
Investigating an A-star Algorithm-based Fitness
Function for Mobile Robot Evolution

Shanker G R Prabhu§, Peter Kyberd†, Jodie Wetherall‡
Department of Engineering Science

University of Greenwich
Chatham, Kent, UK, ME4 4TB

s.prabhu§, p.j.kyberd†, j.c.wetherall‡@gre.ac.uk

Abstract— One of the factors that affect the success
of Evolutionary Robotics (ER) is the way fitness
functions are designed to operate. While needs-based
custom fitness functions have been developed, most of
the time they have been defined in simpler
mathematical functions to reduce the computation
time. In this paper, we hypothesize that an incremental
fitness function based on established techniques in
specific task domains in robotics will aid the evolution
process. An A-star algorithm-based fitness function for
path planning is designed and implemented for
evolving the body plans and controllers of robots for
navigation and obstacle avoidance tasks. It has been
shown that using this concept, fitter robots have
evolved in most cases when compared to simple
distance-only based fitness functions. However, due to
variable performance of the evolver with the A-star
fitness function, the results are inconclusive. We also
identify problems associated with the fitness function
and make recommendations for designing future
fitness functions based on observations of the
experiments.

Keywords— Evolutionary Robotics, Co-evolution,
Fitness Function, A-star Algorithm

I. INTRODUCTION

Evolutionary Robotics is a branch of Evolutionary
Computation that deals with the use of Evolutionary
Algorithms (EA) to evolve robots. The evolution can be
performed on just the robot body plan, controller or both
simultaneously. During the process, each of the evolved
robots or candidate in the solution populations are tested
mostly in a simulated environment with a fitness function
that calculates how well it is able to accomplish the task.
Using this metric, the evolver later decides whether each
individual is worthy to be moved to the next phase of
evolution [1]. Normally, the average fitness of the
population increases gradually. If the fitness function is
not an effective indicator of task attainment, the evolution
process can deviate from the shortest path to the solution
or even not generate a solution.

The literature shows that fitness functions developed
are application specific and rely on simple calculations to
arrive at the final fitness of the robot. The question to be
asked is: Does using sophisticated fitness functions make

an actual difference to the speed of evolution? In an
attempt to answer this with a specific emphasis on the co-
evolution process, we design multiple experiments to
evolve mobile robot body plan and Artificial Neural
Network controller to perform navigation and obstacle
avoidance in a virtual arena. The fitness function design is
based around the well-known A-star algorithm used in
path planning [2].

II. BACKGROUND

There are several studies that evolve mobile robots or
creature body and controller with locomotion capabilities
as a primary requirement, or as a part of an activity. In one
of the early works, Lee et al. evolved robots for obstacle
avoidance by designing a fitness function to penalize every
time a robot was close to an obstacle. Here, navigation was
an indirect result of the obstacle avoidance behavior [3].
In a similar strategy, to evolve line following robots, the
fitness function was comprised of factors that checked if
robot was on the line and whether it was moving in the
right direction [4]. Authors in [5, 6] based fitness solely on
the distance travelled during the simulation time, combat
based fitness function were designed in [7] and fitness was
proportional to food consumed in [8]. In a different
approach, [9] based fitness on distance travelled and
coordinated movements of joints. Distance travelled along
with the suitability of body to solve a particular problem
was the fitness function in [10]. A multiple point-based
fitness function where fitness was allocated for reaching
individual points or distance towards these points was
employed in [11].

In the limited number of studies that report co-
evolution, (when compared to majority of work reported
in evolution of morphology or controller), to the best of
our knowledge, none of them report how different fitness
functions affect evolution for a particular application, nor
seem to report how using established robotics algorithms
in respective application affect evolution. Through this
work we attempt to address these gaps in knowledge.

The paper uses the open source robot evolution
software RoboGen [12] to perform the experiments. A
Genetic Algorithm (GA) evolves the phenotype tree and an
Oscillatory Neural Network based controller for tasks
defined in the fitness function. A fixed set of parts which

include a controller, sensors, actuator and parametric
parts participate during the process. Each of the parts
except the parametric part are around 5 cm x 5 cm x 5 cm
in size. Deterministic two-member tournaments are
conducted for parent selection and (µ + λ) replacement
strategy is used for updating the population.

