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Multiple attractors of host–parasitoid models with integrated pest
management strategies: Eradication, persistence and outbreak
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Abstract

Host–parasitoid models including integrated pest management (IPM) interventions with impulsive effects at both fixed and unfixed times were
analyzed with regard to host-eradication, host–parasitoid persistence and host-outbreak solutions. The host-eradication periodic solution with fixed
moments is globally stable if the host’s intrinsic growth rate is less than the summation of the mean host-killing rate and the mean parasitization
rate during the impulsive period. Solutions for all three categories can coexist, with switch-like transitions among their attractors showing that
varying dosages and frequencies of insecticide applications and the numbers of parasitoids released are crucial. Periodic solutions also exist for
models with unfixed moments for which the maximum amplitude of the host is less than the economic threshold. The dosages and frequencies of
IPM interventions for these solutions are much reduced in comparison with the pest-eradication periodic solution. Our results, which are robust
to inclusion of stochastic effects and with a wide range of parameter values, confirm that IPM is more effective than any single control tactic.
c© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Biological control is a component of an integrated pest
management (IPM) strategy (Greathead, 1992; Parker, 1971).
It is defined as the reduction of pest populations by natural
enemies and typically involves an active human role, such
as augmentation which involves the supplemental release
of natural enemies. Relatively few natural enemies may be
released at a critical time of the season (inoculative release) or
millions may be released (inundative release) when insufficient
reproduction of released natural enemies is likely to occur
and pest control will be achieved exclusively by the released
individuals themselves. Examples of inoculative release occur
in greenhouse production of several crops. Periodic releases of
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the parasitoid Encarsia formosa are used to control greenhouse
whitefly, and the predatory mite Phytoseiulus persimilis is used
for controlling the two-spotted spider mite Tetranychus urticae
(Hoffmann and Frodsham, 1993). An example of inundative
release was the use of the wasp Epidinocarsis lopezi to control
the Cassava Mealy Bug Phenacocus manihoti in more than 16
African countries (Neuenschwander and Herren, 1988).

If all other integrated pest management tactics including
biological, cultural, physical and mechanical control are unable
to keep an insect pest population below an economic threshold
(Fig. 1), then the use of an insecticide to control the pest and
prevent economic loss is justified. In most cropping systems,
insecticides are still the principal means of controlling pests
once the economic threshold has been reached. They can be
relatively cheap and are easy to apply, fast-acting, and in most
instances can be relied on to control the pests (Hoffmann and
Frodsham, 1993).

However, overuse of a single control tactic is discouraged
to avoid or delay the development of resistance by the pest to
the control tactic, to minimize damage to non-target organisms,
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Fig. 1. Economic Injury Level (EIL) = lowest population density that will
cause economic damage. Economic Threshold (ET) = population density at
which the control measures should be introduced to prevent an increasing pest
population from reaching the economic injury level. The arrows indicate points
when pest levels exceeded the economic threshold and an IPM strategy would
be applied.

and to preserve the quality of the environment. IPM has
been shown by experiments (Van Lenteren, 1995, 2000; Van
Lenteren and Woets, 1988; Flint, 1987; Pedigo, 1996; Pedigo
and Higley, 1992) to be more effective than classical methods
(such as biological or chemical control only). An important
concept in IPM is that of the economic threshold (ET) (Fig. 1).
An economic threshold is usually defined as the number of
insect pests in the field when control actions must be taken to
prevent the economic injury level (EIL) from being reached and
exceeded, where the EIL is the lowest pest population density
that will cause economic damage. For an IPM strategy, action
must be taken once a critical density of pests is observed in the
field so that the EIL is not exceeded. That is, sufficient lead
time is needed between the time when an economic density is
observed and the time when a treatment is actually applied in
the field. Therefore ET must be less than the EIL.

In practice, determining the EIL and ET is generally a
complex matter based on detailed investigations of pest ecology
as it relates to bioclimatology, predation, diseases, the effect
of host-plant resistance and the environmental consequences
of applied control interventions (Metcalf and Luckman, 1975).
One of the most important questions in IPM is how many
natural enemies should be released and what fraction of the
insect pest population should be killed to avoid economic
damage when the pest population reaches or exceeds the ET
level. In many cases, the most effective release rate or spraying
rate has not been identified as it will vary depending on crop
type and target host density.

Undoubtedly, mathematical modelling is one of the key tools
for estimating and predicting population densities (Barclay,
1982; Barlow et al., 1996). Recently, continuous predator–prey
models concerning IPM strategies have been developed and
investigated (Tang and Chen, 2004; Tang and Cheke, 2005;
Tang et al., 2005). Several biologically desirable solutions
including a pest-eradication periodic solution and positive
periodic solutions with maximum pest amplitude below ET
were obtained analytically. These results can help us to
design a control strategy such as deciding on the dosage and
frequency of insecticide applications and the preferred timings
for releasing natural enemies.

However, a common feature among many insect species
is that they exhibit discrete population generations. With this
scenario the use of continuous-time models to describe the
population dynamics of a species becomes questionable, so
when populations have discrete and synchronized generations,
discrete host–parasitoid models are much more realistic. These
models are usually described by a pair of coupled first-
order difference equations (Hassell and May, 1973; Hassell,
1978, 1984, 2000a,b). It has been shown that for the classic
Nicholson–Bailey model (Nicholson and Bailey, 1935) for a
two species host–parasitoid system with discrete generations,
the slightest perturbation away from its steady state results
in diverging oscillations of the population sizes of both
host and parasitoid. Although unstable, this model inspired
many investigations into more complex host–parasitoid systems
(Hassell and May, 1973; Broadhead and Cheke, 1975;
Beddington et al., 1975; Hassell, 1978, 2000b).

The main purposes of the present paper are to extend the
classic Nicholson–Bailey model by addition of a fraction for
the survival rate, inside or outside their hosts, of parasitoids
from one generation to the next, and to investigate the effect
of an IPM strategy on this expanded model. The parasitoid
intergenerational survival rate can be affected by several
different factors such as immigration from outside the local
area, parasitoid overwintering survival and parasitism of an
alternate insect pest which is not modelled explicitly. On the
one hand, most parasitoids are highly mobile winged insects,
such as hymenopterous wasps and dipteran flies, and most of
their hosts are insect stages that are partially or completely
immobile (e.g. caterpillars, eggs), so when the parasitization
takes place the hosts are largely sedentary. One the other hand,
some parasitoids such as Sphecophaga vesparum (Curtis) can
overwinter for several generations. S. vesparum is a parasitoid
of some social wasps (Vespinae) and was the first biological
control agent introduced against wasps (Donovan and Read,
1987). It has been released throughout much of New Zealand
since early 1985 (Donovan and Read, 1987; Beggs et al.,
1996; Donovan, 1991). Parasitoid larvae pupate forming one of
three types of cocoon (Donovan, 1991), one type being tough,
yellow (overwintering) cocoons that produce winged females
or males and which may spend up to 4 years in a dormant
state before emerging. Another example is Echthromorpha
intricatoria which is capable of overwintering as pupae within
the pupae of the New Zealand red admiral butterfly Bassaris
gonerilla and thus can attack all generations of B. gonerilla
(Barron et al., 2004).

