Skip navigation

An upwind cell centred Total Lagrangian finite volume algorithm for nearly incompressible explicit fast solid dynamic applications

An upwind cell centred Total Lagrangian finite volume algorithm for nearly incompressible explicit fast solid dynamic applications

Haider, Jibran, Lee, Chun Hean, Gil, Antonio J., Huerta, Antonio and Bonet, Javier ORCID: 0000-0002-0430-5181 (2018) An upwind cell centred Total Lagrangian finite volume algorithm for nearly incompressible explicit fast solid dynamic applications. Computer Methods in Applied Mechanics and Engineering, 340. pp. 684-727. ISSN 0045-7825 (Print), 1879-2138 (Online) (doi:https://doi.org/10.1016/j.cma.2018.06.010)

[img] PDF (Author Accepted Manuscript)
20504 BONET_Upwind_Cell Centred_Total_Lagrangian_Finite_Volume_Algorithm_2018.pdf - Accepted Version
Restricted to Registered users only until 26 June 2019.

Download (26MB) | Request a copy

Abstract

The paper presents a new computational framework for the numerical simulation of fast large strain solid dynamics, with particular emphasis on the treatment of near incompressibility. A complete set of first order hyperbolic conservation equations expressed in terms of the linear momentum and the minors of the deformation (namely the deformation gradient, its co-factor and its Jacobian), in conjunction with a polyconvex nearly incompressible constitutive law, is presented. Taking advantage of this elegant formalism, alternative implementations in terms of entropy-conjugate variables are also possible, through suitable symmetrisation of the original system of conservation variables. From the spatial discretisation standpoint, modern Computational Fluid Dynamics code "OpenFOAM" [http://www.openfoam.com/] is here adapted to the field of solid mechanics, with the aim to bridge the gap between computational fluid and solid dynamics. A cell centred finite volume algorithm is employed and suitably adapted. Naturally, discontinuity of the conservation variables across control volume interfaces leads to a Riemann problem, whose resolution requires special attention when attempting to model materials with predominant nearly incompressible behaviour (k / m > 500). For this reason, an acoustic Riemann solver combined with a preconditioning procedure is introduced. In addition, a global a posteriori angular momentum projection procedure proposed in [1] is also presented and adapted to a Total Lagrangian version of the nodal scheme of Kluth and Després [2] used in this paper for comparison purposes. Finally, a series of challenging numerical examples is examined in order to assess the robustness and applicability of the proposed methodology with an eye on large scale simulation in future works.

Item Type: Article
Uncontrolled Keywords: First order conservation laws, Large strain solid dynamics, Finite Volume Method, Riemann solver, OpenFOAM
Subjects: T Technology > TA Engineering (General). Civil engineering (General)
Faculty / Department / Research Group: Vice-Chancellor's Group
Last Modified: 27 Jul 2018 12:32
Selected for GREAT 2016: None
Selected for GREAT 2017: None
Selected for GREAT 2018: None
Selected for GREAT 2019: None
URI: http://gala.gre.ac.uk/id/eprint/20504

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics