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To date, existing studies that use multilayer networks, in their multiplex form, to analyse the structure
of financial systems, have (i) considered the structure as a non-interconnected multiplex network, (ii)
no mechanism of multichannel contagion has been modelled and empirically evaluated and (iii) no
multichannel stabilisation strategies for pre-emptive contagion containment have been designed. This
paper formulates an interconnected multiplex structure, and a contagion mechanism among financial
institutions due to bilateral exposures arising from institutions’ activity within different interconnected
markets that compose the overall financial market. We design minimum-cost stabilisation strategies
that act simultaneously on different markets and their interconnections, in order to effectively contain
potential contagion progressing through the overall structure. The empirical simulations confirm their
capability for containing contagion. The potential for multichannel contagion through the multiplex
contributes more to systemic fragility than single-channel contagion, however, multichannel stabilisa-
tion also contributes more to systemic resilience than single-channel stabilisation.
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1. Introduction

Real and engineered systems have multiple subsystems and
layers of connectivity. Networks are now established as
models providing insights into the structure and function of
complex systems. Single-layer networks, however, are
unable to address the emerging multilayer patterns of
interactions and self-organisation among entities in complex
systems. That challenge has called for the development of
more general framework—multilayer networks. The theory
of multilayer networks is in its early stages, and a compre-
hensive review of recent progress is provided in Kivelä et al.
(2014) and Boccaletti et al. (2014). Among existing studies,
a promising mathematical framework is based on tensors

and introduced by De Domenico et al. (2013, 2015). A spe-
cial case of multilayer networks are multiplexes, where each
layer consists of mostly the same nodes, edges within a layer
exist only between different nodes, and links between layers
exist only between instances of the same node in different
layers. According to the formal definition in De Domenico
et al. (2013, 2015) and Kivelä et al. (2014), a fundamental
aspect of modelling multiplex networks is taking into
account and quantifying the interconnectivity between lay-
ers, as it is responsible for the emergence of new structural
and dynamical phenomena in multiplex networks.

Multilayer networks, in their multiplex form, have been
introduced within the last three years to analyse the struc-
ture of financial systems, and existing studies have mod-
elled and evaluated interdependencies of different type
among financial institutions. In particular, the global finan-
cial crisis that erupted in August 2007 clearly illustrated the
role of financial linkages as a channel for propagation of
shocks. Indeed, the spreading of the financial turmoil from
the US sub-prime mortgage market via the securitisation
instruments to the banks’ off-balance-sheet vehicles, and
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further to the banks’ balance sheets and to other financial
and non-financial sectors, exposed unforeseen counterparty
linkages and eroded confidence in a way which further
amplified the effect of the initial shocks.

Research in the area of financial network analysis has
shown that modelling the interlinking exposures either
between financial institutions, among the sectors of the
economy or across entire national financial systems, can
assist in detecting important shock transmission mecha-
nisms. Policy recommendations could then be targeted
towards structural changes that mitigate the adverse conse-
quences that may emerge in closely intertwined systems in
times of crisis. Related to the multilayer network analysis,
empirical studies have considered the structure as a non-in-
terconnected multiplex rather than as an interconnected
multiplex network. Furthermore, no mechanism of multi-
channel contagion has been modelled and empirically eval-
uated, and no multichannel stabilisation strategies for pre-
emptive contagion containment have been designed.

This paper formulates an interconnected multiplex struc-
ture, and a contagion mechanism among financial institu-
tions due to bilateral exposures arising from institutions’
activity within different interconnected markets that com-
pose the overall financial market. We introduce structural
measures of absolute systemic risk and resilience, and rela-
tive systemic-risk indexes. The multiple-market systemic
risk and resilience allow comparing the structural (in)stabil-
ity of different financial systems or the same system in dif-
ferent periods. The relative systemic-risk indexes of
institutions acting in multiple markets allow comparing the
institutions according to their relative contributions to over-
all structural instability within the same period. Based on
the contagion mechanism and systemic-risk quantification,
this study designs minimum-cost stabilisation strategies that
act simultaneously on different markets and their intercon-
nections, in order to effectively contain potential contagion
progressing through the overall structure. The stabilisation
strategies subtly affect the emergence process of structure to
adaptively build in structural resilience and achieve pre-
emptive stabilisation at a minimum cost for each institution
and at no cost for the system as a whole.

We empirically evaluate the new approach using large regu-
latory databases, maintained by the Prudential Regulatory
Authority (PRA) of the Bank of England, that include verified
capital requirements for UK-incorporated deposit takers and
investment firms and granular information on their bilateral
exposures due to transactions in the fixed-income market,
securities-financing market and derivatives market. These data
are exemplary of the ‘Big Data’ now available to the Bank of
England (Bholat 2013, 2015, 2016). The empirical simulations
of the designed multichannel stabilisation strategies confirm
their capability for containing contagion. The potential for
multichannel contagion through the multiplex contributes
more to systemic fragility than single-channel contagion, how-
ever, multichannel stabilisation also contributes more to sys-
temic resilience than single-channel stabilisation.

The paper is organised as follows. Section 2 discusses the
related literature on multilayer networks. Importantly, in
section 2, we discuss the gaps in the existing research and
outline our contributions to the field. Section 3 describes and

visualises the data-sets. In section 4: (i) a single-layer
contagion mechanism is formulated aligned with current
regulatory requirements; then (ii) corresponding relative
systemic-risk indexes of institutions and absolute measures
of the layer’s systemic risk or resilience are quantified; and
finally (iii) a single-layer strategy is designed for building in
structural resilience and evaluated empirically. Section 5: (i)
formulates a multichannel contagion mechanism within the
banking system due to exposures arising from banks’ interac-
tions in the three interconnected markets; (ii) quantifies corre-
sponding multiplex systemic-impact indexes of institutions
and structural systemic risk of the multilayer system; (iii)
designs and empirically evaluates minimum-cost multichan-
nel stabilisation strategies. Finally, section 6 states the con-
clusions and sets directions for further research.

2. Related literature and contribution

Multilayer networks, through the special case of multiplexes,
have only been used in the last three years to study interde-
pendencies among entities within financial systems. Multi-
plexes can model different type of relations (edges) existing
among a set of entities (nodes) in a system and include inter-
layer dependence (edges). Serguieva (2012) argued that
though single-layer network models had been gradually
adopted in the structural analysis of financial systems, such
analysis rather required more effective models as network of
networks and ensemble networks. Serguieva (2013a, 2013b)
outlined how an interconnected multiplex can be used to
model the different type of exposures among banks, arising
from their activities in different markets trading different
financial instruments, and suggested using the tensorial
framework. The current paper starts with this earlier idea,
and now—having access to data—develops the model in
detail, implements empirically, and extends the methodology
towards contagion and stabilisation analysis. Serguieva
(2015, 2016a, 2017a,b) address how the multilayer network
can be extended further to incorporate financial market
infrastructures. A multiplex model is also used in Bargigli
et al. (2015) to present the Italian interbank market, where
exposures are broken down in different layers by maturity
and by the secured and unsecured nature of contracts. They
evaluate similarity between the structures of different layers
and find the differences are significant. The conclusion is that
the structural differences will have implication for systemic
risk. The authors do not formulate or evaluate systemic risk,
and the study considers the layers separately as a non-inter-
connected multiplex. The interconnected multilayer structure
of the interbank market is not analysed.

Next, Poledna et al. (2015) use a multiplex model to quan-
tify the contributions to systemic risk of the Mexican banking
system from four layers: deposits and loans, securities cross-
holdings, derivatives and foreign exchange. They implement
Debt Rank (Battiston et al. 2012) to measure systemic risk as
fraction of the economic value in a network that is potentially
affected by the distress of some banks. The systemic risk of a
layer is the average Debt Rank of all banks due to their con-
nectivity in that layer, and the total risk of the system is the
average Debt Rank of all banks due to the connectivity in the



projection of all layers. The results show a non-linear effect,
with the sum of systemic risk of all layers underestimating
the total risk. The suggested comprehensive approach in the
study accounts for the capital, assets and liabilities of banks,
but does not consider their minimum capital requirements
and risk-weighted assets. A bank is considered failed in the
real system, however, when its capital depletes to the level of
minimum capital requirements, not when it depletes entirely.
The minimum capital requirements are based on risk
weighted assets, and two banks with the same amounts of
capital, assets and liabilities, will differ in their amounts of
risk-weighted assets. Therefore, they will differ in their mini-
mum capital requirements, and thus differ in their funds avail-
able in excess of the minimum. The funds in excess of the
required minimum are those that can be used to cover expo-
sures as they materialise. Our study shows that this requires
modifying to a different extent the impacts among different
financial institutions, in order to simulate contagion that
accounts for each institution’s individual conditions for fail-
ure and corresponding individual spreading rates within the
contagion process. This has a significant effect on potential
contagion processes and their outcome. Further, Poledna
et al. (2015) consider different layers but assume the com-
bined system is the projection of all layers rather than the
multiplex of interconnected layers, and therefore, do not
model contagion throughout the multiplex structure.

The current paper also builds on research done at the
Bank of England (Langfield et al. 2012, 2014). In the ver-
sion of the paper from 2012, the authors do not refer to
mulitlayer networks, but in 2014 they discuss potential
advantages of analysing the interbank market as an inter-
linked structure of different network layers. They argue that
markets for different financial instruments are distinct in
their rationale and function, and provide an in-depth empiri-
cal analysis of layers in the UK banking system, but do not
model a multilayer network neither quantify systemic risk.

In conclusion:

(1) the theory of multilayer networks is in its infancy,
(2) there are very few studies addressing multilayer or

multiplex networks when analysing the structure of
financial systems,

(3) existing studies of interlinkages within banking sys-
tems have recognised their multilayer structure and
modelled each layer as a network,

(4) contagion processes within each layer and within
the projection of all layers have also been modelled,
and the corresponding systemic risk has been quan-
tified in monetary terms.

