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Abstract: Deformation prediction is the basis of deformation control in manufacturing process planning. This paper 

presents an on-line part deformation prediction method using a deep learning model during numerical control machining 

process, which is different from traditional methods based on finite element simulation of stress release prior to the actual 

machining process. A fourth-order tensor model is proposed to represent the continuous part geometric information, 

process information, and monitoring information, which is used as the input to the deep learning model. A deep learning 

framework with a Conventional Neural Network and a Recurrent Neural Network has been constructed and trained by 

monitored deformation data and process information associated with interim part geometric information. The proposed 

method can be generalised for different parts with certain similarities and has the potential to provide a reference for an 

adaptive machining control strategy for reducing part deformation. The proposed method was validated by actual 

machining experiments, and the results show that the prediction accuracy has been improved compared with existing 

methods. Furthermore, this paper shifts the difficult problem of residual stress measurement and off-line deformation 

prediction to the solution of on-line deformation prediction based on deformation monitoring data. 
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1. Introduction 

Deformation is one of the main causes of geometric error and scrap parts (Moehring et al. 2018), especially in 

machining large scale complex aerospace structural parts, where deformation is typically controlled within 0.05mm/m 

(Heinzel et al. 2017). Deformation mainly results from the release of initial residual stress within the workpiece and 

machining-induced stress. Previous research in deformation control had been focused on the areas of material, design and 

manufacturing. In the manufacturing area that this research is devoted to, there were basically two approaches, i.e., 

machining process optimisation based on deformation prediction, and closed process control based on real time monitoring 

data (Li and Wang 2017). Previous research was mainly aimed at establishing the relationship between deformation and 
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the impacting factors using numerical simulation (Chantzis et al. 2013) and analytical models (Wu et al. 2016). Many 

deformation prediction methods were reported, in which prediction results were obtained prior to machining processes 

based on measured residual stress distribution. In practice, it is very difficult to accurately predict deformation because of 

the difficulty to accurately measure residual stress, and the challenge of modelling the properties of workpiece materials 

and the subsequent effect on plastic deformation, chip formation and separation, all of which have influence on machining-

induced stress. 

2. Literature review 

2.1 Deformation prediction approaches 

Numerical methods are mainly applied in commercial finite element methods (FEM) software tools to predict 

workpiece deformation. Chantzis et al. (2013) developed a deformation control method by predicting the deformation 

caused by initial residual stresses which is obtained by displacement measurements. Guo et al. (2009) measured the initial 

residual stresses by using a modified layer-removal method and established a finite element model of machining distortion 

for aluminum alloy multi-frame components. Huang et al. (2015) presented a prediction model based on FEM to study the 

effect of black initial residual stress on part deformation and a crack compliance method was used to measure original 

residual stress. Gulpak et al. (2013) proposed a hybrid model consisting of 3 sub-models with a regression model and FE 

simulation to calculate shape deformation. Regression models were used to calculate specific boundary conditions for FE 

simulations.  

Compared to equivalent FEM models, analytical models present major advantages by significantly reducing the 

computational time from days to seconds (Arrazola et al. 2013). Shang (1995) presented a two-dimensional analytical 

model and deduced the formulae of re-distribution and distortion by initial residual stress during the milling process by 

elasticity theory. Wu et al. (2016) proposed a mathematical prediction model in thin-walled plates by using the finite 

difference method (FDM), which is simple and efficiency. Nervi et al. (2009) established a third-dimensional mathematical 

model for the prediction of distortion of airframe components from aluminum plates according to the Navier–Lamè 

equation. Heinzel et al. (2017) presented an analytical method based on multilayer source stress model to analyze the 

effects of initial residual stress and machining induced stress on materials modifications. The shortcoming of analytical 

models is that these methods are only suitable for very simple and regular parts, it is not possible to calculate the 

deformation of complex parts.  

Basically, there are two inducing factors impacting deformation: original residual stress and machining residual stress 

due to cutting effects, while accurate measurement or calculation of both these factors are worldwide challenges, so 
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accurate deformation prediction is still a difficult problem (Chantzis et al. 2013; Arrazola et al. 2013). 

