DFT-D3 Study of Molecular N₂ and H₂ Activation on Co₃Mo₂N Surfaces

Constantinos D. Zeinalipour-Yazdi, Justin S. J. Hargreaves, and C. Richard A. Catlow

1. INTRODUCTION

Co₃Mo₃N when synthesized using the procedure patented by Topsøe is known to be active for ammonia synthesis, although the atomistic details of the reaction mechanism are currently unknown. We present a dispersion-corrected (D3) DFT study of the adsorption and activation of molecular nitrogen and hydrogen on Co₃Mo₃N-(111) surfaces to identify possible activation sites for ammonia synthesis. H₂ was found to adsorb both molecularly on the Mo₃N framework and dissociatively on Co₈ clusters or Mo₃ clusters that were exposed due to N-vacancies. We find that there are two possible activation sites for N₂ where both N₂ and H₂ can coadsorb. The first is a Mo₃ triangular cluster that resides at 3f nitrogen vacancies, and the second is a surface cavity where N₂ is activated by a Co₈ cluster, the second being a more efficient activation site. N₂ was found to adsorb in three adsorption configurations: side-on, end-on, and an unusual tilt end-on (155°) configuration, and the existence of these three adsorption configurations is explained via MP2 calculations and the sphere-in-contact model.

2. COMPUTATIONAL METHODS

2.1. Methodology. Spin-polarized periodic planewave DFT calculations have been performed with the VASP 5.3.5 code using the revPBE19 and a 650 eV cutoff for the planewave basis set. We have recently shown via DFT calculations that the mechanism can also proceed via MvK type surface chemistry at low temperatures as there is a large number of nitrogen vacancies (~10¹⁵ cm⁻²), which can activate N₂ by weakening of the triple bond. ¹¹ N-vacancies were also found to participate in the mechanism for the electrochemical reduction of ammonia on VN and ZrN, and in the two-step solar-energy driven ammonia synthesis on metal nitrides.²,³,¹⁶ Here, we extend the earlier study by investigating the adsorption at every possible site compared to the adsorption of molecular hydrogen.

The rest of the paper has the following structure: first we establish the calculation parameters that reproduce well the electronic structure of Fe₃Co₃(1−x)MoₓN, where x = 0, 1, 2 and 3; next we describe the method for generating slabs of Co₃Mo₃N-(111) surfaces and apply the calculation parameters to address the question of hydrogen and nitrogen adsorption and activation on Co₃Mo₃N with and without defects. Finally we explain the various bonding configurations of Nₐ via molecular orbital (MO) calculations and the sphere-in-contact model.
expansion. A detailed description of the computational methodology for the plane-wave calculations can be found in ref 13, in which it was found that among various GGA and hybrid-GGA XC functionals, the revPBE yields accurate (to within 1%) bond dissociation enthalpies for N2(g). Here, we further test how well this functional can perform in modeling correctly the electronic structure in a homologous series further test how well this functional can perform in modeling correctly the electronic structure in a homologous series. The adsorption energy was taken in its simplest form, as the energetic difference between the total energies of the bound state of the surface–adsorbate complex from that of the surface slab and the isolated molecules, the latter in a 20 Å periodic unit cell, given by

\[\Delta E_{\text{ads},\text{D3}} = E_{\text{slab--X2}} - E_{\text{slab}} - E_{\text{X2}} \]

where \(X = \text{N, H} \). The adsorption energy was also corrected for the dispersion correction using two approaches via the DFT-D3 method as implemented in VASP.20 The first (\(\Delta E_{\text{ads},\text{D3(ideal)}} \)) was to fully relax the cluster-adsorbate system, the surface and the adsorbate separately. The second was by performing a single point energy calculation with the D3-correction at the minimum energy structure obtained from an optimization without the correction (\(\Delta E_{\text{ads},\text{D3(ideal)}} \)). We find that the latter can lead to large errors with respect to the adsorption energies of hydrogen, which was overestimated by 35% in some cases and have therefore applied the former approach.

Molecular calculations for the electronic structure of N2 were performed within restricted density functional theory (DFT) implemented in the Gaussian09 code (rev D.01).21 The basis set used was the correlation-consistent polarized valence double-\(\zeta \) abbreviated as cc-pVDZ.22 Stationary states were confirmed by the absence of imaginary frequencies in the vibrational analysis. The convergence criteria for the maximum forces and the root-mean-square (RMS) forces were less than 0.01 eV/Å and 0.001 eV/Å, respectively.