However, the concerns or gaps are that within the
existing literature:

(5) the system has not been modelled as an intercon-
nected multiplex,

(6) multilayer contagion processes have not been
formulated,

(7) the existing single-layer contagion models are not
closely aligned with regulatory requirements,

(8) no stabilisation strategies have been designed for
pre-emptive, minimum-cost contagion containment.

With this paper we address concerns (5)–(8), formulate solu-
tions, and provide empirical results. We work with the tenso-
rial mathematical framework, which has not been used in
financial analysis, and in Serguieva (2016a) derive step-by-
step tensors of ranks two, four and six within the context of
financial systemic risk. Providing detailed domain interpreta-
tion of the models allows Serguieva (2016a,b, 2017a) to
extend the range and scope of stress-testing scenarios.

In this paper, without going into the details of tensor analy-
sis, we directly use the derived tensor models and focus only
on the identified concerns (5)–(8). Their solutions effectively
formulate an approach for building-in structural stability
within the banking system and resilience against potential
crises. Though resilience is quantified as a structural rather
than monetary measure, when built in it provides for sustain-
ing a system’s monetary value. Importantly, resilience is
achieved through subtly and adaptively balancing the emer-
gence process of structure, rather than through penalising
institutions. Systemic instability is due to the emerged struc-
ture rather than being a fault of an institution. We do not rec-
ommend collecting a fund of penalties and waiting for
institutions to get in distress before accessing it, as suggested
in Markose (2012). Instead, containment of potential conta-
gion is achieved pre-emptively by introducing a minimum
change to the structure in each period, at a minimum cost for
each institution and no cost for the system as whole.

3. Empirical data and visualisation

The data used in this paper are large counterparty exposures
reported by systemically important UK-incorporated deposit
takers and investment firms to the Bank of England’s super-
visory arm, the Prudential Regulation Authority. At the time
of our investigation, the data spanned five quarters, a pilot
in June 2014 and collections in December 2014–September
2015. We access from the database, the firms’ 20 largest
exposures to banks, where banks are broadly defined as

(1) banks
(2) building societies
(3) broker-dealers
(4) and additionally, exposures to the eight largest UK

banks are reported if not a top twenty counterparty

The firms report these large exposures gross, except where a
legally enforceable netting agreement exists between the trans-
acting entities. The reports are on a UK-consolidated basis.
Further, we have data on counterparty exposures broken down
by financial market. Each market in turn consists of a range of
financial instruments and transactions. These markets and their
attendant instruments and transactions are as follows:

(1) the fixed income market, consisting of senior, subordi-
nated and secured debt instruments reported gross at
mark-to-market (MtM) values, further segmented by
residual maturity and currency

(2) the securities financing market, consisting of securities
lending and borrowing, and repo and reverse repo trans-
actions reported gross notional, with further breakdowns
by residual maturity, currency and type of collateral



(3) derivative exposures reported net MtM after collateral
and net MtM at default, split by various derivative con-
tract types

The second database used in this study is the extensive
Banking Sector Monitoring (BSM) database maintained by
the PRA, where we access quarterly data on UK-consolida-
tion basis for the reporting institutions, including:

(1) Total Own Funds (Common Equity Tier 1 Capi-
tal + Additional Tier 1 Capital + Tier 2 Capital)

(2) Total Risk Exposure Amount (risk-weighted assets)
(3) Ratio of Total Own Funds to Total Risk Exposure

Amount

These data are further complemented with calculations
from an in-house PRA tool for verifying the Capital
Adequacy of each reporting institution, including:

(1) Minimum capital requirement;
(2) Ratio of available regulatory capital to total own

funds.

The empirical data on inter-institutional exposures are
visualised in figure 1, where each of the three layers corre-
sponds to the exposure structure within a different type of
market—fixed-income, securities-financing and derivatives.
The size of nodes representing institutions is proportionate
to the number of exposure links they participate in. Figure 1
is based on one of the quarterly periods, between June
2014 and September 2015, however, it presents key features
observed in all periods—the markets differ in their emerg-
ing exposure structures. Particularly, different institutions to
a different extent, and a different number of institutions,
have a key role (visualised as more interconnected, larger
size nodes) in different markets. Therefore, the analysis will
better inform and facilitate regulation if each market is
incorporated distinctly within an overall multilayer
structure, rather than all markets being amalgamated into

Figure 1. Large exposures of UK-incorporated deposit takers and
significant investment firms—empirical multilayer structure by
type of market, in one of the quarters between June 2014 and
September 2015.

Figure 2. Large exposures of UK-incorporated deposit takers and
significant investment firms—empirical single network, in one of
the quarters between June 2014 and September 2015.



(projected on) a single network of exposures as visualised
in figure 2. This figure presents the same quarterly period
but does not observe the richer structure from figure 1.

The argument for the structural differences between mar-
kets is further supported with the visualisation in figure 3,
where each market is clustered into communities according
to edge betweenness. Betweenness of an edge (exposure
link) is a measure based on the number of shortest paths
(smallest number of links) between any two nodes (institu-
tions) in the network that pass through that edge. If a large
number of shortest paths pass through the same edge, then
it is in the bottleneck linking communities of nodes. Differ-
ent colours are used in figure 3 for different betweenness
communities within the three financial markets. Possible

contagion paths within communities are little obstructed but
such between communities are less accessible. Therefore,
contagion will progress differently within the different
layers (markets), as they have different betweenness
communities.

In addition to the graphical depiction in figure 3 of
network characteristics at the three different markets, we
further estimate Katz–Bonacich centrality (Bonacich 1987)
of each node (institution). Katz–Bonacich centrality mea-
sure of a given institution depends on how many other
institutions in the exposure network are connected with it
and up to what extent. Since it depends on both the
network connectivity and the node’s degree of connected-
ness, it throws the light on each institution’s importance in

Figure 3. Large exposures of UK-incorporated deposit takers and significant investment firms—empirical betweenness communities by
type of market, in one of the quarters between June 2014 and September 2015.



the exposure structure, and therefore provides a glimpse
into its possible impact on a contagion process within the
network. Table 1 presents the ranking of 10 anonymised
institutions according to their Katz–Bonacich centralitiy. It
shows that each institution has a different rank in different
markets. The variation in the ranking of an institution
across different markets provides an evidence that the
dynamics of contagion processes will differ in different
markets.

We provide a detailed comparison in Serguieva (2016a,
2017a) of the structure and centralities of single-layers
(markets) within any of the available quarterly data periods,
and a comparison among periods, concluding decisively
that the structures differ. Thus, analytical approaches that
consider markets are incorporated distinctly (figures 1 and
3) or indistinctly (figure 2), within the overall structure of
exposures, will observe different contagion processes,
identify different systemic risk measures and indexes, and
recommend different stabilisations strategies. It is also nec-
essary to evaluate links between markets (see section 5),
and then the argument is clear that a multilayer network—
incorporating all interconnected markets simultaneously but
distinctly—provides more realistic results.

4. Formulation and evaluation of single-market
contagion dynamics and design of effective stabilisation
strategies

4.1. Contagion dynamics in the derivatives market

A link in the derivatives market will generally represent how
an institution i impacts another institution j in that market—
the contribution of i to j’s probability of failure—as sug-
gested in (Markose 2012). We build the structure here
involving further details and scenarios and following closely
the current regulation and the definition of different expo-
sures data, in comparison with existing studies, and modify
the optimisation in approximating the contagion process.
First, the probability of failure of an institution j after the
start of a contagion process is modelled as dependent on j’s

own funds and its minimum capital requirement (Serguieva
2016a, 2017a,b). The contagion dynamics is analysed for the
22 reporting institutions, referred to collectively as ‘banks’.

(1) The current regulatory reporting framework recom-
mended by the Basel Committee on Banking Super-
vision and implemented in the UK, and the
accounting standards with reference to UK GAAP
and the International Financial Reporting Standards,
look at the different nature of derivatives in compar-
ison with other financial instruments. Banks report
their net MtM after collateral derivatives exposures
(NAC), and their net derivatives exposures-at-default
(EAD). Reported NAC values are non-negative and
account for enforceable bilateral netting arrange-
ment† between non-defaulted banks throughout dif-
ferent netting sets, and for received collateral.‡ The
reported exposure-at-default values§ (EAD) are
non-negative and account for collateral, netting
arrangement and adds-on applicable at default (see
Footnotes †,‡,§), and as a result the EAD amounts

Table 1. Katz–Bonacich centrality.

Institutions Fixed-income rank SF rank Derivatives rank

I 2 1 5
II 4 19 13
III 6 18 1
IV 8 9 15
V 10 8 12
VI 12 13 2
VII 14 6 8
VIII 16 12 17
IX 18 14 20
X 20 19 21

Notes: This table reports the empirical rank of institutions according to their Katz–Bonacich
Centrality. The results are based on data for one of the quarters in the period June 2014 to
September 2015. Institutions refer to anonymised banks. Fixed-income refers to the fixed
income market, SF refers to the securities financing market and Derivatives to the deriva-
tives markets.