2.2 Deformation monitoring approaches 

In-process monitoring technologies have been developed to obtain key physical data such as cutting force, vibration 

and temperature (Pratama et al. 2017) and interim machining effects of the workpiece which are difficult to predict before 

machining (Abellan-Nebot and Subirón 2010). Möhring et al. (2010) proposed a process force monitoring approach by 

integrating a sensory fixture system and a milling spindle so as to analyze workpiece deflection, which supplied a basis for 

deformation compensation. Yoshioka et al. (2014) presented a method to monitoring the distance between the workpiece 

surface and the tool, which provides a means to improve surface quality. In order to overcome the difficulty of workpiece 

deformation monitoring, the authors’ research group developed an adaptive machining method using flexible fixtures, 

where deformation can be monitored when the workpiece is not restrained by the fixtures during the non-cutting intervals 

(Li et al. 2015; Hao et al. 2018).  

In-process monitoring methods can obtain accurate machining data, and it is useful for timely problem such as local 

deformation compensation based on monitoring data. The monitoring deformation data of a current process provides a very 

important reference to obtaining the deformation of the following machining processes, and is therefore worth further study. 

2.3 Data-driven prediction approach 

Data-driven methods have been widely used in manufacturing process applications, such as fault detection (Wang et 

al. 2018a), machining condition monitoring (Pratama et al. 2017) and machining accuracy prediction (Pimenov et al. 2017; 

Cheng et al. 2015). Deformation prediction is a time-series prediction problem, because the deformation monitoring data 

sets are time-dependent. Time series prediction approaches are used to predict future trending based on historical time 

series data. There are many time series prediction approaches which have been successfully applied in industrial areas. For 

example, hidden Markov model, Lagrange's interpolation, ARIMA (Autoregressive Integrated Moving Average). Yu (2017) 

proposed an adaptive hidden Markov model-based online learning framework for faulty bearing detection and performance 

degradation monitoring. Guiassa and Mayer (2011) proposed a predictive compliance-based model for compensation in 

multi-pass milling by on-machine probing, where Lagrange's interpolation-based approach is adopted so as to compensate 

the final cut more effectively. Wang et al. (2018b) improved forecasting compensatory control to guarantee the remaining 

wall thickness for pocket milling of a large thin-walled part, where ARIMA with Kalman filtering was used to predict the 

deformation due to cutting force of the next time point for deformation compensation. 

Essentially, Lagrange's interpolation is suitable for the modeling of two variables, while ARIMA and Kalman filtering 

are only suitable for linear systems. The issue of deformation prediction due to residual stress is a nonlinear problem with 

multiple influencing factors. It is still a challenge for the hidden Markov model to address the high dimensional observation 
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values, because the training of the hidden Markov model is very difficult for high dimensional data. Therefore, existing 

time series prediction approaches are not suitable for this paper. 

2.4 Deep learning approaches 

The principle of machining deformation prediction is to establish the relationship between workpiece deformation and 

its impacting factors. From this perspective a deep learning method has been proofed to be an effective way to establish 

complex relationship models for the machining process (Wang et al. 2018), which benefits from plentiful accurate 

monitoring data during the machining process.  

Deep learning models are composed of multiple processing layers to learn the relationships of data with multiple 

levels of feature abstraction (Lecun et al. 2015). Deep learning methods have many successful applications, such as picture 

recognition (He et al. 2016) and playing games (Silver et al. 2016). It has turned out that it is very good at discovering 

intricate structures in high-dimensional data and has attracted increasing attention in manufacturing industry (Wang et al. 

2017a). Wang et al. (2017a) proposed a data-driven prediction model for material removal rate during chemical mechanical 

polishing using a deep belief network with the input to the model being process parameters. Fu et al. (2015) employed deep 

belief networks to build end milling feature spaces for cutting states monitoring based on vibration signal. Lin et al. (2018) 

proposed a method to inspect LED chips automatically by using a deep convolutional neural network. Wu et al. (2018) 

proposed a novel approach for fault prognosis of equipment based on a Long Short-Term Memory(LSTM) network.  

For part deformation prediction the challenging problems are the complexity of part structure as well as the coupling 

effects with process information, especially related to the continuous changing of part geometry during the machining 

process. At present octree-based part geometry representation is deemed as a successful way for deep learning of geometric 

shape involved problems (Wang et al. 2017b). However, this method cannot represent the geometric state to reflect the 

stiffness of the workpiece as well as the changes during the machining process. The multi-dimensional data including the 

non-structural geometric information, process data, and monitoring data makes it a challenge to represent all the 

deformation factors, and currently there is a lack of a suitable deep learning network for this issue. 

3. Overview of the proposed approach 

To address the above challenges, this paper proposes an on-line part deformation prediction method driven by 

monitoring data and process information associated with interim workpiece states. The prediction model is constructed 

based on a deep learning method, in which the data are represented by a fourth-order tensor model. The deformation 

resulting from the machining to follow is predicted based on the monitoring data of the current workpiece state, as 

illustrated in Fig. 1. This method is different from existing prediction models, because it avoids the need to measure the 
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residual stress. The model established the relationship of previous deformation and subsequent deformation by developing 

a network using combined Conventional Neural Network (CNN) and Recurrent Neural Network (RNN). 

The data, which provided an accurate representation of the workpiece state and can be measured accurately, have been 

recorded or monitored during the machining process. There is significant potential to further mine the internal relationships 

between the recorded data and the deformation. The complex data contains many physical relationships, especially for the 

coupling effects amongst the data. Data driven intelligence based on deep learning can model the complex multivariate 

nonlinear relationships among those data with no in-depth understanding of system physical behaviors being required. 

In this paper, the aim of deformation prediction is to establish the relationship between current workpiece states and 

the deformation resulted by the follow-up machining process. First of all, a prediction model needs to be constructed from 

a wide range of workpiece states data. However, the recorded data are collected from different manufacturing processes, 

which are multi-format, multi-dimensional, and multi-modality. This makes it a great challenge for data analysis. The 

representation of geometry-process-deformation information is the key to the solution. In addition to that, how to construct 

a deep learning framework to learn the relationships among the data is another challenge. This paper addresses these two 

issues in the following sections. 

4. Representation of geometry-process-deformation information based on tensor model 

Workpiece deformation during machining is affected by its stiffness, the machining process performed and residual 

stress distribution. The workpiece stiffness is reflected by the interim state of workpiece geometry; the machining process 

can be represented by process parameters; and residual stress is reflected by the monitored deformation. In order to establish 

the relationship between the current workpiece state and the deformation resulting by the follow-up machining process, all 

of the geometry-process-deformation data need to be presented appropriately, which is the key to the deep learning model.  

The data are multi-dimensional, and related to individual workpiece states during machining. The information is un-

structured, and continuously changing during the whole machining process. There are also coupling effects, i.e., the 

geometric information is affected by process information. Efficient data processing needs better expression, and those 

complexities place higher demands on the data representation. 

Inspired by the application of tensor model in computer vision, data mining and signal processing (Kolda and Bader 

2009), the authors found the advantages of tensor in this application. It has the ability to represent multi-dimensional data 

while keeping the structural relationship among the different information elements. Tensor is a multi-dimensional 

representation of data while maintaining the individual structure of each data element, which is very important for multi-

dimensional data analysis. A tensor can be represented as 𝔸 ∈ ℝ𝐼1×𝐼2×…𝐼n…×𝐼𝑁, the order of the tensor is 𝑁, the data in 𝔸 
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is 𝑎𝑖1…𝑖𝑛…𝑖𝑁
 and 1 ≤ 𝑖𝑛 ≤ 𝐼𝑛, 𝐼𝑛 is the dimension size of nth order. The tensor can be unfolded in each order to represent 

information from a special perspective. In the proposed model, a tensor including related information of different 

dimensions can be represented as: 

𝔸 = [𝑨𝟏, 𝑨𝟐, … , 𝑨𝒔] 𝔸 ∈ ℝ𝐼1×𝐼2×𝐼3×𝐼4                                (1) 