Here we investigate what affects the incorporation of
parasitoid intergenerational survival rates, the periodicity of
insecticide spraying and the augmentation of natural enemies
have on the dynamics of the classical Nicholson–Bailey
host–parasite system. Firstly, we suggest an impulsive
difference system to model the process of periodic releases
of natural enemies and spraying pesticides or trapping the
pest to eradicate it. We analyze the global stability of the
so-called pest-eradication periodic solution, and show that it
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is globally stable if the host’s intrinsic growth rate is less
than the summation of the mean host-killing rate and mean
parasitization rate during the impulsive period. Numerical
investigations imply that the dynamical behaviour of a system
with fixed moments is dominated by several typical periodic
solutions such as host-eradication, host–parasitoid persistence
and host-outbreak periodic solutions, which can coexist. This
indicates that the final state of the host population depends
on its initial conditions, which has been confirmed from the
basins of attraction of these stable attractors. The switch-
like behaviour is another important characteristic of a system
with fixed moments, i.e. small random perturbations can
cause state transitions from a host-outbreak solution to a
host–parasitoid periodic solution, which shows that varying
dosages of insecticide applications and differing numbers of
natural enemies released play key roles in pest control. Analysis
of this simple model suggests that the role of multiple attractors
in the response to IPM strategies should be examined in more
realistic host–parasitoid models.

Secondly, we describe an impulsive difference system which
models impulsive effects, such as releasing natural enemies
and spraying pesticides against the pest or trapping the pest,
introduced when the pest population reaches the ET (Fig. 1),
aimed at keeping the density of the host population below
the ET and investigate its stability properties. Our results
show that there exist stable periodic solutions such that the
maximum amplitude of the host population does not exceed the
given ET. Comparing this type of periodic solution with host-
eradication periodic solutions, we conclude that the required
dosages and frequencies of insecticide applications are reduced
if the density of the host population is only kept below ET
rather than being eradicated. However, bifurcation analysis
implies that the dynamical behaviour of the system with unfixed
moments is much more complex than that of the system with
fixed moments. The former is dominated by period doubling
bifurcations and chaotic solutions while the latter is dominated
by periodic solutions. Theoretically, our results confirm that
IPM is more effective than any single control tactic. In practice,
the modelling methods and results presented here represent an
important step in the design of appropriate IPM strategies.

2. Host–parasitoid models including parasitoid intergener-
ational survival rates

Traditionally, there have been two distinct starting points
for exploring the dynamics of host–parasitoid or predator–prey
models, each with its own adherents. Lotka–Volterra models
(Lotka, 1920; Volterra, 1931) start with the assumption that
generations of the interacting populations overlap completely
and that birth and death processes are continuous. Recently,
the continuous Lotka–Volterra model with or without impulsive
effects concerning IPM strategies has been extensively studied
(Grasman et al., 2001; Tang and Chen, 2004; Tang and
Cheke, 2005; Tang et al., 2005). Synchronized and discrete
generations of both host and parasitoid make it easy to
formulate the dynamics of such interacting predator–prey
populations in terms of simple mathematical models (Hassell,
1978). Host–parasitoid models are usually described by a pair
of coupled first-order difference equations (Hassell, 2000b;
Hassell and May, 1973, 1974; May, 1978, 1985; May et al.,
1981; May and Hassell, 1988).

A classic discrete-generation host–parasitoid interaction was
developed by Nicholson and Bailey (1935):{

Hn+1 = Hn exp[r − a Pn],

Pn+1 = Hn[1 − exp(−a Pn)],
(2.1)

where Hn and Pn are the density of hosts and parasitoids in
generation n. r is the intrinsic growth rate of the host population
in the absence of parasitoids. The parameter a is a measure of
the parasite’s searching efficiency, and the term exp(−a Pn) is
the probability that a host individual escapes parasitism. Thus,
a particular host individual is parasitized and converted with
probability [1 − exp(−a Pn)] into parasite individuals. It is well
known that the Nicholson–Bailey model has a positive fixed
point and it is never stable, which means that the slightest
perturbation leads to divergent oscillations, but this instability
contrasts with the fact that many hosts and parasitoids coexist
in nature. A number of stabilizing factors such as spatial
heterogeneity, non-random search, density-dependent growth
of the host, functional responses of the parasitoid, and mutual
interference among searching parasitoids were put forward in
order to stabilize coexistence in single host-single parasitoid
systems (Hassell and May, 1973; Beddington et al., 1975, 1978;
Hassell, 1978; May et al., 1981; Hassell, 2000b). Taking into
account an intergenerational survival rate for the parasitoid, we
have the following extended Nicholson–Bailey model:{

Hn+1 = Hn exp[r − a Pn],

Pn+1 = Hn[1 − exp(−a Pn)] + δPn,
(2.2)

where δ ≥ 0 denotes the density-independent survival of the
parasitoid at generation n. This could represent immigration
from outside the local area, releases of biological control
agents, and increased population growth rate of the parasitoid
caused by parasitism of an alternate insect pest which is not
modelled explicitly (Briggs and Borer, 2005; Dwyer et al.,
2000; Stone and Hart, 1999; White and Wilson, 1999).

Linearized local stability analysis shows that the fixed point

(H∗, P∗) =

(
(1 − δ)r

a(1 − exp(−r))
,

r

a

)
(2.3)

of model (2.2) is also unstable. However, the main purpose
of the present paper is to investigate the effect of periodic
releases of the parasitoid (such as periodic releases of Encarsia
formosa used to control greenhouse whitefly, and the predatory
mite Phytoseiulus persimilis used for controlling the two-
spotted spider mite Tetranychus urticae) and periodic spraying
of insecticides on model (2.2), and design control strategies
for when the density of the host population reaches the ET. In
what follows, the model (2.2) has been extended through two
different impulsive effects, fixed or unfixed moment.

3. Host–parasitoid model with periodic impulsive effects

In this section, we will extend model (2.2) by introducing
a periodic IPM strategy such as periodic releases of natural
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enemies (Parker, 1971) or spraying pesticide at a critical
time and examine the consequences of population densities
changing very rapidly. For instance, impulsive reduction of the
pest population is possible by trapping the pests and/or by
poisoning them with chemicals. An impulsive increase of the
parasitoid population density can be achieved by laboratory-
based breeding followed by releases into the field. So, we
investigate what happens when combinations of biological
(natural enemies), cultural (trapping), and chemical (killing)
tactics that eradicate the pest to extinction, are used and, in
addition, determine which is the most efficient strategy within
an IPM context. To this end, let us assume that at every
qth generation the system (2.2) is subject to a perturbation
which incorporates a proportional decrease of the insect pest
and proportional increase of the parasitoid and an introduction
constant τ for the parasitoid which does not depend on the sizes
of the populations Pqk . After the perturbation at step qk the size
of the population Hqk and Pqk become

Hqk+ = (1 − q1)Hqk, Pqk+ = (1 + q2)Pqk + τ

where q is a positive integer and k = 1, 2, . . . , 1 − q1 denotes
the proportionate survival rate after spraying insecticide, and
q2 is a proportion representing the release rate of the parasitoid
at generation qk, and τ is a releasing constant which does
not depend on the density of parasitoids. Hqk and Pqk are the
densities of the host and parasitoid at generation qk before the
impulsive perturbations, and Hqk+ and Pqk+ are the densities
of the host and parasitoid at generation qk after the impulsive
perturbations.

The control strategies include both the proportional and
constant releasing of natural enemies and the killing of the
insect pest with insecticide or by trapping. In combination with
system (2.2), we have the following system:

Hn+1 = Hn exp[r − a Pn],

Pn+1 = Hn[1 − exp(−a Pn)] + δPn,

}
n = 0, 1, 2, . . . ,

Hqk+ = (1 − q1)Hqk,

Pqk+ = (1 + q2)Pqk + τ,

}
k = 1, 2, . . . ,

(3.1)

where q is a fixed positive integer and denotes the period of
the impulsive effect, which means that an integrated control
strategy should be applied when n is an integer multiple of q.
The initial conditions are (H0+ , P0+) = (H0, P0). Here for
convenience we denote the initial density after an impulsive
perturbation.

3.1. Existence and global stability of host-eradication periodic
solutions

In order to consider the existence and stability of host-
eradication periodic solutions of system (3.1), we first consider
the following simple system:

Pn+1 = δPn, n = 0, 1, 2, . . . ,

Pqk+ = (1 + q2)Pqk + τ, k = 1, 2, . . . ,

P+

0 = P0.

(3.2)

It follows from the periodicity of system (3.2) that the solution
Pn can be defined at impulsive subinterval n ∈ [qs+, q(s + 1))
with s = 0, 1, 2, . . . , and n = qs+ means that we take the
density of parasitoids after an impulsive perturbation as the
initial value in this interval.

For any n ∈ [qs+, q(s + 1)), it follows from system (3.2)
that

Pn+1 = δn+1−qs Pqs+ .

If n = q(s + 1) − 1 then we have

Pq(s+1) = δq Pqs+ (3.3)

and it follows from impulsive conditions that we have

Pq(s+1)+ = (1 + q2)Pq(s+1) + τ = (1 + q2)δ
q Pqs+ + τ. (3.4)

Therefore, the existence of a periodic solution of system (3.2)
with period q implies that the difference equation (3.4) has a
steady state, i.e.

P0 = (1 + q2)δ
q P0 + τ

which implies that P0 =
τ

1−(1+q2)δ
q , and the following

condition is sufficient to guarantee the existence and stability
of the periodic solution of system (3.2)

f1
.
= 1 − (1 + q2)δ

q > 0. (3.5)

Any solution of system (3.2) has the following property:

Lemma 3.1. If inequality (3.5) holds true, then system (3.2)
has a positive periodic solution P∗

n and for every solution
Pn of (3.2) we have |Pn − P∗

n | → 0 as n → ∞. Where
P∗

n = δn−qs P0, n ∈ [qs+, q(s + 1)), s = 0, 1, 2, . . . , and
P0 =

τ
1−(1+q2)δ

q .

Therefore, we obtain the complete expression for the ‘host-
eradication’ periodic solution of system (3.1) over the interval
n ∈ [qs+, q(s + 1)), s = 0, 1, 2, . . . , and

(0, P∗
n ) =

(
0,

τδn−qs

1 − (1 + q2)δq

)
, (3.6)

and we have the following main theorem of this section for
system (3.1).

Theorem 3.1. Let (Hn, Pn) be any solution of (3.1). Then
(0, P∗

n ) is globally asymptotically stable in the first quadrant
provided that

r <
1
q

ln
(

1
1 − q1

)
+

1
q

aτ(1 − δq)

(1 − (1 + q2)δq)(1 − δ)
. (3.7)

The proof of Theorem 3.1 is given in the Appendix.
In particular, let q2 = 0 and τ = 0 (chemical control only),

and the host-eradication periodic solution (3.6) is globally
stable ((0, 0) in this case) if the intrinsic growth rate of the host
population satisfies

r <
1
q

ln
(

1
1 − q1

)
(3.8)

which means that if the intrinsic growth rate is less than the
mean host-killing rate due to an insecticide application over
period q, then the host population eventually goes to extinction.
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Fig. 2. The q–δ parameter plane demarcated with the stability of the host-
eradication periodic solution. (0, P∗

n ) is globally stable if f1 > 0 and f2 < 0.
The dynamic behaviour becomes very complex if f2 > 0. In this region stable
solutions including the HE periodic solution, HPP, and HO solutions and two or
all of them coexist. The other parameters are fixed as r = 1.8, a = 0.15, q1 =

0.2, τ = 10 and q2 = 0.3.

Similarly, let q1 = 0 (biological control only), then the
condition which guarantees the global stability of the host-
eradication periodic solution becomes:

r <
1
q

aτ(1 − δq)

(1 − (1 + q2)δq)(1 − δ)
(3.9)

which means that if the intrinsic growth rate is less than the
mean parasitization rate over period q , then the host population
will become extinct eventually.

However, for an IPM strategy (q1 > 0, q2 ≥ 0 and τ > 0
here) inequality (3.7) indicates that if the intrinsic growth rate
of the host population is less than the summation of the mean
killing rate and the mean parasitization rate over period q,
then the host population will tend to zero. Theoretically, this
confirms that an IPM strategy is more effective than any single
control strategy.

If we denote

f2
.
= qr − ln

(
1

1 − q1

)
−

aτ(1 − δq)

(1 − (1 + q2)δq)(1 − δ)
, (3.10)

then the global stability region of the host-eradication periodic
solution is determined by f1 > 0 and f2 < 0. One example
shown in Fig. 2 shows the existence and stability region of the
host-eradication periodic solution in the parameter q − δ plane.
Stability of the host-eradication periodic solution is promoted
by high values of parasitoid intergenerational survival rate, δ,
and by low values of the impulsive frequency q .

