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Abstract 
If two adjacent links of a flexible robot are connected via a revolute joint or a fixed prismatic joint, 
the relative motion of the next link will depend on both the joint motion and the elastic displacement 
of the distal end of the previous link. However, if the two adjacent links are connected via a sliding 
prismatic joint, the relative motion of the next link will depend additionally on the elastic deformation 
distributed along the previous link. Therefore, formulation of the motion equations for a multi-link 
flexible robot consisting of the revolute joints, the fixed prismatic joints and the sliding prismatic 
joints is challenging. In this study, the finite element kinematic and dynamic formulation was 
successfully developed and validated for the flexible robot, in which a transformation matrix is 
proposed to describe the kinematics of both the joint motion and the link deformation. Additionally, 
a new recursive formulation of the dynamic equations is introduced. As compared with the previous 
methods, the time complexity of the formulation is reduced by O(2η), where η is the number of finite 
elements on all links. The numerical examples and experiments were implemented to validate the 
proposed kinematic and dynamic modelling method. 
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Nomenclature   
R   Revolute joint 

aP   Sliding prismatic joint 

bP   Fixed prismatic joint 

n  Total number of links 
i  Index of a link ( 1i n  ) 

il  Length of a link i  

in  Total number of elements of a link i  

j  Index of element of a link i  ( 1 ij n  ) 

iel  Length of elements of a link i  

i  Angle between a link 1i  and a link i  

ia   Rear part of a link i    

id  Variable of a prismatic joint i  connecting a link 1i   and a link i  

i  Variable of a revolute joint i  connecting a link 1i   and a link i  

 i i i i iO O XYZ  Local coordinate system attached to a link i  

 0 0 0 0 0O O X Y Z  Reference coordinate system fixed to the base (link 0). 

  2 1i ju 
 Flexural displacement at the common junction of elements j  and  1j   of 

a link i  

  2 2i ju 
 Flexural slope at the common junction of elements j  and  1j   of a link i  

  1 2 1i ku  
  Flexural displacement at the distal node of a sliding element k  of a link 

1i  currently through the sliding prismatic joint i  ( aP ) 

  1 2 2i ku  
  Flexural slope at the distal node of a sliding element k of a link 1i  

currently through the joint i  ( aP ) 

  11 2 1ii nu
 

 Flexural displacement at the distal end of a link 1i  

   11 2 2ii nu
 

 Flexural slope at the distal end of a link 1i  

 1i fu 
 Flexural displacement at the nominal articulation point between a link 1i   

and a link i .  

 1i su 
 Flexural slope at the nominal articulation point between a link 1i   and a 

link i . 
x  A point on the element j  of a link i  

 , 1 4m x m     Shape functions  

S  Vector of shape functions 

ijS  Elemental vector of shape functions 

 ijw x   Flexural displacement at the point x   on the element j  of a link i  

 ij xr   Vector from iO  to the point x  on the element j  of a link i   

 0ij xr   Vector from 0O  to the point x  on the element j  of a link i  

 Θ 1i i
 Transformation matrix describing the motion of a flexible link i  relative to 

a flexible link 1i  



  

 1i iH  Transformation matrix describing the motion of a rigid link i   relative to a 
rigid link 1i  

im   Uniform density (mass per meter) of a link i  

E   Young's modulus 

iI   Moment of inertia of a link i  

M   Global mass matrix of the system 

ijM  Elemental mass matrix for the element j  of a link i  

K   Global stiffness matrix of the system 

ijK  Elemental stiffness matrix for the element j  of a link i  

ip  Variable of a joint i  

ijp  Vector of elastic displacements and slopes of the element j  of a link i  

κi   
Vector of elastic displacements and slopes of a link i  

q   Vector of generalized coordinates of the system  
F  Vector of applied torques/forces of the system  



  

1. Introduction 

Industrial robots can be categorized as the rigid or flexible ones. The traditional rigid robots 
have been widely used in various industries. Today, there has been an emerging need to develop the 
flexible robots to meet well more and more sophisticated requirements, especially in manufacturing 
industries. The flexible robots have outstanding advantages over the traditional rigid ones, with a lower 
overall mass, smaller actuators, lower energy consumptions, and a greater payload-to-manipulator-
weight ratio, taking the advantages of the latest advancements in robotics, design and manufacturing, 
as well as the material engineering. The control algorithms of rigid robots are insufficient when they 
come to flexible ones; and the mathematical modeling process for the flexible robots is much more 
complex, especially when working on the nonlinear control issues, and the dynamic modeling and 
analysis of multi-link flexible robots. Moreover, formulations of the motion equations for a multi-link 
flexible robot consisting of the revolute joints, the fixed prismatic joints and the sliding prismatic joints 
are always challenging. 

Fig. 1 shows the revolute joint (Fig. 1a), the fixed prismatic joint (Fig. 1b) and the sliding 
prismatic joint (Fig. 1c) that are usually used in robot architectures. The fixed prismatic joint implies 
that it is fixed to the previous link 1i   , the current link i   slides through the joint, and the length of 
the current link ivaries with respect to time. In contrast, the sliding prismatic joint is fixed to the current 
link i , both the joint and the link translate relatively to the previous link 1i  , and the length of the 
previous link 1i  varies. 

 

 
 

a) A revolute joint b) A fixed prismatic joint 

 

c) A sliding prismatic joint 

Fig.1. Three types of joints for the multi-link flexible robots 

 



  

Generally, the kinematics of a flexible link i  depends much on which kind of joints connecting 
the link i  with the previous link 1i  . For the case in which the two links are connected by a revolute 
or a fixed prismatic joint (Fig.1a, 1b), the relative motion of the link i  depends on the motion of the 
joint i  and the elastic deformation at the distal end of the previous link 1i  . Nevertheless, in the case 
of sliding prismatic joint (Fig.1c), the motion of the link i  does not depend on the elastic deformation 
at the distal end of the link 1i  , it depends on  the elastic deformation of the sliding element on the 
link 1i  . This element varies along the length of the link 1i  , with respect to time. For the cases in 
which the revolute joint and the sliding prismatic joint (Fig.1a, 1c), it is usually assumed that the elastic 
displacements at the first node of the first element on the link i  equal to zero. However, for the case in 
which the fixed prismatic joint (Fig.1b), the element of zero elastic deformation is the sliding element 
of the link i  through the fixed prismatic joint. Obviously, the elasticity effects of links associated with 
the use of the three joint types should be taken into accounts when working on the kinematic and 
dynamic modeling for a general flexible robot that consists of all three joint types. 