†According to the regulatory reporting directives, derivatives trans-
actions are only netted if they are in the same netting set. A ‘net-
ting set’ is a group of transactions with a single counterparty that
are subject to a single, legally enforceable, bilateral netting
arrangement. Each transaction that is not subject to a legally
enforceable bilateral netting arrangement is interpreted as its own
netting set. Where cross-product netting is legally enforceable,
such transactions are considered ‘nettable’.
‡According to the regulatory reporting directives, Net MtM After
Collateral for a netting set is computed as Net MtM Before Collat-
eral less the value of collateral received from a counterparty to
collateralise the exposure of that netting set. The collateral
includes the one received under legally enforceable credit support
annexes, as well as any collateral held in excess of what is legally
required. The collateral only represents what is received / is in
hand on a confirmed settlement basis, and does not include collat-
eral owed to but not actually held by the firm. When collateral
received is greater than Net MtM Before Collateral, then Net MtM
After Collateral is zero.
§Exposure At Default (EAD) is the counterparty credit risk expo-
sure net of collateral, as specified in the Prudential Requirements
for Banks, Building Societies and Investment Firms BIPRU 13,
and calculated either using the Mark-to-Market Method (BIPRU
13.4), the Standardised Method (BIPRU 13.5), or the Internal
Model Method (BIPRU 13.6).



are larger than the NAC amounts. We will first use
EAD values, and the impact among institutions in
the derivatives market will be denoted with the
matrix S ¼ sij

� �
of size n × n, where each element sij

reflects a failed bank’s i contribution to the default
probability of a second bank j, and n is the number
of reporting institutions. The elements sij are propor-
tionate to the reported by bank j exposure at default
EADji to bank i, and inversely proportionate to the
own funds Cj of bank j. The impact matrix S can
include both a positive component sij proportionate
to EADji/Cj and a positive component sji proportion-
ate to EADij/Ci. This is due to received collaterals,
netting sets and adds-on applicable at default. In
comparison, existing studies on contagion in deriva-
tives markets assume that impact between two insti-
tutions exists only in one direction and approximate
it as proportionate to the differences in gross
exposures.

(2) Further, when bank i defaults, then the available
funds Aj of bank j are reduced with the reported
amount of its exposure at default EADji to bank i.
Here, the available funds Aj = Cj – MCj are the differ-
ence between the total own funds Cj and the mini-
mum capital requirements MCj of j. When bank j
defaults, the available funds Ai of bank i are reduced
with the reported amount of its exposure at default
EADij to bank j. The Own Funds of a bank are evalu-
ated as the sum of its Common Equity Tier 1 Capital
(CET1), Additional Tier 1 Capital (AT1) and Tier 2
Capital (T2). The Minimum Capital Requirements to
be maintained by a bank are set by current regulation
as a percentage of its Total Risk Exposure Amount
(risk weighted assets), including buffers in the case of
some institutions, and verified by the PRA.

(3) The non-negative impacts sij include the case when j
receives greater collateral from i that brings the
reported exposure to zero (see Footnote ‡ on the pre-
vious page). If bank j does not report an exposure
EADji to i because the two institutions do not interact
in the derivatives market (though they may interact in
the fixed-income and/or the securities-financing mar-
kets) then sij ¼ 0. When the exposure of j to i is
below the reporting threshold then again sij ¼ 0, as i
does not significantly impact j directly and so affects
the structural analysis insignificantly.

Therefore, the derivatives layer here is built as
accurately as possible, using reported data without
attempting approximation. In comparison, most stud-
ies work with aggregated data and approximate insti-
tution-to-institution exposures and impact. However,
approximated structures differ from empirical sys-
tems in a way that cannot be anticipated, and thus
mislead analysis and regulatory implications (Cont
et al. 2013).

Here, we consider the boundary case of a single
market in isolation, when it is not aware of the liabili-
ties in other markets. An intermediate case is to
assume that institutions in the single market are aware

of their overall but not bilateral liabilities in other
markets, and the approach presented here can also be
applied for that case. The intermediate case will
account for the overall amount of exposures, but not
for the dynamics of activating exposures in other lay-
ers and propagating impact among institutions and
markets. The case when the multiple market system
is aware of all granular exposures is analysed in sec-
tion 5.

(4) When the available funds Ai of i deplete, the bank is
considered as failed. Therefore, pi ¼ Ai

Ci
is the percent-

age of own funds that can be used to cover triggered
exposures, and pi differs from institution to institu-
tion. Even if two banks i and j have equal total own
funds Ci = Cj, they may have very different minimum
capital requirements MCi ≠ MCj, and therefore
different ratios pi 6¼ pj. Within the database used
here, the ratios pi differ up to a factor of 4, i.e.
max

1� i;j� n
pi=pj
� � � 4. In comparison, existing studies

assume that p is the same for all institutions and does
not depend on risk-weighted assets. Assuming p is
the same corresponds to a spreading rate 1� pð Þ in
the contagion process, for each institution.

The following steps show how the contagion process pro-
gresses iteratively among the banks. Let Bq is the set of
banks defaulted by step q and Bq ¼

Sq
k¼1 bk , where βk rep-

resents the set of banks failed at step k. In order to describe
the contagion process, we start with the logic in Furfine
(2003) and partly follow the logic in Markose (2012) but
clarify, correct, and modify and extend that. The condition
for default of each bank i ∉ Bq at step qþ 1ð Þ in the
contagion process is evaluated as

X
j 2 Bq

i 62 Bq

sji
� � ¼X j 2 Bq

i 62 Bq

EADij

Ci

� �
[ pi

pi ¼ aipmin for ai [ 1:

(1)

At step qþ 1ð Þ, equation (1) verifies whether the net losses
of the bank i ∉ Bq are greater than pi proportion of its capital
Ci. We set p ¼ pmin ¼ min1� i� n pið Þ, which corresponds to
a spreading rate 1� pminð Þ. One can modify equation (1) as

X
j 2 Bq

i 62 Bq

EADij

Cm
i

� �
¼
X

j 2 Bq

i 62 Bq

EADij

aiCi

� �
[ pmin for ai [ 1

(2)

where Cm
i ¼ aiCi [Ci. The unique αi for each bank i is

applied, and though the spreading rate is 1� pminð Þ, the
unique default condition for each institution and its unique
spreading rate is incorporated into the contagion dynamics
through αi.

Further, going into the details of the contagion process,
the following flowchart in figure 4 would be helpful in
understanding the evolution of the contagion process.



(5) Step q ¼ 0

A set of banks fail at time q = 0. This is due to a trigger
that is internal or external to the system of reporting banks.
It is not known what trigger will be active and which banks
will fail. However, if the defaulted banks are denoted with
β0, then the probability of default of a bank i ∈ β0 at q = 0
is assumed as p i;0

i2b0
¼ 1. The probability of default of the

other banks i ∉ β0 is assumed as insignificantly small
0\p i;0

i62b0
¼ 1

Cm
i
� 1. Due to the failure of banks β0, a con-

tagion process starts, and the model derived here will
account for any possible set β0.

(6) Step q ¼ 1

The set of banks that fail at step q = 1 is denoted with
β1. It is not known which banks participate in β1, as the ele-
ments of β0 are not known in advance. A bank i ∈ β1 fails

at step q = 1, because

P
j2b0
i2b1ð Þ

EADij

� �
Cm
i

[ pmin, and its

probability of default at q = 1 is p i;1
i2b1

¼ 1. On the other

hand, the probability of default of banks i ∈ β0 at q = 1 is
p i;1

i2b0
¼ 0, as they already failed at step at q = 0 . Let us

denote the set of banks that have failed by step q = 1 as B1,
then B1 ¼ b0 [b1. For completeness, the set of banks

Figure 4. Flowchart for the contagion process.



that have failed by q = 0 can be denoted as B0

where B0 = β0, and therefore, B1 ¼ B0 [b1. The probability
of default of a bank i ∉ B1 surviving at q = 1 is

p i;1
i 62B1

¼

P
j2b0
i 62B1ð Þ

EADij

� �
Cm
i

\pmin. Here, p i;0
i62b0

� 0 are not

taken into account as these are insignificantly small.

(7) Step q ¼ 2

The set of banks that fail at step q = 2 is denoted with
β2, and the set of banks that have failed by step q = 2 is
denoted with B2, where B2 ¼ B1 [ b2. A bank i ∈ β2 (for
i ∉ B1) fails at step q = 2 because the depletion of its avail-

able funds exceeds the threshold

P
j2B1

i2b2ð Þ
EADij

� �
C
m
i

[ pmin,

and its probability of default is p i;2
i2b2

¼ 1. The probability

of default of banks i ∈ B1 at step q = 2 is p i;2
i2B1

¼ 0, as

they already failed at step q = 0 or q = 1. The probability of
default of a bank i ∉ B2 surviving at q = 2 is p i;2

i 62B2

. By

analogy with the epidemiology literature, 1� pminð Þ is the
rate of infection, which in this case is a rate of ‘spreading
default’ or spreading losses. One per cent of bank i’s capital
probably infected at step q = 1 has the potential to infect
1� pminð Þ per cent of its capital at step q = 2. If a bank
fails due to infected (lost) capital it also loses up to
1� pminð Þ per cent of its capital that has not been infected
so far. Then these losses will affect other banks at the next
step, etc. The percentage of i’s capital probably lost at

q = 1 is p i;1
i62B1

¼

P
j2b0
i62B1ð Þ

EADij

� �
C
m
i

, which depends on i’s

exposures to banks that failed prior to q = 1. This p i;1
i62B1

is

also i’s probability of default at q = 1 and has the potential
to infect or to bring probable losses of 1� pminð Þp i;1

i 62B1

per

cent of its capital at q = 2. Exposures of i to banks j ∈ β1
that failed at q = 1 are lost at q = 2, and also contribute to
the probability p i;2

i 62B2

of i’s default at q = 2. Therefore,

p i;2
i62B2

¼ 1� pminð Þp i;1
i 62B2

þ
X
j2b1
i62B2ð Þ

EADij

Cm
i

p j;1
j2b1

� �
where p j;1

j2b1
¼ 1

It is not known prior to the start of contagion which banks
will default at each step, and the probability p i;2

i62B2

is
derived here for any possible B0, B1, B2.

(8) Step q

The set of banks that fail at step q is denoted with βq,
and the set of banks that have failed by step q is denoted
with Bq, where Bq ¼ Bq�1 [ bq. A bank i ∈ βq (for

i ∉ Bq−1) fails at step q because

P
j2Bq�1

i2bqð Þ
EADij

� �
Cm
i

[ pmin,

and its probability of default at q is:

p i;q
i2bq

¼ 1 (3a)

For banks i ∈ Bq−1, the probability of default at step q is:

p i;q
i2Bq�1

¼ 0 (3b)

as they already failed prior to step q. The probability of
default of banks i ∉ Bq surviving at q is:

p i;q
i 62Bq

¼ 1� pminð Þp i;q�1
i62Bq

þ
X
j2bq�1

i 62Bqð Þ

EADij

Cm
i

� �
p j;q�1

j2bq�1

" #
(3c)

for p j;q�1
j2bq�1

¼ 1 and p i;q�1
i62Bq

¼ 1� pminð Þp i;q�2
i62Bq

þ P
j2bq�2

i 62Bqð Þ
EADij

Cm
i

� 	
p j;q�2

j2bq�2

" #
.

