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Abstract
When studying patent data as a way to understand innovation and technological
change, the conventional indicators might fall short, and categorizing technologies
based on the existing classification systems used by patent authorities could cause
inaccuracy and misclassification, as shown in literature. Gao et al. (International
Workshop on Complex Networks and their Applications, 2017) have established a
method to analyze patent classes of similar technologies as network communities. In
this paper, we adopt the stabilized Louvain method for network community detection
to improve consistency and stability. Incorporating the overlapping community
mapping algorithm, we also develop a new method to identify the central nodes
based on the temporal evolution of the network structure and track the changes of
communities over time. A case study of Germany’s patent data is used to demonstrate
and verify the application of the method and the results. Compared to the
non-network metrics and conventional network measures, we offer a heuristic
approach with a dynamic view and more stable results.

Keywords: Technological change, Temporal networks, Patent data, Louvain
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Introduction
Patent data has attracted the interest of researchers as a way to measure and
understand innovation and technological change, especially with the increased
availability of online electronic database and the efforts made by worldwide
patent authorities to consolidate and harmonize patent data at international level
(Maraut et al. 2008; OECD 2009).
Gao et al. (2017) have introduced an approach to construct networks based on

the OECD Triadic Patent Family database (Dernis and Khan 2004), to identify com-
munities and the community cores. The comparison against the International Patent
Classification (IPC) system (WIPO 2017a; 2017b) shows that the endogenous com-
munities can provide a more accurate and complete list of potentially associated IPC
classes for any given patent class. This association is indicated by being the most
consistent nodes in the community containing the given node, as measured by an
indicator named coreness. However, that approach was unable to effectively capture
the temporal evolution of a community over time due to the difficulty in community
tracking.
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This paper continues to address this unsolved problem. For community identification,
we use an improved Louvain modularity optimization algorithm. To define community
cores, we have developed a heuristic approach to detect the central groups of nodes based
on the intrinsic characteristics of the temporal networks. As for community tracking, we
use a method to find the “best match” based on majority nodes mapping to the reference
community. Verification and robustness checks show that our findings are sound and
reliable. We also present a case study to demonstrate the real-world implications of our
results.

Background
Since the Sixties patent data has been used by many researchers to measure patent
quality, their economic value and possible impact on technological developments and
economy (Griliches and Schmookler 1963; Comanor and Scherer 1969; Griliches 1998;
Squicciarini et al. 2013; Hausman and Johnston 2014). Most of the well-recognized
conventional indicators are straightforwardmeasures, such as the number of patent appli-
cations and publications, time needed from filing to grant (grant lag), number of different
technology classification codes involved (patent scope), forward and backward citation
counts, etc. Such indicators may be used to track technological changes and innovation,
but when considered alone, will fall short due to their simplicity and lack of context,
resulting in bias and sometimes contradicting conclusions (Benner and Waldfogel 2008;
Dang and Motohashi 2015; Hall et al. 2001; Hall and et al 2005; Harhoff et al.
2003).
In the light of this, we carried out the previous research (Gao et al. 2017) to study patent

data from a network perspective (Acemoglu et al. 2016), which lays the foundation for the
motivation of this paper. More specifically, two types of networks are constructed based
on how individual patents grouped into the same family, and how patents in different
families cite each other. In both networks, the nodes are the 4-digit subclass level IPC
codes following WIPO’s IPC scheme of 2016 (WIPO 2016). This paper focuses on the
former type, the family cohort network, in which any two of the total of 639 nodes are
connected when they are both found in patents of the same patent family. The more times
two subclasses nodes are found to share the same family, the more intense they are linked
in the network. Based on this constructionmechanism, a community of closely connected
nodes indicates that the represented technological fields are more likely to be found in the
same inventions. For example, pharmaceutical products in IPC class A61 and enzymology
or microbiology in class C12 frequently co-occur in patent families and they are found to
be in the same network community.
Application inventions usually involve more than one technology field. A car, for exam-

ple, consists of many parts serving different functions. Innovations in molecular material
science could stimulate the birth of a new type of tire, or a more efficient type of fuel,
which then brings a new design of engines involving mechanical and electronic innova-
tions. Along the technological trajectories there are many cases like this. To find out how
an established community of technological changes over time, splitting up and merging
with other technologies, is not only interesting in the retrospective observation of tech-
nological development trends, but also helps in understanding the interactions between
science and technology and policy making, market drives and other socio-economic
factors.
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Data
The dataset used for the analysis is retrieved from the February, 2016 edition OECD
patent database (OECD 2017). In addition, ISO country codes from the OECD REGPAT
database (Maraut et al. 2008) are used to sort out patent families by country.
In this paper, a patent family from a country is defined as a family con-

taining at least one patent of which at least one applicant is from that coun-
try. The applicant’s country is used instead of the inventor’s country because
the applicants designate the owners or party in control of the invention, mostly
firms (OECD 2009). Therefore it reflects the innovative performance of the given
country’s firms, while the inventor’s country is usually the inventor’s professional
address.
The REGPAT database is most reliable for OECD and EU countries since it is based on

two sources: patent applications to the European Patent Office (EPO) and filed under the
Patent Co-operation Treaty (PCT) from 1977 to 2013. We chose to focus on Germany for
our case study and we use the data from year 1980–2013 for more consistent data quality.
Germany has the largest number of patent applications among all the EU countries, and
ranks third for patent production among the OECD countries.