Decades ago, the dynamic modeling and analysis of multi-link flexible robots have been well 
documented (Korayem et al., 2014; Raouf et al., 2017; Augustynek and Adamiec-Wójcik, 2014; Book, 
1984; Naganathan & Soni, 1987; Jonker, 1990; Lin and Lewis, 1994; Usoro, 1986; De Luca and 
Siciliano, 1991; Amirouche and Xie, 1993; Chen, 2001; Subudhi and Morris, 2002; Khadem and 
Pirmohammadi, 2003; Zhang, 2009; Korayem et al., 2012). There have also been attempts to generalize 
the kinematic and dynamic modeling problems for the multi-link flexible robots, and most of these 
investigations focus on the multi-link flexible robots consisting of all revolute joints. There were also 
studies considering the use of the prismatic joints for the flexible robots; however, these studies mainly 
focused on the robot with one or two links only. Wang and Wei (1987) and Al-Bedoor & Khulief 
(1997) investigated the dynamics of a sliding flexible link through a fixed prismatic joint. Ju et al. 
(2016), Yuh and Young (1991) and Pan et al. (1990) developed the modeling for a two-link flexible 
robot with a fixed prismatic joint. Korayem et al. (2014) addressed the dynamic modelling of a multi-
link flexible robot, of which each link rotates and reciprocates through a fixed prismatic joint. Wang 
& Mills (2016) studied a parallel robot that has the flexible links with the sliding prismatic joints. 
Khadem & Pirmohammadi (2003) formulated the dynamic equations for a multi-link flexible robot 
consisting of the sliding prismatic joints as well.   

Although the dynamic modelling of the flexible robot that consists of the sliding prismatic joints 
(Fig. 1c) has been considered in the researches by Khadem & Pirmohammadi (2003), Ju et al. (2016), 
and Wang & Mills (2016), the flexible deformation of the sliding link, along which the prismatic joint 
slides, has been overlooked. In particular, little attention has been paid to the kinematic and dynamic 
modelling of the multi-link flexible robots that have simultaneously the revolute joints, the fixed 
prismatic joints and the sliding prismatic joints. Notice that combinations of different types of joints 
provide the flexibilities in design and additional functions for the multi-link robots, to help meeting 
well the additional technical requirements and expanding the scope of applications for the multi-link 
robots. 

Basically, the flexible robots are the continuous dynamical systems which are often 
characterized by an infinite number of degrees of freedom and are governed by the nonlinear coupled 
differential equations; and the exact solution of such systems is not practical. In order to formulate the 
dynamic equations, the continuous dynamical systems are usually discretized by using two main 
methods, including (i) the Assumed Modes Method (AMM) and (ii) Finite Elements Method (FEM). 
Theodore & Ghosal (1995) and Dwivedy & Eberhard (2006) showed that the main drawback of AMM 
is the difficulty in finding the modes for links with the non-regular cross sections and the multi-link 
robots, and FEM normally requires fewer computations; therefore, FEM lends itself ideally suited for 
the modeling of multi-links flexible robots. Practically, FEM has been utilized by many authors for the 
dynamic formulation of flexible robots (Du et al., 1996; Płosa & Wojciech, 2000; Jonker, 1990; 
Naganathan & Soni, 1987; Tokhi et al., 2001; Al-Bedoor, & Almusallam, 2000; Mahto, 2014; 
Karagulle et al., 2015, 2017; Al-Bedoor & Khulief, 1997; Pan et al., 1990; Wang & Mills, 2006; Usoro, 
1990).  In this approach, each link of a robot is divided into the finite beam elements of the same length. 
The kinetic energy and the potential energy of each element are calculated to formulate the elemental 



  

mass and stiffness matrices correspondingly. Unfortunately, the elemental mass and stiffness matrix 
are usually calculated in terms of the nodal coordinates. With respect to the order of entries in some 
global vectors of the generalized coordinates, the index of the last four rows and the last four columns 
of each elemental matrix is different from that of the other elemental matrices. Moreover, the elemental 
matrices corresponding to elements on different links have different sizes. Therefore, constructions of 
the global mass and stiffness matrices of governing equations usually require the complex 
computational procedures and transformations for assembling the elemental mass and stiffness 
matrices respectively.  Furthermore, in the case that the flexible robot consists of the sliding and fixed 
prismatic joints, a construction of the global mass and stiffness matrices is even more complex since 
the boundary conditions vary with respect to time. 

 The above raised critical issues and problems lead to the motivations of developing a new 
kinematic and dynamic formulation for the multi-link flexible robots.  In this paper, a new kinematic 
modelling method for a planar n-link flexible robot that consists of the revolute, fixed prismatic and 
sliding prismatic joints is presented and discussed. A new homogeneous transformation matrix is 
addressed to describe the kinematics of both the joint motion and the link deformation. Since the 
proposed matrix is given in a general form, it is therefore applicable to modelling of any planar flexible 
robots. In addition, a new recursive formulation of dynamics for the flexible robots is also presented. 
Based on the finite element - Lagrangian approach, all the elemental mass and stiffness matrices are 
transformed and expressed explicitly and globally with respect to the entire generalized coordinates. 
Consequently, the global mass and stiffness matrices are formulated by summing over all the elemental 
mass and stiffness matrices of the same size respectively. By using the symbolic computing syntaxes 
available in the symbolic computing environments, the formulation can be implemented in a simplified 
and efficient manner. The proposed method in this study is more efficient and useful, especially when 
compared to the common methods which use the complex schemes for assembling the global mass and 
stiffness matrices. In order to present validations of the newly developed and proposed dynamic 
modelling method for multi-link flexible robots, the numerical examples and experiments are 
implemented.  

The rest of the paper is organized as follows. Section 2 presents a brief literature review, 
especially the related work as foundations for the study. Sections 3 and 4 present the kinematics, 
dynamics and numerical examples of the dynamic analysis of a multi-link flexible robot respectively.  
Section 5 presents the experiments for validation of the forward dynamic analysis results based on the 
proposed dynamic modelling method. Finally, the summary and conclusions are presented in Section 
6.     

2. A brief literature review and related work 

In recent decades, a great deal of work has been devoted to the dynamic modeling and analysis 
of flexible robots.  The comprehensive literature reviews of the flexible robot dynamics and control 
were presented by Theodore & Ghosa (1995), Dwivedy & Eberhard (2006), Benosman & Le Vey 
(2004), Rahimi & Nazemizadeh (2014), Kiang et al. (2015), Sayahkarajy et al. (2016), Lochan & 
Subudhi (2016), and Alandoli et al. (2016). Table 1 presents the summary of the related work and key 
references about the dynamic modeling and analysis of the flexible robots. 