III. PROPOSED ALGORITHM

A-star is a commonly used algorithm for performing
path planning in mobile robotics. The algorithm
decomposes the environment into nodes and searches for
a path to the goal with the least cost. This is accomplished
through an iterative calculation of a cost function at every
node. The cost function is a combination of cost to goal and
cost incurred to reach the current node [2].

To test the effectiveness of the fitness function, a range
of obstacle avoidance tasks are designed. In each of these
tasks, the evolver needs to generate a virtual robot that can
move from the centre of the arena to a specified location.
The task complexity is increased by gradually adding
obstacles to the arena (4 m by 4 m). For each task,
attempts are made to produce mobile robots which are
evolved with two different fitness functions. The first
fitness function allocates fitness solely based on the
Euclidian distance to destination at end of simulation. On
a scale of 0 to 10 with 10 being maximum fitness if the
robot reaches the goal. The other fitness function uses the
A-star algorithm at its core to allocate fitness.

While using the proposed A-star based fitness function,
the process of evaluating the fitness of each of the evolved
robots are as follows: At the beginning of the fitness
evaluation simulation, the map of the environment is
converted into 5 cm(the smallest size of an obstacle) grids.
Then the grids that overlap with obstacles are marked to
be excluded from the route calculation. Since the grid size
is smaller than the size of the actual robot, to avoid the
problem of the A-star algorithm finding a path that cannot
be traced by the robot, the robot size is also fed to the
algorithm. This is accomplished by generating a bubble of
imaginary obstacles with the same size as the robot,
around the actual obstacles. The result is a map with an
area that the robot can transverse. Based on this
information, the A-star algorithm solves for a possible grid
to grid solution to reach the goal.

If a solution is found by the algorithm, the fitness
function moves to the next step or the process is
terminated and zero is returned as fitness. Robots that are
not able to move freely to the goal are removed. The fitness
function also limits the number of parts for the robot to 15
to avoid evolving long robots that reach the goal without
moving. In the next step, the behaviour of the evolved
robot is compared against the ideal route developed by the
A-star algorithm. At every time step, the candidate robot
position is converted into grid positions and a
corresponding position is identified from the A-star
solution. This is performed by dynamically matching the
instantaneous speed of candidate robot with the imaginary
robot that uses the A-star solution. The distance (d)
between these robots are then accumulated over the

period of simulation (100 s). So, the accumulated distance
will be lower if the robot is able to track the A-star solution
closely. Along with allocating a fixed fitness for reaching
the goal, for evolving faster robots, the time taken to reach
goal is also considered through the function fgt. To
discourage robot getting stuck at a point, for every
instance of robot remaining stationary, a penalty function
ft is also included. The time taken for the robot to reach the
goal is t, the final distance between robot and goal is df, a
is the length of the arena and p is the total time robot is
stationary.

At the end of simulation, a final fitness is calculated
using the following formula:

f = fa + fg + fgt + fd + f t

where,

(1)

fa= (100 - Σ d)/10 (2)

fg= 50 if goal is reached or 0 (3)

fgt= (100 - t)/10 if goal is reached or 0 (4)

fd= 5(2a - df)/a (5)

ft= (100 - p)/10 (6)

The individual components of the fitness function
(except fg) are normalised between 0 to 10. Therefore, the
maximum possible fitness of any robot would be less than,
but close to 90. The fitness for reaching the goal is fixed to
be 50 and since the combined fitness of the rest of the
weights is less than 50, it becomes possible to immediately
differentiate a robot that has reached the destination.

TABLE I. EVOLUTION PARAMETERS

Parameter Value

Population size 40

Number of evolved children 40

Probability of brain mutation 0.3

Sigma value of brain 0.7

Brain Bounds 3 : 3

Probability of node insertion 0.3

Probability of sub-tree removal 0.3

Probability of duplicating sub-tree 0.1

Probability of swapping sub-tree 0.3

Probability of node removal 0.3

Probability of modifying
parameters 0.3

IV. EXPERIMENTS

In the experiments, during fitness evaluation, every
simulated robot is allowed 100 seconds to solve the map
and arrive at the goal and the rest of the simulator
parameters are set to default values. Complete list of
evolution parameters used is shown in Table 1. To speed

up the process, the experiments are performed on a High-
Performance Computing System comprising of 50 nodes
with 20 computing cores in each node. Ten sets of
experiments are conducted for each scenario with
different seeds for the random number generator in every
iteration.

A. Obstacle-less Navigation
In this experiment, a scenario without obstacles is

chosen. Each robot is placed in the middle of the arena and
is expected to reach the goal C at (-1.5, 1.5). At the end of
evolution, both fitness functions were able to evolve robots
to reach the goal. Red and green lines to C in Fig. 1 plot the
route traced by chosen evolved robot with the basic and A-
star fitness functions (the obstacles in Fig. 1 should be
neglected).

B. Navigation with obstacles
An arena with obstacles is designed (shown in Fig.1)

and robots are evolved to reach A at (1.4, -1.4) and B at (0,
-1.4) in separate experiments. It can be seen from Fig.1
that the robots were able to reach the destination except
when applying A-star fitness function for point B (solid red
colored vertical line in middle of the Fig. 1).

V. RESULTS

Despite performing experiments with multiple goal
scenarios, experiments above only report three different
cases as they were adequate to demonstrate the observed
patterns. The fitness versus generation curves for the three
different destinations are presented in Fig. 2 and Fig. 3.

Generally, the A-star based fitness function was able to
evolve successful robots in all except one case when the
goal was at point B. Even though in first experiment (to
reach C) the basic fitness calculation was sufficient to
evolve satisfactory robots, the A-star based evolver was
able to evolve smaller and faster robots. Both fitness
functions needed almost the same number of generations
to reach the goal for the first time. But it has to be noted
that the computation requirements for the A-star fitness
function is significantly higher than the basic fitness
function. This results in each generation taking longer to
evolve when using the former fitness function.

The effect of initial seed on the evolution process is
unclear. While applying the basic fitness function, results
from all ten experiments showed similar variations and
the output matched closely with each other (Fig. 2(a), (d),
(g)). In contrast, the progress of evolution has a much
wider spread with the A-star fitness function (Fig. 3(a),
(d)) except when the evolver is unable to arrive at a
satisfactory solution (Fig. 3(g)).

The standard deviation of each population is highest
when there is a rapid change of fitness (Fig. 2 and Fig. 3).
Later, the value reducing back to zero shows that the
average fitness of the population is the same as the best
fitness in the population. The scenario and fitness function
specific rate of increase or decrease of standard deviations
are identical imply that there is minimal effect of seed once
the evolver stumbles at the first possible solution. After
this, similar generations were sufficient to allow every
individual of the population to reach peak fitness. As
evident form Table 2, the standard deviation is higher for
higher distance between goal and origin.

TABLE II. COMPARISON OF RESULTS

Criteria

Fitness Function Type

A-star Basic

A B C A B C

Success (%) 90 0 100 100 50 100

Worst standard deviation 22 5 26 0.45 0.25 0.515

First generation to reach
goal 21 - 20 19 500 18

Last generation to reach
goal 5000 - 500 90 - 90

Best fitness 72 18.8 74 10 10 9.98

When no robots were able to reach point B with the A-
star fitness function, five experiments using the basic
fitness function generated successful robots (Table 2). The
detrimental effect of using a displacement-based fitness
function is clear as in the five non-successful cases, the
long plateaus with almost zero standard deviation in Fig.
2(g) show that robots are extremely close but unable to
reach the goal which is on the other side of the obstacle
(Fig. 1).

The steps in Fig. 3(a) and (d) and sudden variation of
standard deviation indicate that one experiment at a time

Fig. 1. Robot trajectory and ideal A-star solutions for multiple scenarios.
Ideal A-star solutions are in blue, robot trajectory with A-star based fitness
function are in red and basic fitness functions are in green. Routes to A are
dashed lines, to B are solid lines and to C are dotted lines. Short vertical
solid red line from centre shows that the robot is unable to reach B.

Fig. 2.

converged to a satisfactory solution. The horizontal
overlapping line segments in Fig. 3(c), (f) and (i) suggest
that all ten experiments behaved similarly during that
period of evolution.