2.2 Choice of XC-Functional for FeCo3Mo3N

We find that the choice of exchange-correlation (XC) functional is critical when addressing the chemistry of N2/H2 with FeCo3Mo3N, where \(x = 0, 1, 2, \) and 3. Although it has been shown for solids that hybrid XC functionals HSE06.23 (HSE06)\(^{24}\) and PBE0 give better results for calculating lattice parameters, bulk moduli and more importantly formation enthalpies, for cobalt and iron molybdenum nitrides and their alloys; we note that the revPBE functional, which is computationally far less demanding than PBE0 and HSE06/ 06 can yield an accurate description of the electronic structure of the material under study. Furthermore, it does not overestimate the bandgap by overestimation of the exchange splitting known for the hybrid functional PBE0.23 It has been suggested that the HSE06 functional greatly improves the computer time and resource requirements mostly due the faster convergence of the total energy with respect to k-point mesh, as the bare unscreened exchange operator requires a 12 × 12 × 12 mesh equivalent to a 6 × 6 × 6 mesh for the HSE06 functional.23 However, we found that the latter underestimates by 38 kJ/mol the bond dissociation enthalpy of N2(g), \(\Delta g_0 H(\text{N}−\text{N}) \). Therefore, we have tested the remaining XC-functionals commonly used for solids, PBE, PW91, revPBE, and PBEsol with respect to their accuracies in predicting the lattice constant of FeCo3Mo3N, where \(x = 0, 1, 2, \) and 3 (see Table 1). These alloys contain also iron which makes possible the testing of the computational methodology on other elements for which crystallographic data are available.23–27 Our calculations are based on full optimization of unit cell dimensions and atom positions and the reported mean-average-percent-error (MAPE) value, which indicates to within which percentage the experimental values, are reproduced. The calculated values were compared to two sets of experimental lattice constants: the first comprised solely of PND data obtained at 4.2K (Exp1) and the second based on combined XRD and temperature-dependent magnetic susceptibility measurements (Exp2). In both sets, we obtained the same trend with respect to the average-MAPE calculated at each functional, which was found to be PBE < revPBE ≈ PW91 < PBEsol. In particular, according to Table 1, an average MAPE of 0.30–0.36% was found for PBE: both revPBE and PW91 gave values of about 0.5–0.6% and PBEsol gave higher average MAPE, of the order of 2%. The results show that with the use of a plane-wave code the lattice parameter can be estimated very well both with the PBE and the revPBE functional, which are also computationally less expensive than some of the hybrid GGA functionals tested.

In an earlier account of bond dissociation enthalpy (BDE) of N2 with the use of various XC functional, the % error for the revPBE was found to be the lowest among various GGA and hybrid GGA functionals.13 In particular, we found that the % error was for revPBE = 0.2 < B3LYP = 1.7 < PBE0 = 3.5 < HSE06 = 4.1 < PBE = 4.9 < PW91 = 7.0. Therefore, all subsequent calculations have been performed with the revPBE functional, which can yield more accurate barrier heights according to the calculated BDE of the N≡N bond.

3. RESULTS AND DISCUSSION

3.1 Surface Models of Co3Mo3N

We have modeled the surface of Co3Mo3N using a 2 × 2 supercell slab with trigonal symmetry belonging to the space group P3m1 (164), where \(a = b = 7.7972 \text{ Å}, c = 30 \text{ Å}, \alpha = \beta = 90^\circ, \) and \(\gamma = 120^\circ \). This was generated from a cubic unit cell with the \(\eta \)-carbide Fe3W3C structure belonging to the space group Fd\(\bar{3} \)m (227), where \(a = 7 \) Å.
Various surface compositions of $\text{Co}_3\text{Mo}_3\text{N}$-(111) surfaces found