Table 1: A summary of the related work and key references about the dynamic modeling and 
analysis of the flexible robots 

TOPICS RELATED WORK AND KEY REFERENCES 
One link flexible 
robot 

Li et al., 1998; Endo & Kawasaki, 2014; Feliu et al., 2014; Kalker and 
Olsder, 1987; Wang and Wei, 1987; Wang and Vidyasagar, 1992; Kwon and 
Book, 1994; Al-Bedoor and Khulief, 1997; Marghitu and Diaconescu, 1999; 
Tokhi et al., 2001; Ju et al., 2016; Pratiher and Dwivedy, 2007 



  

Two link flexible 
robot 

Naganathan and Soni, 1987; Low and Vidyasagar, 1988; Pan et al., 1990; 
Yuh and Young, 1991; Abe, 2009; Ata et al., 2012; Bolandi and 
Esmaeilzadeh, 2011; Green and Sasiadek, 2004; Karagulle et al., 2015; 
Khalil et al., 2017; Meghdari and Fahimi, 2001; Asada et al., 1990 

Multi-link flexible 
robot 

Book, 1984; Usoro, 1986; Jonker, 1990; Korayem et al., 2014; Augustynek 
and Adamiec-Wójcik, 2014; De Luca and Siciliano, 1991; Amirouche and 
Xie, 1993; Lin and Lewis, 1994; Chen, 2001; Subudhi and Morris, 2002; 
Khadem and Pirmohammadi, 2003; Zhang, 2009; Korayem et al., 2012; 
Raouf et al., 2017; Korayem et al., 2012; Korayem & Shafei, 2013; 
Korayem & Shafei, 2015 

Newton-Euler’s 
equations – 
based approach 

Abbas et al., 2017; Naganathan & Soni, 1987; Jonker, 1990; Wang & Wei 
1987; Yuh & Young, 1991; Boyer & Coiffet, 1996; Augustynek & Adamiec-
Wójcik, 2012; Briot & Khalil, 2014; Khalil et al., 2017 

Lagrange’s 
equations - based 
approach 

Bricout et al., 1990; Book, 1984; Naganathan & Soni 1987; Lin & Lewis, 
1994; Usoro et al., 1986; Kalker & Olsder, 1987; Low & Vidyasagar, 1988; 
Changizi & Shabana, 1988; Lin & Lewis, 1994; Pan et al., 1990; Asada et 
al., 1990; De Luca & Siciliano, 1991; Wang & Vidyasagar, 1992; Al-Bedoor 
& Khulief, 1997; Tokhi et al., 2001; Chen, 2001; Subudhi, & Morris, 2002; 
Zhang, 2009; Abe, 2009; Ata et al., 2012; Raouf et al., 2017; Hewit , 1997; 
Mehrez & El-Badawy, 2010; Choi et al., 1998; Tarvirdizadeh & Yousefi-
Koma, 2012; Damaren, 2000; Marghitu & Diaconescu, 1999, and Green & 
Sasiadek, 2004 

Kane’s equations 
- based approach 

Amirouche & Xie, 1993; Meghdari & Fahimi, 2001 

Gibbs-Appell’s 
equations - based 
approach 

Khadem & Pirmohammadi, 2003; Korayem et al., 2014; Korayem et al., 
2012; Korayem & Shafei, 2013; Korayem & Shafei, 2015 

Hamilton’s 
equations - based 
approach 

 Pratiher & Dwivedy, 2007; Ju et al., 2016 

Finite element 
method - based 
formulation  

Du et al., 1996; Płosa & Wojciech, 2000; Jonker, 1990; Naganathan & Soni, 
1987; Tokhi et al., 2001; Al-Bedoor, & Almusallam, 2000; Mahto, 2014; 
Karagulle et al., 2015, 2017; Al-Bedoor & Khulief, 1997; Pan et al., 1990; 
Wang & Mills, 2006; Usoro, 1990; Geradin & Cardona, 2001; Heidari et al., 
2013 

Assumed mode 
method – based  
formulation 

Hewit, 1997; Mehrez & El-Badawy, 2010; Choi et al., 1998; Book, 1984; De 
Luca & Siciliano, 1991; Lin & Lewis, 1994; Chen, 2001;  Subudhi & Morris, 
2002; Zhang, 2009; Raouf et al., 2017; Wang & Vidyasagar, 1992; 
Tarvirdizadeh & Yousefi-Koma, 2012; Low & Vidyasagar, 1998; Abe, 
2009; Ata et al., 2012; Damaren, 2000; Marghitu & Diaconescu, 1999; 
Green & Sasiadek, 2004; Khadem & Pirmohammadi, 2003; Korayem et al, 
2014; Ju et al., 2016; Shafei & Shafei, 2018; Li & Sankar, 1992 

Implementation 
of flexible robots 
and experiments 

Massoud, Naraghi & Mahzoon , 2018; Korayem et al., 2014; Luo, 1993; 
Shafei & Korayem, 2017; Nagaraj, Nataraju & Ghosal, 1997; Yim, Zuang & 
Singh, 1993; Korayem & Dehkordi, 2018 

The contents and a number of the research about the one-link flexible robot dynamics are huge. 
The Lagrange’s equations were used by Kalker & Olsder (1987) and Li & Sankar (1992) to derive the 



  

equations of motion of flexible robot and driven mechanisms with flexible links. The dynamic 
equations were derived by Wang and Vidyasagar (1992) for a class of multilink manipulators with the 
last link flexible. Kwon and Book (1994) reported a method to solve the inverse dynamic problem in 
time domain. Al-Bedoor and Khulief (1997) and Tokhi et al. (2001) emphasized on the finite element 
formulation of dynamic equations, and Ju et al. (2016) and Marghitu & Diaconescu (1999) utilized 
AMM for the dynamic modelling.  

There has been a lot of efforts working on the dynamic modeling and analysis of two-link 
flexible robots. However, most of these studies focused on the flexible robots with two revolute joints. 
Pan et al. (1990) investigated the modeling of the flexible robot with the fixed prismatic joints, in which 
the axial shortening effect of the link was taken into accounts.  Yuh and Young (1991) studied a beam 
that has a rotational and translational motion, in which the time-varying partial differential equation 
and the boundary conditions were derived to describe the lateral deflection of the beam.  

Recently, there has been a number of studies that focus on the dynamic modeling and analysis 
of the multi-link flexible robots and the related robotic mechanisms. However, most of these studies 
emphasised on the flexible robots with the use of the revolute joints. As discussed and mentioned in 
Section 1, there was a few studies (Korayem et al., 2014; Khadem & Pirmohammadi, 2003) that 
proposed the methods for modeling of a multi-link flexible robot that uses the prismatic joints. 
However, the study done by Korayem et al. (2014) only considered the case in which each arm link of 
the given length rotates and reciprocates through a rigid joint.  The work done by Khadem & 
Pirmohammadi (2003) focused on the sliding prismatic joint; however, the elasticity effects that 
involve in the time-varying value of a link length, associated with the use of all types of the prismatic 
joint, have not been investigated. Basically, the generalized methods and techniques for the kinematic 
and dynamical modelling of the flexible robot that consists of the revolute, fixed prismatic and sliding 
prismatic joints have not been well studied.  