𝑨𝒔 = [𝐴1, 𝐴2, 𝐴3, 𝐴4]  , 𝑨𝒔 ∈ ℝ𝐼1×𝐼2×𝐼3 , 𝐴𝑖 ∈ ℝ𝐼1×𝐼2                     (2) 

where 𝔸 is a fourth order tensor representing the whole machining states; 𝑨𝒔 is the sub-tensor model unfolded in the 

fourth order of 𝔸, which represents the information in each interim machining state 𝒔; 𝐴𝑖 is a sub-array of the different 

deformation related data in the tensor model. 𝐼1 and 𝐼2 can be regarded as a plane mapped from the perspective of the 

X-Y plane of the part. 𝐼3 is the dimension of the deformation related information, whose size is determined by the kinds 

of different machining information. Tensor 𝑨𝒔 is sliced from this order and forms a sub-array in 𝐼1 and 𝐼2; 𝐼4 is the 

machining state. In each 𝐴𝑖, the data of the plane is the value of the x, y position in the part. As illustrated in Fig. 2, the 

four types of machining related data, including part geometry, cutting-depth, fixture positions and deformation data, are 

represented by four sub-arrays. 

To address the difficulty in representing the workpiece state, the workpiece geometric state is mapped to order A1 of 

the proposed tensor model, each of the elements in order A1 corresponds to a unit of the workpiece, i.e., each unit represents 

a certain area of the workpiece, where the element in this sub-array is the material height of the corresponding part in the 

X-Y region. If there is no material in an element, the value is 0 in the corresponding unit. In order to keep the genericity of 

the representation, the number of data elements in one dimension of this sub-array can be set according to the workpiece 

size of the part types. 𝐴2 is the depth of cut in position (x, y). The depth of cut sub-array represents the location where 

material is removed and the cutting depth of the follow-up process. 𝐴3 and 𝐴4 are fixture information and monitored 

data. 

The deformation data are monitored by responsive fixtures on certain key points(Li et al. 2015), and the fixture 

positions in A3 are set as value 1, the other positions are 0. In the same way, deformation data is recorded in the tensor at 

the monitored point. In this model, geometric-process-deformation information is related, and some other process 

parameters could be represented to add the number of 𝐴𝑖. The geometric and process information of interim workpiece 

states can be obtained using the dynamic feature modelling method proposed by the authors (Li et al. 2012). This model 

maintains the multi-dimensional data structure of individual data elements, and the interdependency and complementarity 

between them. Tensor representation provides a possibility to reveal the implicit relationships among multi-dimensional 

data, and a basis to improve the ability of generalising the model in tensor space. 
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5. Deformation prediction model based on a deep learning network 

In order to establish the deformation prediction model, deep learning is applied in the whole prediction process as 

well as in the process of extracting features and special relationships between different data elements. As illustrated in Fig. 

3, the tensor model is the input to the prediction model. In the deep learning process, CNN is used to extract features and 

relationships in the tensor model by translating the tensor model to vectors with reduced dimensions. Then the vectors are 

sent to RNN, which establishes the relationship between the input information in the current workpiece state and the 

deformation resulting from the following machining process. 

5.1 Feature extraction process based on CNN 

For deformation prediction modeling, a suitable representation of the impacting factors is essential for a better learning 

of the intricate relationships in the machining data. However, the workpiece state information is modeled by tensor 

including 𝐼1 × 𝐼2 × 𝐼3 × 𝐼4 data, which makes it a challenge to learn the relationship in tensors directly. Generally, the 

useful information is at a low dimensional space in the tensor model, where useful structural and relational information is 

distributed sparsely. In order to obtain a low dimensional representation for the tensor, a feature extraction process is 

essential for the prediction process. 

CNN has multiple layers and has been developed to derive information from the data with multiple arrays. It has been 

used in many aspects, such as relational information extraction and image classification. A deep hierarchy CNN model 

with its multilayer abstraction ability can map the object into a regularised space. The main module of the CNN network 

is the convolutional layers, in which a set of weights called filter bank are used to connect the previous layer and the feature 

maps, and extract the feature with highly correlated data. For non-linear deformation related data, CNN can obtain a deep 

structure for modeling the data. The deep stacks of CNN enable the model to extract higher level representation of the 

latent output of the previous layer. As a result, CNN offers a powerful model for learning robust hierarchical implicit 

representations for structured inputs. 

In order to abstract the features effectively, a CNN structure called Res-Net is used here. The Res-Net is easy to 

optimize, and makes the network structure deeper. It means that the higher level features will be abstracted from the original 

data. 

5.2 Predicting follow-up machining deformation based on RNN 

Machining Deformation is a time series process related to the historical machining data of workpiece. The workpiece 
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status changes throughout the machining process, and the workpiece deformation changes in both positive and negative 

directions. Thus it is difficult to predict prior to the following machining process. For this reason, the deformation 

information of the following workpiece state in the historical data of machined parts will be used for predicting the 

deformation of workpiece state following the ‘current’ state.  

RNN is a kind of artificial neural sequence model, where connections between units form a directed cycle. RNN is 

often used for sequenced tasks. It takes an input sequence as one element at one time from the input layer, maintaining a 

‘state vector’ in the recurrent layer that implicitly contains historical information of all the past elements of the sequence, 

and then the historical information can be transferred to the current output layer or the next recurrent layer. RNN has a 

strong capability of capturing contextual information within sequences of different lengths.  

Deformation related data are auto-correlation data. The subsequent deformation could be predicted by the data of the 

current workpiece state and the historical data. In the deformation prediction model, the sequence of the deformation related 

data should be considered by using the auto-correlation data to construct the model and describe the dynamic process. 

Therefore, the machining deformation data are ‘context-sensitive’ data. Under this circumstance, a class of RNN, i.e., 

Bidirectional Long Short Term Memory (BiLSTM) is adopted to establish the prediction model by considering the entire 

deformation related information. LSTM is a variant of RNN proposed and applied to solve the problem of vanishing 

gradient of RNN models for long series. 

For the structure depicted in Fig. 4, BiLSTM uses two LSTMs to learn each relationship of the sequence based on 

both the past and the future context of the input data, and then the hidden states of the two LSTMs are combined together 

to predict the deformation of the following machining process. One LSTM processes the sequence from 𝑡1 to 𝑡𝑛, and the 

other is from 𝑡𝑛 to 𝑡1. And then the two hidden states ℎ𝑡
1 and ℎ𝑡

2 are concatenated into a vector, the combined outputs 

𝑦 is the prediction of data series. 𝑥(𝑡) is the input of the network, for each time step, the input is composed of current part 

states including the geometry and deformation data, and the following machining process parameters. In sequenced 

workpiece states, for a particular workpiece state, both information of previous and following states is useful and 

complementary to each other. Therefore, the BiLSTM is more suitable to model the relationships among the sequenced 

workpiece states. 

The structure of the complete prediction model is shown in Fig. 3. It has two modules: a feature extraction module 

and a deformation prediction module. Part deformation is correlated in the entire part space. In order to propagate from 

one corner of the feature information to another, Fully Connected (FC) layers are used to handle the information 

propagation network. Thus, the extracted features of CNN are unfolded into a vector and pass through two FC layers. The 

output of the propagation network is represented as: 
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𝐹𝑖 = 𝑪𝑵𝑵(𝑨𝑖)    𝐹𝑖 ∈ 𝑭(𝒔) = [𝐹1, 𝐹2, … , 𝐹𝑠]                          (3) 

𝑀𝑖 =  𝑓1(𝑈2 ∙ ((𝑈1 ∙ 𝐹𝑖) + 𝑏𝑢1)) + 𝑏𝑢2)                           (4) 

where 𝑨𝒊 is tensor model of the machining state 𝑖; CNN is the CNN network operator; 𝐹𝑖 is the feature extracted by 

CNN; 𝑈1, 𝑈2, 𝑏𝑢1, 𝑏𝑢2 are weights and biases of two FC layers. 𝑓1 is Tanh activation function. 𝑀i is the output result of 

the FC layers. 

Then the vectors are input to the prediction module. The structure of prediction module consists of some LSTM units 

and four layers in each prediction process, i.e., FC input layer, recurrent layer, multimodal layer and FC regression layer. 

Firstly, the FC input layer extends the extracted data to a dense representation with the same size of LSTM input: 

𝐼i = 𝑓2(𝑊1 ∙ 𝑀𝑖 + 𝑏1)                                   (5) 

where 𝑊1, 𝑏1 are the weights and biases of the FC input layer.  𝑓2 is the Tanh activation function. In the LSTM input 

units, the two hidden states are connected by the multi-modal layer and the result is passed through the last FC output layer 

to export the result: 

ℎ𝑠
1 = 𝑳𝑺𝑻𝑴𝟏(𝐼1, 𝐼2, … , 𝐼𝑠)   ℎ𝑠

2 = 𝑳𝑺𝑻𝑴𝟐(𝐼1, 𝐼2, … , 𝐼𝑠)                 (6) 

𝑃𝑠+1 = 𝑓4(𝑂(𝐻3 ∙ (𝑓3(𝐻1 ∙ ℎ𝑡
1 + 𝐻2 ∙ ℎ𝑡

2) + 𝑏2) + 𝑏3)                   (7) 

where 𝑳𝑺𝑻𝑴𝟏 and 𝑳𝑺𝑻𝑴𝟐 are BiLSTM operator; ℎ𝑠
1 and ℎ𝑠

2 are the hidden states of the two LSTMs; 𝐻1, 𝐻2, 𝐻3, 

O, 𝑏2 , and 𝑏3 are the weights and biases of multimodal layer(m-layer) and regression layer(r-layer). 𝑓4  and 𝑓3  are 

activation functions, 𝑃𝑠+1 is the output of prediction module.  

When predicting the deformation of state 𝑠 + 1, the result 𝑃𝑠+1 could be regarded as the deformation monitoring 

data after the current machining process, then the data could be used to predict the deformation resulted by the following 

machining process with associated process information.  

5.3 Network training and prediction performance 

Totally 480 parts including frames and beams with aluminum alloy material were collected from aircraft 

manufacturing factories and our machining laboratory, and the geometric, process and deformation information of the 

interim machining process of each part is included and stored in the proposed four-order tensor model, which is used to 

train our deformation prediction model. Both samples from real machining and from simulation environments are included 

in our data set. While the samples are still not enough for training the model effectively, the dataset is expanded to 43200 

samples with data augmentation by data translation and rotation approach. The samples were divided into a training set 

and an evaluation set in the division principle of 80% and 20%.  

The selection of the hyper-parameters of the deep learning framework is very important for achieving a good 
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prediction performance. The main hyper-parameters include the number of neurons per layer, the number of layers, the 

definition of neuron activation function as well as dropout or learning rate. 

The parameters of CNN, RNN and other layers’ configurations are described in Table 1 and Table 2. To speed up the 

training rate, the Mini-Batch Normalization was adopted in convolutional layers.  

The entire network has deep structures, i.e., the CNN has 22 layers, its parameters consist of filter values and 

connection weights, along with their biases. In order to get optimized weights of the network, mini-batch stochastic gradient 

descent was used and backpropagation were applied. The learning rate starts with a value of 1 × 10−5, and the batch-size 

is 16, which is limited by the memory size of GPUs. The initial momentum was selected from 0.7 to 0.95. The parameters 

are randomly initialized using normal distribution. The network is trained by regressing to the true deformation data. The 

deep learning model is implemented in PythonT and CUDA based on CNN and RNN kernels in PyTorchT. The proposed 

model is trained and tested on a workstation with an Intel Xeon E5 CPU and NVIDIA Tesla P4 GPU. Because of the huge 

parameters, the training time of the network requires about 14d.  

The mean square is used as a loss function for the entire network: 

𝑀𝑆𝐸 =
1

𝑚
∑ (𝑑𝑠 − 𝑃𝑠 )2𝑚

𝑖=1                                (8) 

An evaluation function is given to evaluate the prediction model:  

Eva =
1

𝑁
∑ |𝑑𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖

− 𝑑𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑖
|𝑁

𝑖=1                               (9) 

The training results illustrated in Fig. 5 suggests that the proposed deep learning framework performs well in 

deformation prediction. The training loss is less than 9 × 10−6, and the evaluation result is nearly 0.009 for the evaluation 

set. The error may be significantly reduced with the increase of the monitoring points and the training set. 