$b = c = 11.0270\ \text{Å}$ and $\alpha = \beta = \gamma = 90^\circ$.29 We note that the (111) surface of the cubic unit cell ($F\bar{d}3m$) is the (001) surface of the trigonal unit cell ($P\bar{3}m1$), which was further studied as it has the highest density of Co$_8$ clusters embedded in a molybdenum nitride (Mo_3N) framework. In the case of a bifunctional mechanism, this surface would have the largest density of active sites. For the rest of the paper, we refer to this "(111)-surface" simply as "surface". Note that the actual 2×2 supercell used for these periodic slab calculations was shifted by $a/2$ and along a and by $b/2$ along b and had a nitrogen vacancy at the position indicated by a yellow circle in Figure 1. The slabs were generated by applying a scanning algorithm to scan the bulk in 0.1 Å increments and generate centro-symmetric slabs of thickness <1 nm for computational efficiency. A top view of these slabs along the c direction is shown in Figure 1 that shows the composition of six distinct surfaces generated, of which four had surface nitrogen (i.e., B, C, E, and F) and two had only a MoCo exposed phase (i.e., A and D) with subsurface nitrogen. The subsurface nitrogen is a 6-fold bound nitrogen ($6f$) to Mo atoms, whereas surfaces C, D, and F had entirely 3f nitrogens, and one surface (B) had 5f nitrogens. The nitrogen vacancy formation energies (VFE) and concentrations have been previously calculated, and the latter was found to be on the order of 10^{13} per cm2 at ambient conditions.13 We have

Figure 1. 2×2 surface supercells of $\text{Co}_3\text{Mo}_3\text{N}$ showing surface terminations of different composition in cobalt molybdenum nitride (111) surfaces. Note that only four out of the six surface compositions expose surface nitrogen (i.e., 5f or 3f). Two surfaces only have subsurface nitrogen (i.e., 6f).

Figure 2. Symmetry unique sites for molecular hydrogen adsorption on $\text{Co}_3\text{Mo}_3\text{N}$ surface C, in the presence of a nitrogen vacancy (site 1 and 2) in (a) top view and (b) perspective view.
evaluated the surface composition in these slabs and found that it significantly differs among these thin films. It is interesting to note that the surface with the highest surface nitrogen concentration, C had a very low composition of nitrogen based on the normalized stoichiometric coefficient (s.c.) of nitrogen, having set the s.c. of cobalt to 1. These compositions were found to be: A = CoMo0.9N0.1, B = CoMo0.8N0.2, C = CoMo0.7N0.3, D = CoMo0.6N0.4, E = CoMo0.5N0.5, and F = CoMo0.6N0.4. For example surface A, which had a complete absence of exposed surface nitrogen, had the highest stoichiometric coefficient for nitrogen (i.e., Ns,c). This suggests that the exact surface composition of very thin layers of this material may have to be evaluated by topographic techniques, e.g., via scanning probe microscopies that are currently absent in the literature. In an earlier DFT study with the same methodology used here, we proposed that surface C is the most active surface for Mars–van Krevelen type chemistry for ammonia synthesis. This choice was based on two kinetic factors and an energetic factor: (i) the density of sites that can activate N2 (i.e., N-vacancies), (ii) which surface had the most exothermic adsorption energies for N2 adsorption, and (iii) the surface formation energies (E_s), which were calculated for the four surface compositions that had exposed surface nitrogen. As the calculation of surface stabilities is not possible for Co3Mo3N, we continue with surface C for calculating the adsorption of N2/H2 on Co3Mo3N.

3.2. H2 Adsorption and Activation on Co3Mo3N. Various phases of atomically adsorbed hydrogen have been observed via scanning-tunnelling microscopy (STM) on Co nanoparticles grown on Cu(111). In a recent DFT study, the adsorption energy of H2 was found to be roughly proportional to the surface energy in the following order Co(100) > Co(110) > Co(111). The nitrogen vacancy-induced heterogeneity of the surface offers H2 an additional degree of complexity with respect to the availability of adsorption sites. In this study, we have studied the adsorption of H2 at 8 symmetry unique sites of the C surface of Co3Mo3N shown in Figure 2, with a nitrogen vacancy shown by the yellow circle in Figure 1. This surface is expected to yield a better representation of the surface energy in the following order Co(100) > Co(110) > Co(111).