(9) Step q ¼ qstop

The contagion process ends at q = qstop because all
remaining banks fail by qstop or because none of the
remaining banks fails at qstop.

Equations (3a)–(3c) present an iteration in the contagion
process, and can be summarised into and approximated with
the linear system of equations:

Pq ¼ 1� pminð ÞI þ S0½ �Pq�1 (4a)

where Pq is the vector of size n of non-negative probabilities:

PEAD
q ¼ p1;q; . . .; pi;q; . . .; pn;q

� �0
(4b)

The impact matrix S at each step q of the contagion
process, 0 < q ≤ qstop, is:

S ¼

s11
..
.

si1
..
.

sn1

. . .
. .
.

. . .
. .
.

. . .

s1j
..
.

sij
..
.

snj

. . .
. .
.

. . .

. .
.

. . .

s1n
..
.

sin
..
.

snn

26666664

37777775 with sij

¼
EADji

Cjm
� 0; for i 6¼ j

0; for i ¼ j



(4c)

At step q, the impact si of bank i on institutions in the
derivatives market is:

si ¼
Xn
j¼1

sij
� � ¼Xn

j¼1

EADji

Cm
j

 !
[ 0 (5)

and bank j is affected with sj by all institutions’ activity in
this market:

sj ¼
Xn
i¼1

sij
� � ¼Xn

i¼1

EADji

Cm
j

 !
[ 0 (6)

The contagion dynamics throughout steps from q = 0 to
q = qstop is expressed as the system of equations:



Pqstop ¼ 1� pminð ÞI þ S0½ �qstopP0: (7)

4.2. Relative systemic-risk indexes and a structural
measure of systemic-risk in a single market

Control systems theory (Nise 2017) tells us that if the maxi-
mum Eigenvalue of 1� pminð ÞI þ S0½ � is kmax

1�pminð ÞIþS0½ � [ 1
then the contagion process diverges to the destruction of
the banking system at some q = qstop. If kmax

1�pminð ÞIþS0½ �\1
then the system survives and converges to a steady state at
some q = qstop. This stability condition can be formulated in
terms of the maximum Eigenvalue kmax

S of matrix S. Using
Eigenvalue shifting and considering that the right and left
Eigenvectors have the same corresponding maximum
Eigenvalue, i.e. kmax

S ¼ kmax
S0 denoted as kmax, produces the

stability condition:

kmax
1�pminð ÞIþS0½ � ¼ 1� pminð Þ þ kmax\1) kmax\pmin (8)

Further, matrix analysis (Chatelin 2013) asserts that the lar-
gest Eigenvalue of a real-valued non-negative matrix is pos-
itive and has positive corresponding right and left
Eigenvectors, if the matrix is irreducible. Here, S0 is real-
valued and non-negative but reducible, and its irreducible
submatrix can be identified by applying Tarjan’s algorithm.
For the sake of simplicity in the notation, for the context of
connected submatrix, all the variables are modified with ~
on the top. So, the strongly connected submatrix, denoted
with eS ¼ ½esðijÞ�, corresponds for the derivatives market. It
does not include all reporting banks, however, banks out-
side the strongly connected component have incomparably
lower potential to influence the system. Therefore, the
Eigenpair analysis is performed on the irreducible submatrixeS , and corresponds to the contagion process:

Pqstop ¼ 1� epminð ÞI þ eS 0
h iqstop

P0 (9)

within the strongly connected component with m ≤ n partic-

ipating banks. The largest Eigenvalue of eS is kmaxeS and we

denote this as kmaxeS ¼ kmaxeS 0 ¼ ekmax. Then the stability condi-

tion from equation (8) transforms into:

ekmax\epmin ¼ min
1� i�m

eA ið ÞeC ið Þ

 !
(10)

where epmin is evaluated over the m banks. The Eigenvalue
satisfies the following inequalities:

ekmax � jjeS 0jj1 ¼ max
1� j�m

es jð Þð Þ (10a)

ekmax � jjeS jj1 ¼ max
1� i�m

es ið Þð Þ (10b)

and according to equations (5) and (6) this leads to:

ekmax � min max
1� i�m

Xm
j¼1

gEADðjiÞeCm jð Þ

!!
; max
1� j�m

Xm
i¼1

gEADðjiÞeCm jð Þ

!!24 35
(11)

In other words, the largest Eigenvalue is bounded by the
maximum impact of a bank on the strongly connected
derivatives submarket and by the maximum impact caused
by that derivatives submarket on a bank.

Notice that Eigenvalue shifting preserves Eigenvectors,

and therefore, finding the Eigenpair ekmax; v 1�epminð Þ½ �IþeS 0

� 	
of matrix 1� epminð Þ½ �I þ eS 0 that represents the contagion

process is equivalent to finding the Eigenpair ekmax; veS 0

� 	
ofeS 0. This Eigenpair is generated here through an iterative

optimisation as follows:

#s ¼ es0ð Þ#s�1

jj es0ð Þ#s�1jj1
¼ es0ð Þ#0

jj es0ð Þs#0jj1
for s� 1 (12a)

including a normalisation with the infinite norm
jj es0ð Þ#s�1jj1 at each iteration τ, which assures that equation

(11) is satisfied. This Eigenpair ekmax; veS 0

� 	
is produced at

convergence ϑτ = ϑτ−1, for ϑτ = ϑτ−1 = eS 0#eS 0 ¼ ekmax#eS 0 .
Therefore:

#eS 0 ¼ eS 0
� 	�1

#s (12b)

If the resulting Eigenvector #eS 0 is divided by the square of

its Euclidean norm jj#eS 0 jj2
� �2

then:

u ¼ #eS 0

jj#eS 0 jj2
� �2 and u0#eS 0 ¼ 1 (13a,b)

Here, vector u corresponds to ekmax and to the right Eigen-

vector v of the transposed eS 0 and satisfy equation (13b).
These are the qualities of the right Eigenvector of the

impact matrix eS . So, the positive vector u ¼ ueS gives the
ranking, according to their systemic impact, of the banks
participating in the strongly connected substructure of the
derivatives market. The maximum Eigenvalue satisfies:

ekmax ¼ u0eS eS 0meS 0 ¼ m0eS eSueS (14)

and relates to system’s stability. In the condition from equa-
tion (10), the difference ekmax � epmin can be interpreted as the
system’s distance from structural stability. If ekmax is only
slightly larger than epmin then the system will be eventually
destroyed but the contagion process will take long time, and
it may be possible to intervene constructively. If ekmax is quite
larger than epmin then the contagion will be more intense, and
the system will be destroyed quickly. Therefore, we can for-
mulate the systemic risk emerging in the derivatives market
as the structural measure:

SRrisk ¼
ekmax � epmin [ 0ðarea of fragilityÞ
0; if ekmax � epmin\0ðarea of resilienceÞ



(15a)



This measure allows comparing the stability of two struc-
tures (markets) irrespectively of monetary values. For exam-
ple, the banking systems in two countries may be similarly
instable but involving different monetary values. The objec-
tive here, through designing stabilisation strategies in the
next Sections, is to build in structural resilience. Then the
system will better sustain its associated monetary values.

We also formulate with equation (15b) the systemic risk
index of a bank i in percentages. This can be interpreted as
the percentage that i contributes to systemic instability or to
the systemic risk SRrisk of that market:

SRI ið Þ ¼ gSRI ið Þ ¼ uðiÞeSPm

i¼1
uðiÞ~Sð Þ [ 0; for i 2 1; . . .;mf g

¼ 0; for i 2 m þ 1; . . .; nf g

8<:
(15b)

Banks participating in the strongly connected substructure
of the market have positive indexes, while banks outside it
have zero indexes and do not contribute to the SRrisk . Here,gSRI ðiÞ are relative measures and SRrisk is an absolute mea-
sure, due to interconnectivity in the derivatives market. The
index gSRI ðiÞ of bank i can be translated in absolute terms
as the part gSRI ðiÞ SRrisk

� 	
that i contributes to the struc-

tural systemic risk SRrisk .

4.3. Stabilisation strategies in a single market

Most studies analysing the structure of financial systems do
not quantify systemic risk. The few studies quantifying risk
rarely comment on single-layer stabilisation strategies, and
multilayer strategies have not been addressed. Existing stud-
ies of the derivatives market recommend that capital sur-
charges are collected only from very few top-ranked
systemically important institutions, and set aside in a fund
that then can be accessed by any institution when in dis-
tress. Such step will be helpful but not optimal. It will not
really build in structural resilience into the system, and is
not pre-emptive as it expects institutions to fall in distress.
When institutions fall in distress, they will need large fund-
ing to be able to recover, and such approach is still at a sig-
nificant cost to the system. The fund may deplete while
helping some institutions and not others, as well. We con-
sider that it is not sufficient to collect surcharges but it is
important to distribute them optimally among all institu-
tions, and it is necessary to collect them in an optimal cost-
effective way. In order to achieve structural balance, not
only the very top few institutions should participate in the
stabilisation strategy but all institutions with non-zero sys-
temic impact (non-zero systemic risk index). The most
important institutions can be viewed as and are ‘most
guilty’, but system’s instability is not entirely their fault—it
is rather a fault of the emerged structure. Therefore, if a sta-
bilisation strategy subtly and adaptively affects the emer-
gence process of structure, it will build in systemic
resilience and achieve pre-emptive stabilisation at a mini-
mum cost. The participation of institutions in the strategy is
proportionate to their systemic indexes but with a very

small fraction of their capital, and these fractions are imme-
diately redistributed optimally and granularly among the
same institutions. The strategy is at no cost for the system,
the surcharges are optimised at their minimum for an insti-
tution in comparison with other mechanisms, and the partic-
ipation of any institution is less than its surcharges as it
immediately receives proportionate compensations. The
strategy includes a stabilisation step in the current period,
only if the systemic risk or resilience at the end of the last
period did not meet a targeted threshold. Therefore, the
structure is maintained around the threshold, only minimum
adjustments are required, and in some periods they may not
be required. This could be implemented as part of the
infrastructure mechanism, and would also play the role of
monitoring systemic stability. If we look for an analogy,
this mechanism may resemble the varying margin within
the current clearance mechanisms.