While evolving robots for obstacle avoidance, the two
key findings were that the controller was unable to
perform large direction changes after the first quarter of
the fitness evaluation. Even when obstacle sensors were
present, despite running the evolution process for
100,000 generations, their suitable utilisation was not
observed. The change of direction was either the result of
collision with obstacles (Fig. 1) or open-loop control
without using obstacle sensors. When an obstacle sensor
was present, it was not placed in the direction of motion.
All these suggest the need for improving the evolution of
controller during the evolution process. The evolver
generated long robots when it was not restricted in terms
of the number of parts a robot could have. This allowed
robots to reach the goal with minimal set of movements.

A surprising finding was how the evolver became stuck
by not evolving a robot to move past an obstacle in several
cases particularly while trying to reach B (short vertical red
line in Fig. 1). The initial hypothesis to explain this was
that it did not receive sufficient encouragement from the
fitness function to move past that point. However, step-by-
step analysis of the fitness allocation showed that this was
not the case. As a result, the A-star based evolution was
unable to generate robots to reach B despite running the
evolution for around 37,000 generations after which
maximum computation time (7 days) exceeded.

In contrast, the basic fitness function needed just 500
generations in the best case and close to 8,000 generations
in the worst case to solve the same problem (Fig. 2(g)). But
as seen from Fig. 1 (green line), it can be safely stated that
the route taken was not close of the optimal solution, and
A-star solutions were better in this regard.

 Performance of basic fitness function
 Best fitness Average fitness Standard deviation

 (a) (b) (c)

 (d) (e) (f)

 (g) (h) (i)

Fig. 2. The progress of evolution over generations (shown in logarithmic scale) while using basic fitness function for ten experiments in each scenario. Black
line is mean for 10 experiments and red and blue lines are one standard deviation above and below average respectively. (a, d g): Mean best fitness measured
while reaching points C (a), A (d) and B (g). (b, e, h): Mean of average fitness of entire population over generations for reaching points C (b), A (e) and B (h).
(c, f, i): Mean of standard deviation of fitness of entire population for reaching points C (c), A(f) and B (i). Fitness of 10 shows that the robot has reached the
goal. Observations from all three scenarios show similar time taken to reach the goal despite exhibiting variation between overall maximum and minimum
fitness in each case. An exception is while reaching B when half of the experiments did not converge to a solution in the given timeframe. In these cases, the
robots moved to the farthest point along displacement until an obstacle blocked the path.

To
C

To
A

To
B

VI. DISCUSSION

Since the fitness function is designed to help a robot
stay on or close to the A-star route, ideally the robot should
have been able to make turns when necessary. But this was
not observed which questions the effectiveness of the
fitness function.

To reduce computation time, the A-star fitness
function only solves the map once at the beginning of
evaluation (depending on the robot size). In the next
generation when the controller gets reused, the A-star
solution could generate an entirely different path despite
when the old path might still be a valid solution (but not
the optimal solution). Moreover, since the fitness function
is fixated on one ideal solution, instead of allowing the
robot to focus on reaching the goal, it ends up trying to
reach the ideal route and ultimately failing both. From
another perspective, the fitness calculation does not
consider the robot’s capability to reach goal from its
instantaneous position. An A-star solution can exist from

the real-time position and this could have been
considered.

After solving the map, a robot is discarded if it would
not be able to reach the goal because of its large size. From
an evolutionary perspective, the robot could have been
allowed to survive and allocated a non-zero fitness based
on how close it was to the goal.

The fitness function only considered the trajectory of
the robot to allocate fitness. A proper mating of
morphology and controller is essential in the co-evolution
process for a robot to succeed. This suggests the need for
incorporating fitness functions which perform an in-depth
analysis of both morphology and controller before making
a decision. On the other hand, this new method would
apply immense strain on the computational resources and
might question the need for using EAs.