The various adsorption sites found had the following characteristics: site 1 the hydrogen was adsorbed side-on to a molybdenum atom that was adjacent to a nitrogen-vacancy site (Nv) with an adsorption energy of ~72 kJ/mol but with only a small activation of the H–H bond. Site 2 was found to dissociatively chemisorb H2, where it was bound to a molybdenum atom at a nitrogen vacancy site. This site had the lowest % activation (i.e., 41%) for molecular hydrogen; sites 3–5 in which hydrogen was adsorbed on a molybdenum atom on the MoN3 framework with a moderate adsorption energy of ~30 to ~68 kJ/mol due to the less metallic character of the MoN3 framework. The strongest adsorption energy for H2 was found on sites 6–7, which corresponds to a corner atom of the Co3 nanoclusters denoted as Co8-top with adsorption energy of ~127 and ~110 kJ/mol, respectively. At these sites, the H–H bond was also found to be considerably activated (i.e., 23–24%). These results indicate that the Co3 clusters will be saturated with molecular hydrogen at low temperatures under conditions where both N2/H2 are available in the feedstream. Interestingly we find that at site 8, H2 will generally not adsorb at low-T based on the D3-corrected adsorption energy of just 21 kJ/mol, and it is the only site on the Co3Mo3N surface that will not be occupied by hydrogen when it is coadsorbed with N2. Therefore, we consider site 8 as free under conditions of competitive adsorption with N2 at low temperatures (e.g., T < 200 °C).

3.3. N2 Adsorption and Activation on Co3Mo3N. The adsorption of N2 over a range of surfaces has been studied using various surface analytical probes extensively. Both physisorbed and chemisorbed states are identified using a combination of electron spectroscopy and thermal desorption techniques. According to this report and earlier LEED experiments, N2 can chemisorb side-on and end-on on the surfaces of certain metals (e.g., Ni, Fe, Ru, and W). In this study, we find that apart from these two adsorption configurations, N2 can also adsorb in a tilt end-on configuration on Co3Mo3N shown in Scheme 2. This is a well-defined adsorption configuration with a tilt angle equal to 155° in which the dihedral d(Co–Mo–N–N) of this bond is found to be 0°. Angle resolved photoemission spectra have identified two phases of N2 adsorbed to Fe(111) surfaces (γ-phase and α-phase). In the first, N2 is adsorbed perpendicularly, and in the latter in a strongly inclined configuration, where N2 was described to form two covalent bonds with Fe atoms. A structure of 2 × 2:-N/Fe(100) structure was found to form on Fe(111) and Fe(110) surfaces, whereas two side-on (α and α′) and two end-on (β and γ) adsorbed states have been found via periodic DFT calculations for molecular N2 adsorption on Fe(111).

The Journal of Physical Chemistry C
DOI: 10.1021/acjpc604748

Scheme 1. Simplified Schematic Showing (a) Molecular and (b) Dissociative Adsorption of H2 on Co3Mo3N Surfaces

H
H

Mo3N

Co3 or Nv

H
H

2. The molecular adsorption occurred mostly on the MoN3 framework, where it was bound through the Mo atoms (see Table 2). Dissociative adsorption occurred on exposed Co atoms that belong to the Co3 clusters or Mo3 clusters that were exposed due to N-vacancies.

The adsorption energies without (ΔH2) and with (ΔH2,disp-D3, ΔH2,static-D3) the inclusion of dispersion interactions via the DFT-D3 method and the optimized structure of the adsorbates (i.e., H2, Co-H2, and Fe-H2) are presented in Table 2. We have also calculated % activation, defined as the percent increase of the H–H bond length during adsorption. It may seem at some point surprising that the addition of the D3 correction can shift the adsorption energy endo- or exothermically; however, for the static calculation, it always adds to a more exothermic adsorption energy, which is what is expected.

The various adsorption sites found had the following characteristics: site 1 the hydrogen was adsorbed side-on to a molybdenum atom that was adjacent to a nitrogen-vacancy site (Nv) with an adsorption energy of ~72 kJ/mol but with only a small activation of the H–H bond. Site 2 was found to dissociatively chemisorb H2, where it was bound to a molybdenum atom at a nitrogen vacancy site. This site had the lowest % activation (i.e., 41%) for molecular hydrogen; sites 3–5 in which hydrogen was adsorbed on a molybdenum atom on the MoN3 framework with a moderate adsorption energy of ~30 to ~68 kJ/mol due to the less metallic character of the MoN3 framework. The strongest adsorption energy for H2 was found on sites 6–7, which corresponds to a corner atom of the Co3 nanoclusters denoted as Co8-top with adsorption energy of ~127 and ~110 kJ/mol, respectively. At these sites, the H–H bond was also found to be considerably activated (i.e., 23–24%). These results indicate that the Co3 clusters will be saturated with molecular hydrogen at low temperatures under conditions where both N2/H2 are available in the feedstream. Interestingly we find that at site 8, H2 will generally not adsorb at low-T based on the D3-corrected adsorption energy of just 21 kJ/mol, and it is the only site on the Co3Mo3N surface that will not be occupied by hydrogen when it is coadsorbed with N2. Therefore, we consider site 8 as free under conditions of competitive adsorption with N2 at low temperatures (e.g., T < 200 °C).

3.3. N2 Adsorption and Activation on Co3Mo3N. The adsorption of N2 over a range of surfaces has been studied using various surface analytical probes extensively. Both physisorbed and chemisorbed states are identified using a combination of electron spectroscopy and thermal desorption techniques. According to this report and earlier LEED experiments, N2 can chemisorb side-on and end-on on the surfaces of certain metals (e.g., Ni, Fe, Ru, and W). In this study, we find that apart from these two adsorption configurations, N2 can also adsorb in a tilt end-on configuration on Co3Mo3N shown in Scheme 2. This is a well-defined adsorption configuration with a tilt angle equal to 155° in which the dihedral d(Co–Mo–N–N) of this bond is found to be 0°. Angle resolved photoemission spectra have identified two phases of N2 adsorbed to Fe(111) surfaces (γ-phase and α-phase). In the first, N2 is adsorbed perpendicularly, and in the latter in a strongly inclined configuration, where N2 was described to form two covalent bonds with Fe atoms. A structure of 2 × 2:-N/Fe(100) structure was found to form on Fe(111) and Fe(110) surfaces, whereas two side-on (α and α′) and two end-on (β and γ) adsorbed states have been found via periodic DFT calculations for molecular N2 adsorption on Fe(111). Two
adsorption configurations for molecular nitrogen have been previously identified as side-on and end-on, based on an extensive collection of surface analytical studies. Side-on and end-on adsorbed configurations for \(\text{N}_2 \) when it is adsorbed to nickel surfaces have also been found, where the end-on adsorption occurs either through a single surface atom on Ni(110) surfaces or in a tilt end-on configuration through two surface atoms on Ni(110) surfaces. An end-on adsorbed configuration of \(\text{N}_2 \) as well as \(\text{CO} \), which is isoelectronic, was found via X-ray emission spectroscopy (XES) and DFT calculations on Ni(100). An end-on adsorbed configuration for \(\text{N}_2 \) has been found on cobalt clusters of the form Co\(_n\)(\(\text{N}_2 \))\(^n\), where \(n = 8-17 \) using infrared photon dissociation (IRPD) spectroscopy and DFT calculations of the stretching frequency of the N–N bond. In the presence of a nitrogen vacancy (site 1 and 2) in (a) top view and (b) perspective view. Note that all adsorption sites are shown in one unit cell; however, the simulations results tabulated in Table 2 contained only one adsorbed nitrogen per 2 x 2 unit cell.
2 was found to activate N_2, where it was bound end-on at the 3-fold hollow generated by the nitrogen vacancy. This site had the second largest % activation (i.e., 11%) for molecular nitrogen. Site 3 N_2 was adsorbed in an end-on configuration on the Mo$_3$N framework with a weak adsorption energy (1.5 kJ/mol) due to the less metallic character of the Mo$_3$N framework. Site 4–5 N_2 adsorb in a tilt-end-on at the 32e Wycko of the (Co$_{6}$top) configuration with a 4−5% activation of the N−N bond and an adsorption energy of −30 to −41 kJ/mol. Site 6–7 N_2 adsorb in a side-on at the 32e Wycko site (Co$_{6}$top), with a 4−5% activation of the N−N bond. Interestingly we find a surface cavity on surface C of Co$_2$Mo$_3$N (site 8), at which there is the largest activation of N−N bond, 21%. This % activation is even larger than the activation that we have found at 5f sites on the surface cavity on surface C of Co$_2$Mo$_3$N (site 8), at which there is the largest activation of N−N bond, 21%. Although the adsorption energy at this site maybe positive, if we take into account the entropy change for adsorption at 300 K, which is $−T\Delta S = −58$ kJ/mol, the adsorption free energy becomes $−17$ kJ/mol. To summarize, two activation sites for N_2 have been found (i) the first at nitrogen vacancies on the Mo$_3$N framework (i.e., site 2) and (ii) the second at surface cavities where it activated on a Co atom at the 16d Wycko sites Co$_{6}$ (i.e., site 8, Co$_{6}$side). The existence of two activation sites for nitrogen clearly suggests that there may be more than one ammonia synthesis mechanism occurring on Co$_2$Mo$_3$N catalysts. In the following section, we explain based on the orbital/molecular orbital (MO) diagrams why these three adsorption configurations where found, based on the energy and spatial distribution of the frontier orbitals.

