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Social interactions are stratified in multiple contexts and are subject to complex temporal dy-
namics. The systematic study of these two features of social systems has started only very recently,
mainly thanks to the development of multiplex and time-varying networks. However, these two ad-
vancements have progressed almost in parallel with very little overlap. Thus, the interplay between
multiplexity and the temporal nature of connectivity patterns is poorly understood. Here, we aim to
tackle this limitation by introducing a time-varying model of multiplex networks. We are interested
in characterizing how these two properties affect contagion processes. To this end, we study SIS epi-
demic models unfolding at comparable time-scale respect to the evolution of the multiplex network.
We study both analytically and numerically the epidemic threshold as a function of the multiplexity
and the features of each layer. We found that, higher values of multiplexity significantly reduce the
epidemic threshold especially when the temporal activation patterns of nodes present on multiple
layers are positively correlated. Furthermore, when the average connectivity across layers is very
different, the contagion dynamics are driven by the features of the more densely connected layer.
Here, the epidemic threshold is equivalent to that of a single layered graph and the impact of the
disease, in the layer driving the contagion, is independent of the multiplexity. However, this is not
the case in the other layers where the spreading dynamics are sharply influenced by it. The results
presented provide another step towards the characterization of the properties of real networks and
their effects on contagion phenomena.

PACS numbers: 89.65.− s, 89.75.F b, 64.60.aq, 87.23.Ge

Social interactions take place in different contexts and
modes of communication. On a daily basis we interact
at work, in the family and across a wide range of on-
line platforms or tools, e.g. Facebook, Twitter, emails,
mobile phones etc. In the language of modern Network
Science, social networks can be conveniently modeled and
described as multilayer networks [1–5]. This is not a new
idea. Indeed, the intuition that social interactions are
stratified in different layers dates back several decades
[6–8]. However, the digitalization of our communications
and the miniaturization of devices has just recently pro-
vided the data necessary to observe, at scale, and char-
acterize the multilayer nature of social interactions.

As in the study of single layered networks, the research
on multilayer graphs is divided in two interconnected ar-
eas. The first deals with the characterization of the struc-
tural properties of such entities [1, 4]. One of the cen-
tral observations is that the complex topology describing
each type of interactions (i.e., each layer) might be dif-
ferent. Indeed, the set and intensity of interactions in
different contexts (e.g., work, family etc..) or platforms
(e.g., Facebook, Twitter etc..) is not the same. Nev-
ertheless, layers are coupled by individuals active across
two or more of them. The presence of such coupling as
well as its degree is often referred to as multiplexity. An-
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other interesting feature of multilayer graphs is that the
connectivity patterns in different layers might be topo-
logically and temporally correlated [9–11]. The second
area of research instead considers the function, such as
sustaining diffusion or contagion processes, of multilayer
networks [1, 12, 13]. A large fraction of this research aims
at characterizing how the complex structural properties
of multilayer graphs affect dynamical processes unfolding
on their fabric. The first important observation is that
disentangling connections in different layers gives rise to
complex and highly non-trivial dynamics function of the
interplay between inter and intra-layer connections [14–
26]. A complete summary of the main results in the
literature is beyond the scope of the paper. We refer the
interested reader to these recent resources for details [1–
5].

Despite the incredible growth of this area of Network
Science over the last years, one particular aspect of mul-
tilayer networks is still largely unexplored: the interplay
between multiplexity and the temporal nature of the con-
nectivity patterns especially when dynamical processes
unfolding on their fabric are concerned [13]. This should
not come as a surprise. Indeed, the systematic study of
the temporal dynamics even in single layered graphs is
very recent. In fact, the literature has been mostly fo-
cused on time-integrated properties of networks [27, 28].
As result, complex temporal dynamics acting at shorter
time-scales have been traditionally discarded. However,
the recent technological advances in data storing and col-
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lection are providing unprecedented means to probe also
the temporal dimension of real systems. The access to
this feature is allowing to discover properties of social
acts invisible in time aggregated datasets, and is helping
characterize the microscopic mechanisms driving their
dynamics at all time-scales [29–38]. The advances in this
arena are allowing to investigate the effects such tempo-
ral dynamics have on dynamical processes unfolding on
time-varying networks. The study of the propagation of
infectious diseases, ideas, rumors, or memes etc.. on tem-
poral graphs shows a rich and non trivial phenomenology
radically different than what is observed on their static
or annealed counter parts [29, 39–62].

Before going any further, it is important to notice how
in their more general form, multilayer networks, might be
characterized by different types of nodes in each layers.
For example, modern transportation systems in cities can
be characterized as a multilayer network in which each
layer captures a different transportation mode (tube, bus,
public bikes etc..) and the links between layers con-
nect stations (nodes) where people can switch mode of
transport [4, 12]. A particular version of multilayer net-
works, called multiplex, is typically used in social net-
works. Here, the entities in each layers are of the same
type (i.e., people). The inter-layer links are drawn only
to connect the same person in different layers.

In this context, we introduce a model of time-varying
multiplex networks. We aim to characterize the effects of
temporal connectivity patterns and multiplexity on con-
tagion processes. We model the intra-layer evolution of
connections using the activity-driven framework [29]. In
this model of time-varying networks, nodes are assigned
with an activity describing their propensity to engage in
social interactions per unit time [29]. Once active a node
selects a partner to interact. Several selection mecha-
nisms have been proposed, capturing different features
of real social networks [30, 31, 63–65]. The simplest,
that will be used here, is memoryless and random [29].
In these settings, active nodes do not have a preference
towards individuals previously connected. Despite such
simplification, the mechanism allows capturing the het-
erogeneity of time-integrated connectivity patterns ob-
served in real networks while guaranteeing mathematical
tractability [29]. The multiplexity or coupling between
layers is modulated by a probability p. If p = 1 all
nodes are present in all layers. If p = 0, the multiplex
is formed by M disconnected graphs. We consider p as
a parameter and explore different regime of coupling be-
tween layers. Furthermore, each layer is characterized
by an activity distribution. We consider different sce-
narios in which the activity of coupling nodes, which are
present in different layers, (regulated by p) is uncorre-
lated as well as others in which is instead positively or
negatively correlated. In these settings, we study the
unfolding of Susceptible-Infected-Susceptible (SIS) epi-
demic processes [66–68]. We derive analytically the epi-
demic threshold for two layers for any p and any distri-
butions of activities. In the limit of p = 1 we find ana-

lytically the epidemic threshold for any number of layers.
Interestingly, the threshold is a not trivial generalization
of the correspondent quantity in the monoplex (single
layer network). In the general case 0 < p < 1 we found
that the threshold is a decreasing function of p. Posi-
tive correlations of coupling nodes push the threshold to
smaller values respect to the uncorrelated and negatively
correlated cases. Furthermore, when the average connec-
tivity of two layers is very different the critical behavior
of the system is driven by the more densely connected
layer. In such scenario the epidemic threshold is not af-
fected by the multiplexity, its value is equivalent to the
case of a monoplex, and the coupling affects only the
layer featuring the smaller average connectivity.

The paper is organized as follow. In Section I we in-
troduce the multiplex model. In Section II we study first
both analytically and numerically the spreading of SIS
processes. Finally, in Section III we discuss our conclu-
sions.

I. TIME-VARYING MULTIPLEX NETWORK
MODEL

We first introduce the multiplex model. For simplicity
of discussion, we consider the case in which the system
is characterized by M = 2 layers A and B. However, the
same approach can be used to create a multiplex with
any number of layers. Let us define N as the number of
nodes in each layer. In general, we have three different
categories of nodes: NA, NB and No. They describe, re-
spectively, the number of nodes that are present only in
layer A, B, or in both. The last category is defined by a
parameter p: the coupling between layers (multiplexity).
Thus, on average, we have NA = NB = (1 − p)N and
No = pN . As mentioned in the introduction, the tem-
poral dynamics in each layer are defined by the activity-
driven framework [29]. Thus, each non-coupling node is
characterized by an activity extracted from a distribu-
tion fA(a) or fB(a) which captures its propensity to be
engaged in a social interaction per unit time. Observa-
tions in real networks show that the activity typically
follows a heavy-tailed distribution [29–31, 41, 63, 69].
Here, we assume that activities follow power-laws, thus
fx(a) = cxa

−γx with x = [A,B] and ε ≤ a ≤ 1 to avoid
divergences. Coupling nodes instead, are characterized
by a joint activity distribution h(aA, aB). As mentioned
in the introduction, real multiplex networks are charac-
terized by correlations across layers. In particular, the
study of a wide range of real systems shows a complex
and case dependent phenomenology in which the topolog-
ical features (i.e. static connectivity patterns) of coupling
nodes can be either positively or negatively correlated [9].
Furthermore, researchers found evidence of positive tem-
poral correlations between the activation patterns across
layers [10, 11]. To account for such observations and
explore their effects on spreading processes, we consider
three simple prototypical cases in which the activities
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of coupling nodes in the two layers are i) uncorrelated
ii) positively and iii) negatively correlated. To simplify
the formulation and to avoid adding other parameters, in
case of positive and negative correlations we adopt the
following steps. We first extract No activities from the
two distributions fx(a). Then we order them. In the case
of positive correlation, a node that has the rth activity in
A will be assigned to the correspondent activity in B. In
other words, the first node will be assigned to the high-
est activity extracted from fA(a) and the highest value
extracted from fB(a). The second will be assigned to
the second highest activity extracted from both distribu-
tions etc.. In the case of negative correlations instead, a
node that has the rth activity in A will be assigned the
(pN − r + 1)th in B. In other words, the first node will
be assigned to the highest activity in A and to the lowest
activity in B. The second node, will be assigned to the
second highest activity in A and to the second lowest in
B etc..
In these settings, the temporal evolution of the multiplex
network is defined as follow. For each realization, we ran-
domly select pN nodes as coupling nodes between layers.
At each time step t:

• Each node is active with a probability defined by
its activity.

• Each active node creates mx links with randomly
selected nodes. Multiple connections with the same
node in the same layer within each time step are not
allowed.

• Coupling nodes can be active and create connec-
tions in both layers.

• At time step t+ ∆t all connections are deleted and
the process restarts from the first point.

All connections have the same duration of ∆t. In the
following, we set, without lack of generality, ∆t = 1.
At each time the topology within each layer is character-
ized, mostly, by a set of disconnected stars of size mx+1.
Thus, at the minimal temporal resolution each network
looks very different than the static or annealed graphs
we are used to see in the literature [70]. However, it is
possible to show that, integrating links over T time steps
in the limit in which T � N , the resulting network has a
degree distribution that follows the activity [29, 31, 71].
In other words, the heterogeneities in the activity dis-
tribution translate in heterogenous time-aggregated con-
nectivity patterns typically of real networks. Thus, as
observed in real temporal networks the topological fea-
tures at different time-scales are very different than the
late (or time-integrated) characteristics [38].

At each time step the average degree in each layer can
be computed as:

〈k〉xt =
2Ex

t

N
= 2mx [(1− p)〈ax〉+ p〈ax〉o] , (1)

where Ex
t is the number of links generated in each layer

at each time step. Furthermore, 〈ax〉 =
∫
dafx(a)a and

〈ax〉o =
∫ ∫

daadaBh(aA, aB)ax are the average activity
of non-coupling and coupling nodes in each layer respec-
tively. Similarly, the total average degree (often called
overlapping degree [72]), at each time step, is:

〈k〉t =

2
∑
y∈x

Eyt

2N − pN
= 2

∑
y∈x

my [(1− p)〈ay〉+ p〈ay〉o]

(2− p)
. (2)

Thus, the average connectivity, at each time step, is
determined by the number of links created in each layer,
and by the interplay between the average activity of
coupling and non-coupling nodes. As shown in Figure 1
(top panel), Eq. 2 describes quite well the behavior of
the average overlapping degree which is an increasing
function of the multiplexity p. Indeed, the larger the
fraction of coupling nodes, the larger the connectivity
of such nodes across layers. As we will see in the next
section, this feature affects significantly the unfolding on
contagion processes.

In Figure 1 (bottom panel) we show the integrated
degree distribution of the overlapping degree for dif-
ferent p. The plot clearly shows how the functional
form is defined by the activity distributions of the two
layers which in this case are equal. An increase in the
fraction of coupling nodes, does not change the distribu-
tion of the overlapping degree, it introduces a vertical
shift which however is more visible for certain values of k.

II. CONTAGION PROCESSES

In order to understand how the interplay between mul-
tiplexity and temporal connectivity patterns affects dy-
namical processes, we consider SIS contagion phenomena
spreading on the multiplex model introduced in the pre-
vious section. In this prototypical epidemic model each
node can be in one of two compartments. Healthy nodes
are susceptible to the disease and thus in the compart-
ment S. Infectious nodes instead join the compartment
I. The natural history of the disease is defined as fol-
lows. A susceptible, in contact with an infected node,
might get sick and infectious with probability λ. Each
infected node spontaneously recovers with rate µ thus
staying infectious for µ−1 time steps, on average. One
crucial feature of epidemic models is the threshold which
determines the conditions above which a disease is able
to affect a macroscopic fraction of the population [66–
68]. In case of SIS models, below the threshold the dis-
ease dies out reaching the so called disease-free equilib-
rium. Above threshold instead, the epidemic reaches an
endemic stationary state. This can be captured running
the simulations for longer times and thus estimating the
fraction of infected nodes for t → ∞: i∞. In general,
in a multiplex network, such fraction might be different
across layers. Thus, we can define: ix∞. To characterize
the threshold we could study the behavior of such frac-
tion(s) as function of λ/µ. Indeed, the final number of
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FIG. 1: (Top panel) The average overlapping degree of the
time-integrated multiplex networks as function of the frac-
tion of the coupling nodes, p. The red line is computed by
Eq. (2). (Bottom panel) The distribution of the integrated
overlapping degree for different p. Both in panels, the activi-
ties of the coupling nodes in the two layers are uncorrelated.
The exponents for the distributions of activities are γx = 2.1.
The simulations are performed on networks of 105 nodes with
mx = 1, integrated over 100 time steps and averaged over 100
runs.

infected nodes acts as order parameter in a second order
phase transition thus defining the critical conditions for
the spreading [67]. However, due to the stochastic nature
of the process, the numerical estimation of the endemic
state, especially in proximity of the threshold is not easy.
Thus, we adopt another method measuring the life time
of the process, L [73]. This quantity is defined as the
average time the disease needs either to die out or to in-
fect a macroscopic fraction Y of the population. The life
time acts as the susceptibility in phase transitions thus
allows a more precise numerical estimation [73].

In the case of single layer activity-driven networks, in
which partners of interactions are chosen at random and
without memory of past connections, the threshold can
be written as (see Ref. [29] for details):

λ

µ
>

1

m

1

〈a〉+
√
〈a2〉

. (3)

Thus, the conditions necessary for the spread of the dis-
ease are set by the interplay between the features of the
disease (left side) and the dynamical properties of the
time-varying networks where the contagion unfolds (right
side). The latter are regulated by first and second mo-
ment of the activity distribution and by the number of

connections created by each active node (i.e., m). It is
important to notice that Eq. 3 considers the case in which
the time-scale describing the evolution of the connectiv-
ity patterns and the epidemic process are comparable.
The contagion process is unfolding on a time-varying net-
work. In the case when links are integrated over time
and the SIS process spreads on a static or annealed ver-
sion of the graph, the epidemic threshold will be much
smaller [29, 74, 75]. This is due to the concurrency of
connections which favors the spreading. In fact, by ag-
gregating the connections over time the degree of each
node increases thus facilitating the unfolding of the dis-
ease. In this limit of time-scale separation between the
dynamics of and on networks, the evolution of the con-
nectivity patterns is considered either much slower (static
case) or much faster (annealed case) respect to the epi-
demic process. In the following, we will only consider
the case of comparable time-scales. This is the regime of
time-varying networks which is extremely relevant for a
variety of spreading processes ranging from sexual trans-
mitted diseases and influenza like illnesses to rumors and
information propagation [28].

What is the threshold in the case of our multiplex and
time-varying network model? In the limit p = 0 the
number of coupling nodes is zero. The two layers are
disconnected thus the system is characterized by two in-
dependent thresholds regulated by the activity distribu-
tions of the two layers. The most interesting question, is
then what happens for p > 0. To find an answer to this
conundrum, let us define Ixa (x = [A,B]) as the number
of infected nodes of activity class a that are present only
in layer A or B. Clearly, Ix =

∫
daIxa . Let us instead

define IoaA,aB the number of infected coupling nodes in
classes of activity aA and aB . In this case the total num-
ber of infected coupling nodes is Io =

∫ ∫
daAdaBI

o
aA,aB .

Similarly, we can define Nx
a and No

aA,aB respectively as
the number of nodes non-coupling nodes of activity a
and as the number of coupling nodes of activity aA and
aB . The implicit assumption we are making by dividing
nodes according to their activities, is that of statistical
equivalence within activity classes [67, 76]. In these set-
tings, we can write the variation of the number of infected
non-coupling nodes as function of time as:

dtI
x
a = −µIxa + λmx [Nx

a − Ixa ] a
Ix + Io

N
(4)

+λmx
Nx
a − Ixa
N

[∫
da′Ixa′a

′ +

∫ ∫
da′Ada

′
BI

o
a′A,a′Ba

′
x

]
,

where we omitted the dependence of time. The first term
on the r.h.s. considers nodes recovering thus leaving the
infectious compartment. The second and third terms ac-
count for the activation of susceptibles in activity class a
(Sx
a = Nx

a − Ixa ) that select infected nodes (non-coupling
and coupling) as partners and get infected. The last two
terms instead consider the opposite: infected nodes acti-
vate, select as partners non-coupling and coupling nodes
in the activity class a infecting them as result.

Similarly, we can write the expression for the variation
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of coupling nodes of activity classes aA and aB as:

dtI
o
aA,aB = −µIoaA,aB (5)

+λ
[
No
aA,aB − I

o
aA,aB

]∑
y∈x

myay
Iy + Io

N

+λ
No
aA,aB − I

o
aA,aB

N

×
∑
y∈x

my

[∫
da′Iya′a

′ +

∫ ∫
da′Ada

′
BI

o
a′A,a′Ba

′
y

]
.

The general structure of the equation is similar to the
one we wrote above. The main difference is however
that coupling nodes can be infected and can infect in
both layers. The first term in the r.h.s. accounts for
the recovery process. The next four (two for each ele-
ment in the sum in y) consider the activation of suscepti-
ble nodes that select as partners both non-coupling and
coupling infected nodes and get infected. The last four
terms account for the reverse process. In order to com-
pute the epidemic threshold we need to define four auxil-
iary functions thus defining a closed system of differential
equations. In particular, we define Θx =

∫
daIxa a and

Θo
x =

∫ ∫
daAdaBI

o
aA,aBax. For simplicity, we will skip

the detailed derivation here (see the Appendix for the
details). By manipulating the previous three differential
equations we can obtain four more, one for each auxiliary
function. The condition for the spreading of the disease
can be obtained by studying the spectral properties of
the Jacobian matrix of such system of seven differential
equations. In particular, if the largest eigenvalue of the
Jacobian matrix is larger than zero the system of equa-
tions will not be stable and consequently the number of
infected node will increase. Thus the epidemic threshold
can be obtained by studying the conditions for which this
holds.

A. Two layers and p = 0

As sanity check, let us consider first the limit p = 0.
In this case, each layer acts independently and we expect
the threshold of each to follow Eq. 3. This is exactly what
we find. In particular, the system of equations can be de-
coupled in two different subsets (one per layer) which are
governed by two Jacobian matrices whose largest eigen-
values are

Λx = −µ+ λmx〈ax〉+ λmx

√
〈a2

x〉, (6)

where 〈anx〉 =
∫
dafx(a)an. Thus, the spreading process

will be able to affect a finite fraction of the total pop-
ulation in case either of these two eigenvalues is larger
than zero, which implies λ

µ > (mx〈ax〉 + mx

√
〈a2

x〉)−1

as expected. It is important to notice that in case of a
multiplex network the disease might be able to spread
in one layer but not in the other. However, in case the
condition for the spreading is respected in both layers,
they will experience the disease.

B. Two layers and p = 1

Let us consider the opposite limit: p = 1. As described
in details in the Appendix, the condition for the spread-
ing of the disease reads:

λ

µ
>

1∑
y∈x

my〈ay〉o +
√

2mAmB〈aAaB〉o +
∑
y∈x

m2
y〈a2

y〉o
,

(7)
where 〈anx〉o =

∫ ∫
daAdaBh(aA, aB)anx and 〈aAaB〉o =∫ ∫

daAdaBh(aA, aB)aAaB . Interestingly, the threshold
is function of the first and second moments of the activity
distributions of the coupling nodes which are modulated
by the number of links each active node creates, plus a
term which encode the correlation of the activities of such
nodes in the two layers.

Before showing the numerical simulations to validate
the mathematical formulation an important observation
is in order. In this limit, effectively, we could think the
multiplex as a multigraph: a single layer network with
two types of edges. In case the joint probability distribu-
tion of activity is h(aA, aB) = f(aA)δ(aB−aA), thus two
activities are exactly the same, and mA = mB the thresh-
old reduces to Eq. 3 (valid for a single layer network) in
which the number of links created by active nodes is 2m.
However, for a general form of the joint distribution and
in case of different number of links created by each active
node in different layers this correspondence breaks down.

In all the following simulations, we set N = 105,
ε = 10−3, µ = 0.015, Y = 0.3, start the epidemic process
from a 1% of nodes selected randomly as initial seeds,
and show the averages of 102 independent simulations.
In Figure 2 we show the first results considering a simple
scenario in which mA = mB = 1 and the exponents for
the distributions of activities are the same γx = 2.1. The
first observation is that in all three cases the analytical so-
lutions (vertical dotted lines) agree with the results from
simulations. The second observation is that in case of
positive correlation between the activities of nodes in two
layers, the threshold is significantly smaller than in the
other two cases. This is not surprising as the nodes sus-
taining the spreading in both layers are the same. Thus,
effectively, active nodes are capable to infect the double
number of other nodes. As we mentioned above, many
real multiplexes are characterized by different types of
positive correlations. When thinking at real outbreaks,
the effect of such feature on the spreading process sug-
gests quite a worrying scenario. However, it is important
to remember that real multiplexes are sparse, thus char-
acterized by values of multiplexity which are far from the
limit p = 1 [9]. As we will see below, this aspect plays a
crucial role in the more realistic cases of 0 < p < 1. The
thresholds of the uncorrelated and negatively correlated
cases are very similar. In fact, due to the heterogeneous
nature of the activity distributions, except for few nodes
in the tails, the effective difference between the activities
matched in reverse or random order is not large, for the
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FIG. 2: (Top panel) Lifetime of SIS processes on temporal
multiplex networks versus λ for the uncorrelated (red circles),
negative correlated (green triangles) and positively correlated
(blue squares) cases. Therein, γx = 2.1 and mx = 1. The
vertical dotted lines with the same colors to the simulations
results are the corresponding analytical values obtained from
Eq. (7). The simulation results are averaged by 102 runs.
(Bottom left panel) The analytical thresholds computed by
Eq. (7) in the 2-D plane (γA,γB) when mx = 1. (Bottom right
panel) The analytical thresholds are calculated from Eq. (7)
in the 2-D plane (mA,mB) when γx = 2.1. In both bottom
panels we considered uncorrelated activities.

majority of nodes. In Figure 2 (bottom panels) we show
the behavior of the threshold as function of the activ-
ity exponents and the number of links created by active
nodes in the two layers. For a given distribution of activ-
ity in a layer, increasing the exponent in the other (thus
reducing the heterogeneity in the activity distribution)
results in an increase of the threshold. This is due to the
change of the first and second moments which decrease as
result of the reduced heterogeneity. In the settings con-
sidered here, if both exponents of activity distributions
are larger than 2.6 the critical value of λ becomes larger
than 1, as shown in Figure 2 (left bottom). Thus, in
such region of parameters, the disease will not be able to
spread. For a given number of links created in a layer by
each active node, increasing the links created in the other
layer results in a quite rapid reduction of the threshold.
This is due to the increase of the connectivity and thus
the spreading potential of active nodes.