Methodology
The analysis mainly consists of three parts, to be described in the following paragraphs:
community identification, central nodes identification and community tracking over time.

Community identification

In our previous study (Gao et al. 2017), we used the Lumped Markov Chain method pro-
posed by Carlo Piccardi (2011) to detect clusters in networks. This method produces
satisfying results for a single static network with sufficiently strong clustering structure.
However, for our purpose to analyze the temporal evolution of a network, essentially a
network in multiple time slices, this method would treat each time slice as a separate
network without connection to each other, which is not appropriate for the continuous
technological development issue of interest. Also, the marginal results observed show
that the detected community structure is very sensitive to the input network. In other
words, although the network is not supposed to have dramatic change from one snapshot
in time to the next, a small change could cause significant transformation in the resulting
communities.
To better capture the network’s temporal properties and overcome the instability, we

use a modification of the Louvain modularity optimization method for community detec-
tion. This modification, namely the Stabilized Louvain Method, proposed by Aynaud
and Guillaume (2010), has been proved to achieve more stable results in tracing com-
munities over time. The Louvain method finds the community structure with maximum
modularity by looking for modularity gain through iterations (Blondel et al. 2008). The
modification, essentially, is to change the initial partition of the network at time t to the
detected partition at time t-1, thus the initial partition is constrained to take into account
the communities found at the previous time steps, making it possible to identify the real
trends.
The algorithm implementation is based on the Python module using NetworkX for

community detection (Aynaud 2009). We split up the database by the earliest priority
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year of patent family, and execute the algorithm for each year, using the detected network
partition as the initial partition for the next year.

Central nodes identification

There are many different ways to define centrality within a community and/or a network,
from the classic definitions by degree, betweenness, closeness, Eigenvector, PageRank,
etc, to many customized concepts in empirical and theoretical researches (Freeman 1978;
Wasserman and Faust 1994; Valente et al. 2008). For example, in our previous work (Gao
et al. 2017) “Coreness” has been defined as a measure of weighted centrality, based on the
probability to be present in the community and the intra-community centrality of each
node. However, similar to community detection, centrality measures are not designed for
temporal evolving networks and the adoption of one metric out of the others is usually an
ad-hoc choice.
A more heuristic concept of cores, as defined by Seifi and colleagues, is certain sets

of nodes that different community detection algorithms or multiple execution of a non-
deterministic algorithm would agree on (Seifi et al. 2013). They summarized that for a
static network, there are two types of algorithms to identify such sets of nodes: by adding
perturbations to the network, and by changing the initial configuration. In the first type,
small perturbations such as removing a fraction of links and putting them back on ran-
dom pairs of nodes, are used to create slightly different networks from the original and
produce different partitioning results for comparison and finding of the consensus com-
munities. However, for a network that changes over time, such perturbations naturally
exist in each time slice. In fact, they are the temporal changes to be discovered. Therefore,
the latter type is more appropriate. Wang and Fleury experimented with the overlapping
community technique in a series of works (Wang 2012;Wang and Fleury 2010; 2013). Our
method is similar to the concept of Wang and Fleury’s fuzzy detection method to iden-
tify modular overlaps, which are groups of nodes or sub-communities shared by several
communities (Wang 2012), with a different implementation.
We describe the overlapping community mapping algorithm and the central nodes

identification methods in a 4-step procedure:

I. Given the network partition P in the reference time slice t, identify a community
C (C ∈ P). C is the target community of interest to be mapped to in the following time
slices.
P is obtained using the Stabilized LouvainMethod described in the previous subsection.

For a network with the total set of nodes E, P = {C1,C2, ...Ck}, where:
⋃

i
Ci = E, i �= j ⇒ Ci ∩ Cj = 0

II. In the network with partition P’ of a following time slice t’, find the community with
the most nodes in C, and that is the mapped community C’ of C. The change of C from t
to t’ is considered the change between C and C’. This step can be illustrated by the pseudo
codes in Algorithm 1.

III. Based on the communities detected in the previous step, take any node k, find
the community C0 it belongs to in the initial year T0 in a certain time window of n
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Algorithm 1 Pseudo-code of Community Mapping
1: C ← Nodes of the community to be mapped in time slice t
2: P’ ← Partition of the network in time slice t’
3: C’i ← The ith community in P’
4: Ni ← C ∩ C’i
5: C’ ← N1
6: loop:
7: if Ni ≤ Ni+1 then
8: i ← i + 1.
9: C’ ← Ni+1.

10: goto loop.
11: close;

years, and use the mapping algorithm to track C0 in the following years within the time
window.

VI. The more significant this node k is, the more likely it is to be found in the mapped
communities. Each node will have a numberWk (Wk≤n) of howmany times it is included
in the mapped communities throughout the time window. The group of nodes with the
largest Wk will become the central sets in this time window. Step III and VI can be
illustrated by the pseudo codes in Algorithm 2.