Based on the indexes from equation (15b), a systemic
risk surcharge for an institution i is formulated as:

SRS ið Þ ¼ cSRI ið Þ ¼

¼
gSRS ið Þ ¼ cgSRI ið Þ for 0\c � 1; i 2 1; � � � ;mf g

0 for i 2 m þ 1; � � � ; nf g

(
(16)

It is applied to evaluate a fraction cgSRI ið ÞeC ið Þm of its capi-
tal. Here, γ is very small and optimised to estimate mini-
mum surcharges for each institution i that when distributed
in a balancing way to each institution j, in proportion to the
impact of i on j, will bring the system to the targeted struc-
tural threshold. This is equivalent to building in structural
resilience. The proportion is the ratio of the impact es ijð Þ of
bank i on j, divided by the overall impact of bank i on the
derivatives market, es ið Þ ¼Pm

j¼1 es ijð Þð Þ, for

i; j 2 1; � � � ;mf g. Let us denote with X ijð Þ the proportion of
the surcharge on i distributed to j. Equation (17) shows

how impact matrix eS ¼ es ijð Þ� �
changes into eSr

:

eSr ijð Þ
h i

¼ es ijð Þ= 1þ
Xm
i¼1

X ijð Þepmin
eC jð Þm

!!" #
¼

¼
eS ijð Þ

1þPm
i¼1 cgSRI ið Þ eCm

iepmineCj

� � eS ijð ÞPm

q¼1
eS iqð Þð Þ

� �� �
2664

3775
(17)

It considers that the funds eA jð Þ ¼ eC jð Þ�gMC jð Þ available

to j increase to eA jð Þr¼ eA jð Þ þPm
i¼1

X ijð Þ with the proportion-

ate fractions X ijð Þ. In section 4.1, we denoted the ratio of
available to total own funds of j asep jð Þ¼ ea jð Þep ¼ eA jð ÞeC jð Þ ¼

ea jð ÞeA jð ÞeC jð Þm Maintaining the parameterepmin ¼ eprmin in the simulation of contagion within the rebal-
anced structure leads to:



epmin ¼
eA jð ÞeCm jð Þ ¼

eAr jð ÞeCm;r jð Þ ¼
eA jð Þ þPm

i¼1 X ijð ÞeCm;r jð Þ (18a)

and to a new modified value eCm;r jð Þ after rebalancing:

eCm;r jð Þ ¼ eCm jð Þ 1þ
Pm

i¼1 X ijð Þep
min
eCm jð Þ

!
(18b)

This produces the denominator in equation (17), becausees ijð Þ ¼ EAD jið ÞeCm jð Þ and:

esr ijð Þ¼ EAD jið ÞeCm;r jð Þ ¼ EAD jið ÞeCm jð Þ 1þ
Pm

i¼1
X ijð Þep

min
eCm jð Þ

� �
¼ es ijð Þ

1þ
Pm

i¼1
X ijð ÞepmineCm jð Þ

� � (18c)

The rebalancing preserves eSr as non-negative, and the
Eigenpair analysis can be validly applied. Equation (17)
reduces max

1� i�mEAD
es jð Þrð Þ and max

1� i�mEAD
es ið Þrð Þ, and from

equation (11) it follows that:

ekmax;r � min max
1� i�m

es jð Þrð Þ; max
1� j�m

es ið Þrð Þ
24 35� kmax (19)

The largest Eigenvalue is reduced,† which is equivalent to
increasing structural resilience. The parameter c is identi-
fied, through search and optimisation, as the smallest value

that when applied in equation (17) transforms the system eS
into a system eSr with targeted threshold SRrisk

threshold

. With a

minimum structural change, the value of systemic risk in
equation (15a) moves in direction towards the area of
resilience.

The empirical analysis next is performed for one of the
quarters in the period from June 2014 to September 2015,
and the results are presented in table 2. In that quarter, 19
out of the 22 reporting institutions participate in the
strongly connected component within the structure
emerging from interlinkages in the derivatives market.
Therefore, 19 institutions have non-zero systemic risk
indexes and affect structural stability. The largest Eigen-
value is 0.07268 and satisfies the condition ekmax\0:14573,
indicating that the system is in the area of structural

resilience. We can define a measure SRresilience of structural
resilience as:

SRresilience ¼
0; if epmin � ekmax

\0

epmin � ekmax [ 0

8<: (20)

If epmin is only slightly larger than ekmax, the contagion pro-
cess will eventually be contained but this will take long
time, and a number of institutions will default though part
of the system will survive. If epmin is quite larger than ekmax,
then the contagion will be contained quickly and a large
part of the system will survive.

The empirical result here is SRresilience ¼ 0:07305. For a
threshold of SRrisk

threshold

= 0, no stabilisation step is necessary

at the start of the next quarterly period, and therefore results
of simulating stabilisation strategies are not included in
table 2. We will note, however, that any movement in direc-
tion towards smaller SRrisk [ 0 or larger SRresilience [ 0 is
equivalent to building in resilience. For example, a meta
strategy may involve different thresholds SRrisk

threshold

tkð Þ[ 0

in different periods tk, 1 ≤ k ≤ T, so that the system gradu-
ally moves to a long-term target. A meta strategy may also
involve buffer thresholds SR resilience

threshold

tkð Þ[ 0 in some

periods, as the current contagion and stabilisation analysis
is in response to a trigger and the contagion it activates, but
does not account for two different triggers activating a sec-
ond contagion processes while the first is still running or
just after it ends. A threshold must be selected carefully for
a subtle effect, and the selection may depend on the scope,
size and monetary value of the system or subsystem being
analysed.

Notice that equations (4a) and (7) represent a more inten-
sive contagion dynamics (a boundary scenario) than equa-
tions (3a)–(3c). The formulation of es ijð Þ� �

corresponds to
analysis of a structure functioning as if the going-concern
exposures to non-failed banks were also equal to the expo-
sures at-default. The going concern principle in accounting
is the assumption that an entity will remain in business for
the foreseeable future. Next, we will perform the analysis
of the derivatives layer for a structure functioning as if the
going-concern exposures are equal to the net MtM expo-
sures after collateral (NAC). These are the correct going-
concern exposures, because up until its failure, a non-failed
bank i affects with NAC exposures the other non-failed
banks j.

The NAC-scenario is also boundary, as it assumes that a
failed bank i affects with the going-concern exposure NAC
a non-failed bank j, instead with the exposure at-default
EAD. The reported non-negative NACij, for 1� i; j� n,
account for received collateral and for enforceable bilateral
netting arrangement between non-defaulted banks
throughout different netting sets. The tensor (structure) can
include both a positive impact sNACij [ 0 of bank i on bank j

proportionate to NACji, and a positive impact sNACij [ 0 of

bank j on bank i proportionate to NACij. Next, the steps
described above for the S analysis are now applied to SNAC ,

†If the model is considered without the financial context, then
reducing the maximum Eigenvalue can be attempted alternatively.
For example, by reducing the sum of elements in a row of the
transposed es jið Þ½ �0 by increasing the denominator of the elements
with a factor of 1þ dð Þ. (notice that each element in a row ises jið Þ ¼ gEADðijÞ=eCmðiÞ and has the same denominator) In the finan-
cial context here, this will mean that we charge an institution i
with a fraction of its capital and then use that fraction to increase
the capital of the same institution. The meaning of a systemic risk
charge for i, however, is rather to increase funds available to insti-
tutions affected by i and so reduce the impact of i on them.



and lead to evaluating the Eigen pair ekmax
NAC ; ueSNAC

� 	
of the

strongly connected substructure eSNAC ¼ es ijð ÞNAC
h i

, the

indexes:

gSRI ið ÞNAC¼
u ið Þ eSNACPmNAC

i¼1 u ið ÞeSNAC

� 	 for i 2 1; . . .;mNACf g

(21a)

and the resilience:

SRNAC
resilience ¼

0; if ekmax

NAC � epNACmin � 0

ekmax

NAC � epNACmin

��� ���; if ekmax

NAC � epNACmin \0

8><>: : (21b)

Tables 3 and 4 report and compare empirical results for the
NAC-scenario and the EAD-scenario. The structural resili-
ence of the empirical system under the NAC-scenario is
SRRNAC

resilience ¼ 0:26128, which is higher than the resilience
under the EAD-scenario SRRresilience ¼ 0:07305. Different
number of reporting banks have non-zero structural impact,
mNAC ¼ 16 6¼ m ¼ 19; and participate in the corresponding
two strongly connected components. The ranking and index
of each bank are different under the two scenarios. The
institution encoded with A in table 4 is of higher ranking
under EAD but lower ranking under NAC, which is also
confirmed by its corresponding indexes. The opposite is
true for institution D, it is of higher ranking under NAC
and of lower ranking under EAD. Institution B has the
same rank 8 among the mNAC banks and among the m
banks, but it has different indexes gSRI NAC Bð Þ ¼ 3:01% andgSRI Bð Þ ¼ 5:09%. Bank C is of medium ranking under

n 22

m 19epmin 0.14573ekmax <0.14573ekmax for c ¼ 0 0.07268
SRresilience for c ¼ 0 0.07305

Notes: This table reports the empirical contagion dynamics in the derivatives market based on
data for one of the quarters in the period June 2014 to September 2015. n refers to the number
of reporting banks, mEAD refers to the number of banks in the strongly connected submatrix,
EAD refers to net derivatives exposures-at-default, p refers to the minimum rate of recovery for
the connected banks, k refers to the stability condition for the connected banks, γ is the parame-
ter optimised in the stabilisation strategy and SRResilience refers to structural resilience.