3.4. Interpretation of the Three N_2 Adsorption Configurations on Co$_2$Mo$_3$N

It is intriguing that there are three different low-coverage adsorption configurations for N_2 on the surface of Co$_2$Mo$_3$N, which suggests that there are three different adsorbate–surface bonding interactions. We have calculated with MP2/cc-pVTZ the molecular orbitals (MOs) of N_2 in order to tentatively offer an interpretation of the three adsorption configurations found. The eigenvalues and eigenfunctions of these calculations are shown in Figure 4, which show that the ordering for the highest-occupied-molecular-orbitals (HOMO: 1π_*) has a π-symmetry is separated by only 0.7 eV from an MO with σ-symmetry (HOMO−1: 3σ_*). Both these orbitals are expected to undergo bonding interactions. Because these MOs have their lobes pointing along directions perpendicular to the molecular axis (90°) of N_2 and along the molecular axis (180°), therefore bonding interactions are expected along these directions. Furthermore, these MOs are not expected to take any charge from the metal atoms, but could possibly donate electron density in the form of π-donation and σ-donation, respectively.

![END-ON](image)

Figure 4. Molecular orbitals and their corresponding energies for N_2 calculated at MP2/cc-pVDZ level of theory, as well as how they correlate to the various adsorbed configurations of N_2.

<table>
<thead>
<tr>
<th>property</th>
<th>site 1</th>
<th>site 2</th>
<th>site 3</th>
<th>site 4</th>
<th>site 5</th>
<th>site 6</th>
<th>site 7</th>
<th>site 8</th>
<th>units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔE_{ads}</td>
<td>−58.9</td>
<td>−19.6</td>
<td>59.8</td>
<td>−33.6</td>
<td>−44.3</td>
<td>−22.1</td>
<td>−18.7</td>
<td>79.3</td>
<td>kJ/mol</td>
</tr>
<tr>
<td>$\Delta E_{ads,relax}$</td>
<td>−58.9</td>
<td>−48.8</td>
<td>1.5</td>
<td>−29.9</td>
<td>−41.3</td>
<td>−38.2</td>
<td>−13.6</td>
<td>40.2</td>
<td>kJ/mol</td>
</tr>
<tr>
<td>$E_r (N\equiv N)$</td>
<td>1.166</td>
<td>1.244</td>
<td>1.130</td>
<td>1.173</td>
<td>1.163</td>
<td>1.166</td>
<td>1.173</td>
<td>1.357</td>
<td>Å</td>
</tr>
<tr>
<td>$\alpha (M\equiv N\equiv N)$</td>
<td>154</td>
<td>176</td>
<td>175</td>
<td>152</td>
<td>158</td>
<td>75</td>
<td>73</td>
<td>71</td>
<td>%</td>
</tr>
<tr>
<td>$E_{rel}(N\equiv N)$</td>
<td>1.753</td>
<td>1.930</td>
<td>2.398</td>
<td>1.820</td>
<td>1.754</td>
<td>2.001</td>
<td>1.971</td>
<td>1.928</td>
<td>Å</td>
</tr>
<tr>
<td>type</td>
<td>tilt</td>
<td>end-on</td>
<td>tilt</td>
<td>tilt</td>
<td>tilt</td>
<td>side-on</td>
<td>side-on</td>
<td>side-on</td>
<td></td>
</tr>
<tr>
<td>bound to N_2 activation</td>
<td>N$_{vac}$</td>
<td>N$_{vac}$</td>
<td>MoN$_3$</td>
<td>Co$_{top}$</td>
<td>Co$_{top}$</td>
<td>Co$_{top}$</td>
<td>Co$_{top}$</td>
<td>Co$_{side}$</td>
<td></td>
</tr>
<tr>
<td>Percent</td>
<td>4</td>
<td>11</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>21</td>
<td>%</td>
</tr>
</tbody>
</table>