Algorithm 2 Pseudo-code of Central Nodes Identification
1: N ← length of the time window started with the initial year T0
2: m ← total number of nodes in the network
3: k ← 1
4: loop1:
5: if k ≤ m then
6: Ck0 ← the community containing the kth node in the initial year T0
7: Wk ← 1
8: loop2:
9: j ← 1

10: if j < N then
11: Ckj ← the community mapped to Ck0 in the following year Tj
12: if k ∈ Ckj then
13: Wk ← Wk+1
14: goto loop2.
15: goto loop1.
16: close;

This method uses the intrinsic temporal dynamics of the network to find the central
nodes. It is intuitive and heuristic, independent of arbitrary ad-hoc choices of measures.
The configuration of the initial year and the length of time window could significantly
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affect the results. Therefore, robustness checks using different lengths of rolling time
windows are necessary to verify stability.

Community tracking over time

After sets of central nodes are identified, it is then possible to track the community
containing them through the years. The tracking method is the same as the mapping
algorithm described above. Visualization helps to show that the central nodes are the per-
sistent “cores” of the community under tracking whereas the “peripheral” nodes reflect
the changes over time.

Case study
Using the 3-step method described above, we perform a case study using data of patent
families with Germany as the applicant’s country. As the largest economy of the EU,
Germany also ranks top among all the EU countries in terms of IP filings, including patent
applications. Data from the World Intellectual Property Organization (WIPO) (statistics
databaseW2017) shows that 176,693 patents have been filed toGermany’s patent office in
2016 from residents and abroad, more than twice of 71,276 from France, the second place
in EU. WIPO’s statistics also reports that the top 5 fields of technology associated with
patent applications are transport; electrical machinery, apparatus; mechanical elements;
engines, pumps, turbines; and measurement.

Analysis configuration

In our method, there are several adjustable parameters:

• Community Detection Resolution. In the first step, the Louvain method allows for
different resolution settings, an implementation of the idea raised by Lambiotte and
colleagues that time plays the role of an intrinsic parameter to uncover community
structures at different resolutions (Lambiotte et al. 2008). To test the influence of
resolution, we run community detection using different resolutions ranging from 0.5
to 2.

• Overlapping Community Reference. In the second step, there are two ways to choose
the reference year: For any year Tt of the non-initial years in the time window, always
refer to the initial year T0, or refer to the previous year Tt−1. The latter would
mediate the dependency of the initial year. We have applied both types of time
referencing and compared the results.

• Time Window Setting. As mentioned in the previous section, the initial year’s
network partition is used as the reference for the following years’ community
mapping. The time window length is important for two reasons: first, depending on
the pace of technology development and potential events driving the changes, the
period of time that the initial year would remain valid as the reference varies; and
second, longer time windows would require a node to be more “central” to appear at
all time or most of the time, and therefore would result in smaller sets of central
nodes than shorter time windows. To address these concerns, we used different
rolling window settings, including 5 or 10-year time windows with the initial year
rolling from year to year (for example, 1980–1989, 1981–1990, . . . ), and 5 or 10-year
time windows with the initial year rolling 5 years apart (for example, 1980–1989,
1985–1994, . . . ).



Gao et al. Applied Network Science  (2018) 3:26 Page 7 of 23

Results
Community detection - quantities and sizes: For community detection, we apply
the stabilized Louvain method on the entire time range from 1980 to 2013 because
technological development is continuous through all the years.
We first check the number of communities detected at different resolution levels. As

each node represents a subclass in the IPC scheme, not all of them would appear in every
year’s patent applications. In addition, some patent families contain just a single sub-
class. Such cases would result in “orphan communities”, communities that have only one
node without connection to any other nodes. There are also some very small commu-
nities with 2 or 3 nodes. Additional file 1: Figure S8 shows the community structure of
selected years with resolution set to 1.0, including all the small communities and orphans
with nodes layout using Fruchterman-Reingold force-directed algorithm (Hagberg et al.
2008; Fruchterman and Reingold 1991). Each sample year has an average of 151 orphan
nodes plus 7 nodes in small communities with no more than 5 nodes. So many isolated
nodes and small communities will cause too much noise in the analysis. To focus on the
meaningful clusters, we have excluded all the communities with 5 nodes or less from the
detected partitions. Quantities of the remaining communities are shown in Fig. 1.
Contrary to the commonwisdom that higher resolutions correspond to finer, and there-

fore more partitions, the figure shows that after excluding the very small communities,
the lowest resolution 0.5 has the most communities in all the years, and resolutions 1.8
and 2.0 have the fewest. Figure 1 also shows that the community numbers generally have a

Fig. 1 Number of communities at different resolutions. The x-axis indicates years from 1980 to 2013, and the
y-axis indicates number of communities
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decreasing trend over the years. This is due to the mechanism of the stabilized algorithm
where each year’s initial partition builds on the previous year. With the enhanced stabil-
ity, it becomes easier to identify clusters with time. It is noteworthy that the decrease of
number of non-tiny communities over time does not indicate the breakdown of weakly
connected communities, but rather community merging, including the situation where a
community splits into 2 or more smaller parts which merge into other large communities.
Likewise, one should be aware that the disappearance of a portion of nodes in a com-

munity does not mean such nodes abruptly disconnect from the central nodes of the
community. They aremost likely still connected, but have becomemore closely connected
with another set of central nodes, or are replaced by other nodes that are closer to the orig-
inal central nodes. The methodology of cluster identification involves such “competition”
at all times.
We also check the community sizes. Figure 2 shows the average number of nodes in

community for all the years at different resolutions. Overall, the community size increases
with resolution, and from the earlier years to the more recent years.
The first-step results show that although the algorithm detects more, finer communi-

ties under higher resolutions, a lot of them are very small communities. As a result, at
the higher resolutions the community size distribution tends to be more polarized, with
fewer but more aggregated communities, and more tiny communities than at the lower
resolutions.

Fig. 2 Average community size at different resolutions. The x-axis indicates years from 1980 to 2013, and the
y-axis indicates number of nodes in the community
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Central nodes - occurring rate: Similarly, different resolutions would result in different
sets of central nodes. We define an indicator named “occurring rate” as the number of
occurrence of each node in themapped communities, divided by the total number of years
in the time window. For a year-to-year rolling time window setting, the average occurring
rate of all the nodes over a certain time window is calculated as

Or =
∑34−N+1

t=1

(∑m
i=1

( nir
N

)

m

)

34 − N + 1
, r ∈ {0.2, 0.5, 1.0, 1.2, 1.5, 1.8, 2.0},m ≤ 639 (1)

where m is the total number of nodes in year t after excluding those very small commu-
nities with less than 5 nodes; nir is the occurrence of the ith node at resolution r in each
time window during the community mapping process including the initial year; and N is
the length of the time window.
We use the configuration of 10-year windows rolling from year to year to demonstrate

this result. When N is equal to 10 in Eq. 1, the calculated mean values and standard
deviations of the occurring rates at various resolutions are shown in Fig. 3. Using both
mapping algorithms, the lowest average occurring rates are at resolution 1.0.
While there is no benchmark for the absolutely ground truth to determine which res-

olution is the “best”, for our analysis purpose there are some preferred qualities: lower
average occurring rates are more desirable because such community structures can bet-
ter reflect the changes over time: Figs. 1 and 2 show that the higher resolutions generate
fewer and larger communities, which indicates that the community sizes tend to polarize
at higher resolutions, with fewer large communities and more tiny communities, or even
disconnected single-node communities.

Fig. 3 Occurring rate statistics at different resolutions. The mean value and standard deviation of the
occurring rate over all the nodes, using the 10-year time window rolling from year to year, including 25 time
windows with initial years from 1980 to 2004. The x-axis indicates various resolution values, and the y-axis is
the scale of mean values. Results from two mapping methods are shown in this figure
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At lower resolutions, the number of communities larger than five increases, which
might also bring more instability (the number of distinct communities decreases from 13
to 8 at resolution 0.5). Therefore, we choose resolution 1.0 as the setting for the next step,
to identify communities and track them over time.
The statistical behavior shown above under different resolutions is related to the prob-

lem known as “resolution limit” (Fortunato and Barthelemy 2007), that the modularity
optimization method may fail to identify communities smaller than a certain scale. Lam-
biotte and colleagues have also verified in their framework that partitions beyond a
certain resolution limit are obtained at small time where the optimal partition is the finest
(Lambiotte et al. 2008).

Central nodes at resolution 1.0: Using the overlapping algorithm, at resolution 1.0,
we select different time window configurations to identify the central nodes, each with
the two referencing methods described above. Figure 4 shows the central nodes plotting
under the 10-year time window setting, rolling from year to year. The threshold of the
central nodes is set to be the length of the time windows (34 for the all-year setting and
10 for the rolling windows). That is, only the most persistent nodes with an occurring
rate of one within the time window are colored in the figure. So under the all-year set-
ting there are fewer central nodes. If a node is central using both referencing methods
(colored green), it is more likely that the initial community has not gone through signif-
icant reshuffling. If it is only central when referring to the initial year (colored red), then
in at least one of the following years in the time window, the initial community has prob-
ably experienced some changes that are not in a consistent direction. For example, when
merging and then splitting, by referring to the previous year a node might be left out in
the minority part of the merged community. If a node is central only when referring to
the previous year, it is likely that it has just drift away from the initial community dur-
ing accumulated changes. For some nodes, they would become red first, and then turn to
green. This means the changes have stabilized.
Figure 4 shows several noteworthy trends, highlighted as framed areas 1–4. However,

at this moment it is too soon to relate these signals with real-world facts since it is not yet
clear how central nodes are grouped into different communities. At this stage, the visual-
ization provides a guidance for the potential trends to take a closer look at. Overall, it also
shows the most persistent central nodes, such as IPC Class C07-C08 (organic chemistry
and organic macromolecular compounds), and H03-H04 (electric circuitry and electric
communication technique).

Community tracking: At this step, any chosen community in the initial year can be
tracked to analyze its changes over time. We use two examples to illustrate our approach.
Since the endogenous communities do not have meaningful names, we refer to them
by one of the representative central nodes they contain in year 1980’s partition: B01D,
defined in IPC as “separation in physical or chemical processes”; and B60R, “vehicles,
vehicle fittings, or vehicle parts” not provided for in other categories under class B60,
“vehicles in general”.
Figures 5 and 6 show the results of tracking the two communities above, respectively.