Apart from the works investigating different architectures of flexible robot, there has also been 
a wide spectrum of studies focusing on various analytical approaches, incorporated with FEM or 
AMM, for the dynamic modelling of the multi-link flexible robot as shown in Table 1.  As previously 
mentioned, FEM has been applied for decades to model and analyse complex structural engineering 
problems. Using FEM, Jonker (1990) addressed the Newton Euler dynamic model for the flexible robot 
using the rotary joins, with the use of separate rigid body displacements and actual deformations to 
describe the current state of a finite element. In FEM, the behavior of the elasticity of a flexible robot 
arm is observed on a rigid body motion in which the elastic deformation is then superimposed. FEM 
was also used for the dynamic modelling applications. Du et al., (1996) presented the general nonlinear 
dynamics model which was developed for three-dimensional (3D) flexible robots. Each link is 
discretized by the finite elements with its inertia lumped at the nodes of each element. Naganathan and 
Soni (1987) investigated the coupling effects of kinematics and flexibility in the flexible robots.  
Augustynek & Adamiec-Wójcik (2012) studied the mechanism with the flexible beam-like links which 
use the revolute joints. Usoro et al. (1986) used the Lagrangian approach for the mathematical 
modeling of the lightweight flexible robots. Pan et al. (1990) developed a general dynamic model for 
design and control of the flexible robots which use the prismatic joints. Tokhi et al. (2001) presented 
the theoretical and experimental investigations into the dynamic modelling and characterisation of a 
flexible robotic system. Al-Bedoor & Khulief (1997) formulated the dynamic model of a sliding link 
with a prismatic joint. Wang & Mills (2006) presented a finite element – Lagrangian formualtion of 
dynamic equations for a flexible-link planar parallel platform. By using FEM and Kane’s equations, 
Amirouche & Xie (1993) addressed a matrix formulation of the dynamical equations for the flexible 
multibody systems. Heidari et al. (2013) investigated a nonlinear finite element model for the dynamic 
analysis of three-dimensional flexible link manipulators, in which both the geometric elastic 
nonlinearity and the foreshortening effects are considered. The use of FEM approach for the dynamic 
modelling of flexible multibody systems was discussed by Geradin & Cardona (2001). Lochan et al. 
(2016) discussed advantages of FEM in dynamic modelling of a flexible robot, and it was showed that 
the main advantage of FEM over the other methods is that the connections in FEM are supposed to be 
clamped free, with at least two modes shape per link.  Another advantage of FEM over analytical 



  

solution methods is that it is capable of handling nonlinear conditions easily. FEM can also handle 
irregularities in the structure and mixed boundary conditions. Meanwhile, AMM has long been applied 
as well for the dynamic modelling and analysis of the flexible robots, in which the link elasticity is 
usually modelled by a truncated finite modal series, in terms of the spatial mode eigenfunctions and 
time-varying mode amplitudes. In particular, Shafei & Shafei (2018) have employed AMM approach 
for the dynamic modeling of the oblique impact of a multi-flexible-link robotic manipulator. It is noted 
that the dynamic modelling of the flexible robots also needs to be considered when working on the 
control law design. Matsuno et al. (1987) analysed the AM – Lagrangian dynamic model to develop 
the closed-loop feedback control laws for a single link flexible robot.  Bolandi & Esmaeilzadeh (2011) 
presented an exact tip trajectory tracking control of a flexible robot, based on the tip position and the 
strain gauge measurements through the nonlinear control design. Based on Hamilton’s eqautions, 
Zhang et al. (2016) formulated the dynamic equations to control vibrations of the one-link flexible 
robot. 

 For validation of the dynamic modelling and the control design, there has been a number of 
researches conducting experiments on actual flexible robots. Massoud et al. (2018), Korayem et al. 
(2014) and Luo (1993) designed and conducted experiments for one link flexible robot. Experiments 
for multi-link flexible robots were implemented by Shafei & Korayem (2017), Nagaraj et al. (1997), 
Yim et al. (1993), and Korayem & Dehkordi (2018). In particular, Korayem & Dehkordi (2018) 
presented experiments for a mobile manipulator, with two flexible links and revolute–prismatic joints 
to demonstrate the performance of a dynamic model formulated by themself. 

3. Kinematics of a planar flexible robot 

In this section, the kinematic model of a multi-link flexible robot is formulated and analysed. 
Specifically, let us consider the case of a planar flexible robot consisting of n   links and n  joints.  It 
is assumed that the elastic deformation of a link is small. Each link is treated as an assemblage of a 
finite number of beam elements.  

 

 
Fig. 2. A generalized schematic of an arbitrary pair of flexible links: a nominal & actual 
configuration. 



  

Fig. 2 presents a generalized schematic of an arbitrary pair of flexible links of a planar flexible 
robot, with an arbitrary couple of links, namely link 1i    and link i . A link 1i    connects with a 
link i  by a joint i  which can be the following  three joint types: Revolute joints (R ), Sliding prismatic 

joints ( aP )  and Fixed prismatic joints ( bP ). The link i  with a length il  is divided into in  elements of 

the equal length iel . Each element j  of the link i  (element ij ) has two nodes. Each node has a flexural 

displacement and a flexural slope. For the element ij ,        2 1 2 2 1 2 2

T

ij i j i j i j i ju u u u  
    

p  is the 

vector of the flexural displacement and flexural slope. In Fig.2,  1i fu 
 and  1i su 

 are the flexural 

displacement and slope at the nominal articulation point between two links.    If the joint i  is a revolute 
joint or a fixed prismatic joint, the point is at the distal end of link 1i  , and     11 1 2 1ii f i nu u

    and 

    11 1 2 2ii s i nu u
   . If the joint i  is a sliding prismatic joint, the point is at the distal end of the sliding 

element k  of  the link 1i   through the joint, and     1 1 2 1i f i ku u    and     1 1 2 2i s i ku u   . 

Let us define  i i i i iO O XY Z  as the local coordinate system attached to the link i , where the 

origin iO  is fixed to the proximal end of the link i  and the axis iX  points in the direction of the link i . 

Similarly,  1 1 1 1 1i i i i iO O X Y Z      is defined for the link 1i  .  0 0 0 0 0O O X Y Z  is the reference 

coordinate system fixed to the base.  