C. M layers and p = 1

In the limit p = 1, we are able to obtain an expression
for the threshold of an SIS process unfolding on M lay-
ers. It is important to stress that this scenario is rather

unrealistic. Indeed, in real multiplexes the majority of
nodes is present only in one or two layers [9]. Never-
theless, we can argue that understanding the behavior of
the threshold also in this case is of theoretical interest.
With this observation in mind, the analytical condition
for the spreading of the disease can be written as (see the
Appendix for details):

λ

µ
>

1∑
y∈x
〈ay〉omy +

√ ∑
y∈x
〈a2y〉om2

y +
M−1∑
y=A

M∑
z>y

2〈ayaz〉omymz

,

(8)

where x = [A,B, . . . , Z] and z > y implies an alpha-
betical ordering. The first observation is that in case
h(ay, az) = f(ay)δ(az − ay) ∀y, z ∈ x, thus the activity
is the same for each node across each layer, Eq. 8 reduces
to:

λ

µ
>

1

Mm

1

〈a〉+
√
〈a2〉

, (9)

which is the threshold for a single layer activity-driven
network in which m → Mm. This is the generaliza-
tion of the correspondence between the two thresholds
we discussed above for two layers. The second observa-
tion is that, in general, increasing the number of layers
decreases the epidemic threshold. Indeed, each new lay-
ers increases the connectivity potential of each node and
thus the fragility of the system to the contagion process.
Figure 3 (top panel) shows the analytical behavior of the
epidemic threshold up to M = 10 for the simplest case
of uncorrelated (red dots) and positively correlated (blue
squares) activities between layers confirming this result.
In Figure 3 (bottom panel) we show the comparison be-
tween the analytical results and the numerical simula-
tions. The plot shows a perfect match between the two.
Furthermore, the two plots confirm the effects of positive
correlations which facilitate the spreading of the disease.

D. Two layers and 0 < p < 1

We now turn the attention to the most interesting and
realistic cases which are different from the two limits of
null and total coupling of nodes considered above. For
a general value of p, we could not find a general closed
expression for the epidemic threshold. However, the con-
dition for the spreading can be obtained by investigating,
numerically, the spectral properties of the Jacobian (see
the Appendix for details). In Figure 4 we show the life-
time of SIS spreading processes unfolding on a multiplex
network for three different values of p. The top panel
shows the uncorrelated case and the dashed vertical lines
describe the analytical predictions. The first observation
is that the larger the multiplexity between two layers the
smaller the threshold. This should not come as surprise.
In fact, as shown previously in Figure 1, the average con-
nectivity in the system increases as function of p. Thus,
increasing the fraction of nodes active in both layers in-
creases the spreading power of such nodes when they get
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M

FIG. 3: The top panel shows the analytical threshold com-
puted from Eq. (8) versus the number of layers M for the
uncorrelated (red circles) and the positively correlated (blue
squares) cases. The bottom panel presents the lifetime of SIS
processes on temporal multiplex networks when M = 3 for the
uncorrelated (red circles) and the positively correlated (blue
squares) cases. The blue dotted line and the red dashed line
are the corresponding analytical values. Other parameters
are set as γx = 2.1, p = 1 and mx = 1.

infected. The second observation is that the analytical
predictions match remarkably well the simulations. The
bottom panel shows instead the case of positive correla-
tion between the activities of coupling nodes in the two
layers. Also in this case, the larger the multiplexity the
smaller the epidemic threshold. The comparison between
the two panels highlights one more time the effects of pos-
itive correlations. Indeed, for all the values of p positive
correlations push the threshold to smaller values respect
to the uncorrelated case. This effect is more significant
for larger values of multiplexity. It is important to notice
that also here our analytical predictions match remark-
ably well the numerical simulations.

In Figure 5 we show the behavior of the (analytical)
epidemic threshold as function of p for three types of cor-
relations. The results confirm what discussed above. The
larger the multiplexity the smaller the threshold. Nega-
tive and null correlations of coupling nodes exhibit very
similar thresholds. Instead, positive correlations push
the critical value to smaller values. Furthermore, the
smaller the multiplexity the smaller the effect of posi-
tive correlations as the difference between the thresholds
increases as function of p. This is a reassuring result. In-
deed, as mentioned above, among the properties of real
multiplex systems we find the presence of positive topo-
logical and temporal correlations as well as low values of

FIG. 4: Top panel shows the lifetimes of the SIS processes
on the temporal multiplex networks in which the activities
of the coupling nodes in the two layers are uncorrelated for
different fraction of coupling nodes. Bottom panel shows the
lifetimes of the SIS processes on the temporal multiplex net-
works in which the activities of the coupling nodes in the
two layers are positively correlated for different fraction of
coupling nodes. The vertical lines are the corresponding ana-
lytical values. Other parameters are set as γx = 2.1, mx = 1.

multiplexity. The first feature favors the spreading of dis-
eases. Luckily instead, the second property reduces the
advantage of positive correlations pushing the threshold
to higher values which are closer to the case of nega-
tive and null correlations. It is also important to notice
how the threshold of a multiplex networks (p > 0) is al-
ways smaller than the threshold of a monoplex (p = 0)
with the same features. Indeed, the presence of coupling
nodes effectively increases the spreading potential of the
disease thus reducing the threshold. However, the pres-
ence of few coupling nodes (p ∼ 0) does not significantly
change the threshold, this result and the effect of multi-
plexity on the spreading power of diseases is in line with
what already discussed in the literature for static multi-
plexes [1, 22].