Both communities cover multiple IPC sections, as discussed by Gao et al. (2017). The



Gao et al. Applied Network Science  (2018) 3:26 Page 11 of 23

Fig. 4 Central nodes of 10-year time window rolling from year to year. The x-axis indicates time windows
from 1980–1989 to 2004–2013, except for the first column labeled “ALL”, which is the all-year condition. The
y-axis indicates the nodes, i.e. IPC subclasses, ordered in IPC index. Colored blocks indicate central nodes in a
time window using at least one referencing method: Green represents central nodes both methods have in
common, red for those central only by referring to the initial year, and yellow for those central only by
referring to the previous year
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Fig. 5 Tracking community B01D in consecutive 5-year time windows, mapping to the previous year. The
x-axis indicates years from 1980 to 2013, and the y-axis indicates the nodes, i.e. IPC subclasses, ordered in IPC
index. The community mapping is based on consecutive 5-year windows. In each time window, the initial
year’s community containing the central node set represented by B01D is shown in blue. In the rest 4 years,
colored nodes represent the mapping communities: red indicates the node does not exist in the reference
community (community of the previous year), and purple indicates the overlapping part
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Fig. 6 Tracking community B60R in consecutive 5-year time windows, mapping to the previous year. The
x-axis indicates years from 1980 to 2013, and the y-axis indicates the nodes, i.e. IPC subclasses, ordered in IPC
index. The community mapping is based on consecutive 5-year windows. In each time window, the initial
year’s community containing the central node set represented by B60R is shown in blue. In the rest 4 years,
colored nodes represent the mapping communities: red indicates the node does not exist in the reference
community (community of the previous year), and purple indicates the overlapping part
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two figures show that the consistently overlapping parts of the two communities are
different most of the time. B01D’s community mainly consists of various physical or
chemical processes treating materials and tooling (classes B01-B06), artificial materi-
als from glass to cement and ceramics (C02-C03), petrol and gas industries (C10), and
metallurgy and metal surface treatment (C21-C23). Such a composition suggests the
application of physical or chemical processing techniques in the inventions of certain
industries. For B60R, its community covers the majority of Section B, E and classes F01-
F17, a combination of machinery, mechanical engineering, vehicles and transportation,
building and construction. Relating to Fig. 4, the central nodes of these two communi-
ties contribute to a majority of the central nodes, including the framed areas 1 and 2.
This is consistent with the WIPO statistics about Germany’s top technology fields of
patent applications (for the complete IPC definitions, please refer toWIPO’s IPC Scheme
(WIPO 2016)).
Next, we focus on the major differences between the two figures. From 1990 to 1999,

B21-B30 “moves” from Fig. 6 to Fig. 5. Those subclasses focus on technologies related to
metal working, machine tools, and hand tools, which are likely to be applied in both com-
munities. The temporary “move” turns back after 1999. This is an example of marginal
clustering. Another similar case is the “move” of classes F22-F25 from Figs. 5 to 6 from
2000 to 2009. This part represents technologies related to combustion process, heat-
ing and refrigeration. After robustness check, the “moves” still exist. This indicates that
instead of an artifact due to time window configuration, the “moving” technologies are
closely connected to both communities and the network clustering algorithm captures the
changes in the relative connectivity. These two “moving” parts also provide an explanation
to the framed areas 1 and 3 in Fig. 4: the temporary community switches may result in the
rise and fall of a set of central nodes in the following or preceding rolling time windows.
In Fig. 6, we should also notice the spread to Section G and H starting from the 1990s.

This is a consistent trend, getting stronger in the last 4 years. Compared to Fig. 5 which
also covers a part of Section G, the community containing B60R incorporates more
technologies in digital computer (class G06), electric devices and power supply and dis-
tribution (class H01 and H02). This observation is in line withWIPO’s report of electrical
machinery as the second top technology field of patent applications (statistics database
W 2017).

Discussion
Technological change in Germany’s automotive industry: To make sense of data
analysis findings based on real-world technological trends is always difficult. In most
empirical analysis, reliable methods and domain knowledge in the industry are both
essential.
In Fig. 6, the technology community containing B60R takes up more than half of

Germany’s patent filing activities, with the most persistent parts being IPC classes B60-
B67, Section E, and F1-F16. These technologies can be considered as the mainstream
of this community: vehicles and transportation, building and construction, machine and
engines (for the details of these IPC schemes, please refer to Table 1).
Clear changing trends can also be observed. Aside from the marginal “moves” like B21-

B23 as discussed above, we focus on the more consistent trends, such as the increasing
involvement of Section G and H, specifically, classes G01, G05, G06, H01 and H02, shown
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Table 1 IPC schemes of the persistent technologies in community containing B60R

Section Class Scheme

B B60 VEHICLES IN GENERAL

B61 RAILWAYS

B62 LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS

B63 SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT

B64 AIRCRAFT; AVIATION; COSMONAUTICS

B65 CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL

B66 HOISTING; LIFTING; HAULING

B67 OPENING OR CLOSING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING

E E01 CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES

E02 HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL-SHIFTING

E03 WATER SUPPLY; SEWERAGE

E04 BUILDING

E05 LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES

E06 DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS, IN GENERAL; LADDERS

E21 EARTH OR ROCK DRILLING; MINING

E99 SUBJECT MATTER NOT OTHERWISE PROVIDED FOR IN THIS SECTION

F F01 MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES

F02 COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS

F03 MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING

MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR

F04 POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS

F15 FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL

F16 ENGINEERING ELEMENTS OR UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING

EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL

F17 STORING OR DISTRIBUTING GASES OR LIQUIDS

in the bottom framed area in Fig. 6. These are the technologies related to measuring and
testing, controlling and regulating, computing, electric elements, and electric power. This
trend started from 2000, and became significantly stronger since 2010 (for the relevant
IPC schemes of the classes and the subordinate central subclasses, please refer to Table 2).
Germany’s dominating industrial sectors include automotive, machinery and equip-

ment, electrical and electronic, and chemical engineering. These sectors not only con-
tribute to the national GDP, but also are the focal points of innovation of this country.
Among the top ten German organizations filing the most PCT patents, at least 6 have
automotive as its major or one of the major operations, including vehicle manufacturers
like Continental Automotive GMBH and Audi AG, automotive components and assem-
bly suppliers like Robert Bosch Corporation and Schaeffler Technologies AG & Co. KG,
and research institutes like the Fraunhofer Society (statistics databaseW 2017). Germany
Trade & Invest (GTAI), the economic development agency of the Federal Republic of
Germany reported that internal combustion engine energy efficiency, alternative drive
technologies (including electric, hybrid, and fuel cell cars), and adapting lightweightmate-
rials and electronics are the current major market trends (GTAI 2017). From electronic
technologies, software solutions to metallurgy, chemical engineering, automation and
drive technologies, innovation in the automotive industry drives and benefits from a
number of other sectors.
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Table 2 IPC schemes of the central nodes in Section G and H in community containing B60R

Code Scheme

G01 Measuring; Testing

G01F MEASURING VOLUME, VOLUME FLOW, MASS FLOW, OR LIQUID LEVEL; METERING BY VOLUME

G01G WEIGHING

G01H MEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES

G01L MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID

PRESSURE

G01M TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR

APPARATUS, NOT OTHERWISE PROVIDED FOR

G01P MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION OR SHOCK; INDICATING

PRESENCE OR ABSENCE OF MOVEMENT; INDICATING DIRECTION OF MOVEMENT

G01W METEOROLOGY

G05 Controlling; Regulating

G05B CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS;

MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS

G05D SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES

G05G CONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY

G06 Computing; Calculating;

G06M COUNTING MECHANISMS; COUNTING OF OBJECTS NOT OTHERWISE PROVIDED FOR

G08 Signalling

G08G TRAFFIC CONTROL SYSTEMS

G10 Musical instruments; Acoustics

G10K SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING,

NOISE OR OTHER ACOUSTIC WAVES IN GENERAL

H01 Basic electric elements

H01H ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES

H02 Generation, conversion, or distribution of electric power

H02G INSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES

H02H EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS

H02K DYNAMO-ELECTRIC MACHINES

H02P CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC

CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS

In fact, these trends in the automotive sector are not limited to Germany, but Germany’s
case is more noticeable and representative given its outstanding concentration of R&D,
design, supply, manufacturing and assembly facilities. The automotive industry does not
just source from other sectors for innovative technological support. When Enkel and
Gassmann examined 25 cases of cross-industry innovation, automotive is observed as
both the result and source of the original idea (Enkel and Gassmann 2010). The interac-
tive sectors range from the ones with a closer cognitive distance like aviation and steel
industry to the more distant ones like sports, medical care and games. These cases all
occurred between 2005 to 2009, and indeed, the cross-industry technological interactions
have become more dynamic starting from 2000, as the shuffles observed in Figs. 4, 5 and
6 of our analysis. In 2009, Germany’s Federal Ministry for Environment, Nature Con-
servation, Building and Nuclear Safety issued German Federal Government’s National
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Electromobility Development Plan (Bundesregierung 2009) specified a serial action plan
to promote electromobility in Germany, which defines 2009 to 2011 for market prepara-
tion, 2011 to 2016 as market escalation and 2017 to 2020 as mass market. The first stage
focuses on research and development. The Plan also identifies batteries as the weakness
of Germany’s automotive sector on the path to the leading position in electromobility.
The increased activities in Section G and H starting from 2000 might be a reflection of
this policy. However, this is up to validation when more data covering the following years
will become available.

Robustness check: For community tracking, we have performed the analysis under 10-
year and 5-year time window settings, and found the results to be very close. The results
presented in Figs. 5 and 6 are based on 5-year time windows. In addition, we have done
robustness checks using the other community mapping method and with time window
shifts, shown in Additional file 2: Figure S9 and Additional file 3: Figure S10 respectively
using the example of B60R’s community. In Additional file 2: Figure S9 , when referring to
the initial year, the colored blocks layout is the same as Fig. 6 except for the colors used,
which is merely due to the difference in the definition in the mapping methods. We find
similar results in Additional file 3: Figure S10: There is no difference from Fig. 6 except
for the 1-year shift. We have performed such robustness checks for other communities
and obtained the similar results. This indicates that the community mapping method is
stable and consistent in identifying central nodes and tracking communities.