Lemma: The general homogeneous transformation matrix  Θ 1i i describing the kinematics of both the 

motion of a joint i  and the deformation of a link 1i   can be written in the following form:  
 

 

        
          Θ

1 1 1

1 1 1 1
1

cos sin 0 cos

sin cos 0 sin
0 0 1 0
0 0 0 1

i i i i ii s i s i s

i i i ii s i s i f i s
i i

u u a u

u u u a u

   

  
  

   


      
 
       
 
 
   

, (1) 

where i , i ,  1i su 
,  1i fu 

, and ia  are symbolic notations representing the joint variables and 

parameters according to the joint types as shown in Table 2.  

Table 2: Joint variables and parameters of a link  

Joint Type 
i  i   1i su 

  1i fu 
 ia  Note 

R   1il   *
i    11 2 2ii nu

 
   11 2 1ii nu

 
 0 

(*): joint 
variable 

aP   *
id  i    1 2 2i ku  

   1 2 1i ku  
 0  11,2,3,..., ik n   

bP   1il   i    11 2 2ii nu
 

   11 2 1ii nu
 

 *
i id l   

 
Proof: In order to obtain the coordinate system i i i iO XY Z , from 1 1 1 1i i i iO X Y Z    , the following 

translations and rotations are performed.    



  

(i)  A pure translation of the coordinate system 1iO   along i  in the direction 1iX  . The translating 

distance i will be the joint variable id , if the joint i  is a sliding prismatic joint. Otherwise, i   is 

the length 1il  of the link 1i  .  The homogeneous transformation matrix characterizing this 

transformation is denoted as  iT . 

(ii) A translation of 1iO   , at the previous location, a long  1i fu 
in the direction 1iY  .  If the joint i  is 

a sliding prismatic joint, the translating distance  1i fu 
 will be the flexural displacement   1 2 1i ku  

 

calculated at the distal node of an element k  of the link 1i  . At a time instance, this element 
currently slides inside the joint i . Otherwise, it is equal to the flexural displacement at the tip of 
the link 1i  ,   11 2 1ii nu

 
. The homogeneous transformation matrix describing this translation is 

denoted as   1i fu T . 

It is noted that, since the small elastic deformations are assumed, the translation (ii) is also assumed 
to be carried out before the next rotation (iii).  

(iii) A rotation of 1iO   , at the previous location, around 1iZ  .  If the joint i  is a sliding prismatic joint, 

the rotation angle  1i su 
 will be the flexural slope   1 2 2i ku  

 calculated at the distal node of the 

element k  of the link 1i  . At a time instance, this element currently slides inside the joint i .  
Otherwise, it is equal to the flexural slope at the tip of the link 1i  ,   11 2 2ii nu

 
The homogeneous 

transformation matrix representing this rotation is   1i su R . 

(iv) A rotation of 1iO   , at the previous location, around 1iZ  . If the joint i  is a revolute joint, the 

rotation angle i   will be the joint variable i . Otherwise, it is the geometric angle i  between the 

link 1i   and the link i . The homogeneous transformation matrix is  iR . 

(v) A translation of 1iO  , at the previous location, back to the proximal end of the link i  . If the joint 

i  is a fixed prismatic joint, i i ia d l  , where id  is the joint variable. Otherwise, it is assumed that 

0ia  . The homogeneous transformation matrix is  iaT . 

Consequently, the cumulative transformation matrix is calculated as follows: 

             Θ 1 1 1i i ii i i f i su u a    T T R R T . 

 

        
          Θ

1 1 1

1 1 1 1
1

cos sin 0 cos

sin cos 0 sin
0 0 1 0
0 0 0 1

i i i i ii s i s i s

i i i ii s i s i f i s
i i

u u a u

u u u a u

   

  
  

   


      
 
       
 
 
   

■ 
(2) 



  

By using the matrices  Θ 1i i
, the kinematics of the flexible arm can be systematically 

determined. Given a value of x , 0, iex l     , on the element j  of the link i , in the local frame iO , the 

point  ij xr  can be determined as follows: 

 
 

 
1

0
1

ie

ij
ij

j l x
w x

x

   
 
   
 
 
  

r , (3) 

where the flexural displacement at the point x  is determined as follows: 
 

      
4

2 2
1

ij m i j m
m

w x x u  


 . (4) 

By using the transformation matrices  Θ 1i i
 ( 1i n  ), in the reference frame 0O , the 

vector  0ij xr  can be calculated as follows: 

   Θ0 0ij i ijx xr r , (5) 

where 

 Θ Θ Θ Θ0 01 12 1...i i i . (6) 

To demonstrate the kinematic modelling as proposed, all nine (32) feasible configurations of a 
generalized two-link flexible robot that consists of all three joint types are presented in details in 
Appendix. For all configurations, the proposed transformation matrix is applied to describe the 
kinematics of the robots. The position of the distal end of the first link and the arm tip are calculated 
for both the flexible robot and the rigid robot of the same geometric parameters. The following are the 
main summaries from the above calculations and analyses: (a) if the elastic deformation of the links is 
ignored, the kinematic behavior of a flexible robot and the corresponding rigid robot will be the same; 
(b) applying the proposed matrix, a kinematic modelling process for a flexible robot is quite familiar 
and common in the field of robotics; and (c) the proposed matrix is applicable to any planar flexible 
robots.    

4. Dynamics of a planar flexible robot 

In this section, the dynamic modelling of the general planar flexible robot is presented. The 
equations of motion are written by applying the Lagrangian formulation. Particularly, two new 
recursive formulations are introduced to formulate the global mass and stiffness matrices respectively.  

In the formulation of the global mass matrix, the velocity of a mass point on an arbitrary element 
of a link i  is calculated via Jacobian matrix and the generalized velocities. The elemental kinetic 
energy is thus calculated and expressed in terms of the entire generalized velocities. Hence, the number 
of rows and the number of columns of every elemental mass matrix equals to the number of the 
generalized coordinates.  

 In the formulation of the global stiffness matrix, a vector of extended shape functions is 
defined. The size of this vector equals to the size of the vector of generalized coordinates. The flexural 



  

displacement of a point on an arbitrary element of a link i  can be calculated via the defined vector. 
Thus, the elemental potential energy is expressed in terms of the entire generalized coordinates, and 
the number of rows and the number of columns of every elemental stiffness matrix equals to the number 
of the generalized coordinates.   

Consequently, the global mass and stiffness matrices can be formulated by summing over all 
the elemental mass and stiffness matrices of the same size, respectively.  