In Figure 6, we show how the epidemic threshold varies
when the average connectivity of the two layers is pro-
gressively different and asymmetric. In other words, we
investigate what happens when one layer has a much
larger average connectivity than the other. This situ-
ation simulates individuals engaged in two different so-
cial contexts, one characterized by fewer interactions (e.g.
close family interactions) and one instead by many more
connections (e.g. work environment). In the figure, we
consider a multiplex network in which the layer A is char-
acterized by mA = 1. We then let mB vary from 1 to
10 and measure the impact of this variation on the epi-
demic threshold for different values of p. For simplicity,
we considered the case of uncorrelated activities in the
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FIG. 5: The analytical threshold (Eq. (S11)) is plotted as
a function of p for the uncorrelated (red circles), negatively
correlated (green triangles) and positively correlated (blue
squares) cases. We set γx = 2.1 and mx = 1.
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FIG. 6: The analytical threshold is plotted as a function of
mB when the activities of the coupling nodes in the two layers
are uncorrelated and mA is fixed as 1. We set γx = 2.1.

two layers, but the results qualitatively hold also for the
other types of correlations. Few observations are in or-
der. As expected, the case p = 0 is the upper bound of
the epidemic threshold. However, the larger the asym-
metry between the two layers, thus the larger the aver-
age connectivity in the layer B, the smaller the effect of
the multiplexity on the threshold. Indeed, while systems
characterized by mB = 1 and higher multiplexity feature
a significantly smaller threshold respect to the monoplex,
for mB ≥ 3 such differences become progressively negligi-
ble and the effects of multiplexity vanish. In this regime,
the layer with the largest average connectivity drives the
spreading of the disease. The connectivity of layer B, ef-
fectively determines the dynamics of the contagion, and
thus the critical behavior is not influenced by coupling
nodes. Interestingly, this result generalizes to the case of
time-varying systems what has been found in the case of
static multiplexes. Indeed, Cozzo et al [26] showed how
the threshold of contact based processes is driven by the
dominant layer which, roughly corresponds to the layer
featuring higher connectivity.

In order to get a deeper understanding on this phenom-
ena, we show the asymptotic number of infected nodes

FIG. 7: Top panel and bottom panel respectively present the
asymptotic fraction of infected nodes in layer A and B. The
results are averaged by 102 simulations. We set γx = 2.1,
mA = 1, and mB = 10.

in each layers for mA = 1 and mB = 10 in Figure 7.
For any λ above the threshold the fraction of infected
nodes in layer B (bottom panel) is larger than in layer A
(top panel ) and is independent of the fraction of coupling
nodes. As discussed above, in these settings the layer B is
driving the contagion process and the imbalance between
the connectivity patterns is large enough to behave as a
monoplex. However, for layer A the contagion process
is still highly influenced by p. Indeed, as the fraction of
coupling nodes increases layer A is more and more influ-
enced by the contagion process unfolding in B. Overall,
these results are qualitatively similar to the literature of
spreading phenomena in static multilayer networks [14].

III. CONCLUSIONS

We presented a time-varying model of multiplex net-
works. The intra-layer temporal dynamics follow the
activity-driven framework which was developed for sin-
gle layered networks (i.e. monoplexes). Thus, nodes are
endowed with an activity that describes their propen-
sity, per unit time, to initiate social interactions. We de-
fine the multiplexity as a free parameter p regulating the
fraction of coupling nodes between layers. The activities
of such nodes are considered, in general, to be different
but potentially correlated. In these settings, we studied
how multiplexity and temporal connectivity patterns af-
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fect dynamical processes unfolding on such systems. To
this end, we considered a prototypical model of infectious
diseases: the SIS model. We derived analytically the epi-
demic threshold of the process as function of p. In the
limit p = 0 the system is constituted by disconnected net-
works that behave as monoplexes. In the opposite limit
instead ( i.e. p = 1) the epidemic threshold is function of
the first and second moment of the activity distributions
as well as by their correlations across layers. We found
that, systems characterized by positive correlations are
much more fragile to the spreading of the contagion pro-
cess with respect to negative and null correlations. As
several real multiplex systems feature positive topologi-
cal and temporal correlations [9–11], this result depicts
a worrying scenario. Luckily, real multiplexes are also
sparse, thus characterized by multiplexity values far from
limit p = 1 [9]. The threshold also varies as a function of
the number of layers M . Indeed, with perfect coupling
each node is present and potentially active in each layer.
Thus, the larger M the smaller the epidemic threshold
as the spreading potential of each node increases. In the
general and more realistic case 0 < p < 1, we could
not find a closed expression for the epidemic threshold.
However, the critical conditions for the spreading can be
calculated from the theory by investigating numerically
the spectral properties of the Jacobian matrix describ-
ing the contagion dynamics. Also in this case, positive
correlations of activities across layers help the spreading
by lowering the epidemic threshold; while negative and
null correlations result in very similar thresholds. More-
over, the lower the multiplexity the larger the epidemic
threshold. Indeed, the case of disconnected monoplexes
(i.e. p = 0) is the upper bound for the threshold. Fur-
thermore, the difference between the thresholds in the
case of positive and the other two types of correlations
decreases by lowering the multiplexity. Considering the
features of real multiplexes this is a rather reassuring re-
sult. In fact, on one side the spreading is favored by
positive correlations. On the other, the effect of such
correlations is far less important for small values of mul-
tiplexity, which are typical of real systems. Interestingly,
the role of the multiplexity, is drastically reduced in case
the average connectivity in one layer is much larger than
the other. In this scenario, which mimics the possible
asymmetry in the contact patterns typical of different
social contexts (e.g. family VS work environment), one
layer drives the contagion dynamics and the epidemic
threshold is indistinguishable from the monoplex. How-
ever, the multiplexity is still significantly important in
the other layer as the fraction of nodes present in both
layers largely determines the spreading dynamics.