Extensive numerical analysis including bifurcation diagrams
show that when f2 > 0 there are at least three typical types
of solutions according to the evolution of the host population:
(a) host-eradication (HE) periodic solution when the parasitoid
population periodically oscillates and the host population dies
out; (b) host–parasitoid persistence (HPP) solutions, when both
species oscillate with positive densities in all generations and
the host population oscillates with relatively small amplitudes
(for example the maximum amplitude does not exceed ET). For
more details of the definition of persistence see Hastings and
Higgins (1994); and (c) host-outbreak (HO) or peak-to-peak
solutions when the host population has periodic or irregular
outbreaks with relatively large maximum amplitudes, such as
above the ET.

With the impulsive period q chosen as a variable parameter
and with all the others fixed, a typical HE solution of the
model is shown in Fig. 3(A) which is globally stable with
f2 = −0.0076 < 0, where we observe how the parasitoid
population Pn oscillates in a stable cycle, and, in contrast, the
pest Hn rapidly decreases to zero. Fig. 3(B) is a HPP solution
in which the host and parasitoid populations are persistent and
the maximum amplitude of the host is relatively small (below
the given ET if it is larger than 1). Fig. 3(C, D) are two HO
solutions in which host populations have periodic outbreaks in
(C) and irregular outbreaks (chaotic solution here) in (D).

Consequently, very interesting questions are (a) what is the
stable region of the system? and (b) does the HE periodic
solution lose its stability or not (local stability) when all
parameters lie in the region f2 > 0?

3.2. Multiple attractors, coexistence and initial sensitivity

The local stability of the HE solution and coexistence with
other attractors including HPP and HO solutions are common
properties of system (3.1) in the region f2 > 0. Once the
parameter set lies in the region of f2 > 0, there are several types
of coexistence including HE and HHP coexistence, HE, HHP
and HO coexistence, which implies that HE is locally stable
rather than globally stable in the region f2 > 0. To confirm
this, we fix all other parameters as in Fig. 3(A) except r . It
follows from the function of f2 that there is a threshold value of
r , denoted by rc (where rc = 1.8015) such that HE is globally
stable if r < rc, and is locally stable (numerically) if r > rc.
At the interval rc < r < 2.625 (approximately), HE and HHP
solutions coexist. One example of four attractors (HE, HHP, and
two HO solutions with different outbreak frequencies) coexist
at r = 2.63 as shown in Fig. 4, from which we can see that
for the HE solution the pest population outbreaks in the first
few generations and then goes to extinction very quickly; three
attractors (three types of solutions shown in Fig. 4(A, B, C))
coexist at r = 2.67; another four attractors (HE, two HHP
solutions and HO) coexist at r = 2.73 as shown in Fig. 5. If r is
increased further, more complex multiple attractors can coexist
including irregular HO, HE and HHP solutions.

These results clarify that the dynamical behaviour of system
(3.1) is dominated by globally or locally stable periodic
solutions and their coexistence, and further imply that the
control of insect pests may depend on the initial densities
of host and parasitoid populations. Thus, the initial attraction
regions of these stable attractors play a pivotal role in pest
management.

To show this, four basins of attraction with respect to four
different types of coexistence are given in Fig. 6. It follows from
their structures that the solutions of system (3.1) with relatively
small parasitoid initial conditions (from the Cyan zone) will
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Fig. 3. Several different types of typical solutions of system (3.1). (A) host-eradication periodic solution with q = 5. (B) host–parasitoid persistence solution with
q = 6. (C–D) host-outbreak solutions with q = 7 and 8, respectively. The other parameters are fixed as r = 1.8, a = 0.15, q1 = 0.2, τ = 10, q2 = 0.3 and δ = 0.8.
approach the HE solutions. However, from this region the
first outbreak of the host population will be extremely high
due to the low numbers of parasitoids and the exponential
growth of the host population. Thus, this is not a biologically
desirable solution and a large number of natural enemies would
have to be released at this stage. With slightly increasing
initial density of parasitoids, the structure of the basin attractor
shown in Fig. 6(A) implies that all solutions which start
from the Green zone will approach the HPP solutions which
always oscillate below some threshold values (here ET) and
are biologically desirable solutions. Moreover, it follows from
bifurcation analysis (not shown here) that the HE and HPP
solutions can coexist in a wide range of parameter space such as
rc < r < 2.625 (approximately). But how can we implement
an integrated management strategy such that the density of the
host population does not exceed the given ET? To answer this
question is one of our main aims in the next section.

With a slightly increasing initial density of the parasitoid,
the structure of the basin attractors shown in Fig. 6(B–D) clarify
that the small perturbation of initial conditions can significantly
change the final state of the host population. This means that
the insect pests may change their state from high density to
low density and outbreak frequency or vice versa. Can this
type of switch behaviour help us to control an insect pest?
For example, can various dosages of insecticide application
or different numbers of parasitoids released cause attractor
transitions among these attractors?

3.3. Different dosages of insecticide application and numbers
of parasitoids released are crucial for controlling insect pests

In order to avoid insecticide resistance, resistance strategies
most often involve either mixing and applying pesticides
together or alternating the use of available pesticides so that
each generation of the pest is exposed to a compound with a
different mode of action. But can such variations in doses and
types of insecticides used and the numbers of natural enemies
introduced affect the dynamics? Different numbers of natural
enemies released and various dosages of pesticide applications
or different pesticide applications can be mathematically
expressed in terms of two parameters, q1 and q2, in model (3.1).
That is, random perturbations due to variations in the dosages
applied or releases (migration) of natural enemies can be taken
into account with these two additional parameters, i.e. we have
the following modified model:

Hn+1 = Hn exp[r − a Pn],

Pn+1 = Hn[1 − exp(−a Pn)] + δPn,

}
n = 0, 1, 2, . . . ,

H+

qk = (1 − q1η)Hqk,

P+

qk = (1 + q2η)Pqk + τ,

}
k = 1, 2, . . . ,

(3.11)
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Fig. 4. Four coexisting attractors with r = 2.63, a = 0.15, q1 = 0.2, τ = 10, q = 5, q2 = 0.3 and δ = 0.8. The initial conditions from top to bottom are
(H0, P0) = (3, 1), (2.24, 10.14), (0.92, 19.8) and (10.1, 25.75), respectively. The periods are 5, 5, 20 and 25, respectively.
where q1η = q1 + η1u, q2η = q2 + η2u and u is a random
variable uniformly distributed on [−1, 1] and η1, η2 > 0
represent the intensity of noise. One view of this noise is that
it represents small random events of spraying, augmentation,
immigration and mortality.