Based on the Finite Elements – Lagrangian approach, the equation of motions for the flexible 
robot can be expressed as follows: 

     M q q +C q,q q +Kq G q = F   . (7) 

The equation is written with respect to the global vector of the generalized coordinates, 

κ κ κ1 1 2 2 ...
T

T T T
n np p p    q , where ip  is variable of a joint i , and 

         κ 1 2 2 1 2 2...
i i

T

i i i i n i nu u u u 
    

is the vector of the elastic displacements of all elements on 

a link i . The vector q  includes n  joint variables 1 2, ,..., np p p and   
1
2 2

n

i
i

n


  are the total nodal 

displacements and slopes of all elements on all links. Thus, the size of q  is  
1

2 2 1
n

i
i

n n


        . 

1

1

2 2 2 2

0 ... 0 ... 0 ... 0
n

T

n

n n

 
 

 
 
   
  

F
 

 is the vector of the applied forces/torques imposing 

on n   joints. 

The size of the global matrices ,M C  and K  is    
1 1

2 2 2 2
n n

i i
i i

n n n n
 

                    .  

4.1 Recursive formulation of the global mass matrix  

Consider an element j  of a link i , the kinetic energy of the element is computed as follows: 

0 00

1

2

iel T
ij i ij ijT m dx  r r  . (8) 

In the reference frame, the velocity of the mass point located at  0ij xr  can be computed as 

follows: 

0
0

ij
ij






r
r q

q
  . (9) 

Thus, 



  

0

1 1

2 2

iel
T T T

ij i ij ij ijT m dx
 

   
 
q J J q q M q    , (10) 

where Jacobian matrix is presented as follows: 

0ij
ij






r
J

q
. (11) 

Consequently, the elemental mass matrix for an element j  of a link i  can be written as 
follows: 

0

iel
T

ij sp i ij ijij
m m dx    M J J . (12) 

The size of matrix 
ijM  is    

1 1

2 2 2 2
n n

i i
i i

n n n n
 

   
       

   
  .  

The indexes are presented as follows:   
1

, 1 2 2
n

i
i

s p n n


 
    

 
 . 

It is noted that for all s  and p  from  
1

1

2 1 2 2
i

u
u

i j n




 
    

 
   to  

1

1

2 1 2 2
i

u
u

i j n




 
    

 
 , 

2 2

2 2

156 22 54 13

22 4 13 3

54 13 156 22420

13 3 22 4

ie ie
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sp

ie ie

ie ie ie ie

l l
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m

l l

l l l l

 
  
 
    

 
(13) 

The total kinetic energy of the robot system is presented as follows: 

1 1

1

2

inn
T T

ij
i j

T T
 

  q Mq  . (14) 

Finally, the global mass matrix is obtained as follows: 

1 1

inn

ij
i j 

M M . (15) 

The recursive algorithm for the symbolic formulation of the global mass matrix M is shown in 
Fig. 3. The inputs of the formulation are the number of links n , the number of finite elements on the 
links 1 2, ,... nn n n , and the other parameters of the robot system. The global matrices are initiated as zero 

matrices. For every element j  of a link i , the position vector  0ij xr  is determined with Eq (5), the 

Jacobian ijJ  is implemented with Eq (11) , and the elemental mass matrix ijM  is calculated with Eq 

(12). For all elements on all links, the above steps are recursively looped to archive all ijM . Finally, 

the global matrix M is obtained with Eq (15). 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. A flowchart of the algorithm for formulation of the global mass and stiffness matrices    

Notice that the symbolic formulation of ijM  and M  can be effectively implemented by using 

a few syntaxes in the symbolic computing environments. For example, in Maple, a software developed 
by Waterloo Maple, two syntaxes Jacobian and int are needed for the Jacobian matrix formulation, 

0ij
ij






r
J

q
, and the integration 

0

iel
T

ij i ij ijm dx M J J , respectively.  .  

4.2 Recursive formulation of the global stiffness matrix  

The elastic potential energy of element j  of link i   is calculated as:  

  22

20

1
2

iel ij
ij i

w x
P EI dx

x

        
  (16) 
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Based on the vector of shape functions        1 2 3 4

T
x x x x       S , the following 

notation ijS  (the vector of extended shape functions) is defined as an elemental vector of shape 

functions, which corresponds to an element j  on a link i . The size of ijS  equals to the size of q : 

 
 
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1

1

2 2 2 2
2 2 1

0 ... 0 0 ... 0
i

u n
u

i
i

T

T
ij

i j n
n n







                    

 
 
 
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 
 
    

S S


 (17)  

The flexural displacement  ijw x  expressed in Eq (4) is now recalculated with the following 

equation: 

  T
ij ijw x  S q  (18) 

Substituting Eq (18) into Eq (16) yields the following result: 

22

20

1
2

ie
T

l ij
ij iP EI dx

x

        


S
q , (19) 
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S
U  (20) 

Thus, 
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2 2

ielT T T
ij i ij ij ijP EI dx    q U U q q K q  (21) 

Consequently, the elemental stiffness matrix for element j  of link i  can be written as: 

0

iel T
ij sp i ij ijij

k EI dx    K U U  (22) 

The size of matrix ijK  is    
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The total elastic potential energy of the robot is calculated as follows: 

1 1

1
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inn
T

ij
i j

P P
 

  q Kq  (23) 



  

Finally, the global stiffness matrix can be calculated as follows: 

1 1

inn

ij
i j 

K K  (24) 

The matrices K  and ijK  have the same size of    
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2 2 2 2
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n n n n
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It is noted that, for all 
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2 1 2 2 , 2 1 2 2
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u u
u u

s or p i j n i j n
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 

    
            
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  , (25) 

the corresponding entries in matrix ijK  are equal to zero, 0spk  . This is because  ijw x   calculated 

via Eq (18) depends only on four nodal elastic displacements at the two nodes of an element j  on a 
link i .  

For all    
1 1

1 1

2 1 2 2 , 2 1 2 2
i i

u u
u u

s and p i j n i j n
 

 
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  , (26) 

the corresponding entries spk are the following constants:  
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 (27) 

Similar to the symbolic formulation of the global mass matrix, the recursive algorithm for the 
formulation of ijK  and K is shown in Fig. 3, and it can be implemented effectively in the symbolic 

computing environments. 

4.3 Boundary conditions  

Since a link i is connected with the previous one via a revolute joint or a sliding prismatic joint, 
it is assumed that the elastic displacements at the first node of the first element of the link i  vanishes (

   1 2 0i iu u  ). Therefore, such the entries  1iu  and  2iu  in a vector q  are eliminated. The 

corresponding rows and columns in , ,M C K  are removed. This is a fixed boundary condition. 

In the case that a link i  is connected with the previous one via a fixed prismatic joint, it is 
assumed that the elastic displacements of the element k that currently slides inside the joint vanishes. 
The value of k  changes with respect to time. This is a time dependent boundary condition which is 
implemented in the dynamic analysis process. 

