The effect of thiamine-coating nanoparticles on their biodistribution and fate following oral administration

Laura Inchaurreaga¹, Ana L Martínez-López¹, Beatrice Cattoz², Peter Griffiths², Matt Wilcox³, Jeff Pearson³, Gemma Quincoces⁴, Ivan Peñuelas⁴, Nekane Martin-Arrella¹, Juan M. Irache¹,*

¹ NANO-VAC Research Group, Department of Chemistry and Pharmaceutical Technology, University of Navarra, Spain
² Department of Pharmaceutical, Chemical and Environmental Sciences, University of Greenwich, Chatham Maritime, UK.
³ Institute for Cell and Molecular Bioscience, Medical School, Newcastle University, Newcastle Upon Tyne, UK
⁴ Radiopharmacy Unit, Department of Nuclear Medicine, Clinica Universidad de Navarra, University of Navarra, Spain.

Corresponding author:
Prof. Juan M. Irache
Dep. Chemistry and Pharmaceutical Technology
University of Navarra
C/ Irunlarrea, 1
31008 – Pamplona
Spain
Phone: +34948425600
Fax: +34948425619
E-mail: jmirache@unav.es
Abstract

Thiamine-coated nanoparticles were prepared by two different preparative methods and evaluated to compare their mucus-penetrating properties and fate in vivo. The first method of preparation consisted of surface modification of freshly poly(anhydride) nanoparticles (NP) by simple incubation with thiamine (T-NPA). The second procedure focused on the preparation and characterization of a new polymeric conjugate between the poly(anhydride) backbone and thiamine prior the nanoparticle formation (T-NPB). The resulting nanoparticles displayed comparable sizes (about 200 nm) and slightly negative surface charges. For T-NPA, the amount of thiamine associated to the surface of the nanoparticles was 15 µg/mg. For in vivo studies, nanoparticles were labeled with either 99mTc or Lumogen® Red. T-NPA and T-NPB moved faster from the stomach to the small intestine than naked nanoparticles. Two hours post-administration, for T-NPA and T-NPB, more than 30% of the given dose was found in close contact with the intestinal mucosa, compared with a 13.5% for NP. Interestingly, both types of thiamine-coated nanoparticles showed a greater ability to cross the mucus layer and interact with the surface of the intestinal epithelium than NP, which remained adhered in the mucus layer. Four hours post-administration, around 35% of T-NPA and T-NPB were localized in the ileum of animals. Overall, both preparative processes yielded thiamine decorated carriers with similar physico-chemical and biodistribution properties, increasing the versatility of these nanocarriers as oral delivery systems for a number of biologically active compounds.

Keywords: nanoparticles; thiamine; Vitamin B1; oral delivery; mucus permeating; biodistribution
1. Introduction

The oral route is, in general, perceived by patients as more comfortable and convenient than other routes of drug administration, especially for chronic medication regimens. However, the oral route remains an important challenge that limits the absorption and bioavailability of many biologically active compounds, especially for therapeutic peptides and proteins as well as for drugs suffering from presystemic metabolism. From a biological point of view, the oral delivery of drugs is faced with several main barriers: (i) the acidic pH environment in the stomach, (ii) the enzymatic activity along the gut, (iii) the protective mucus gel layer, (iv) the unstirred water layer adjacent to the epithelium and (v) the surface of absorptive cells, including the glycocalyx. All of these barriers limit the arrival of the unchanged biologically active compound to the portal and/or the systemic circulation (Netsomboon and Bernkop-Schnürch, 2016; Schulz et al., 2015).

In order to overcome these hurdles, different delivery systems have been proposed and are currently under evaluation, including the use of polymer nanoparticles. In principle, some of these delivery systems (acting as nanocarriers) may minimize the effects of extreme pH conditions and digestive enzymes on the stability of the loaded compound, offering significant increases in the oral bioavailability of some drugs (des Rieux et al., 2006; Roger et al., 2010). However, polymer nanoparticles encounter a formidable barrier that significantly limits their arrival at the intestinal epithelium, namely the protective mucus layer lining the epithelium surface of the gut. Thus, most types of these nanoparticles are efficiently trapped in the mucus layer and, then, rapidly eliminated from the mucosa due to the physiological mucus turn-over (Inchaurraga et al., 2015; Suk et al., 2009). In fact, mucus is continuously secreted both to remove pathogens and to lubricate the epithelium as material passes through (Ensign et al., 2012; Pelaseyed et al., 2014).

In order to address this fundamental limitation, an encouraging strategy would be the use of nanoparticles with mucus permeating properties. For this purpose, different strategies have been proposed, including the use of agents to minimize the interaction of nanocarriers with the mucus layer and the application of bio-inspired procedures mimicking key features of microorganisms. Thus, the fluidity of mucus and, hence, the diffusion of nanoparticles through the mucus layer may be increased by either the co-encapsulation of mucolytic agents (e.g., N-acetyl cysteine) (Bourganis et al., 2015) or the binding of proteolytic enzymes (e.g., papain or bromelain) to the surface of nanocarriers in order to cleave locally the glycoprotein substructures of mucus (Pereira de Sousa et al., 2015a). A second interesting approach would be the use of biomimetic strategies, in line with those developed by microorganisms to avoid the protective mucus layer and facilitate its arrival to the intestinal epithelium before invasion and colonization. Within this scenario, virus-mimicking nanoparticles presenting both a hydrophilic shell and a high densely charged surface have been proposed (Pereira de Sousa et al., 2015b). Similarly, the coating of nanoparticles with either bacterial lipopolysaccharide (Gómez et al., 2007) or flagellin from Salmonella enteritidis (Salman et al., 2005) was found adequate to specifically target the intestinal epithelium. A further set of strategies would involve the decoration of nanoparticles with hydrophilic ligands in order to minimize the potential hydrophobic interactions of the particles with mucin fibers and other components of the mucus. These “slippery” nanoparticles can be obtained by
using poly(ethylene glycol)s (Iglesias et al., 2017; Laffleur et al., 2014; Zabaleta et al., 2012), mannose (Salman et al., 2006) or thiamine (Salman et al., 2007).

However, one key aspect that sometimes is forgotten during the development and characterization of nanocarriers for mucosal delivery is the combination of the adequate biodistribution properties (including the ability as mucus permeating devices) with a high payload capability. In fact, the encapsulation of a biologically active molecule may significantly modify the physico-chemical properties of empty nanoparticles (Singh and Lillard, 2009) and, hence, negatively affect their ability to reach the epithelium. This fact may limit the potential use of such nanoparticles for delivery purposes. In order to overcome this risk, one possible solution is to develop alternative preparative processes of nanocarriers that are more adapted to the encapsulation of particular groups of drugs, without affecting their biodistribution and fate. In this context, the aim of this work was to prepare thiamine-coated nanoparticles by two different preparative processes and, then, evaluate and compare their mucus permeating properties and behavior in vivo.

2. Materials and Methods

2.1. Materials

The copolymer of methyl vinyl ether and maleic anhydride or poly(anhydride) (Gantrez® AN 119; MW: 95.5 kDa when calculated by SEC-MALLS) was supplied by Ashland Inc. (Barcelona, Spain). Thiamine hydrochloride (≥99 %), lactose and calcium chloride were purchased from Sigma-Aldrich (Madrid, Spain). Di-sodium hydrogen phosphate anhydrous and ethanol were provided by Panreac (Barcelona, Spain). Perylene-Red (BASF Lumogen® F Red 305) was from Kremer Pigmente GmbH & Co. (Aichstetten, Germany) and OCT™ Compound Tissue-Tek from Sakura Finetek Europe (Alphen aan Der Rijn, The Netherlands). 99Mo-99mTc generator was purchased from DRYTEC™ (GE Healthcare Bio-science, UK). 4′,6-diamidino-2-phenylindole (DAPI) was obtained from Biotium Inc. (Madrid, Spain). Acetone was from (VWR-Prolabo, Linars del Vallès, Spain) and sodium hydroxide and isopropanol from Merck (Madrid, Spain). Deionized water (18.2 MΩ) was prepared by a water purification system (Wasserlab, Pamplona, Spain) and used to prepare all the solutions. The anesthetic isoflurane (Isoflo™) was from Esteve, (Barcelona, Spain). All other chemicals and solvents were of analytical grade.

2.2. Synthesis of the Gantrez® AN-thiamine conjugate (GT)

GT conjugate was obtained by the covalent binding of thiamine to the poly(anhydride) backbone (Figure 1). For this purpose, 5 g Gantrez® AN were dissolved in 200 mL acetone. Then, 125 mg thiamine were added and the mixture was heated at 50°C, under magnetic agitation at 400 rpm, for 3 h. Then, the mixture was filtered through a pleated filter paper and the organic solvent was eliminated under reduced pressure in a Büchi R-144 apparatus (BÜCHI Labortechnik AG, Flawil, Switzerland) until the conjugate was totally dry. By gravimetry, the water content was calculated to be 2.9%.

2.3. Characterization of Gantrez® AN-thiamine conjugate (GT)

The covalent insertion of thiamine in the polymer chain was confirmed by infrared, elemental and titration analysis. The amount of thiamine bound to the poly(anhydride) was estimated by HPLC analysis.
2.3.1 FT-IR analysis
The binding between the poly(anhydride) and thiamine was determined by Fourier transform infrared spectroscopy (FTIR). Spectra were collected in a Nicolet-FTIR Avatar 360 spectrometer (Thermo/Nicolet 360 FT IR E.S.P.; Thermo Fisher Scientific, Waltham, Massachusetts, USA), using a MKII Golden Gate ATR device with resolution of 2 cm\(^{-1}\) connected with OMNIC E.S.P. software (Thermo Fisher Scientific, Waltham, Massachusetts, USA). The spectrum obtained was an average of 32 scans.

2.3.2. Elemental analysis
The C, H, O and N contents of the synthesized conjugates were determined in a LECO CHN-900 apparatus (Michigan, USA). For this purpose, 1 mg of each polymer was analyzed by triplicate and the results were expressed as percentage (%w/w).

2.3.3 Titration
The poly(anhydride) and its conjugate were first hydrated and dispersed in water till their total solubilisation. At this moment the aqueous solutions of the polymers were titrated with NaOH 0.2 N in the presence of phenolphthalein, used as indicator. Titration was used to measure the percentage of free carboxylic groups and calculate the degree of substitution (DS) of the resulting conjugate. The decrease of the carboxylic groups in the polymer conjugates in comparison to unmodified Gantrez® AN evidenced the ligand binding.

2.3.4 Thiamine quantification
The amount of thiamine covalently attached to the poly(anhydride) was calculated by a modification of a chromatographic method previously described (Salman et al., 2007).