In the experiments, the robot can navigate to a solution
via blindly remembering a path to the goal by constantly
searching for the best possible fitness at every time step or

Performance of A-star based fitness function
 Best fitness Average fitness Standard deviation

 (a) (b) (c)

 (d) (e) (f)

 (g) (h) (i)

Fig. 3. The progress of evolution over generations (shown in logarithmic scale) while using basic fitness function for ten experiments in each scenario. Black
line is mean and red and blue lines are one standard deviation above and below average respectively for ten experiments. (a, d g): Mean best fitness measured
while reaching points C (a), A (d) and B (g). (b, e, h): Mean of average fitness of entire population over generations for reaching points C (b), A (e) and B (h).
(c, f, i): Mean of standard deviation of fitness of entire population for reaching points C (c), A(f) and B (i). Fitness of 50 shows that the robot has reached the
goal. The experiments converged to solutions at different times (as shown by standard deviation curves) except while reaching B depending on the chosen
seed for the random number generator.

To
C

To
A

To
B

have a controller react to the environment based on real
time feedback from sensors or by using a combination of
both. For simplicity if we assume that the controller is
adopting the first option, at the end of simulation, the
robot could take 10 correct steps out of the 100 possible
steps in the best solution only owing to the randomly
generated oscillatory neural network. In the next step, if
the robot is chosen as a parent, during variation
operations, the evolver does not know which part of the
neural network is to be modified through mutation and
crossover as the fitness function does not shed any light to
aid in this regard. The long plateaus during evolution and
one of the reasons why more than 95% of the works in ER
are in evolving controllers rather than in co-evolution
could be explained with this.

A common observation in all the experiments above
are that the standard deviation of populations reaches zero
for the majority of the time during long runs of evolution.
Even though this is a fundamental problem associated
with ER, fitness functions are also to blame. Rather than
evolving diverse robots which excel in different aspects (a
robot might have an efficient morphology or superior
controller), because every robot is given a single fitness
value, differently skilled robots do not progress further.
Therefore, parent selection should consider fitness as a
group of individual fitness corresponding to each skill and
the same information needs to be used while mating. The
counter argument here could be that evolution would then
be subject to bias and thereby moving away from true
random nature.

Further, the fitness function is not testing the
capability of the controller to achieve the task at hand. We
think that with the help of fitness functions, the evolution
can be speeded by prima facie eliminating the robots
whose controller does not show any promises of solving
the problem. For instance, if the task is obstacle-less point-
to-point navigation, the robot just has to make a single
turn to the direction of goal and move towards it in a
straight line. This can be accomplished by a simple neural
network with a handful of connections. On the other hand,
if the task is to handle complex obstacle avoidance, the
simple neural network may not be sufficient. A similar
approach can also be applied on the morphology by
discouraging robots which does not have the potential to
solve the problem.

The comparison of results from both fitness algorithms
are from the perspective of evolving successful solutions.
Due to the massive amount of post-processing involved,
in-depth statistical analysis of evolved robots is not
performed above. We believe deductions could be further
improved by analyzing the other multiple factors such as
trajectories, size, shape, power consumption and by
physically testing the best individual from each
generation. Another possible solution could be changing
the linear time independent allocation of fitness to
adaptive fitness functions which dynamically change of
over the lifetime of each robot and at different stages of
evolution.

The use of EAs in robotics to find solutions to
deterministically solvable problems is an ongoing debate.
For instance, it could be argued that instead of using an A-
star based fitness function, a robot controller could easily
be designed with the A-star algorithm for path planning.
However, it has to be stated that such an approach only
works if the robot body is fixed during evolution as
different morphologies warrant different controllers and a
single control approach will not be appropriate. Further,
the main premise of ER is to arrive at non-obvious
solutions to problems or automatically generate solutions
from scratch without human intervention as in this case.

VII. CONCLUSION

In an effort to co-evolve morphology and controller of
robots for navigation and obstacle avoidance, our fitness
function allocated fitness based on the behaviour of the
robot in comparison with a possible A-star solution to the
problem. Results, when compared with a basic fitness
function that just uses Euclidean distance to allocate
fitness, showed mixed results thereby not giving
conclusive evidence to validate our initial hypothesis
which said that using established task specific algorithms
can indeed aid evolution. Since the focus was on applying
algorithms just for path planning and as co-evolution
depends on several other factors which were not
considered, the full benefit of the A-star based fitness
function were not observed. This points to the need for
developing fitness functions derived by combining
functionality-based algorithms in the future. Finally, for
the benefit of future researchers, we also discussed several
recommendations for designing fitness functions.