In the case that a link i  is connected with the previous one via a sliding prismatic joint, the 
elastic displacements   1 2 1i ku  

 and   1 2 2i ku  
 of the elementk  on link 1i   that currently slides inside 

the joint is considered as the elastic displacements of the nominal articulation point between a link 
1i   and  a link i . This is also a time dependent boundary condition. 

 



  

4.5 Numerical examples of the dynamic analysis  

In this study, two robot configurations 
aP RC  and 

bRPC  with the last link flexible are modelled 

and simulated. The first robot 
aP RC  is a two-joints arm in which the first joint is a sliding prismatic joint

aP  , and the second one is a revolute joint R . The second robot 
bRPC  is a two-joints arm that consists of 

a revolute joint R and a fixed prismatic joint bP . Simulation of both the robots of different prismatic 

joint sequence is to demonstrate more clearly the flexibility effect of the last link. In the first robot 
aP RC

, the last link is connected with the previous one via a revolute joint, meanwhile in the second robot 

bRPC , the last link is connected with the previous link via a prismatic joint.  Structural parameters of the 

two robots and the inputs of applied forces/torques are shown in Table 3. 

To demonstrate the flexibility effect, the simulation results of the flexible robots are compared 
to that of the rigid robot of the same parameters.  

Table 3: Structural parameters and the inputs of applied forces/torques for simulation and analysis 

Parameters of models aP RC  bRPC  

Length of Link 1 (m) 1 0.2l   1 0.2l   

Mass of Link 1 (kg) 1 1.4m   1 3.9m   

Angle between links (rad) 1 2
   2 0   

Mass of payload (g) 100tm   100tm   

Length of Link 2 (m) 2 0.8l   2 0.8l   

Number of elements of Link 2 3n   5n   

Cross section area of Link 2 (m2) 
41.2 10A    54.5 10A    

Mass density of  Link 2 (kg/m3) 
7850   7850   

Mass per meter of Link 2 (kg/m) 2 . 0.942m A   2 . 0.35m A   

Young’s modulus (N/m2) 
102 10E    102 10E    

Inertial moment of a cross section (m4) 
119 10I    128.44 10I    

Applied forces/torques Bang-Bang rule Bang-Bang rule 

Simulation time (sec) 10 20 

The simulation results are shown in Figs. 5 to 9. With the input of Bang-bang applied 
torque/force presented in Fig. 4, the time evolution of the joint displacements for both the flexible 
robots and rigid robots are shown in Fig. 5. After 0.5 sec, the dynamic behavior of a system mainly 
depends on their inertia. The flexural displacements and slopes at the end-effectors are illustrated in 
Fig. 6. Figs 7, 8 and 9 present the trajectories of the endpoint of the robotic arm. The calculation results 
show the deviation between the trajectories of the flexible and rigid robots.   
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Fig. 4. The Bang-bang applied force/torque 
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Fig. 5. The joint displacements of the flexible robots and the rigid robots 
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Fig. 6. The flexural displacement and slope at the end-effector 
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Fig. 7. A trajectory of the end-effector in the OX axis  

 

  
a) 

aP RC  b) 
bRPC  

Fig. 8. A trajectory of the end-effector in the OY axis  

 

  

a) 
aP RC  b) 

bRPC  

Fig. 9. The deviation between the trajectories of the flexible robot and the rigid one 

5. Experiments for validation of the forward dynamic analysis 
results 

The experiments were designed and conducted for validation of the forward dynamic analysis 
results based on the proposed dynamic modelling method.  

 



  

 
       

 

 

 

 

 

 

 

 

Fig. 10. A prototype of a planar flexible robot for the experimental work: (1) DC motor, (2) Lead 
screw, (3) Rotary encoder 1, (4) Step motor, (5) Flex sensor, (6) Rotary encoder 2, (7) Flexible link 

A prototype of a robot and experimental set-ups are shown in Figs. 10 and 11. The system 
includes a robot, a payload, two flex sensors of 4.5-inch FSL0095-103-ST, one motor GB 37-3530 DC 
12V, one NEMA 17 stepper motor 200 steps/rev 12V and two rotary encoders LPD3806-600BM-G5-
24V-2P-AB. A Terminal Board STM32 F407/417 is used as the main board of the control system of 
the robot. The STM32F407/417 offers the performance of the Cortex™-M4 core (with floating point 
unit) running at 168 MHz. The control program is written in KeilC programming language. The 
readings of the experiments are displayed in Labview software. The robot is constructed with two 
joints. The first joint is a prismatic joint that is actuated by the motor (1) through the lead screw (2). 
The second joint is a revolute joint driven by the motor (4). The robot is supposed to operates in the 
horizontal plane. The two flex sensors FSL0095-103-ST 112.24mm  in length are adhered to the surface 
and towards both ends of the flexible link. The input voltage of the sensors is 4.98V , the maximum 
resistance of the sensors is 110k . Notice that there have been some types of sensors such as the 
accelerometer (Khorrami et al., 1992; Martins et al., 2003) and the strain gauge (Luo, 1993) that could 
be used as alternatives to the flex sensor for measuring the elastic deflection of the link.  However, the 
bend sensors have been widely used in various applications, since it is a low cost, and it is easy to use. 
It does not need complicated signal processing because the bend angle of the sensor is proportional to 
the output signal of the displacement sensing module.       

Structural parameters of the robot are given in Table 2, except some parameters were changed 
as    1 20.005 ; 0.3 ;L m L m     5 220 ; 2 10tm g A m   .  

 

Fig. 11. A block diagram of the experimental setup for validation of the forward dynamic analysis 
results 



  

The Bang-bang inputs of the applied force/torque are given in Fig. 12, of which the values were 
transformed into the voltage and pulse signals for the motors. The displacement of the joints by the 
experiments and by the simulation are shown in Fig. 13. In the steady state, the deviation between the 
experimental value and the computational value is about 2.5% of the magnitude. 

 

  

 

Fig. 12. The applied force/torque for the experiment 

 

  
(a)  (b)  

Fig. 13. The joint displacements. (a): A displacement of the prismatic joint. (b): A displacement of 
the revolute joint 

Fig. 14 presents the flexural displacement at the second node of the first element of a link 2, 
and the flexural displacement at the arm tip. Fig. 15 shows the deviation between the computational 
value and the experimental value of both the flexural displacements mentioned in Fig.14. It can be seen 
that the shape and the value of the simulation curves and the experimental readings are well matching, 
which shows a good validation of the proposed dynamic modelling and analysis results. 

 



  

  

Fig. 14. The flexural displacement at the second node of the first element of a link 2 and at the arm 
tip. 