For this purpose, 400 mg Gantrez® AN and 10 mg of thiamine were added to 20 mL acetone. The mixture was heated at 50°C, under magnetic agitation at 400 rpm, for 3 h. The organic solvent was eliminated under reduced pressure in a Büchi R-144 apparatus (BÜCHI Labortechnik AG, Flawil, Switzerland) until the conjugate was totally dry. Once dried, the resulting unpurified conjugate was dissolved in 20 mL of acetone. Then, 40 mL of deionized water were added until the formation of suspension. This suspension was centrifuged for 20 minutes at 41,410 x g and the supernatants were collected for the quantification of thiamine. The analysis was performed in a model 1100 series LC Agilent (Waldbornn, Germany) coupled with a UV diode array detection system. Data were analyzed using the Chem-Station G2171 program. The separation of thiamine was carried out at 40°C on a reversed-phase Zorbax®70Å NH2 column (4.6 x 150 mm; particle size 5 µm) with a Zorbax® original 70Å NH2 guard column (4.6 x 12.5 mm; particle size 5 µm) obtained from Agilent (Waldbornn, Germany). The mobile phase and samples were filtered through a Millipore membrane filter of 0.45 µm. The mobile phase composition was potassium phosphate buffer 50 mM (pH 6) and methanol (80/20, v/v). The flow rate was set to 1 mL/min and the effluent was monitored with UV detection at 254 nm. Standard curves were designed over the range of 10-600 µg/mL (R\(^2\)≥0.999) from a thiamine solution in deionized water. Finally, the amount of thiamine associated to the poly(anhydride) backbone was calculated as the difference between the initial amount of thiamine added and the amount of thiamine recovered in the supernatants.

2.4. Preparation of thiamine-coated nanoparticles
Thiamine-coated nanoparticles were prepared from two different experimental procedures.
The first one consisted on the incubation of “naked” Gantrez® AN nanoparticles and thiamine following a protocol described previously (Salman et al., 2007) with minor modifications. Briefly, 400 mg Gantrez® AN were dissolved in 20 mL acetone. Then, the nanoparticles were formed by the addition of 40 mL absolute ethanol and 40 mL of distilled water containing 10 mg thiamine. The organic solvents were eliminated under reduced pressure in a Büchi R-144 apparatus (BÜCHI Labortechnik AG, Flawil, Switzerland) and the resulting nanoparticles were agitated under magnetic stirring for 30 min, at room temperature. Then, the nanoparticles suspensions were purified by centrifugation at 5000 × g for 20 min (SIGMA Lab. centrifuges, Osterode am Harz, Germany) using dialysis tubes Vivaspin® 300,000 MWCO (Sartorius AG, Madrid, Spain). Finally, 800 mg lactose dissolved in 40 mL deionized water was added to the pellet and vortexed for 5 minutes. The resulting suspension of nanoparticles was dried in a Büchi Mini Spray Drier B-290 apparatus (BÜCHI Labortechnik AG, Flawil, Switzerland) under the following experimental conditions: inlet temperature of 90 °C, outlet temperature of 60 °C, spray-flow of 600 L/h, and aspirator at 100% of the maximum capacity. These nanoparticles were named T-NPA.

As control, “naked” nanoparticles were prepared in the same way as described previously but in the absence of thiamine. These nanoparticles were identified as NP. The second procedure, using the GT previously synthesized, was based on a controlled desolvation of the conjugate (dissolved in acetone) with water and subsequent stabilization with calcium. For this purpose, 400 mg GT were dissolved in 20 mL acetone and nanoparticles were obtained by the addition of 40 mL purified water containing 1.6 mg calcium chloride. Acetone was eliminated under reduced pressure in a Büchi R-144 apparatus (BÜCHI Labortechnik AG, Flawil, Switzerland) and purified by centrifugation at 5000 × g for 20 min (SIGMA Lab. centrifuges, Osterode am Harz, Germany) using dialysis tubes Vivaspin® 300,000 MWCO (Sartorius AG, Madrid, Spain). Finally, 800 mg lactose dissolved in 40 mL deionized water were added to the pellet and vortexed for 5 minutes. The resulting suspension of nanoparticles was dried by spray-drying using the same conditions as described above. These nanoparticles based on GT were identified as T-NPB.

2.5. Preparation of fluorescently labeled nanoparticles

In all cases, for the fluorescent labeling of nanoparticles, 2 mg Lumogreen® F Red 305 were dissolved in the solution of acetone containing the polymer (Gantrez® AN or GT) prior the formation of the nanoparticles as described above. In a similar way, the resulting nanoparticles were purified and dried as aforementioned.

2.6. Physico-chemical characterization of nanoparticles

2.6.1. Size, zeta potential and surface morphology analysis

The mean size and the zeta potential of freeze-dried nanoparticles were determined by photon correlation spectroscopy (PCS) and electrophoretic laser Doppler anemometry, respectively, using a Zetaplus apparatus (Brookhaven Instruments Corporation, Holtsville, USA). In all cases, the size was measured after dispersion of nanoparticles in water whereas the zeta potential was quantified in KCl 0.1 M.

The shape and morphology of nanoparticles were examined by scanning electron microscopy (SEM). For this purpose, the powder collected from the spray-drier was dispersed in water and centrifuged at 27,000 × g for 20 min. Then, the pellets were mounted on TEM grids, dried and coated with a palladium-gold layer using a Quorum
Technologies Q150R S sputter-coater (Ontario, Canada). SEM was performed using a ZEISS model “Ultra Plus” (Oberkochen, Germany) and LEO 435VP (ZEISS, Cambridge, United Kingdom) high resolution scanning electron microscope.

2.6.2. Thiamine quantification

Thiamine (vitamin B1) was quantified in the supernatants obtained during the purification step of nanoparticles by the chromatographic method described above. The standard curves were prepared in supernatant of non-loaded nanoparticles ($R^2 > 0.999$). For analysis, samples of 1 mL from the supernatants were transferred to auto-sampler vials, capped and placed in the HPLC auto-sampler. Then, 10 µL aliquot was injected onto the HPLC column. Finally, the amount of thiamine associated to the nanoparticles was calculated as the difference between the initial amount of thiamine added and the amount of thiamine recovered in the supernatants by HPLC.