VIII. FUTURE WORK

Both set of experiments indicated that distance or goal
only based fitness function is not sufficient to evolve fitter
robots. Therefore, the first step could be to gradually add
factors discussed in Section 6 during fitness function
development. They could be through applying the
morphological suitability, controller suitability and
behavioural assessment factors in fitness function.
Simultaneously, the fitness function structure could also
be changed to vary over the period of evolution for
allowing a gradual addition of skills over the evolution. For
comparison, the factors neglected due to high
computation cost can also be incorporated.

REFERENCES
[1] S. Nolfi, and D. Floreano, “Evolutionary robotics: The biology,

intelligence, and technology of self-organizing machines”,
MIT Press, Cambridge, MA, USA, 2000.
doi: 10.1162/106454601317297031

[2] P. Hart, N. Nilsson, and B. Raphael, “A Formal Basis for the
Heuristic Determination of Minimum Cost Paths,” IEEE
Transactions on Systems Science and Cybernetics, vol. 4, no. 2, pp.
100–107, 1968. doi: 10.1109/tssc.1968.300136

[3] Wei-Po Lee, J. Hallam and H. H. Lund, "A hybrid GP/GA approach
for co-evolving controllers and robot bodies to achieve fitness-
specified tasks," Proceedings of IEEE International Conference on
Evolutionary Computation, Nagoya, 1996, pp. 384-389.
doi: 10.1109/ICEC.1996.542394

[4] H. Lund, “Co-evolving Control and Morphology with LEGO
Robots,” Morpho-functional Machines: The New Species. Springer
Japan, Tokyo, 59–79, 2003. doi:10.1007/978-4-431-67869-4_4

[5] J. Pollack and H. Lipson, “The GOLEM project: Evolving hardware
bodies and brains,” Proceedings of the 2nd NASA/DoD Workshop
on Evolvable Hardware, pp. 37–42, 2000. doi:
10.1109/EH.2000.869340

[6] A. Faiña, F. Bellas, F. Orjales, D. Souto, and R. Duro. “An evolution
friendly modular architecture to produce feasible robots,” Robotics
and Autonomous Systems, vol. 63, no. 2, pp. 195–205, Jan 2015.
doi: 10.1016/j.robot.2014.07.014

[7] T. Miconi, “In Silicon No One Can Hear You Scream: Evolving
Fighting Creatures,” Genetic Programming. Springer Berlin
Heidelberg, Berlin, Heidelberg, pp. 25–36, 2008. doi:
10.1007/978-3-540-78671-9_3

[8] M. Pilat, T. Ito, R. Suzuki, and T. Arita, “Evolution of virtual
creature foraging in a physical environment,” Proceedings of the
13th International Conference on the Simulation and Synthesis of
Living Systems (Artificial Life XIII), MIT Press, pp. 423–430,
2012. doi: 10.7551/978-0-262-31050-5-ch056

[9] M. Mazzapioda, A. Cangelosi, and S. Nolfi, “Evolving morphology
and control: A distributed approach,” Proceedings of the IEEE
Congress on Evolutionary Computation (CEC 2009). pp. 2217-
2224, 2009. doi: 10.1109/cec.2009.4983216

[10] J. Auerbach and J. Bongard “Evolving complete robots with CPPN-
NEAT: the utility of recurrent connections,” Proceedings of the
13th annual conference on Genetic and evolutionary computation
(GECCO '11), Natalio Krasnogor (Ed.). ACM, New York, USA, pp.
1475-1482, 2011. doi: 10.1145/2001576.2001775

[11] E. Samuelsen, K. Glette, and J. Torresen, “A hox gene inspired
generative approach to evolving robot morphology,” Proceedings
of the 15th annual conference on Genetic and evolutionary
computation (GECCO '13). ACM Press, pp. 751–758, 2013. doi:
10.1145/2463372.2463464

[12] J. Auerbach, D. Aydin, A. Maesani, et al., “RoboGen: Robot
Generation through Artificial Evolution,” Proceedings of
International Conference on the Synthesis and Simulation of
Living Systems (Artificial Life XIV). MIT Press, pp. 136–137, 2012.
doi: 10.7551/978-0-262-32621-6-ch022