Some of these results are qualitatively in line with
the literature of contagion processes unfolding on
static/annealed multiplexes. However, as known in the
case of single layered graphs, time-varying dynamics in-
duce large quantitative differences [27, 28]. Indeed, the
concurrency and order of connections are crucial ingre-
dients for the spreading and neglecting them, in favor

of static/annealed representations, generally results in
smaller thresholds. While the limits of time-scale sep-
aration might be relevant to describe certain types of
processes, they might lead to large overestimation of the
spreading potential of contagion phenomena.

The model presented here comes with several limita-
tions. In fact, we considered the simplest version of the
activity driven framework in which, at each time step,
links are created randomly. Future work could explore
the role of more realistic connectivity patterns in which
nodes activate more likely a subset of (strong) ties and/or
nodes are part of communities of tightly linked individu-
als. Furthermore, we assumed that the activation process
is Poissonian and the activity of each node is not a func-
tion of time. Future work could explore more realistic
dynamics considering bursty activation and ageing pro-
cesses. All these features of real time-varying networks
have been studied at length in the literature of single
layered networks but their interplay with multiplexity
when dynamical processes are concerned is still unex-
plored. Thus result presented here are a step towards
the understanding of the temporal properties of multi-
plex networks and their impact on contagion processes
unfolding on their fabric.
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V. APPENDIX

A. Derivation of the threshold when M = 2

Integrating over all activity spectrum of Eq. (4), it
obtains the following equation,

dtI
x = −µIx + λmx

∫
da
Nx
a − Ixa
N

a(Ix + Io)

+λmx

∫
da
Nx
a − Ixa
N

[ ∫
da′Ixa′a

′ +

∫ ∫
da′Ada

′
BI

o
a′A,a

′
B
a′x

]
.

(S1)
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Initially, Ixa ≈ 0,
∫
da

Nx
a−I

x
a

N a ≈ (1 − p)〈ax〉. Thus
Eq. (S1) can be further simplified as

dtI
x ≈ −µIx + λmx(1− p)〈ax〉(Ix + Io)

+λmx(1− p)
[ ∫

da′Ixa′a
′ +

∫ ∫
da′Ada

′
BI

o
a′A,a

′
B
a′x

]
.

(S2)

Four auxiliary variables defined to simplify Eq. (S2) are
as follows, ΘA =

∫
daIAa a, ΘB =

∫
daIBa a, Θo

A =∫ ∫
daBdaAI

o
aA,aBaA and Θo

B =
∫ ∫

daAdaBI
o
aA,aBaB .

Since x = [A,B], Eq. (S2) can be expressed as

dtI
A = −µIA + λmA(1− p)〈aA〉(IA + Io)

+λmA(1− p)
(
ΘA + Θo

A

)
(S3)

and

dtI
B = −µIB + λmB(1− p)〈aB〉(IB + Io)

+λmB(1− p)
(
ΘB + Θo

B

)
. (S4)

Integrating over all activity spectrum of Eq. (5), it ob-
tains the following equation,

dtI
o = −µIo + λmAp〈aA〉o(IA + Io)

+λmBp〈aB〉o
(
IB + Io

)
+ pλmA(ΘA + Θo

A)

+pλmB(ΘB + Θo
B). (S5)

Multiplying both side of Eq. (4) by ax, and integrating
over all activity spectrum, we get the following equation

dtΘ
x = −µΘx + λmx(1− p)〈a2

x〉
(
IA + Io

)
+λmx(1− p)〈ax〉

(
Θx + Θo

x

)
. (S6)

Replacing x with A and B in Eq. (S6) respectively, we
have

dtΘ
A = −µΘA + λmA(1− p)〈a2

A〉
(
IA + Io

)
+λmA(1− p)〈aA〉

(
ΘA + Θo

A

)
. (S7)

and

dtΘ
B = −µΘB + λmB(1− p)〈a2

B〉
(
IB + Io

)
+λmB(1− p)〈aB〉

(
ΘB + Θo

B

)
. (S8)

In the same way, multiplying both sides of Eq. (5) by ax
and integrating over all activity spectrum, it obtains the
following two equations

dtΘ
o
A = −µΘo

A + λmAp〈a2
A〉o
(
IA + Io

)
+λmBp〈aAaB〉o

(
IB + Io

)
+ λmAp〈aA〉o

(
ΘA + Θo

A

)
+λmBp〈aA〉o

(
ΘB + Θo

B

)
(S9)

and

dtΘ
o
B = −µΘo

B + λmAp〈aAaB〉o
(
IA(t) + Io(t)

)
+λmBp〈a2

B〉o
(
IB(t) + Io(t)

)
+ λmAp〈aB〉o

(
ΘA + Θo

A

)
+λmBp〈aB〉o

(
ΘB + Θo

B

)
(S10)

when x is replaced with A and B, respectively. When
the system enters the steady state, we have dtI

A = 0,
dtI

B = 0, dtI
o = 0, dtΘ

A = 0, dtΘ
B = 0, dtΘ

o
A = 0 and

dtΘ
o
B = 0. Set the right hand of Eqs. (S7)-(S10) and

Eqs. (S3)-(S5) as zero, and denote them respectively as
F(ΘA), F(ΘB), F(Θo

A), F(Θo
B), F(IA), F(IB) and F(Io).

Thus, the critical condition is determined by the follow-
ing Jacobian matrix,

J =



∂F (ΘA)
∂ΘA

∂F (ΘA)
∂ΘB

∂F (ΘA)
∂Θo

A

∂F (ΘA)
∂Θo

B

∂F (ΘA)
∂IA

∂F (ΘA)
∂IB

∂F (ΘA)
∂Io

∂F (ΘB)
∂ΘA

∂F (ΘB)
∂ΘB

∂F (ΘB)
∂Θo

A

∂F (ΘB)
∂Θo

B

∂F (ΘB)
∂IA

∂F (ΘB)
∂IB

∂F (ΘB)
∂Io

∂F (Θo
A)

∂ΘA

∂F (Θo
A)

∂ΘB

∂F (Θo
A)

∂Θo
A

∂F (Θo
A)

∂Θo
B

∂F (Θo
A)

∂IA
∂F (Θo

A)
∂IB

∂F (Θo
A)

∂Io

∂F (Θo
B)