To understand how these small random perturbations
affect the final state of the host population, we numerically
investigated system (3.11) with respect to the switch-like
transitions among the attractors shown in Fig. 4. That is, we
asked do these stable attractors switch from one attractor to
another once small random perturbations have been introduced?
As an example, with all other parameter values fixed as in
Fig. 4, it has been shown that there are four stable attractors
which can coexist. If we choose the initial condition (H0, P0) =

(10, 25.47) (or (10.76, 23.24)), the stable attractor without
random perturbation is the pest-outbreak solution with larger
amplitude (i.e. Fig. 4(D)). When we take into account the
small random perturbations, numerical simulations imply that
this solution can switch to another pest-outbreak solution with
smaller amplitude (Fig. 4(C)) or switch to an HPP solution
(Fig. 4(B)) at a random generation, as shown in Fig. 7.
However, extensive numerical simulations indicate that HPP
solutions are robust and are not affected by these types of small
random perturbations. These numerical results confirm that
different doses of insecticide application and natural enemies
can influence the dynamics of the classical Nicholson–Bailey
host–parasite system, and different numbers of parasitoids
released may play key roles in insect pest control.

3.4. The effects of insecticides on parasitoid and pest
resistance

It is well known that natural enemies are generally more
adversely affected by chemical insecticides than the target pest.
Because predators and parasitoids must search for their prey,
they are generally very mobile and spend a considerable amount
of time moving across plant tissue. This increases the likelihood
that they will contact the insecticide. When insecticide timing
also leads to the death of parasitoids, four different cases have
been investigated according to the timing of application by
Waage and Hassell (1982), Waage et al. (1985).

By using the same method as above, let us take the simplest
case where in each impulsive point qk there is an insecticide
application that kills a constant fraction of hosts and which,
in addition, may or may not affect the parasitoids. It is thus
possible to rank in terms of their dynamic effects the different
patterns of insecticide application in relation to the timing
of parasitism. In system (3.1), we assume that an insecticide
application does not affect the parasitoids. If the insecticide also
affects parasitoids, then the following two possibilities will be
considered according to the timing of application:



188 S. Tang et al. / Theoretical Population Biology 73 (2008) 181–197
Fig. 5. Four coexisting attractors with r = 2.73, a = 0.15, q1 = 0.2, τ = 10, q = 5, q2 = 0.3 and δ = 0.8. The initial conditions from top to bottom are
(H0, P0) = (3, 2), (1.92, 23.85), (1.79, 24.63), and (9.04, 24.92), respectively.
Case 1: Insecticides act prior to the releasing of the parasitoid,
i.e.

Pqk+ = (1 + q2)(1 − q1)Pqk + τ.

It follows that we have the following pest-eradication periodic
solution

(0, P∗
n ) =

(
0,

τδn−qs

1 − (1 + q2)(1 − q1)δq

)
,

n ∈ [qs+, q(s + 1)).

For this case the condition which guarantees the existence of a
pest-eradication periodic solution becomes:

f3
.
= 1 − (1 + q2)(1 − q1)δ

q > 0

and the globally stable condition becomes:

f4
.
= qr − ln

(
1

1 − q1

)
−

aτ(1 − δq)

[1 − (1 + q2)(1 − q1)δq ](1 − δ)
< 0.

Case 2: Insecticides act after the releasing of the parasitoid, i.e.

Pqk+ = (1 − q1)[(1 + q2)Pqk + τ ].
It follows that we have the following pest-eradication periodic
solution

(0, P∗
n ) =

(
0,

(1 − q1)τδn−qs

1 − (1 + q2)(1 − q1)δq

)
,

n ∈ [qs+, q(s + 1)).

The condition which guarantees the existence of this solution is
the same as Case 1, but the globally stable condition becomes:

f5
.
= qr − ln

(
1

1 − q1

)
−

aτ(1 − q1)(1 − δq)

[1 − (1 + q2)(1 − q1)δq ](1 − δ)
< 0.

In order to investigate the effect of insecticide on the stable
region of the HE solution when it also affects the parasitoid, we
fix all parameters as in Fig. 3(A) except q and q1.

It follows from Fig. 8 that the globally stable region
of the HE periodic solution has been extremely reduced
if the insecticide also affects the parasitoids. These results
clarify that when insecticide timing also leads to the death
of parasitoids, pest depression is reduced and pest resurgence
may or may not appear, depending again on the timing of the
application. However, the advantage of the modelling methods
presented here is that we can avoid this practical problem by
choosing different timings for the insecticide applications and
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Fig. 6. Several types of basins of attraction of system (3.1). The range of the figure is 1 ≤ H ≤ 51 on horizontal axis, 1 ≤ P ≤ 51 on vertical axis with
a = 0.15, q1 = 0.2, τ = 10, q = 5, q2 = 0.3, δ = 0.8 and r varies. (A) the host-eradication (Cyan) and host–parasitoid persistence (Green) periodic solutions
coexist with r = 2.4. (B) the host-eradication (Cyan), host–parasitoid persistence (Green) and two host-outbreak (Yellow and Magenta) periodic solutions coexist
with r = 2.63. (C) the host-eradication (Cyan), host–parasitoid persistence (Green) and host-outbreak (Yellow) periodic solutions coexist with r = 2.67. (D) the
host-eradication (Cyan), two host–parasitoid persistence (Green and Magenta) and host-outbreak (Yellow) solutions coexist with r = 2.73. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
the parasitoid releases. For example, we can spray insecticide
before or after releasing natural enemies in m generations
(where m < q), i.e. the third and fourth equations in system
(3.1) are replaced by the following two equations:{

H+

qk±m = (1 − q1)Hqk±m,

P+

qk = (1 + q2)Pqk + τ,
k = 1, 2, . . . .

These changes do not affect the existence and stability of the
HE periodic solution.

As noted in the introduction, pesticide resistance is a
genetically-based phenomenon. Resistance develops when an
insect pest is exposed to a pesticide and not all of the insects
are killed. Those individuals that survive have often done so
because they are genetically predisposed to be resistant to
the pesticide. Repeated applications and higher rates of the
insecticide will kill increasing numbers of individuals, but some
resistant insects will survive. The offspring of these survivors
will carry the genetic make-up of their parents. These offspring,
many of which will inherit the ability to survive the exposure to
the insecticide, will increase in proportion with each succeeding
generation. The same method used by Tang et al. (2005) can be
employed to investigate the effect of insecticide resistance on
the stability of the HE periodic solution.
In a real world, complete eradication of pest populations is
generally not possible, nor is it biologically or economically
desirable. A good pest control programme should reduce pest
populations to levels acceptable to the public. However, how
can we estimate and predict the dosage and frequency of
applications of insecticide and releases of natural enemies once
the density of host population reaches the given ET? This is the
question we will address in the following section.