The 32e and 16d Wycko sites of the Co$_{6}$ in the bulk, have been denoted as Co$_{6}$top and Co$_{6}$side for the surface slabs, respectively. aPercent activation is defined as $[r(N_{ads}) − r(N_{vac})] \times 100/[r(N_{ads}) + r(N_{vac})]$. From the metal atoms, but could possibly donate electron density in the form of π-donation and σ-donation, respectively.
CO adsorbed in a tilt configuration has been previously found on Ag$_n$ (n = 1 to 7), which was rationalized on the basis of better orbital overlap of tilt-CO with Ag$_n$-HOMO of σ-symmetry and of the linear end-on CO with Ag$_n$-HOMO of π-symmetry. Furthermore, a tilt-CO was also found as a results of CO–CO repulsions or adsorption at 4-fold hollow sites. There have been many computational studies of the doping, support and NP-size effects on CO adsorption on various metal and their oxides and as elementary reaction steps in catalytic reactions. In a recent combined DFT and experimental study of the catalytic CO oxidation using bimetallic M$_{x}$Au$_{2-x}$SC$_{2}$H$_{4}$Ph clusters, where M = Cu, Au, Ag, the following Cu > Au > Ag was found and interpreted as a result of a stronger metal-CO interaction in metals with a smaller covalent radius. Based on these earlier studies and the results found here, we rationalize that the π-back-donation of electron density into the LUMO of both N$_2$ and CO is expected to result in a linear end-on adsorption. The tilt end-on adsorption configuration of N$_2$ on Co$_x$Mo$_x$N has not been previously reported and is shown in Scheme 2. This is a well-defined adsorption configuration with a tilt angle equal to 155° in which the dihedral d(Co–Mo–N–N) of this bond is found to be 0. In the following section, we provide evidence that there are two bonding interactions that take place based on the sphere-in-contact model. We have taken literature values of 190 and 152 pm, respectively, if we use literature values of 190 and 152 pm, respectively. If we used literature values of 190 and 152 pm, respectively, the spheres are in contact with Agn-HOMO of σ-symmetry, which is rationalized by a particular activation sites exposed on Co$_x$ triangular cluster that resides at 3 nitrogen vacancies. N$_2$ was found to adsorb side-on, end-on, and in an unusual tilt end-on (155°) configuration, which is rationalized via MO diagrams and the sphere-in-contact model. We find that there are two possible activation sites for N$_2$. The first is a Mo$_3$ triangular cluster that resides at 3 nitrogen vacancies and the second is a surface cavity where N$_2$ is activated by the inner tetrahedral atom of the Co$_x$ cluster, the second being a more efficient activation site and a particular activation sites exposed only in Co$_x$Mo$_x$N surfaces with a surface composition of CoMoN$_x$.

CONCLUSIONS

We present a dispersion-corrected DFT study of the adsorption and activation of molecular nitrogen and hydrogen on cobalt molybdenum nitride (111) surfaces to identify possible activation sites for ammonia synthesis. H$_2$ was found to adsorb both molecularly on the Mo$_3$N framework and dissociatively on Co$_x$ clusters or Mo$_x$ clusters that were exposed due to N-vacancies. N$_2$ was found to adsorb side-on, end-on, and in an unusual tilt end-on (155°) configuration, which is rationalized via MO diagrams and the sphere-in-contact model. We find that there are two possible activation sites for N$_2$. The first is a Mo$_3$ triangular cluster that resides at 3 nitrogen vacancies and the second is a surface cavity where N$_2$ is activated by the inner tetrahedral atom of the Co$_x$ cluster, the second being a more efficient activation site and a particular activation sites exposed only in Co$_x$Mo$_x$N surfaces with a surface composition of CoMoN$_x$.

AUTHOR INFORMATION

Corresponding Authors

*E-mail: c.zeinalipour-yazdi@ucl.ac.edu; Tel: +44 207-679-0312.

*E-mail: c.r.a.catlow@ucl.ac.uk; Tel: +44 207-235-2818.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors acknowledge EPSRC funding (EP/L026317/1, EP/L02537X/1). Via our membership of the UK’s HPC Materials Chemistry Consortium, which is funded by EPSRC (EP/L000202/1); this work used the ARCHER UK National Supercomputing Service (http://www.archer.ac.uk).

REFERENCES