∂ΘA

∂F (Θo
B)

∂ΘB

∂F (Θo
B)

∂Θo
A

∂F (Θo
B)

∂Θo
B

∂F (Θo
B)

∂IA
∂F (Θo

B)
∂IB

∂F (Θo
B)

∂Io

∂F (IA)
∂ΘA

∂F (IA)
∂ΘB

∂F (IA)
∂Θo

A

∂F (IA)
∂Θo

B

∂F (IA)
∂IA

∂F (IA)
∂IB

∂F (IA)
∂Io

∂F (IB)
∂ΘA

∂F (IB)
∂ΘB

∂F (IB)
∂Θo

A

∂F (IB)
∂Θo

B

∂F (IB)
∂IA

∂F (IB)
∂IB

∂F (IB)
∂Io

∂F (Io)
∂ΘA

∂F (Io)
∂ΘB

∂F (Io)
∂Θo

A

∂F (Io)
∂Θo

B

∂F (Io)
∂IA

∂F (Io)
∂IB

∂F (Io)
∂Io


(S11)

If the largest eigenvalue of J is larger than zero, the epi-
demic will outbreak. Otherwise, the epidemic will die

out. Specifically, if p = 0, two layers are independent,
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thus regulated by two independent Jacobian, and we can
get the following two eigenvalues,

ΛA = −µ+ aAλmA + λmA

√
〈a2
A〉

and

ΛB = −µ+ aBλmB + λmB

√
〈a2
B〉,

which determine the dynamics on layer A and layer B,
respectively. If p = 1, the largest eigenvalue is

Λ = −µ+ λ
∑
y∈x

my〈ay〉o

+λ

√
2mAmB〈aAaB〉o +

∑
y∈x

m2
y〈a2

y〉o. (S12)

Further, the critical transmission rate is written as

λc =
µ∑

y∈x
my〈ay〉o +

√
2mAmB〈aAaB〉o +

∑
y∈x

m2
y〈a2

y〉o
.

(S13)

For 0 < p < 1, we could not find a general analytical
expression for the eigenvalues of J . However, the criti-
cal transmission rate can be determined by finding the
value of λ leading the largest eigenvalue of J to zero. In
other words, rather the solving explicitly the character-
istic polynomial |J − ΛI| = 0 and defining the condition
for the spreading max Λ > 0 as done above, we can de-
termine the critical value of λ as the value corresponding
to the largest eigenvalue to be zero [77, 78].

B. Derivation the threshold for M layers when
p = 1

Assume there are M layers, and let No
aA,aB ,...,aM

and IoaA,aB ,...,aM (t) respectively be the number of nodes
and the number of infected nodes with activities
(aA, aB , ..., aM ) in layers (A,B, ...,M). With the same
derivation method of Eq. (5), the evolution equation of
IoaA,aB ,...,aM can be written as

dtI
o
aA,...,aM = −µIoaA,...,aM

+

M∑
i=A

λmi

[
No
aA,...,aM − I

o
aA,...,aM

]
ai
Io

N

+
No
aA,...,aM − I

o
aA,...,aM

N

×
M∑
i=A

λmi

∫
da′A · · ·

∫
da′MI

o
a′A,...,a

′
M
a′i,

(S14)

therein, Io =
∫
da′A · · ·

∫
da′MI

o
a′A,...,a

′
M

. For the simplic-

ity, let

Θo
i =

∫
da′A · · ·

∫
da′MI

o
a′A,...,a

′
M
a′i. (S15)

Multiplying both sides of Eq.(S14) by ai and integrat-
ing over all activity spectrum, it obtains the following
equation

dtΘ
o
i ≈ −µΘo

i +

∫
da′A · · ·

∫
da′Ma

′
i

M∑
j=A

λmj

No
a′A,...,a

′
M

N
a′jI

o

+

∫
da′A · · ·

∫
da′M

Na′A,...,a′M
N

a′i

M∑
j=A

λmjΘ
o
j

= −µΘo
i +

M∑
j=A

λmj〈aiaj〉Io + 〈ai〉
M∑
j=A

λmjΘ
o
j . (S16)

Integrating over all activity spectrum of Eq. (S14), it
obtains the following equation

dtI
o = −µIo +

M∑
i=A

λmi〈ai〉Io +

M∑
i=A

λmiΘ
o
i .

(S17)

When the system enters the steady state, dtI
o = 0 and

dtΘ
o
i = 0 for i = A,B, ...,M . Set the right side of

Eqs. (S16) and (S17) as zero, and denote them respec-
tively as Fi(Θ

o
i ) and F (Io). Thus the critical condition

is determined by the following Jacobian matrix

JM =


∂FA(Θo

A)
∂Θo

A

∂FA(Θo
A)

∂Θo
B

· · · ∂FA(Θo
A)

∂Io

∂FB(Θo
A)

∂Θo
A

∂FB(Θo
A)

∂Θo
B

· · · ∂FB(Θo
A)

∂Io

· · · · · · · · · · · ·
∂F (Io)
∂Θo

A

∂F (Io)
∂Θo

B
· · · ∂F (Io)

∂Io

 .
Further, the maximum eigenvalue of matrix JM can be
calculated as

Λ = −µ+

M∑
i=A

λ〈ai〉mi

+

√√√√ M∑
i=A

λ2〈a2
i 〉m2

i +

M−1∑
i=A

M∑
j>i

2λ2〈aiaj〉mimj

(S18)

Thus, the critical transmission rate is

λc =
µ

M∑
i=A

〈ai〉mi +

√
M∑
i=A

〈a2
i 〉m2

i +
M−1∑
i=A

M∑
j>i

2〈aiaj〉mimj

(S19)

Further, if the activities of the same node in each layer
are the same, the above equation can be simplified as
follows,

λc =
1

Mm

µ

〈a〉+
√
〈a2〉

(S20)
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Sergio Gómez, and Alex Arenas. Mathematical for-
mulation of multilayer networks. Physical Review X,
3(4):041022, 2013.

[4] Stefano Boccaletti, Ginestra Bianconi, Regino Criado,
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