Table 3. Comparative Empirical Results under NAC and EAD scenarios.

NAC EAD

n n = 22 n = 22 n
m mNAC = 16 m = 19 mepNACmin 0.26843 0.14573 epminekmax

NAC <0.26843 <0.4573 ekmax
connectedekmax

NAC for cNAC ¼ 0 0.00715 0.07268 ekmax for c ¼ 0

SR
NAC

resilience for cNAC ¼ 0 0.26128 0.07305 SRresilience for c ¼ 0

Notes: This table shows the comparative empirical results under net MtM after collateral derivatives
exposures (NAC) and net derivatives exposures-at-default (EAD) scenarios based on data for one of
the quarters in the period from June 2014 to September 2015. n refers to the number of reporting
banks, m refers to the number of banks in the strongly connected submatrix, p refers to the minimum
rate of recovery for the connected banks, k refers to the stability condition for the connected banks, γ
is the parameter optimised in the stabilisation strategy and SRResilience refers to structural resilience.

Table 4. Systemic risk ranking and indexes in the derivatives market.

Institutions A B C D

Rank at γNAC = 0, (going-concern systemic
dynamics)

10 8 0 (not participating in the fragility strongly connected
component)

7

Rank at γ = 0, (at-default systemic dynamics) 3 8 10 15gSRI NACðiÞ at γNAC = 0 2.34% 3.01% 0% 4.00%gSRI ðiÞ at γ = 0 13.15% 5.09% 4.03% 0.81%

Notes: Systemic Risk Ranking and Indexes in the Derivatives Market based on data for one of the quarters in the period from June 2014 to September
2015. A-D refer to the anonymised banks, NAC refers to net MtM after collateral derivatives exposures, EAD refers to net derivatives exposures-at-default
c is the parameter optimised in the stabilisation strategy, SRI(i) refers to Systemic Risk Index for the i-th bank in the strongly connected component.

Table 2. Empirical contagion dynamics in the derivatives market.



SIS ið Þ ¼ f cfSII ið Þ; cNACfSII NAC ið Þ
� 	

(22)

In comparison, Poledna et al. (2015) and Markose (2012)
do not differentiate between the two types of derivatives
exposure. The contagion algorithm in Poledna et al. (2015)
prevents a failed bank to have effect beyond the period of
its failure. The approach presented here builds in targeted
resilience even when none of the institutions fails. It also
does not directly restrict and so preserves the emerged pref-
erences of interaction among banks, and so introduces mini-
mum changes to the system. However, it introduces an
incentive for institutions to adapt their preferences to the
emergence of a more resilient structure of interactions. A
next task is to extend the algorithm to provide that the
effect of a non-failed bank is proportionate to NAC expo-
sures, the effect of a failed bank is proportionate to EAD
exposures, and a failed bank has no effect beyond the
period it fails.

5. Formulation and evaluation of multiple-market
contagion dynamics and stabilisation strategies

Banks, especially large ones, have numerous and dispersed
financial operations, extensive off-balance-sheet activities,
and opaque financial statements. They are highly intercon-
nected through their capital markets activities, interbank
lending, payments and off-balance-sheet arrangements. For
example, the BoE database used here accounts for the inter-
action of reporting institutions in the fixed-income market,
securities-financing market and derivatives market.

Section 4 above does not consider simultaneously conta-
gion dynamics due to connectivity within all markets and
among markets, and this is the focus of section 5. For
example, if bank i is highly affected in the derivatives mar-
ket by failing banks j ϵ {1, … , n} and has to liquidate its
other assets holdings (e.g. bond holdings) to cover the
losses, then the stress in the derivatives market as down-
wards pressure on prices can transmit to other assets
markets through bank i’s interlinkages in these markets. In

other words, the interaction of bank i within the derivatives
market has an impact on its interaction within the fixed-in-
come market, and contributes to the probability of bank i
failing in the fixed-income market due to its interlinkages in
the derivatives market.

A recent example is the 2007 subprime mortgage market
crisis in the US that caused the values of various securities
linked to US real estate to plummet, and developed into a
full-blown international banking crisis with the collapse of
the investment bank Lehman Brothers on 15 September
2008. Excessive risk-taking by banks such as Lehman
Brothers (i.e. a strongly connected node) helped to magnify
the financial impact globally.

5.1. Theoretical formulation

A model incorporating simultaneously but distinctly all inter-
connected markets can be formulated as a tensor-multiplex
(Serguieva 2016a, 2017a), where S is a tensor of rank four:

S ¼
Xm
k¼1

Xm
‘¼1

Xn
j¼1

Xn
i¼1

Si ‘j k

� 	
e~i 	 x~j0 	 e~‘ 	 x~k0

for Si ‘j k
¼ 0 if i ¼ j ^ ‘ ¼ k _ i 6¼ j ^ ‘ 6¼ k

� 0 if i 6¼ j ^ ‘ ¼ k _ i ¼ j ^ ‘ 6¼ k


 (23)

Here m = 3 corresponds to the three markets, i.e. k, ℓ = 1 for
the fixed-income market, k, ℓ = 2 for the securities-financing
market, and k, ℓ = 3 for the derivatives market. The number
of institutions is n, and Si ‘j k � 0 is the impact of bank i—
due to its interaction in market ℓ—on institution j acting in
market k. The impact Si ‘j k � 0 between two different institu-
tions i ≠ j is due to their interaction within the same market
ℓ = k, while the impact is Si ‘j k ¼ 0 when we consider i and j
as acting in different markets ℓ ≠ k. Further, Si ‘j k � 0 when
the same institution i = j acts in different markets ℓ ≠ k,
while Si ‘j k ¼ 0 when this institution acts in the same market
ℓ = k. An interconnected multiplex is a multilayer network
where mostly the same nodes participate in different type of
interactions (interdependencies), and the interaction of a
node due to one type of activities is dependent on its inter-
action due to another type of activities. A tensor can be
considered as an interconnected multiplex that also incorpo-
rates a basis (innate) structure. In equation (23),
e~i 	 x~j0 	 e~‘ 	 x~k0 stands for the basis structure that
includes four vectors e~i;x~

j0 ; e~‘;x~
k 0 in their cohesion or ten-

sor multiplication, hence the tensor is of rank four. These
vectors characterise, correspondingly, institutions i, institu-
tions j, markets ℓ, and markets k, for i; j 2 1; . . .; nf g and
‘; k 2 1; . . .;mf g. Tensor-multiplex models expand the
scope of feasible structural analysis and stress testing of the
financial system (Serguieva 2016a,b, 2017a). Here, they are
only used in modelling contagion and stabilisation
processes within multiple interconnected markets.

We build the tensor of rank four as including nine sub-
tensors of rank 2 (see figure 5). The impact matrix s ijð ÞD

� �
in the derivatives market Dð Þ has the same meaning as sij

� �
in section 4 and:

 

EAD and is not ranked under NAC, therefore has zero
structural impact SRIgNAC Cð Þ ¼ 0.

The empirical results confirm that if we would like to 
introduce subtle changes in the structure in order to increase 
its resilience, then different banks and to a different extent 
will participate in a strategy under each of the two scenar-
ios. NAC and EAD are boundary scenarios, and the strat-
egy can be formulated with surcharges depending both on 
NAC and EAD indexes, instead. In the terminology, we
will use from now on ‘systemic-impact index’ SII ið Þ  instead 
of systemic-risk index SRI ið Þ, and correspondingly 
‘systemic-impact surcharge’ SIS ið Þ  instead of systemic-risk 
surcharge SRS ið Þ. This terminology accounts for the fact 
that the index measures the proportionate contribution of an
institution to systemic risk, but also for the fact that this 
potential of an institution for structural impact can be used 
in stabilisation strategies to build in structural resilience. In 
the case of the EAD and NAC scenarios, the new terminol-
ogy translates as:



Si ‘j k ¼
Si; ‘¼D
j 6¼i; k¼D

� 	
¼ sðijDÞ ¼ sðijÞ

Si; ‘¼D
j¼i; k¼D

� 	
¼ sðiiDÞ ¼ 0

8<: for i; j 2 f1; � � � ; ng

(24a)

Banks report to the PRA database their exposures in the
fixed-income market FIð Þ as gross MtM values, then
MtM jið ÞFI will denote the gross exposure of bank j to bank
i in the FI layer. Banks also report their exposures in the
securities-financing market SFð Þ as gross Notional values,
then Notional jið ÞSF will denote the gross exposure of
institution j to institution i in the SF layer. This reported
information does not allow differentiating between going-
concern and at-default multiplex exposures.

The impact structure Si ‘j k will be evaluated as follows.
The impact matrix s ijð ÞFI

� �
, due to interconnectivity in the

FI market, has elements:

Si ‘j k ¼
Si ‘¼FI
j6¼i k¼FI

� 	
¼ sðijÞFI ¼

MtM jið ÞFI�MtM ijð ÞFI
C jð Þ [ 0

0; if MtM jið ÞFI�MtM ijð ÞFI
C jð Þ � 0

(
Si ‘¼FI
j¼i k¼FI

� 	
¼ sðiiÞFI ¼ 0 for i; j 2 f1; . . .; ng

8>><>>:
(24b)

where C jð Þ are the total own funds of bank j. The impact
matrix s ijð ÞSF

� �
, due to interconnectivity in the SF market,

has elements:

Si ‘j k ¼
Si ‘¼SF
j 6¼i k¼SF

� 	
¼ sðijÞSF ¼

Notional jið ÞSF�Notional ijð ÞSF
C jð Þ [ 0

0; if Notional jið ÞSF�Notional ijð ÞSF
C jð Þ � 0

(
Si ‘¼SFT
j¼i k¼SF

� 	
¼ sðiiÞSF ¼ 0 for i; j 2 f1; . . .; ng

8>><>>:
(24c)

The impact magnitudes between markets are correspond-
ingly:

(1) s ijð ÞFI!SF

� �
composed by the impact of institutions

i in the fixed-income market ‘ ¼ FI on institutions j
in the securities-financing market k = SF.