Central nodes identification methods comparison: Alternative to the community
mapping and central nodes identification method, we try to rank nodes by their between-
ness centrality. Betweenness centrality is one of the most widely used measures of vertex
centrality in a network (Bavelas 1948; Beauchamp 1965; Freeman 1977). Compared to
other centrality measures using degree or closeness, betweenness represents the connec-
tivity of a node as a bridge connecting two other nodes along a shortest path. We use it
as an example to demonstrate the similarity and difference between our method and the
conventional network centrality measures. The betweenness centrality of each node is
calculated to find the nodes with the highest centrality values. In order to avoid outstand-
ing impact from a single year, we use aggregated data from 3 consecutive years to form a
network, based on which the centrality is calculated for the first of the 3 years.We present
here the results comparison for the same years from 1980 to 2004. As a major difference
between the two algorithms, ours provides a set of central nodes all with the same occur-
ring rate of 1, but the betweenness centrality value of most nodes are different, ranking
them from high to low. So when using the betweenness centrality method, we take theM
nodes ranking highest by centrality values, with M being the size of central nodes set in
the same time period using our method. For example, the central nodes set in the time
windows starting with 1980 has 131 nodes, and the top 131 nodes with highest between-
ness centrality rankings in the aggregated period of 1980–1982 are used for comparison.
The matching rates are shown in Table 3, averaging at 32.45%. Figure 7 shows the distri-
bution over IPC scheme using both methods. The central nodes based on our algorithm
are the ones shared by both referring methods.
The two algorithms are different by definition, and offer different information as the

comparison shows. It is difficult to verify the results against ground truth, but we argue
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Table 3Matching rates of central nodes by the community mapping method and the betweenness
centrality method

Year Common Different Match (%)

1980 53 78 40.46

1981 38 56 40.43

1982 33 60 35.48

1983 33 60 35.48

1984 32 60 34.78

1985 30 65 31.58

1986 42 54 43.75

1987 39 56 41.05

1988 36 63 36.36

1989 45 63 41.67

1990 48 79 37.80

1991 34 58 36.96

1992 24 49 32.88

1993 21 52 28.77

1994 32 67 32.32

1995 31 63 32.98

1996 22 69 24.18

1997 27 63 30.00

1998 36 80 31.03

1999 39 87 30.95

2000 53 96 35.57

2001 22 74 22.92

2002 18 59 23.38

2003 5 34 12.82

2004 6 28 17.65

that our method has two important advantages. First, there is no arbitrary control of the
number of central nodes. To study the interaction of technologies in cohesive families,
to have a set of central nodes rather than a given number of top centrality nodes is intu-
itively closer to the real-world situation. Second, our method identifies the set of central
nodes based on tracked communities over a time window, while the betweenness central-
ity calculated is for a single time period (3 years in the demonstrated example) - additional
efforts are needed to track communities over time in order to calculate the centrality val-
ues for continuous time periods. It would only be more inaccurate to simply aggregate
data in a time window of 10 years and calculate the centrality. These issues stand true
for all other centrality measure. Figure 7 also shows the central nodes identified using
our proposed method are more consistent and concentrated, while the top betweenness
centrality nodes are more spread out over the whole IPC scheme.
Similarities between the two results also confirm the persistent and changing trends

shown in Fig. 4: bio-technology in agriculture and food (A01, A21, A23), chemical tech-
nology in medical science and pharmaceutics (A61), material separation and other pro-
cessing (B01), machine tools (B23), Vehicles and transport (B60-B65), organic chemistry
(C7-C9), biochemistry (C12), engine technology (F1-F16), physics measuring, testing,
computing and controlling (G01, G05 and G06) and electronic technology (H01-H04)
are more persistent. And increasing centrality is found with B21-B23, B60-B61,C12-C13,
H03-H04.
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Fig. 7 Central Nodes Distribution by Comparing the Community Mapping Method with the Betweenness
Centrality Method. The x-axis indicates years from 1980 to 2004, and the y-axis indicates the nodes, i.e. IPC
subclasses, ordered in IPC index. The community mapping is based on consecutive 10-year windows.
Betweenness centrality values are calculated on 3-year aggregation period started with the same labeled
year as the other method. Colored blocks indicate the central nodes in common and different between the
two method, following the legend
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Comparison with multislice community detection and tracking method: To study
networks that evolve over time, another methodology is to treat the changing network
as slices at different points in time based on quality functions. Mucha et al. (2010) pro-
posed a method to generalize the problem of network community structure detection
using interslice coupling adjacency matrices consisting of coupling parameters between
nodes in different slices. The generalized algorithm offers flexible configurations for both
the resolution parameters as we used in the Louvain modularity clustering algorithm,
and the interslice coupling parameter indicating connection among slices under Lapla-
cian dynamics. This solution is applicable to the multiplex community detection task we
have. To compare the results, we applied the algorithm proposed by Mucha et al. in the
same 5-year time windows as shown in Figs. 6 and 7, with the same resolution set to 1.0
and the coupling parameter as 1.0. and then find the communities containing subclasses
B01D and B60R, respectively. The algorithm also obtains clusters based on modularity
optimization, and generates a considerable amount of very small communities. Same for
the orphan nodes. Therefore, communities with 5 nodes or less are also excluded in the
results for comparison, as shown in Additional file 4: Figure S11 and Additional file 5:
Figure S12.
Comparing Additional file 4: Figure S11 with Fig. 5, and Additional file 5: Figure S12

with Fig. 6, obvious similarities can be observed. The “move” of B21-B30 from 1990 to
1999 is not shown for B01D. But from 1995 to 1999, most nodes in this section drop out
for B06R, although they did not “move” to the community containing B01D. It verifies
the marginality of this section, that they tend to have close connection to several different
communities.
As mentioned before, it’s hard to determine the result of which algorithm is closer to

the truth. Each method has its unique properties. The algorithm by Mucha et al. has the
advantage of providing an overall picture of all the communities and their changes over
time, but we have found that as the continuous time period increases, the number of clus-
ters detected will decrease, which reduces the sensitivity to changes. When applied on
shorter time period, the 2 methods have 2 steps in common: communities identification
and tracking. For the first step, we argue that our method has higher stability and consis-
tency given the Stabilized Louvain Method. Additionally, our method is capable to find
the central nodes of a community, which is meaningful in the situation of this study.

Comparison with conventional patent metrics: Compared to the simpler, more
straightforward metric used in conventional patent data analysis, the network approach
is more complicated and costs more computational resources. However, we propose the
network method for its advantage in studying the structure of an inter-connected system.
In Gao et al. (2017), the authors showed that ranking nodes by their connections with
a given “key” subclass produced different results than the network clustering method,
although largely similar. In the network perspective, nodes are clustered based on their
relative proximity instead of the absolute counts or frequencies. Consider the situation
where a node k is connected to nodes in 2 clusters A and B, where A has more nodes than
B and therefore gives N more occurrence/connections. A simple measure will put k as a
key node in A, but the network algorithm might attribute k to B if there are other nodes
in A with even stronger connections to each other.



Gao et al. Applied Network Science  (2018) 3:26 Page 21 of 23

Secondly, some structural changes may be anticipated by economic historians and pol-
icy makers as results from known actions or decisions, but they don’t usually roll out as
expected, with likely differences in timing or extent. As compared to traditional methods,
our approach is better suited to detect structural change and paradigmatic shifts in the
technological landscape.

Conclusion
Through the three-step procedure, we demonstrated a way to improve community detec-
tion for temporal evolving networks, and more importantly, to track the community
changes over time. Using Germany as a case study, we have verified this procedure by
combining industry literature and robustness checks. Methodologically, our method con-
tributes to the literature of temporal networks analysis with a new approach. Comparisons
with conventional methods have helped to prove its validity and advantages. In terms of
application, it is the first of such in patent data analysis. Although the subject of interest
here is technological evolution, we expect the proposed approach to become a powerful
tool for studying similar systems.

Limitations and future work
We focus our analysis on selected technological fields. Neither Fig. 4 nor Fig. 7 dis-
tinguishes the central nodes by communities. It is because the communities are not
exogenously defined, and to track all the communities requires selection of a node in each
community in the initial year. In fact, none of the methods discussed can show how all
the communities change over time in one picture with satisfying accuracy, sensitivity and
stability. Our method is more efficient in showing which nodes are the most central and
investigating the evolution of the community containing certain technologies of interest.
Given that themethod utilizes the information embedded in the network changes, it can

be generalized for other temporal networks studies. However, the result verification still
requires more work due to the reasons mentioned in the Discussion section. A next step
in our research is the application in other countries or regions to expose the method to
a more comprehensive check. This will also provide an opportunity to study how various
factors, including policy decisions, market trends, economic growths, national or regional
resources, human resources, government and business investment, would interact with
technological exploration.

Additional files

Additional file 1: Community structures of the individual sample years based on Louvain modularity optimization
algorithm, with resolution of 1.0. Major communities with more than 5 nodes are in the center, with different colors
indicating each unique community, surrounded by small communities with 5 nodes or less in white color. (PNG 256 kb)

Additional file 2: Tracking community B60R in consecutive 5-year time windows, mapping to the initial year. This
figure differs from Fig. 6 that the overlapping community mapping reference is the initial year of each time window,
using the same color coding definitions as Fig. 6. (PNG 312 kb)

Additional file 3: Tracking community B60R in consecutive 5-year time windows, starting from 1981, mapping to
the previous year. This figure differs from Fig. 6 that the all the time windows are shifted 1 year forward, using the
same color coding definitions as Fig. 6. (PNG 316 kb)

Additional file 4: Communities containing B01D in consecutive 5-year time windows (starting from 1980–1984)
based on the multislice community detection and tracking method. Nodes in blue color are in the same community
with B01D in each year. (PNG 257 kb)
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Additional file 5: Communities containing B60R in consecutive 5-year time windows (starting from 1980–1984)
based on the multislice community detection and tracking method. Nodes in blue color are in the same community
with B60R in each year. (PNG 275 kb)
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