4. Host–parasitoid models with economic threshold

So far, the host–parasitoid model with a fixed periodic
control strategy was investigated and the results obtained here
imply that the pest population can be completely eradicated
under suitable conditions. However, the disadvantage of models
(3.1) or (3.11) is that an integrated pest management strategy
is applied whether the density of host exceeds the ET or not,
which is not cost-effective. Consequently, the frequency of
insecticide application is relatively high and, combined with
the use of high dosage rates, detrimental impacts on natural
enemies and on the environment will be more severe than if
control is only applied when the ET has been reached.

As noted in the introduction, an IPM control, including
biological control (augmenting natural enemies), cultural
control (alternate hosts, crop rotation, etc) and physical and
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Fig. 7. Attractors switch-like behaviour of system (3.1) with small random perturbation on parameter q2, i.e. η1 = 0, η2 = 0.01. The other parameters are identical
to those in Fig. 4. (A,C) HE solution with large amplitude switches to HE solution with small amplitude at random generations, where the initial conditions are
(H0, P0) = (10, 25.47) from which the host outbreak with larger amplitude is stable. (B, D) HE solution with large amplitude switches to HPP solution at random
generations, where the initial conditions are (H0, P0) = (10.76, 23.24) from which the host outbreak with larger amplitude is stable.
Fig. 8. The q–q1 parameter plane shows the effects on the globally stable
region of the HE periodic solution when an insecticide application may or may
not affect the parasitoids. The threshold curves of three functions f2, f4, f5 are
plotted against parameters q and q1 which determine the global stability of the
host-eradication periodic solution, i.e. the right sides of the three curves are the
globally stable region of the corresponding HE periodic solutions if they exist.
The other parameters are r = 1.8, a = 0.15, τ = 10 and q2 = 0.3.

mechanical control, only needs to be applied when the pest
population reaches the ET. However, the solutions of discrete
models do not exactly go through ET due to the discontinuous
and complexity of their solutions. Usually, the solutions may
suddenly jump above or below ET at some generations. If this
happens, the control tactics including biological control and
cultural control are usually incapable of reducing the density
of the host population below the ET immediately due to the
response delay. Thus, an insecticide application is needed at this
time because insecticides are easy to apply, fast-acting, and in
most instances can be relied on to control the pests.

For example, if the insect pest has an outbreak and exceeds
the ET at generation k (k > 0), i.e. Hk exp[r − a Pk] > ET
(Mathematically, we assume the initial density of host H0 is
less than ET. Otherwise, the initial density of the host is chosen
after an application of IPM strategy, i.e. H0+ = H0). In this
case, an insecticide application needs to be applied and at least
a number of q1k Hk exp[r − a Pk] insect pests should be killed
such that (1 − q1k)Hk exp[r − a Pk] = ET , where 1 − q1k is
the proportionate survival rate after an insecticide application
which now depends on the densities of the host and parasitoid
populations. In order to control it more effectively, other control
tactics including biological control are applied at the same
generation. Thus, we have the following new model:

Hn+1 = min{Hn exp[r − a Pn], ET },

Pn+1 = Hn[1 − exp(−a Pn)] + δPn,

Pn+1+ = (1 + q2)Pn+1 + τ, if Hn+1 = ET,

H0+ = H0 < ET, P0+ = P0

(4.1)

where n = 0, 1, 2, . . . , ET denotes the economic threshold
(pest population density at which the control measures should
be determined to prevent an increasing pest population from
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Fig. 9. Periodic solution of system (4.1) with ET = 2, r = 1.8, a = 0.15, q2 = 0.3, τ = 10 and δ = 0.8. The initial conditions are (H0, P0) = (1, 2).
reaching the economic injury level). What we want to do is
design a control strategy such that the pest population lies below
ET through model (4.1). That is, to determine when we should
implement an IPM strategy and how many insect pests should
be killed which is equivalent to calculating

q1n =

1 −
ET

Hn exp(r − a Pn)
, if Hn exp[r − a Pn] > ET,

0, otherwise.

(4.2)

In order to compare the results of this model with the pest-
eradication periodic solution shown in Fig. 3(A), we fix
the parameters as r = 1.8, a = 0.15, δ = 0.8, τ =

10, q2 = 0.3, and assume that the economic threshold is
relative small, i.e. ET = 2. In what follows, we try to
numerically find the periodic solution of system (4.1) such
that the maximum amplitude of the host population does not
exceed ET. Consequently, the outbreak frequency (impulsive
frequency) of the host and time series of q1n are determined
which play the key roles in the design of an IPM strategy. The
results shown in Fig. 9 indicate that there does exist a periodic
solution for the system (4.1), as expected. It follows from Fig. 9
that the host and parasitoid populations oscillate periodically
and the maximum amplitude of the host population is no larger
than ET. The most interesting results here are that the period
of this periodic solution is 7 and q1n stabilizes to a constant q1
(here q1 = 0.1963) (in Fig. 3(A), the period of the HE solution
is 5 (q = 5) and the proportionate killing rate is 0.2 (q1 = 0.2)).
This confirms that the frequency of insecticide application, host
outbreak and spraying dosages are significantly reduced if we
aim to keep the host populations below ET and avoid ecological
damage rather than eradicate them.

The effect of the host intrinsic growth rate r on host mean
outbreak period and the mean instantaneous killing rate of q1n
can be calculated from the model (4.1) numerically (Fig. 10).
Mean outbreak period is the period of the host cycle averaged
over several periods. Mean instantaneous killing rate of q1n
is the mean value of the positive values of q1n over several
generations (200 generations here). The model predicts that
the mean outbreak period of the host population decreases as
a function of r , i.e. high intrinsic growth rates are associated
with frequent outbreaks, while the mean outbreak period of
the host population increases as a function of ET. However,
the mean fraction of the instantaneous killing rate of q1n only
depends on the corresponding solution as well as its initial
condition. Therefore, the use of economic thresholds, field
monitoring, and record keeping for both pest and parasitoid
by date are important parts of an IPM programme. These
dates are important for making management decisions during
a season and will give important historical perspective to the
effectiveness of any controls implemented. Here, the time series
q1n provides useful information on this aspect including on the
timing of an IPM application and the host-killing rate.