Some process data of Res-Net of CNN is visualized in Fig. 6 with some process data of convolutional layers being 

extracted from the network in the training process. Fig. 6 (a) shows the process data of a training sample (beam part) in 

Conv-1. There are 32 process data processed by 32 filter banks in Conv-1 on the geometric-process-deformation 

information of the beam part. For the sake of observation, the process information data are processed as images, the 

grayscale value of the pixel represents the level of sensitivity of the filter banks for the original information. Since the 

original input information of the geometric-process-deformation is organized on geometry, the output images are also 

visualized based on geometry, causing the images to look like the part. The higher value of grayscale means more sensitive. 

The process data of Convs-2, Convs-3, Convs-4, and Convs-5 are also showed in Fig. 6. The output images of Fig. 6 

(a) and Fig. 6 (b) of Conv-1 and Conv-2 only identifies the primary features, such as edge information in the images. With 

the more convolutional processing, the higher features are extracted by the network. From the view of Fig. 6 (c), (d) and 
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(e), the filter banks are sensitive to different area features containing more information.  

  In order to further analyse the network performance, Fig. 7 shows the 64 process information images of Cons-3, 

which are easily explained. After eight convolution layers, the higher information is extracted from the original data. As 

illustrated in Fig. 7, the 1-red-frame shows this filter bank is sensitive to the area features looking like long ribs. The other 

three red frames indicate that the other three filter banks are sensitive to the middle ribs, pockets and the whole ribs of the 

part. The extracted information is important for deformation prediction. The other images are difficult to translate. With 

the increase in the number of network layers, the complex representations of the geometric-process-deformation 

information will be extracted, which is more difficult to understand by humans. The process data shows that the deep 

learning framework has a powerful capability for information extraction in deformation prediction problems. 

6. Case study 

In order to verify the proposed method, two typical aircraft structural parts composed of different machining features 

but with the same dimensions (600mm×120mm×30mm) are machined. The material of the parts is aluminum alloy 7075, 

which are machined on a DMG 80P machine tool, as shown in Fig. 8. As illustrated in Fig. 9, the deformations of each part 

are monitored at 4 points by responsive fixtures. The machining parameters are listed in Table 3. As illustrated in Fig. 9, 

the part is fixed by seven fixtures. The red points represent the fixed fixtures, and the four green points represent the 

responsive fixtures, which are used to monitoring the deformation of the part. The responsive fixtures are always set at the 

far end of the long side to get the overall deformation of the parts. All the parts in our samples are long beam parts with a 

similar structure and shape to the parts in Fig. 9. In order to meet machining and monitoring requirements, at least 4 

responsive fixtures are required.  

Deformation data were sampled when the part deformation was released during the machining intervals, and the 

machining process followed a layer-by-layer removal process. In other words, the deformation data were collected after 

each layer was finished. Both of the two workpieces were machined by 7 layers with 6 roughing layers and the last finishing 

layer. After each layer was machined, the deformation data were monitored by responsive fixtures, and the machining 

information including part geometry, process parameters, positions of monitoring points and part deformations, was 

modeled as a tensor and input to the prediction model to predict the deformation resulted by the following layer of 

machining.  

Prediction results for each part are presented in Fig. 10, and it can be seen that the prediction accuracy is not good in 

the earlier stages, as there is only small sample data to describe the workpiece state. The prediction accuracy gets better as 

the monitoring data increase. The max prediction error of the last layer is 0.029 mm for the parts machined, and the 
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relative errors are within 10.61%. The prediction results are listed in Table 4. 

A typical deformation prediction method based on FEM (Tang et al. 2013) shows that, the relative error is 20% and 

prediction error is 0.035 mm with part dimension 260mm×40mm×20mm, while the scale and complexity are both much 

less than the parts of our paper.  

The model presented in our paper improves the prediction accuracy and does not need the measurement of the residual 

stress. The prediction model based on deep learning has shown its feasibility in predicting deformation, and with the 

increase of the dataset size the prediction accuracy increases. 

7. Conclusions and further work 

Traditional offline-based prediction methods require the destruction of the entire material to obtain a distribution of 

residual stresses. Due to the inaccuracy measurement of residual stress and the different distribution of the same batch of 

materials, the existing methods can only predict an approximate general trend, which is not enough for deformation control. 

