. 4(c) and Fig. 4(d)):

6. Conclusions

It has been shown that the growth rate of tumours is inevitably affected by
environmental noise {18-21],and that periodical applications of immunother-
apy and chemotherapy ‘are effective for treating tumours [9, 29, 30], with
the latter confirmedyby experimental and clinical studies [22, 23]. In this
study, we have proposed a stochastic tumour-immune dynamical model with
pulsed comprehensive treatment to investigate how stochastic fluctuations
and combinations of immunotherapy with chemotherapy affect the evolution
of tumours.

First of all, the explicit expression of the tumour free solution is given
when tumour cells are eradicated, under certain conditions, and we show
that for system (2.2) there exists a global unique positive solution which
isyglobally attractive. Then the upper bound of the expectations of the
solutions was estimated. Biologically, if pulsed perturbations are bounded
or follow after finite pulse immunotherapy, then the tumour cells will be
controlled and will not grow indefinitely. By using It0’s formula and defining
Lyapunov functions, the sufficient conditions of extinction, non-persistece in
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the mean and weak persistence in the mean for the tumour cells and effector
cells were provided, and we also determine a condition for tumours being
stochastically permanent. From a biological view of point, when the doses
or frequencies of chemotherapy are large (i.e., the effect of chemotherapy
is significant), then large stochastic disturbances will lead to extinctién of
tumours and small stochastic disturbances will result in weak persistence
in the mean of the tumours. If the stochastic disturbances are fixed as
being constant, then large doses or higher frequencies of chemetherapy will
lead to extinction of tumours and vice versa. Moreover, if thes=stochastic
disturbances are small or the initial density of effector cells is small or the
doses (or frequencies) of immunotherapy are small, then the fumours will
be stochastically permanent. Therefore, a feasible waysto cure cancer is
either to increase doses or frequencies of chemotherapy, or to increase the
initial density of effector cells, or to augment the doses (or frequencies) of
immunotherapy.

One of the drawbacks of periodical applications of chemotherapy is the
emergence of drug resistance [36]. Inythe presence of drug resistance, it
is necessary to divide tumour cells into \drug sensitive strains and drug re-
sistance strains [37], as alternate use‘ef immunotherapy and chemotherapy
drugs may delay the onset of resistance. Future work is required to combine
pulsed treatment with a stochastic tumour-immune system to better prevent
the evolution of drug resistance.
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Figure Legends
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Figure 1: Extinction and weak persistence of tumours. (a) Time series of tumour cell
z(t) with r = 1.85; (b) Time series of tumiour ¢ells z(¢) with » = 2.5. The initial values
of solution with black were fixed as (x(0),4(0))y= (0.1,0.5) and red for (x(0),y(0)) =
(10,0.5), and all other parameters were,fixed as: n = 0.002, a = 1, b = 1.131, w = 20.19,
¢ =0.00311, d = 0.3, & = 2, §5 = 0.5, ;= 100, T = 100, a(nT) = 0.1 and b(nT) = 0.05.
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Figure 2: (a) Time sefies of tuniour cells z(¢) with 6; = 1; (b) Time series of tumour cells
z(t) with 6; = 0. «<Thejinitial values of solution with black were fixed as (z(0),y(0)) =
(0.1,0.5) and redfor, (z(0)yy(0)) = (10,0.5), and all other parameters were fixed as: r = 3,
n =0.002, a = 1;)0/= 1.131, w = 20.19, ¢ = 0.00311, d = 0.3, n = 100, d2 = 0.5, T" = 100,
a(nT) =04 and b(nZ) = 0.05.
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Figure 3: Extinction and weak persistence of effector cells. (a) Time series of effector cells
y(t) with b(nT) = 0.055(b) Time series of effector cells y(t) with b(nT) = 0.6. The initial
values of solution were fixed as (z(0),y(0)) = (10,5), and all other parameters were fixed
as: r = 1.85,n'=/0.002, a« = 1, b = 1.131, w = 20.19, ¢ = 0.00311, d = 0.3, §; = 2,
do = 0.5, n/= 100, Th= 100 and a(nT) = 0.1.
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Figure 4: The effects(of contrel parameters on the extinction of tumours. (a) Time series
of tumour cells z(f) with a(nT) = 0.3 and T' = 100; (b) Time series of tumour cells z(t)
with a(nT) = 0.4 and T/= 100; (c) Time series of tumour cells z(t) with a(nT) = 0.1
and T' = 40;/(d) Time series of tumour cells z(t) with a(nT) = 0.1 and T = 25. We set
initial values as-(z(0),y(0)) = (0.1,0.5) and all other parameters were fixed as: r = 2.5,
n =0.002, a= 1/b = 1.131, w = 20.19, ¢ = 0.00311, d = 0.3, §;1 = 2, §2 = 0.5, n = 100
and b(nT) = 0.05.
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