Si ‘j k ¼
Si ‘¼FI
j¼i k¼SF

� 	
¼ sðiiÞFI!SF ¼Pn

q¼1 sðqiÞFI
Si ‘¼FI
j 6¼i k¼SF

� 	
¼ sðijÞFI!SF ¼ 0

for i; j; q 2 f1; . . .; ng
8<:

(25a)

(2) s ijð Þ
FI!D

h i
composed by the impact of banks i in

market ℓ = FI on banks j in market k = D:

Figure 5. Four-dimensional structure of impact. It captures impact among institutions within each financial market and between any pair
of markets.



Si ‘j k ¼
Si ‘¼FI
j¼i k¼D

� 	
¼ sðiiÞFI!D ¼Pn

q¼1 sðqiÞFI
Si ‘¼FI
j 6¼i k¼D

� 	
¼ sðijÞFI!D ¼ 0

for i; j; q 2 f1; . . .; ng
8<:

(25b)

(3) s ijð ÞSF!FI

� �
comprises the impact of i in market

ℓ = SF on j in market k ¼ FI , and s ijð ÞSF ! D½ �
comprises the impact of i in market ℓ = SF on j in
market k = D:

Si ‘j k ¼
Si ‘¼SF
j¼i k¼FI

� 	
¼ sðiiÞSF!FI ¼

Pn
q¼1 sðqiÞSF

Si ‘¼SF
j6¼i k¼FI

� 	
¼ sðijÞSF!FI ¼ 0

for i; j; q 2 f1; . . .; ng
8<:

(26a)

Si ‘j k ¼
Si ‘¼SF
j¼i k¼D

� 	
¼ sðiiÞSF!D ¼Pn

q¼1 sðqiÞSF
Si ‘¼SF
j6¼i k¼D

� 	
¼ sðijÞSF!D ¼ 0

for i; j; q 2 f1; . . .; ng
8<:

(26b)

(4) s ijð ÞD!FI

� �
includes the impact of i in market ℓ = D

on j in market k = FI, and s ijð ÞD!SF

� �
includes the

impact of i in market ℓ = D on j in market k = SF:

Si ‘j k ¼
Si ‘¼D
j¼i k¼FI

� 	
¼ sðiiÞD!FI ¼

Pn
q¼1 sðqiÞD

Si ‘¼D
j 6¼i k¼FI

� 	
¼ sðijÞD!FI ¼ 0

for i; j; q 2 f1; . . .; ng
8<:

(27a)

Si ‘j k ¼
Si ‘¼D
j¼i k¼SF

� 	
¼ sðiiÞD!SF ¼Pn

q¼1 sðqiÞD
Si ‘¼D
j6¼i k¼SF

� 	
¼ sðijÞD!SF ¼ 0

for i; j; q 2 f1; . . .; ng
8<:

(27b)

Equations (24b, 25a and 25b), equations (24c, 26a and 26b)
and equations (24a, 27a, 27b) describe, respectively, the
bottom, middle and top three-dimensional matrixes within
the four-dimensional structure, which corresponds to the
impact multiplex Si ‘j k of size n
 n
 3
 3 in figure 5. In

order to maintain the analogy between the variables that are
used in sections 4 and the variables that are going to be
used in the multiplex unfolded context in this section, all
the necessary variables that are used in section 4 are used
here with a hat (^) on them. The next step is to identify the
multiplex strongly connected component. We apply Tarjan’s

algorithm to the unfolded impact matrix Ŝij

h i
of size

3n × 3n created by unfolding the multiplex Ŝi ‘j k

h i
of size

n
 n
 3
 3 along the indices k and l,

Ŝi ‘j k

h i
¼

s ijð ÞFI!FI

� �
s ijð ÞFI!SF

� �
s ijð ÞFI!D

� �
s ijð ÞSF!FI

� �
s ijð ÞSF!SF

� �
s ijð ÞSF!D

� �
s ijð ÞD!FI

� �
s ijð ÞD!SF

� �
s ijð ÞD!D

� �
2664

3775 (28)

and identify the m̂ number of banks that have non-zero

structural impact on the multiplex. The parameter bepmin in
simulating the contagion process is evaluated over the mul-

tiplex strongly connected component beS i

j

� 

of size

3m̂
 3m̂, and beCm
jð Þ are the modified own funds corre-

sponding to this parameter. The unfolding beS i

j

� 

is in the

format from equation (28), now for the m̂ banks, and pre-

serves the spectral properties of beS i

j

� 

of size

m̂
 m̂
 3
 3. By analogy with the algorithm from section

4, now the Eigenpair
bekmax

; ubeS
� �

of beS i

j

� 

is generated.

Then, the Eigenpair
bekmax

; ubeS
� �

for beS i ‘

j k

� 

is obtained as:

beKmax

¼ bekmax
multiplex
connected

and UbeS (folding ubeS (29)

where Ub~S is an Eigenmatrix of size m̂
 3 rather than an

Eigenvector.
Following the approach in Serguieva (2016a, 2017a,b),

we formulate the multiplex systemic risk cSRrisk and
resilience cSRresilience as:

cSRrisk ¼
~̂k
max � ~̂pmin [ 0

0; if ~̂k
max � ~̂pmin � 0

(
(30a)

cSRresilience ¼ 0; if ~̂k
max � ~̂pmin � 0

~̂pmin � ~̂k
max

\0

(
(30b)

The multiplex systemic-impact indexes are:

dfSII ið Þ ¼
dfSII ið Þ ¼

�U ið ÞbeSPm̂

i¼1
r ið ÞbeS

 ! ; for i 2 1; . . .; m̂f g

0; for i 2 m̂ þ 1; . . .nf g

8>>>><>>>>:
(31a)

where:

�UbeS ¼ UbeS 111½ �0 (31b)

and the corresponding surcharges are:

dSIS ið Þ ¼ ĉcSII ið Þ ¼

¼
dgSIS ið Þ ¼ bcdgSIS ið Þ for 0\bc � 1; i 2 1; . . .; bmf g
0 for i 2 bm þ 1; . . .; nf g

(
(31c)



The multiplex stabilisation strategy is designed as
follows. The parameter ĉ is optimised to estimate the mini-

mum fractions of capital ĉ
dfSII ið Þb~Cm

ið Þ for each institution
i 2 1; . . .; m̂f g that when distributed in a balancing way
among institutions j 2 1; . . .; m̂f g, in proportion to the
impacts of i within the multiplex, will bring the system to a

targeted threshold cSRrisk
threshold

tð Þ or cSRresilience
threshold

tð Þ. The propor-

tion is the ratio of the impact Si ‘j k ¼ of bank i in market ‘

on bank j in market k, divided by the overall impactb~s ið Þ ¼ P3
z¼1

P3
y¼1

P̂m
q¼1

b~Si; y

q z

� �
of bank i within the multiple-

market structure, for i; j 2 1; � � � ; m̂f g and ‘; k 2 1; 2; 3f g.
Let the fraction that j receives from i, in result of this, is
denoted with X ijð Þ. Then the non-charged four-dimensional

matrix b~S ¼ Si ‘j k

� 	h i
representing the multiplex is modified

into the impact structure b~Srebalanced
as follows:

beS i ‘

j k

� �rebalanced
" #

¼ beS i ‘

j k

� �
= 1þ

X̂m
i¼1

P3
‘¼1

P3
k¼1 X i ‘

j k

� 	
bePmin

beC ðjÞm

0@ 1A0@ 1A24 35

¼
beS i ‘

j k

� �

1þPbmi¼1 bcdfSII ðiÞ beC ðiÞmbep min
beC ðjÞm

! P3

‘¼1

P3

k¼1

beS i ‘

j k

� 	
P3

z¼1

P3

y¼1

Pbm
q¼1

beS i y

q z

� 	
0@ 1A0@ 1A

266666664

377777775
for 0� bc\\1; i; j;2 f1; . . .; bmg; ‘; k 2 1; 2; 3

(32)

It considers that the funds beAðjÞ ¼ beC ðjÞ � dgMC ðjÞ available

to j increase to beAðjÞrebalanced ¼ beAðjÞ þPbmi¼1 X ðijÞ with the
proportionate fractions X ijð Þ. We denote the ratio of avail-
able funds to total own funds of j as

bepðjÞ ¼ beaðjÞbepmin ¼
beA ðjÞbeC ðjÞ

¼
bea ðjÞbeA ðjÞbeC m

ðjÞ
. Maintaining the parame-

ter bepmin ¼ beprebalanced
min , for comparability of the simulation of

contagion within the initial and the rebalanced structures,
leads to:

bepmin ¼
beAðjÞbeC ðjÞm

¼
beAðjÞrebalancedbeC ðjÞm rebalanced

¼
beAðjÞ þPbmi¼1 X ijð ÞbeC ðjÞm rebalanced

(33a)

and to a new modified value beC ðjÞm rebalanced after rebalancing:

beC ðjÞm rebalanced ¼ beC ðjÞm 1þ
Pbm

i¼1 X ijð Þbepmin
beC ðjÞm

0@ 1A (33b)

which produces the denominator in equation (32).