2.7. Quantification of Lumogen® F red 305

The amount of Lumogen® F red 305 loaded in the nanoparticles was quantified by UV-Vis spectrometry at wavelength 573 nm (Labsystems iEMS Reader MF, Vantaa, Finland). For this purpose, 10 mg of the formulations were resuspended in 3 mL water and centrifuged at 41,410 x g for 20 min. Pellets were dissolved in 10 mL acetonitrile 75%. These solutions were finally diluted 1:10 in pure acetonitrile before the analysis. Standard curves were designed over the range of 10-35 µg/mL ($R^2 \geq 0.990$) from a Lumogen® F red 305 solution in acetonitrile 75% and were prepared in supernatant of non-loaded nanoparticles. Prior the use of fluorescently labelled nanoparticles for in vivo studies, the stability of the marker in the nanoparticles was assessed by incubation in simulated gastric (pH 1.2, 2 h) and intestinal (pH 6.8, 8 h) fluids.

2.8. Mucin purification from porcine mucus

Pig small intestines were obtained from a local abattoir immediately after slaughter and transported on ice to the laboratory. Sections of the intestines that did not visibly contain chyme were cut into 15 cm lengths and mucus was removed. To remove the mucus gentle pressure was applied to one end of the length with the fingers and continuously applied unidirectionally to the opposite end. Mucus gel was added to a cocktail of enzyme inhibitors in phosphate buffer, pH 6.8 (Taylor et al., 2004). The mucin was purified following the protocol described by Taylor et al., 2004, with the addition of a second cesium chloride gradient to further remove cellular debris from the glycoprotein component of mucus. All freeze dried samples were stored at -20 °C until used.

2.9. Pulsed-Gradient Spin-Echo NMR assessment of mucin mobility

In order to evaluate the slippery capacities of nanoparticles, the diffusion of intestinal pig mucin in presence of these nanocarriers was evaluated by pulsed-gradient spin-echo NMR (PGSE-NMR). Measurements were performed on a Bruker DMX400 NMR spectrometer operating at 400 MHz (1H) using a stimulated echo sequence (Callaghan, 1991). All the experiments were run at 37 °C using the standard heating/cooling system of the spectrometer to an accuracy of ± 0.3 °C. Generally, the proton NMR spectrum - a series of peaks located at characteristic values, the so-called chemical shifts measured in ppm - is recorded from the solution with increasing intensity of the pulsed-gradients. The self-diffusion coefficient, D, is deduced...
by fitting the attenuation (decay) of the integral for a chosen peak to Eq. 1 as a function of the characteristics of the gradient pulses,

\[A(\delta, G, \Delta) = A_0 \exp[-kD] \]

[Equation 1]

where \(A \) is the signal intensity and
\[k = \gamma^2 G^2 \delta^2 (\Delta - \delta/3) \]

given \(\gamma \) is the magnetogyric ratio, \(\Delta \) the diffusion time, \(\delta \) the gradient pulse length, and \(G \) is the gradient field strength. The gradient pulses are ramped to their desired value over a ramp time, \(\sigma \), typically 250 \(\mu \)s.

For complex spectra such as those encountered here where the observed peaks may arise from different components within the system, or there may be a range of diffusing rates, the diffusion data are better analyzed by fitting to this Eq. 1 the entire spectrum using “CORE”, a program devised to resolve the various components present in such data (Stilbs et al., 1996). CORE evaluates the experimental data in two levels, yielding not only estimates of the diffusion coefficients for each component in the sample but also their relative intensities enabling a more insightful analysis of complex datasets.

For the mucin diffusion coefficient measurement, the nanoparticles were dispersed in deuterated water (0.5%, w/v) as described before (Pereira de Sousa et al., 2015a). Then, the nanoparticles suspensions were added into an intestinal mucin solution (5% w/v) also in deuterated water and left to equilibrate for 24 h. Finally, 0.6 mL was transferred to 5 mm o.d. Wilmad NMR tubes (Sigma–Aldrich, Haverhill, UK).

2.10. Labelling of nanoparticles with \(^{99m}\text{Tc}\)

Nanoparticles were labelled with technetium-99m by reduction with stannous chloride as described previously (Areses et al., 2011). Briefly, 1-2 mCi of freshly eluted \(^{99m}\text{Tc}\)-pertechnetate was reduced with 0.03 mg/mL stannous chloride and the pH was adjusted to 4 with 0.1N HCl. Then, an amount of dried powder containing 2 mg nanoparticles were dispersed in 1 mL water prior the addition of the reduced \(^{99m}\text{Tc}\). The mixture was vortexed for 30 s and incubated at room temperature for 10 min. The overall procedure was carried out in helium-purged vials. The radiochemical purity was examined by paper chromatography (Whatman 3MM) developed with NaCl 0.9%. The labelling yield was always over 90%.

2.11. Gastro-intestinal transit studies with radio labelled nanoparticles

These studies were carried out in male Wistar rats weighing 250–300 g that had fasted for 12 h with free access to water. All the procedures were performed following a protocol previously approved by the “Ethical and Biosafety Committee for Research on Animals” at the University of Navarra in line with the European legislation on animal experiments. Animals were briefly stunned with 2% isoflurane gas (flow of oxygen of 0.2 L/min) for administration of nanoparticles (above 1 mL) by oral gavage, and then quickly awakened. Each animal received one single dose of radiolabelled nanoparticles (1 mCi; 0.8-1.0 mg of radiolabelled nanoparticles that were completed with up to 10 mg with unlabelled NP). Three hours after administration of NP, animals were anaesthetised with 2% isoflurane gas (flow of oxygen of 0.2 L/min) and placed in prone position on the gammacamera (Symbia T2 Truepoint; Siemens Medical System, Malvern, USA). SPECT-CT images were acquired for 25 min, with the following parameters for SPECT: 128 x 128 matrix, 90 images, 7 images per second and CT: 110 mAs and 130 Kv, 130 images,
slice thickness 3 mm Fused images were processed using the Syngo MI Applications TrueD software.