This paper presents an on-line part deformation prediction method for deformation control using a deep learning method, 

which is different from existing prediction methods before machining process based on FE simulation. Our proposed 

deformation prediction method is driven by part deformation monitoring data, which is a very accurate representation of 

the state of the part. CNN and RNN are trained by monitored deformation and process information including a large amount 

of historical data associated with interim workpiece states, which are represented by a proposed forth order tensor model. 

Case studies show a high prediction accuracy, with which suitable machining process strategies can be adopted to control 

the deformation. 

Compared with existing deformation prediction methods, the proposed method avoids the measurement and residual 

and machining-induced stress inside the workpiece, which is difficult and inaccurate to measure. This method shifts the 

difficult problem of residual stress measurement and off-line deformation prediction to the solution of on-line deformation 

prediction based on deformation monitoring data. The proposed method also provides a reference for representing the input 

information of machining problems using deep learning methods.  

At present, the aluminium alloy materials are used in the case studies. Howerer it should also be feasible to apply the 

approach to other metal materials such as titanium alloys. In the proposed tensor model, it would be feasible to add other 

process information in addition to cutting-depth, and to extend the tensor dimension of 𝐼3. On-going and further work of 

the authors is to investigate the above promising application areas. 
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Fig. 2 Tensor model of geometry-process-deformation information Click here to access/download;Figure;FIG. 2.tif
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Fig. 3 The structure of deformation prediction model Click here to access/download;Figure;FIG. 3.tif
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Fig. 4 Bidirectional Long Short Term Memory(BiLSTM) Click here to access/download;Figure;FIG. 4.tif
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Fig. 5 Training Loss and Evaluation value Click here to access/download;Figure;FIG. 5.tif
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Fig. 6 Process data of Res-Net visualized by the output data of
CNN middle layers

Click here to access/download;Figure;FIG. 6.tif
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Fig. 7 The visualized process data of Convs-3 Click here to access/download;Figure;FIG. 7.tif
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Fig. 8 Machining experiment environment Click here to access/download;Figure;FIG. 8.tif
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Fig. 9 Part information and monitoring points in plan view Click here to access/download;Figure;FIG. 9.tif
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Fig. 10 Prediction results of the deformation for different machining states Click here to access/download;Figure;FIG. 10.tif
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Table 1 Parameters of the CNN and RNN 

Layer Input Output Kernel Stride Padding  

Conv-1 4 32 (5,5) (3,3) (1,1)  

Conv-2 32 64 (3,3) (2,2) (1,1)  

Convs-3 

64 64 (3,3) (2,2) (1,1) 

×3 
64 64 (3,3) (2,2) (1,1) 

Convs-4 

128 128 (3,3) (2,2) (1,1) 

×3 
128 128 (3,3) (2,2) (1,1) 

Convs-5 

128 128 (3,3) (2,2) (1,1) 

×3 
128 128 (3,3) (2,2) (1,1) 

Convs-6 

128 128 (3,3) (2,2) (1,1) 

×1 
128 128 (3,3) (2,2) (1,1) 

BiLSTM Input size: 128   Hidden units: 256  
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Table 2 Parameters of auxiliary layers in the neural network 

Layer FC1 FC2 Input-FC m-layer r-layer 

Input 128×4×7 512 256 128 512 

Output 512 256 128 512 4 

 

  



Table 3 Machining process parameters 

Spindle Speed: 5000rpm 

Cutting Mode Down Milling 

Cutting tool  D20 

Cutting Depth (Roughing) 4mm 

Cutting Depth (Finishing) 2mm 

Cutting Width: 10mm 

Feed Rate: 2000mm/min 

Cutting Fluid: Yes 

 

  



Table 4 Prediction results for the parts machining experiments 

Part Data Point-1 Point-2 Point-3 Point-4 

Part-1 

Monitoring data(mm) -0.228 -0.202 -0.198 -0.216 

Prediction data(mm) -0.223 -0.223 -0.177 -0.215 

Relative error 2.19% 10.40% 10.61% 0.46% 

Part-2 

Monitoring data(mm) -0.318 -0.262 -0.289 -0.246 

Prediction data(mm) -0.295 -0.247 -0.261 -0.228 

Relative error 7.23% 5.73% 9.69% 7.32% 

 