 

  

Fig. 15. A deviation between the computational value and the experimental value of both the flexural 
displacements 

6. Discussions and Conclusions 

There are different studies of using FEM to formulate the dynamic equations of the flexible 
robots. Based on the Lagrangian formulation, the dynamic equations are derived for (i) One revolute 
joint flexible robot (Tokhi et al., 2001;  Al-Bedoor and Almusallam, 2000; and Mahto, 2014),  (ii)  Two 
link manipulator consisting of two revolute joints (Karagulle et al., 2015, 2017), (iii) One link flexible 
robot with one fixed prismatic joint (Al-Bedoor & Khulief, 1997; and Pan et al., 1990), (iv) Sliding 
prismatic joints of a parallel robot (Wang & Mills, 2006), (v) Multi-link robots (Usoro, 1990). 
Meanwhile, based on the Newton Euler method, Jonker (1990) and Naganathan & Soni (1987) 
addressed the finite element formulations of the dynamic equations, in which the elemental matrices 
were derived with respect to the nodal degrees of freedom. 

It should be noticed that, in parallel with the reviewed studies using FEM to formulate the 
dynamic equations for the flexible robots, there have also been researches using AMM to formulate 
recursively the dynamic equations for multibody systems and special flexible robotic systems.  Lugris 
et al. (2007) approximated the elastic displacements at a node in a flexible body of a multibody system 
by using a linear combination of static and dynamic deformation modes with respect to modal 
amplitudes. Kim and Haug (1988, 1989) used AMM to proposed a recursive formulation for flexible 
multibody dynamics. By using AMM incorporated with Gibbs-Appell formulation, Korayem & Shafei 
(2013, 2015) derived recursively the dynamic equations for some complex flexible robotic systems: 
the N-viscoelastic manipulators and the N-viscoelastic link manipulators mounted on a mobile 
platform. Meanwhile, Korayem et al. (2012) investigated the dynamic formulation for the mobile 
manipulator with elastic joints.       



  

It is clearly seen that most of the previous finite element methods of the dynamic modelling did 
emphasize on the specific configurations of a flexible robot that consists of one or two links. Although 
Usoro (1990), Jonker (1990) and Naganathan & Soni (1987) developed the dynamic formulation for a 
multi-link robot, it is only used for the case of the robot that consists of all revolute joints.  In this study, 
the kinematic and dynamic modelling was successfully investigated for the case of a multi-link flexible 
robot that consists of the revolute joints, the fixed prismatic joints and the sliding prismatic joints. The 
use of the multiple types of joints for a multi-link robot allows to maximise the flexibility in the design 
and functionality of a robot, to meet well more complex technical requirements and customer need.   

In the previously proposed dynamic modelling methods, each elemental matrix is usually 
expressed in terms of four nodal elastic deformations of the corresponding element. Thus, the index of 
the last four rows and the last four columns of each elemental matrix is different from that of the other 
elemental matrices. The global matrices must be assembled from all elemental matrices. Assembling 
the global mass and stiffness matrices from total 2η elemental mass and stiffness matrices involves a 
computational procedure with the time complexity of O(2η). This because the computational procedure 
requires at least two computational loops with a time complexity of O(2η) for assembling the global 
mass and stiffness matrices. In the dynamic modelling method of this study, such the complex 
procedure is not required. The global mass and stiffness matrices are effectively computed by summing 
all over elemental mass and stiffness matrices of the same size, respectively. The symbolic formulation 
is presented in a general and compact form that is ready for the symbolic programming. It is even more 
efficient for the cases in which a large number of the finite elements on the links is considered.  

In conclusions, a new kinematic and dynamic modelling method of a multi-link planar flexible 
robot is successfully developed. Based on the Finite Element - Lagrangian approach, the kinematic 
modeling issues of the robot are generalized, taking into accounts the flexibility effects of links. For 
the arbitrary pair of the links, a new definition of the local coordinate system that is attached to each 
link is introduced. In addition, a new transformation matrix that describes the kinematics of both the 
motion of the joint and the deformation of the links was well addressed and discussed in details. It is 
shown that the proposed transformation matrix in this study is applicable to work on the dynamic 
modelling of any planar flexible robots. The additional contribution of this study is that a recursive 
symbolic formulation of the dynamic equations is newly introduced to the field of robotics. In 
comparison to the previously proposed methods, the time complexity of the formulation is reduced by 
O(2η), where η is the number of beam elements on the links. Furthermore, it was well demonstrated 
that the proposed dynamic modelling formulation can be implemented in a simplified and efficient 
manner, by using the symbolic computing syntaxes that are available in the symbolic and numeric 
computing environments such as MATLAB and Maple. Finally, the numerical examples and 
experiments were implemented to validate the proposed dynamic modelling method; and it clearly 
shows a close match about the results between the simulation and the experiment. 
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APPENDIX 

Kinematics of nine configurations of the general two link flexible 
robot that consists of three types of joints 

1. Schematic diagrams of the mechanisms of the robot  
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2. The transformation matrices of the robot 
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  
        

  
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        
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 
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PaR  

1 1 1

1 1
01

cos sin 0
sin cos 0 0

0 0 1 0
0 0 0 1

d 
 

  
 
   
 
 
  

  
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       

1 1

1 1 1

2 2 11 2 2 1 2 2

2 21 2 2 1 2 2 1 2 1
12

cos sin 0

sin cos 0
0 0 1 0
0 0 0 1

n n

n n n

u u l

u u u

 

 
 

  
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PaPa  

1 1 1

1 1
01

cos sin 0
sin cos 0 0

0 0 1 0
0 0 0 1

d 
 

  
        
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 
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 
   
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  

 


 

     
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0 0 1 0
0 0 0 1

a
a

a d l

  
  

        
  

 


 

     
       
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 
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
 

        
          
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 

  

 

3. The position of the distal end of the first link of a robot 

In the following table, the position of the endpoint of the first link for both the flexible robot 
and the rigid robot is determined. It is shown that if the flexible deformation is neglected, the 
kinematics of the first link of both the robots will be the same.  

 
 Rigid robot Flexible robot 
;
;

RR
RPa
RPb

 
1 1

01
1 1

cos
sin

L
L




      
r   

 

1

1

1 1 11 2 1
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1 1 11 2 1

cos sin
sin cos
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L u
L u

r
 
 





      
 

;
;
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PaPa
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1 1 1
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1 1
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L

r



      
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 
 





       
 

;
;
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PbPa
PbPb

 
1 1
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1 1
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sin

d
d




 
     
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 

 
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1

1 1 11 2 1
01
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 
 
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

      
 

 
 

4. The position of the end-effector of a robot 

 
 Rigid Robot Flexible Robot 
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 
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  
  

        
 

    
    

    
    
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   
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   
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 

 

 

     
 
    
 
   
 
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 
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   
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 
    
 
   
 
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 

 

 
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 
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 
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      
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     
 
    
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