However, we note that the dynamical behaviour of system
(4.1) with unfixed impulsive moment is much more complex
than that of system (3.1) with fixed moment. It is noted that the
dynamical behaviour of system (3.1) is dominated by several
types of periodic solutions and their coexistence, even with very
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Fig. 10. Illustrating the outbreak period and instantaneous killing rate q1n once the host population exceeds ET as a function of r . The mean outbreak period
of the host population decreases as a function of r , i.e. high intrinsic growth rates are associated with frequent outbreaks, while the mean outbreak period of the
host population increases as a function of ET. However, the mean fraction of the instantaneous killing rate of q1n only depends on the corresponding solution
as well as the initial conditions. Parameter values used to generate these profiles are as follows: δ = 0.8, τ = 10, a = 0.15, q2 = 0.3. Initial conditions were
(H0, P0) = (1, 7). Simulations were run 2000 times to ensure that we are not observing transients, and the last 200 iterations were used to determine the average
outbreak period and the mean killing proportion of q1n .
high intrinsic growth rates. While it follows from bifurcation
analysis (Fig. 11) that the dynamical behaviour of system (4.1)
is very complex, including period doubling bifurcation and
chaotic solutions, even with very small intrinsic growth rates.
In particular, the complex pattern in Fig. 11(C) shows that the
proportionate killing rate of q1n is difficult to estimate and
to predict. These results indicate that, in practice, it is a very
difficult task to control the host population such that its density
does not exceed ET.

Meanwhile, system (4.1) also has a certain type of
coexistence if the intrinsic growth rate of the host population is
large enough. Figs. 12 and 13 show two of examples of attractor
coexistence of system (4.1) and their corresponding basins of
attractions are given in Fig. 14.

5. Biological conclusions

When using integrated pest management as an approach to
control insect pests one must be committed to a long term
strategy. Regular field monitoring must be done to keep track
of both pest and beneficial insect populations for an IPM
programme to be effective. Proper identification of insect pests
and a basic knowledge of economic thresholds are essential
for an IPM programme to be successful. To properly estimate
and predict the timing of an IPM application and the dosage
of insecticide application, we have extended the classical
Nicholson–Bailey model to include an IPM control strategy.
According to different control purposes, eradication of an insect
pest or keeping its density below ET, two new modelling
methods are presented in this paper.

For the first model, we have been able to show that the
HE periodic solution is globally stable if the intrinsic growth
rate of the host population is less than the summation of the
mean host-killing rate and the mean parasitization rate during
the impulsive period, which means that any single control
strategy (biological control only or chemical control only) will
significantly reduce the stability region of the HE periodic
solution. This is consistent with observation and experience that
any single method approach to pest control is generally neither
possible nor desirable over the long term.

The sufficient condition which guarantees the global
stability of the HE solution can help us to design the control
strategy. For example, we can at least numerically calculate
the impulsive period q from equation f2 = 0 once all
other parameters are given, which plays an important role
in decision-making for an IPM strategy. It can also be used
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Fig. 11. Bifurcation diagram of system (4.1) with ET = 5, a = 0.15, q2 = 0.3, τ = 10 and δ = 0.8. The initial conditions are (H0, P0) = (1, 18).
to estimate the host-killing rate q1 or parasitoid release rate
q2. The stable conditions of HE solutions also indicate that
the parasitoid intergenerational survival rate plays a key role
in maintaining the periodic oscillations of parasitoid species.
Therefore, conservation and management measures to increase
the parasitoid’s reproductive rate, mobility and overwintering
survival rate are of great importance in insect pest control.
As natural enemies are generally well adapted to their local
environments and to the target pest, their conservation is
generally simple and cost-effective.

Interestingly, the HE periodic solution does not lose its
stability when the intrinsic growth rate of the host population
is larger than the summation of the mean host-killing rate and
mean parasitization rate, but it coexists with several other stable
attractors including HPP and HO solutions. This implies that
the control of an insect pest depends on the initial densities
of host and parasitoid population. Moreover, the structure of
basins of attraction indicates that small random perturbations
may dramatically affect the final result of an IPM control
strategy.

However, the stable HO solutions with large amplitudes
can switch to the stable HO solution with relatively small
amplitude or switch to the stable HPP solution at a random
generation while the stable HPP solutions are robust to random
perturbation. These results confirm that varying dosages of
insecticide applications and numbers of parasitoids released are
crucial for insect control and pesticide resistance.

A good pest control programme should reduce pest
populations to levels acceptable to the public rather than
eradication. Our second type of model is proposed based on
this ideal. Numerical investigations confirm that a periodic
solution with maximum amplitude below ET does exist for
the new model. Comparing the period and stable host-killing
rate with those in the model with fixed moments, we see that
the frequency of insecticide application and the dosage that
needs to be applied are significantly reduced. Consequently,
this may reduce damage to the environment and avoid pesticide
resistance.

In reality, uncertainties or lack of information about pests,
damage, controls and prices also exist. In other words, the type
of control a farmer applies to his main crop influences his con-
trol decision for the second crop. Imperfect knowledge and lim-
ited skills concerning pest control decisions and the presence of
natural disturbances may render actual decisions ”inferior” to
those predicted by the models. Importantly, the time series of
q1n which was calculated from system (4.1) provides important
information including the timing of an IPM application and the
host-killing rate, which are important factors in the design of
appropriate IPM strategies and control decision-making.

However, the complexity of q1n further confirms that an IPM
strategy, in practice, is difficult to implement. The estimation of
ET and EIL is generally a complex matter based on detailed
operations of pest ecology as it relates to bioclimatology,
predation, diseases, the effect of host-plant resistance and the
environmental consequences of applied control interventions
(Metcalf and Luckman, 1975). So a challenge for future
research is to combine the decision-making models developed
by Headley (1968) with the models developed in this paper.
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Fig. 12. Three coexisting attractors of system (4.1) with parameters r = 2.93, ET = 2, δ = 0.8, q2 = 0.3, τ = 10 and a = 0.15. The initial conditions from top
to bottom are (H0, P0) = (1, 2), (1, 7), and (1, 5), respectively. (A) periodic attractor with period 5, (B) periodic attractor with period 9, (C) periodic attractor with
period 10.
As far as practical applications are concerned, it is pest
control systems in glasshouses for which there are most data.
For instance the parasitoid E. formosa is now commercially
available for controlling the whitefly Trialeurodes spp. in
greenhouses and conservatories for which weekly releases are
recommended. Similarly, the predatory mite P. persimilis is
available for controlling spider mites Tetranychus spp., for
which the inundative releases are advised, at least initially. In
both instances initial reductions of the pests using pesticides
may be appropriate to bring the pest populations down to levels
manageable by the biological control agents. In such cases it is
important that the insecticide residues, or residues from other
pesticides used against other pests in the same arena, do not kill
the introduced agents. Thus the timing of the introduction of the
agents in relation to when the pesticide applications occurred
is important in IPM. For instance, Udayagiri et al. (2000)
investigated the survival of the parasitoid Anaphes iole at up to
six different times after exposure to each of six insecticides, two
acaricides and six fungicides and showed how the parasitoid
releases and their timings could or could not be integrated with
pesticide use.