2.12. In vivo evaluation of the mucus permeating properties of nanoparticles

These studies were carried out using a protocol described previously (Salman et al., 2007) with minor modifications, after approval by the responsible Committee by the University of Navarra (Ethical and Biosafety Committee for Research on Animals). Briefly, male Wistar rats (average weight 225 g; Harlan, Barcelona, Spain) were placed in metabolic cages and fasted overnight but with free access to water. All animals received orally 25 mg of fluorescently labeled nanoparticles dispersed in 1 mL water. At different times, animals were sacrificed. The abdominal cavity was opened in order to remove the stomach and small intestine, which were removed and carefully rinsed with PBS in order to eliminate the fraction of nanoparticles remaining in the lumen. Then, both the stomach and the small intestine were cut into small portions to facilitate their digestion with NaOH 3M for 24 h and the resulting residues were treated with methanol and centrifuged. Finally, aliquots of the supernatants were assayed for Lumogen® F Red 305 content by spectrofluorimetry (TECAN, Grödig, Austria) at λ_ex 485 nm and λ_em 540 nm.

Finally, the tissue distribution of nanoparticles in the gastrointestinal mucosa was visualized by fluorescence microscopy. For that purpose, 25 mg of Lumogen® F Red-labeled nanoparticles were orally administered to rats as described above. Two hours later, animals were sacrificed by cervical dislocation and the guts were removed. Ileum portions of 1 cm were collected, cleaned with PBS, stored in the tissue proceeding medium O.C.T. and frozen at -80°C. Each portion was then cut into 5-µm sections on a cryostat and attached to glass slides. Finally, these samples were fixed with formaldehyde and incubated with DAPI (4',6-diamidino-2-phenylindole) for 15 minutes before the cover assembly. The presence of both fluorescently loaded poly(anhydride) nanoparticles in the intestinal mucosa and the cell nuclei dyed with DAPI were visualized in a fluorescence microscope (Axioimager M1, Zeiss, Oberkochen, Germany) with a coupled camera (Axiocam ICC3, Zeiss, Oberkochen, Germany) and fluorescent source (HBO 100, Zeiss, Oberkochen, Germany). The images were captured with the software ZEN (Zeiss, Oberkochen, Germany).

2.13. Statistical analysis

The in vivo data were compared using a one way analisys of the variance (ANOVA) followed by a Tukey-Kremer multicomparison test, using the NCSS 11 statistical software (Kaysville, US). The difference was considered as significant when P<0.05 or p<0.001.

3. Results

3.1. Characterization of Gantrez-thiamine conjugates (GT)

The infrared spectroscopy study of the conjugates (Figure 1) showed the formation of a new binding at ~1650 cm⁻¹ associated with the stretching of the new amide group ν(C=O) originated as a result of the amine group of the thiamine and the anhydride groups of Gantrez® AN 119. Besides, the GT spectrum showed a weak band at ~1352 cm⁻¹ corresponding to C-N vibrations of thiamine residues (Ferrari et al., 2003). Regarding elemental analysis (Table 1), the binding of thiamine to the polymer backbone slightly decreased the percentage of carbon, whereas the hydrogen content increased.
On the other hand, the titration of the hydrated polymer and conjugates confirmed a reduction in the amount of free carboxylic groups by the binding of thiamine to Gantrez® AN (Table 1). In fact, under the experimental conditions used here, about 13% of the maleic anhydride groups of Gantrez® AN were used for the covalent binding of thiamine, generating (from each reactant anhydride group) an amide bond with vitamin B1 and one carboxylic acid residue. In other words, the % of substitution would be of 13%. By HPLC, the amount of thiamine associated to the poly(anhydride) backbone was calculated to be 8.7 µg/mg. Finally, with this data, the MW of the conjugate (GT) was 96.33 kDa.

3.2. Preparation of thiamine-coated nanoparticles

Thiamine coated nanoparticles were prepared following two different preparative processes. The first method consisted on the preparation of Gantrez® AN nanoparticles (NP or “naked” poly(anhydride) nanoparticles) followed by a thiamine coating procedure (T-NPA). The second method consisted on the preparation of nanoparticles from a Gantrez® AN-thiamine conjugate previously synthetized (T-NPB). Table 2 shows the main physico-chemical properties of the resulting nanoparticles. In all cases, the different nanoparticle formulations displayed a mean size of about 210-230 nm and a negative zeta potential. However, the negative surface charge was slightly lower for thiamine coated nanoparticles (T-NPB), but not statistically significative, than for nanoparticles obtained from the GT (T-NPA) and the “naked” nanoparticles (NP). Interestingly, both preparative procedures produced homogeneous batches of nanoparticles (PDI lower than 0.2) and high yields close to 97.5%. For T-NPA, the amount of thiamine associated to the nanoparticles was 15 µg/mg. Finally, the amount of Lumogen® F Red 305 incorporated into the nanoparticles was calculated to be similar for all the formulations tested and close to 0.7 µg/mg (data not shown).

Figure 2 shows the morphological analysis of the different nanoparticle formulations. This analysis by SEM confirmed that all batches of nanoparticles consisted of homogeneous populations of spherical particles. NP presented a smoother surface than thiamine-coated nanoparticles and T-NPB. In addition, T-NPA appeared to be slightly rougher than T-NPB.

3.3. In vitro evaluation of the mucus penetrating properties of nanoparticles

PGSE-NMR is a non-invasive technique that allows determination of the diffusive character of mucin gel and changes in that dynamic property on addition of selected polymer nanoparticles. The diffusion coefficient is measured from the decrease in intensity of the peaks in the NMR spectrum, a rapidly decaying signal corresponds to high mobility quantified in terms of a large diffusion coefficient (Figure 3).