Apart from timings of releases our models also consider
variation in intrinsic rates of increase (r ), searching efficiencies
(a) and density-independent survival (δ). The intrinsic rate of
increase of P. persimilis may be as high as 0.4 per generation
but this varies with prey type and the plant species involved
(McMurtry and Croft, 1997). There is also much variation in
a (here treated as the area of discovery of (Nicholson and
Bailey, 1935)), which is itself density dependent decreasing
with increasing parasitoid density (Hassell and Varley, 1969). A
mean value of 0.18m2 per generation has been estimated for a
for Cyzenis albicans parasitizing the winter moth Operophtera
brumata (Hassell, 2000b) and that for Eurytoma tibialis
parasitizing Urophora jaceana was 0.4m2 in one year and
0.2m2 in another (Varley et al., 1973). Outcomes in terms of
percentages of hosts parasitized by biological control agents
range from 3% to 100% (Hawkins et al., 1993) with obvious
implications for the success or failure of the biological control
programmes involved. Estimates of δ can be attributed to a
variety of factors including immigration or emigration rates in
field systems and release rates in glasshouses. Van Dreische
and Lyon (2003) give examples of release rates (0.5, 1 and 3
female insects per plant per week), different release patterns
(constant, front end loaded and back end loaded) and of
economic thresholds (ET of 2 living nymphs or pupae per
leaf) for Eretmocerus eremicus introductions against whitefly
infesting commercial pointsettia plants Euphorbia pulcherrima,
in combination with the use of an insect growth regulator
pesticide. Success was achieved with release rates of the
parasitoid of 0.5 per plant per week, combined with a mid-
season application of kinoprene at a cost of only US$ 0.10–0.14
per plant protected, less than or equal to the cost of conventional
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Fig. 13. Three coexisting attractors of system (4.1) with parameters r = 2.7, ET = 5, δ = 0.8, q2 = 0.3, τ = 10 and a = 0.15. The initial conditions from top to
bottom are (H0, P0) = (4.1, 18), (3, 18), and (1, 18), respectively. (A) periodic attractor with period 10, (B) periodic attractor with period 15, (C) chaotic attractor.

Fig. 14. Two basins of attraction of system (4.1) corresponding to Figs. 11 and 12. The range of (A) is 0.01 ≤ H ≤ 2 on horizontal axis, 0.1 ≤ P ≤ 34 on vertical
axis. The range of (B) is 0.01 ≤ H ≤ 5 on horizontal axis, 0.1 ≤ P ≤ 34 on vertical axis. Parameters are as follows: a = 0.15, τ = 10, q2 = 0.3, δ = 0.8.
r = 2.93, ET = 2 in (A) and r = 2.7, ET = 5 in (B). The magenta, green and yellow points are attracted to the attractors shown in Figs. 11 and 12 from top to
bottom, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
methods. Given the extensive variation in parameter values
in such real systems, exploration with models using a wide
range of each, as described here, is appropriate and allows
flexibility in predicting outcomes for any given case for which
the adequate empirical data are available.

Extensive numerical bifurcation analysis confirmed that the
periodicity and coexistence of model (3.1) (Figs. 3–5) and the
complex behaviour of model (4.1) (Fig. 11) are common to
both models and these properties can exist for a wide range
of parameters. Thus, the choice of which parameters to vary,
and what values to use is unimportant, as many others would
give similar results and reproduce most of the behaviour shown
in this paper, within finite generations for realistic parameter
values.

The majority of this work is based on deterministic models
of the Nicholson–Bailey host–parasitoid interaction with pulse
perturbations. This raises the interesting question of how
robust the models are to various forms of environmental
and demographic stochasticity, as it is well known that
stochasticity can significantly affect the persistence and
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dynamics of populations (Bonsall and Hastings, 2004). The
switch-like behaviour on small random perturbations confirms
that the environmental stochasticity has little effect on the
coexistence of attractors. In particular, the HPP solutions are
robust to environmental stochasticity. However, demographic
noise may affect the population dynamics more broadly,
and is most influential in small populations. Stochastic
fluctuations at small population sizes tend to be amplified
by the dynamics to cause massive population variability,
i.e. demographic stochasticity has a destabilizing effect. How
do environmental and demographic stochasticity affect the rich
dynamic behaviour described in this paper and influence the
IPM strategy, including coexistence and the structure of the
basin attractors? The introduction of stochasticity also allows us
to investigate the interesting question of whether stochasticity is
beneficial to IPM strategies or not, a question for future research
directions.

This work focused entirely on the simplest Nicholson–Bailey
model with impulsive effects and the temporal interactions of
an insect host and its parasitoid. A number of stabilizing fac-
tors such as spatial heterogeneity, density-dependent growth of
the host and functional responses of the parasitoid will be con-
sidered in future and will be reported elsewhere.

Appendix

The Proof of Theorem 3.1. It follows from q < 1
r ln( 1

1−q1
) +

aτ(1−δq )
r(1−(1+q2)δ

q )(1−δ)
that we have (1 − q1)

∏q(s+1)−1
n=qs [exp(r −

a P∗
n )] < 1. Therefore there exists ε > 0 sufficiently small such

that

δ1
.
= (1 − p)

q(s+1)−1∏
n=qs

[exp(r − a(P∗
n − ε))] < 1. (A1)

Note that Pn+1 > δPn , and consider the following impulsive
difference equation:{

Qn+1 = δQn, n = 0, 1, 2, . . . ,

Qqk+ = (1 + q2)Qqk + τ, k = 1, 2, . . . .
(A2)

It follows from Lemma 3.1 that we have Pn ≥ Qn and
Qn → P∗

n as n → ∞. Hence

Pn ≥ Qn > P∗
n − ε (A3)

for all large n. For simplification we may assume that (A3)
holds for all n ≥ 0. From (3.1) we get{

Hn+1 ≤ Hn exp(r − a(P∗
n − ε)), n ≥ 0,

Hqk+ = (1 − q1)Hqk, k ≥ 1.
(A4)

It follows that we have

Hq(s+1) ≤ Hqs+

q(s+1)−1∏
n=qs

exp(r − a(P∗
n − ε))

= Hqs(1 − q1)

q(s+1)−1∏
n=qs

exp(r − a(P∗
n − ε))

= Hqsδ1.

(A5)
It follows from (A1) that Hqs ≤ H0+δs
1 and Hqs → 0 as

s → ∞. Therefore Hn → 0 as n → ∞ since 0 < Hn ≤

Hqs(1 − q1) exp(qr) for n ∈ [qs+, q(s + 1)). This completes
the proof.
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