In complex systems such as those being examined here, it is quite common for the data to show more than one diffusive rate. These may arise due to the presence of several components that each shows peaks at the same chemical shift (so-called overlapping spectra) or that particular component being present in different physical environments, e.g. gelled or non-gelled materials. Under those circumstances, it is first useful to consider an average diffusion coefficient, being the signal intensity-weighted value of the other discrete values, Table 3, when the different nanoparticle formulations used in this study have been added to the mucin samples. Analysing the ratio of the mean diffusion coefficients i.e. the mucin plus NP value divided by the value from the mucin-
only sample, shows that the mucin diffusion was largely unchanged for the control particle (row “NP”). On the contrary, the ratio of the weighted mucin diffusion coefficients increased a factor of 5-fold when both thiamine decorated nanoparticles were incubated with mucin, addition of the nanoparticles increased the dynamics of the mucin.

Focusing on the detail within the analysis, the entire PGSE-NMR spectra for mucin alone fitted best to two diffusive rates, (Figure 3A), with peaks occurring at similar chemical shifts for both components i.e. the same material. The most straightforward interpretation would be that the gelled fraction of the mucin (sometimes called “firm”) corresponds to the slower diffusing component, \(D_{\text{slow}} = 2.1 \times 10^{-13} \text{m}^2/\text{s} \), representing 21% of the signal, whereas the faster term - the greater component - is the non-gelled fraction \(D_{\text{fast}} = 8.3 \times 10^{-12} \text{m}^2/\text{s} \); 79% of the signal). Interestingly, when nanoparticles were added to the mucin sample, a third much slower diffusive rate appeared (Figure 3B), respect to the other two components, indicating modification of the structure of the mucin gel. This modification decreases the mobility of some of the mucin but significantly increases the mobility of another portion. Notwithstanding the emergence of this slow component, the diffusion of the bulk of the mucin increased (Table 3, columns D2 and D3), with the principle component and the average value some 4-5x times higher for thiamine decorated nanoparticles than for the naked poly(anhydride) nanoparticles.

3.4. Biodistribution studies with \(^{99m}\text{Tc}\) radiolabelled nanoparticles

Figure 4 shows the comparison of the biodistribution of nanoparticles (after radiolabelling with \(^{99m}\text{Tc}\)) when administered by the oral route to laboratory animals. In all cases, 2 hours post-administration, nanoparticles were visualized in the stomach and the small intestine of animals. However, the intensity of the radioactivity in the stomach of animals was higher for NP than for T-NPA and T-NPB. On the contrary, nanoparticles containing thiamine appeared to move faster than NP because the radioactivity was more intense in the small intestine than in the stomach of animals. Interestingly, no activity was observed in the liver or the lungs of the animals.

3.5. Evaluation of the mucus permeating properties of nanoparticles

Figure 5 shows the evaluation of the interaction of nanoparticles with the surface of the stomach mucosa and the small intestine expressed as the adhered fraction of the given dose. In all cases the animals received a dose of 25 mg of nanoparticles dispersed in 1 mL water. Two hours post-administration (Figure 5A), significant differences were found between control nanoparticles (NP), which displayed a significantly higher capability to interact with the stomach mucosa than nanoparticles containing thiamine \((p<0.05)\). Actually, the fraction of the given dose in close contact with the stomach mucosa was almost 3-fold higher than T-NPA and almost 14-fold higher than for T-NPB. Interestingly, in the small intestine, the capability of NP to interact with the mucosa was significantly lower than for nanoparticles containing thiamine. In fact, both T-NPA and T-NPB presented a strong capability to remain close contact with the surface of the small intestine (mainly in the I2 segment corresponding with the distal jejunum and proximal ileum). Thus, for both types of nanoparticles, more than 30% of the given dose was found in close contact with the surface of the mucosa, compared with a 13.5% in the case of NP.
Four hours post-administration (Figure 5B), the remained fraction of NP in close contact with the gut mucosa was very low. Only a small amount was quantified in the distal region of the ileum and caecum. On the contrary, for T-NPA and T-NPB, about 35% of the given dose was mainly localized in the ileum of animals (segments I2 and I3). Overall, no significant differences in the distribution of T-NPA and T-NPB were observed. However, if any, T-NPB appeared to move faster than T-NPA.

Figure 6 shows fluorescence microscopy images of ileum samples from the animals treated with Lumogen® F Red-labelled nanoparticles. NP displayed a localisation mainly restricted to the mucus layer protecting the epithelium both in the stomach (Figure 6A) and in the ileum (Figures 6B and 6C). On the contrary, for nanoparticles containing thiamine it was evident that these carriers were capable of reaching the epithelium and interact broadly with the intestinal cells (Figures 6E, 6F, 6H and 6I).

4. Discussion

In this work, the effect of the preparative process of thiamine-coated nanoparticles on their distribution within the gut (after oral administration) was evaluated. For this purpose, two different procedures for the preparation of these nanocarriers were compared.

In the former, a conventional bottom-up procedure with two consecutive steps was employed (Salman et al., 2007). In this approach, the copolymer of methyl vinyl ether and maleic anhydride (Gantrez® AN) was initially transformed into poly(anhydride) nanoparticles and, subsequently, functionalized with thiamine before purification and drying. With this approach, the resulting thiamine-coated nanoparticles (T-NPA) displayed a mean size of about 215 nm and a negative zeta potential of −38 mV (Table 2). These physico-chemical characteristics were quite similar to that observed for bare nanoparticles (NP); although T-NPA, when observed by SEM (Figure 2A), displayed a rougher surface than NP. In addition, the amount of thiamine associated with T-NPA nanoparticles was about 15 µg/mg with a surface density (dT) of about 0.98 molecules per nm². In spite of its simplicity, this typical approach may be not the most adequate when biologically active compounds of hydrophilic nature (e.g., therapeutic peptides and proteins) have to be encapsulated into these nanoparticles. In fact, during the functionalization process, a significant fraction of the encapsulated compound may be lost due to a premature release in the medium in which the binding takes place (Dalwadi et al., 2005; Patil et al., 2009; Tang et al., 2009). This migration of the loaded compound (from the nanoparticle matrix through the external medium) may also affect the surface properties of the resulting nanoparticles and, thus, their behaviour in vivo.

In the latter, the first step was to build a conjugate (between Gantrez® AN and thiamine) to be used as material for the preparation of the functionalized nanoparticles. Nanoparticles from GT were obtained by forming calcium ion bridges between neighbouring carboxylic acid groups of the polymer backbone. The presence of calcium was necessary to confer stability to the resulting nanoparticles. This strategy is more time-demanding due to the necessary synthesis of the pre-cursor. However, the subsequent preparation step to form the nanoparticles is simpler and shorter, minimizing the negative effects on the payload.

In our case, the synthesized conjugate between Gantrez® AN and vitamin B1 contained about 9 µg thiamine per mg, with a substitution degree of 13%. From this polymer conjugate, the resulting nanoparticles (T-NPB) displayed a slightly higher mean size (227
vs 215 nm, Table 2) and a lower negative zeta potential (-30 vs -38 mV, Table 2) than T-NPA. By SEM, T-NPB presented a similarly rough surface as did T-NPA (Figure 2B and 2C). However the main concern by using the Gantrez® AN-thiamine conjugate was the impossibility of precisely determined the number of thiamine molecules on the surface of the resulting nanoparticles (T-NPB). For other types of hydrophilic conjugates, such as copolymers between polyesters and poly(ethylene glycol) (e.g. PLGA-PEG), it has been confirmed that during the formation of nanoparticles the polyester chains form the core, while PEG chains are oriented to the water phase (Li et al., 2001; Schubert et al., 2011).

In our case, it is plausible to imagine that the hydrophilic residues of thiamine would be mainly exposed on the surface of nanoparticles. In order to confirm this hypothesis, the mucus penetrating properties of nanoparticles as well as their fate in vivo was studied. When T-NPA or T-NPB were orally administered to rats, they distributed along the gastrointestinal tract (Figure 4) with a lower tendency to concentrate in the stomach of animals than bare nanoparticles. This observation was corroborated by the measurement of the fluorescence marker associated with the nanoparticles in different gut sections (Figure 5). Thus, 2 h post-administration, about 15% of the given dose of NP was quantified in contact with the stomach mucosa. This value represented at least 3-times greater dose than for T-NPA or T-NPB. On the contrary, the amounts of T-NPA or T-NPB adhered to the small intestine mucosa (mainly in the distal jejunum and proximal ileum, I2 segment in Figure 5A) were significantly higher than for NP (p<0.001). Four hours post-administration, the amount of bare nanoparticles adhered to the gut mucosa was very low, whereas, for T-NPA and T-NPB, the fraction of the given dose in close contact with the small intestine mucosa remained higher than 30%. These observations are in line with our previous results in which the coating of poly(anhydride) nanoparticles with thiamine (T-NPA) increased 3-fold the capability of these nanocarriers to develop adhesive interactions within the gut and, at the same time, decreased their elimination rate from the mucosa (Salman et al., 2007). In addition, from a microscopic point of view (Figure 6), it was clear that bare nanoparticles displayed a different behaviour than thiamine-nanoparticles (T-NPA and T-NPB). Thus, within the gut mucosa, NP was localized in the protective mucus layer confirming their mucoadhesive capability (Arbós et al., 2002; Gamazo et al., 2015). On the contrary, thiamine nanoparticles appeared to be capable of reaching the intestinal epithelium, confirming their mucus permeating properties. These results agree well with those obtained from the in vitro evaluation of the diffusion of the intestinal mucin by PGSE-NMR (Figure 3, Table 3). Interestingly, the diffusion coefficient of intestinal mucin was not affected when bare nanoparticles were added. However, when incubated with T-NPA or T-NPB, there was a significant increase in the diffusion coefficient of the mucin (about 5-fold). These differences can only be attributed to the presence of thiamine on the surface of nanoparticles that would transform their surface, conferring slippery properties and facilitating their permeability through a mucus gel layer. It is also worth noting that the mucin alone, and due to its heterogeneous composition, fitted well to two diffusion coefficients, as described previously (Pereira de Sousa et al., 2015a): \[D_{\text{fast}} = 8.3 \times 10^{-12} \text{ m}^2/\text{s}, \] 21% of the signal, \[D_{\text{slow}} = 2.1 \times 10^{-13} \text{ m}^2/\text{s}, 79\% \text{ of the signal}. \] On the other hand, when nanoparticles were added to the mucin samples the spectra fitted best to 3 diffusion coefficients indicating that poly(anhydride) nanoparticles possess a hydrophobic surface and one could imagine a strong interaction with the hydrophobic portions of the mucin molecule, which would lead to a mucoadhesive
property and presumably a viscosification of the sample as the particles act as nodes for the enhancement of the mucin gel cross-linking. However, the polymer backbone forming the thiamine decorated nanoparticles has a highly dense coat of the low MW and highly hydrophilic compound, thiamine, which one assumes will prevent an interaction with the mucin network.

5. Conclusion
In summary, the mucoadhesive poly(anhydride) nanoparticles were transformed into mucus-penetrating ones by their coating with vitamin B1. These thiamine-nanoparticles displayed a high ability to diffuse and cross through the protective mucus layer in order to reach the intestinal epithelium. Interestingly, thiamine-decorated nanoparticles may be prepared by two different procedures. Both approaches yield nanocarriers with similar physico-chemical and biodistribution properties. This result increases the versatility of such nanocarriers as oral delivery systems for a number of biologically active compounds.

Acknowledgements
The research leading to these results has received funding from the European Community’s Seventh Framework Programme [FP7/2007-2013] for ALEXANDER under grant agreement n° NMP-2011-1.2-2-280761. Furthermore, Laura Inchaurraga acknowledges “Asociación de Amigos” of the University of Navarra for the financial support.

References

Ferrari, A.C., Rodil, S.E., Robertson, J., Rodil, S.E., Robertson, J., 2003. Interpretation of

Figure Captions

Figure 1. Confirmation of GT conjugate. (A) Schematic representation of the formation of the new conjugate. (B) IR spectra of Gantrez® AN polymer (G) and Gantrez® AN-thiamine conjugate (GT).

Figure 2. Scanning electron microphotographs of “naked” poly(anhydride) nanoparticles (A), T-NPA (B) and T-NPB (C). In the above right side, a magnification of a section of each microphotograph is shown.

Figure 3. PGSE-NMR spectra of mucin alone (A3) obtained from the two components forming the gel (A1-A2) and mucin in the presence of nanoparticles (B4) obtained from the three components forming the gel (B1-B3). x axis: frequency; y axis: intensity and z axis: trace.

Figure 4. Volume rendered fused SPECT-CT images from representative animals 2 h after administration of 99mTc-labelled NP by oral gavage. NP: “naked” nanoparticles; T-NPA: thiamine-coated poly(anhydride) nanoparticles; T-NPB: Gantrez® AN-thiamine nanoparticles.

Figure 5. Percentage of the given dose in close contact with the mucosa of the different parts of the gastrointestinal tract. (A) Two-hours and (B) 4-hours post-administration. NP: “naked” nanoparticles; T-NPA: thiamine-coated poly(anhydride) nanoparticles; T-NPB: Gantrez® AN-thiamine nanoparticles (n=3). STO: stomach; I1, I2, I3: small intestine portions; CE: caecum.

Figure 6. Fluorescence microscopic visualisation of nanoparticles containing thiamine (T-NPA and T-NPB) and control ones (NP) in a longitudinal section of the stomach mucosa and ileum of rats 2 hours post administration. A: NP in the stomach mucosa; B and C: NP in the ileum mucosa; D: T-NPA in the stomach; E and F: T-NPA in the ileum mucosa; G: T-NPB in the stomach mucosa; H and I: T-NPB in the ileum mucosa.
Fig 3
Fig 5

Figures A and B depict the adhesion of nanoparticles (NP, T-NPA, T-NPB) on various substrates (STO, 11, 12, 13, CE). The bars represent the percentage of adhered nanoparticles, while the error bars indicate the standard deviation.
Table 1. Physico-chemical characterization of Gantrez® AN and its conjugate with thiamine (GT). For titration and HPLC experiments, data expressed as mean ± SD (n=3).

<table>
<thead>
<tr>
<th>Polymer</th>
<th>C%</th>
<th>H%</th>
<th>O%</th>
<th>% Free - COOH</th>
<th>DS (%)</th>
<th>MW (kDa)</th>
<th>Thiamine content (µg/mg G)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>53.49</td>
<td>5.18</td>
<td>41.33</td>
<td>100 ± 0</td>
<td>0</td>
<td>95.50</td>
<td>-</td>
</tr>
<tr>
<td>GT</td>
<td>53.19</td>
<td>5.58</td>
<td>41.23</td>
<td>87 ± 1</td>
<td>13</td>
<td>96.33</td>
<td>8.7 ± 0.6</td>
</tr>
</tbody>
</table>

Table 2. Physico-chemical characterization of nanoparticles. NP: “naked” poly(anhydride) nanoparticles; T-NPA: poly(anhydride) nanoparticles coated with thiamine; T-NPB: Gantrez® AN-thiamine conjugate nanoparticles. Data expressed as mean ± SD (n=3).

<table>
<thead>
<tr>
<th>Formulation</th>
<th>Size (nm)</th>
<th>PDI</th>
<th>Zeta Potential (mV)</th>
<th>Thiamine (µg/mg NP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP</td>
<td>213 ± 4</td>
<td>0.031 ± 0.012</td>
<td>-36.2 ± 3.0</td>
<td>-</td>
</tr>
<tr>
<td>T-NPA</td>
<td>215 ± 3</td>
<td>0.128 ± 0.023</td>
<td>-38.5 ± 3.2</td>
<td>15 ± 0.6</td>
</tr>
<tr>
<td>T-NPB</td>
<td>227 ± 5</td>
<td>0.092 ± 0.020</td>
<td>-30.6 ± 5.4</td>
<td>ND</td>
</tr>
</tbody>
</table>

Table 3. Diffusion coefficients of the mucin in the presence of nanoparticles. The experiments were carried out with intestinal mucin. D1-D3: diffusion coefficients of the components forming the mucin. D: diffusion coefficient; R: Ratio between the diffusion coefficients obtained for the nanoparticle formulation and mucin. Intensities of the diffusion coefficients of each component in brackets.

<table>
<thead>
<tr>
<th>Formulation</th>
<th>D1 (×10⁻¹¹ m² s⁻¹)</th>
<th>D2 (×10⁻¹¹ m² s⁻¹)</th>
<th>D3 (×10⁻¹¹ m² s⁻¹)</th>
<th>D_{weighted} (×10⁻¹¹ m² s⁻¹)</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mucin</td>
<td>-</td>
<td>0.021 (21%)</td>
<td>0.830 (79%)</td>
<td>0.66</td>
<td>1.0</td>
</tr>
<tr>
<td>NP</td>
<td>0.002 (21%)</td>
<td>0.051 (16%)</td>
<td>1.200 (63%)</td>
<td>0.79</td>
<td>1.2</td>
</tr>
<tr>
<td>T-NPA</td>
<td>0.002 (11%)</td>
<td>0.249 (18%)</td>
<td>4.591 (71%)</td>
<td>3.29</td>
<td>5.0</td>
</tr>
<tr>
<td>T-NPB</td>
<td>0.004 (14%)</td>
<td>0.391 (22%)</td>
<td>4.780 (64%)</td>
<td>3.12</td>
<td>4.7</td>
</tr>
</tbody>
</table>