The rebalancing reduces the largest Eigenvaluebek max
rebalanced bekmax

, which is equivalent to building in
structural resilience. Thus, the minimum redistribution

pre-emptively reduces the effect of potential contagion in
quarter t based on the multiplex structure of exposures and
the minimum capital requirements at the end of quarter
t � 1ð Þ. The mechanism can be implemented automatically
within the market infrastructure. It does not restrict the
emerged preferences of banks for interaction within the
multiplex of markets, but rebalances—at minimum cost and
adaptively—how the system covers exposures collectively
through the existing interlinkages. The mechanism also
allows the banks to adapt their interaction preferences
within the rebalancing impact structure, through incentives
towards the emergence of more resilient structure. In the
terminology of computational intelligence approaches, this
is analogous to the methodology of ‘reinforcement learn-
ing’. The optimum mechanism involves not only the very
top few but all reporting institutions that have non-zero sys-
temic impact within the multiplex of markets at end of
quarter t � 1ð Þ. The institutions are involved proportionately
to their systemic impact at t � 1ð Þ, which is their potential
to affect structural fragility and resilience in quarter t. The
subtle rebalancing uses this potential and builds in resili-
ence, instead of allowing this potential to drive the system
further into fragility. The mechanism does not collect the
surcharges into a fund to sit aside, but immediately uses
them to achieve a stabilisation effect pre-emptively. Waiting
for institutions to get in distress in order to access a fund
will cost more. The redistribution also immediately compen-
sates all institutions after the surcharges, where different
institutions are compensated to a different extent. Thus
effectively, each institution is charged even less than the
fraction of capital evaluated at the first step of the algo-
rithm. While the charge depends on the systemic impact of
a bank, its compensations depend on the systemic impact of
other banks that affect the first bank through interlinkages.
Finally, the potential for multichannel contagion through the
multiplex structure contributes more to systemic fragility
than single-channel contagion, however a positive point is
that multichannel stabilisation also contributes more to
systemic resilience than single-channel stabilisation.

5.2. Empirical evaluation

The empirical results presented in tables 5 and 6 are evalu-
ated for one of the quarters in the period from June 2014 to
September 2015. Table 5 indicates that the multiplex struc-

ture does not meet the stability condition
bek � 0:1457, and

therefore, is in the region of structural fragility. The sys-

temic risk of the unbalanced structure is cSRrisk ¼ 0:32867,
and contagion will not be contained if triggered. If a thresh-

old of cSRrisk
threshold

¼ 0 is targeted, then a stabilisation strategy

with an optimum parameter c� ¼ 0:02850 will bring the
system below this threshold.

The structural resilience of the rebalanced system iscSRrebalanced
resilience ¼ 0:00005, and contagion will be contained if

triggered. The number of banks with non-zero systemic
impact at the end of this quarter is 19, and they participate
in the stabilisation step at the start of the next quarter.



Notice that the threshold may be cSRrisk
threshold

6¼ 0. For

example, within a long-term meta-strategy 0\cSRrisk
threshold

ðtÞ\cSRrisk
threshold

ðt � 1Þ. Alternatively, cSRrebalanced
resilience ¼ 0:00005

may be considered as too small. Though a potential conta-
gion will be contained, a significant part of the system may
be destroyed. Thus, a larger resilience threshold may be

targeted cSRresilience
threshold

[ 0:00005.

Table 6 presents the systemic impact indexes of three
banks encoded as E; F; G. Institution E has a high systemic
impact in the multiplex and contributes significantly to mul-
tiple-market contagion and stabilisation. However, E is of
little importance in the single-layer structure of the deriva-
tives market, and will contribute little to destabilising or
stabilising processes there. Institution F is of medium
importance in both structures, but contributes different pro-
portions to systemic risk (resilience) in the multiple-market
system and in the single market. Bank G has no systemic
significance in multiplex contagion, while still contributing
systemic impact in the single market. The empirical results
show that banks differ in their significance and ability to
influence the structure under the multiple-market scenario
and the single-market scenario. The institutions will partici-
pate to a different extent in strategies to embed structural
resilience under the two scenario. Stabilising the single

market will not stabilise the multiplex of markets. Stabilis-
ing the multiplex will stabilise the single markets in the
context of their interlinkages within the overall system.

6. Conclusions

Single-layer networks have now been adopted in modelling
financial systems, however, this task rather requires multi-
layer models or interconnected multiplex networks as first
approximation. There are few studies using non-intercon-
nected multiplexes for modelling the structure of financial
systems, and this has limitations in representing and analys-
ing the complex system. The existing analyses also use the
networks to represent but not affect the structure, and the
approaches quite loosely follow regulatory requirements. We
have identified gaps not addressed in current research, and
then formulated solutions and provided empirical analysis.

There are powerful implementations of ensemble networks
to non-financial domains. We touched on their ability to
approach problems where single networks cannot cope, when
evolving an ensemble and implementing to equity analysis in
(Serguieva and Kalganova 2002). The nature of the problem
in focus here requires multilayer rather than ensemble net-
works, however, we still address the capabilities of evolving
networks as highly effective computational-intelligence tech-
niques. Evolving an interconnected multiplex network

Table 5. Structural resilience of the empirical multiplex.

n 22

bm 19 (18 overlapping banks with the
derivative market)bepmin 0.14573

k
max

multiplex
connected

<0.14573

cSRrisk (no stabilisation implemented

and
bekmax ¼ 0:47400 at bc ¼ 0)

0.32867

cSRrebalanced
resilience (stabilisation implemented

and
bek max

rebalanced ¼ 0:14568 at bcmin ¼ 0:02850)

0.00005

Notes: Structural resilience of the empirical multiplex based on data for one of the quarters in the period
from June 2014 to September 2015. n refers to the number of reporting banks, bm refers to the number of
banks in the strongly connected subtensor, k refers to the stability condition for the connected banks, c is
the parameter optimised in the stabilisation strategy and SR refers to systemic risk or resilience.

Table 6. Systemic impact ranking and indexes in multiple markets vs a single market.

Institutions E F G

Rank at bcmultiplex ¼ 0,
(multiple-market contagion dynamics)

2 10 0 (not participating in the multiplex
strongly connected component)

Rank at for cderivatives ¼ 0,
(single-market contagion dynamics)

17 9 18

cSII ðiÞ at bc ¼ 0 (multiple-market systemic impact) 16.34% 0.33% 0%

SIIderivatives ið Þ at cderivatives ¼ 0
(single-market systemic impact)

0.28% 4.05% 0.23%

Notes: Systemic Impact Ranking and Indexes in Multiple Markets vs. a Single Market based on data for one of the quarters in the period from June 2014 to
September 2015. c is the parameter optimised in the stabilisation strategy and SII refer to the Systemic Impact Indexes for multiple markets and single market.



through multiple periods allows not only modelling the mul-
tiple-market structure but also simulating strategies and sug-
gesting meta-strategies for subtly affecting the structure
towards building in targeted resilience. The hybrid approach
can work with dynamic meta-strategies.†

The contributions in this study are as follows:

(1) The structure accounts for minimum capital require-
ments based on risk weighted assets.

(2) The contagion model is formulated with an overall
‘infection’ (spreading) rate that allows for a unique
spreading rate of each institution, both in single-
market contagion and in multiple-market contagion.

(3) The structure of the derivatives market accounts for
positive net exposures in two directions between the
same two institutions, due to different netting sets
and enforceable netting agreements.

(4) The derivatives market is analysed acknowledging
that exposures on a going-concern basis (to a non-
failed bank) and exposures at-default (to a failing
bank) differ. The values of MtM net derivatives
exposures after collateral and MtM net derivatives
exposures at default are used, correspondingly.

(5) Systemic risk measures and systemic resilience mea-
sures are formulated, both for a single market and
for the interconnected multiplex of markets. These
are structural rather than monetary measures. How-
ever, the focus here is on building in structural resi-
lience that then allows a system to sustain its
associated monetary value.

(6) Systemic impact indexes are formulated for each
institution, both in a single market and within the
multiple-market structure. The terminology ‘sys-
temic impact index’ rather than ‘systemic risk
index’ is used to indicate that the potential of an
institution to affect the structure, though contribut-
ing to contagion processes, can also be used in
strategies to contribute to stabilisation processes.

(7) Single-channel and multiple-channel systemic stabil-
isation strategies are formulated that subtly and
adaptively evolve the structure towards targeted
thresholds of lower systemic risk or higher systemic
resilience. The systemic stabilisation mechanism
works at a minimum cost for each institution and
no cost for the system as a whole. It introduces sub-
tle structural changes that do not restrict emerged
interactions and preferences among institutions but
rather balance how the system as a whole copes
with the emerged structure of exposures. The mech-
anism could be implemented as part of the market
infrastructure. This may also lead to institutions
gradually adapting their preferences to the mecha-
nism, and thus leading to the emergence of interac-
tions underlying a more stable structure that would
involve fewer and infrequent stabilisation steps.

(8) All institutions that participate at the end of a period
in the strongly connected component of the multi-
layer network, also have non-zero systemic impact
indexes and the potential to affect the structure at the
beginning of the next period. Only if the system does
not meet a targeted threshold at the end of a period, a
stabilisation step is applied at the beginning of the
next period. It involves all institutions with non-zero
systemic index rather than the very top few, in order
to achieve effective rebalancing, where minimum
charged fractions are immediately redistributed as
compensations. If we look for an analogy, this mech-
anism may resemble the varying margin within the
current clearance mechanisms. This also acknowl-
edges that systemic risk is not entirely a fault of an
institution but of the emerged structure.

(9) Empirical simulations of single-channel and multiple-
channel contagion and systemic stabilisation processes
are performed using large granular databases now
available to the Bank of England. The simulations con-
firm the ability of the multiplex network to capture
contagion dynamics throughout multiple intercon-
nected markets. The simulations also confirm the abil-
ity of the designed multilayer stabilisation strategies to
pre-emptively build in structural resilience and reduce
a potential contagion effect. The empirical systemic
impact indexes for the same institutions differ within a
single market and multiple markets, and therefore, a
strategy that builds in resilience within a single market
will not stabilise the interconnected multiplex of mar-
kets. Building in resilience within the multiplex will
stabilise the single markets in the context of their inter-
linkages within the overall structure.

Next, we will extend the current analysis comparatively
across different quarterly periods, involving in each period
the three markets first separately and then as an intercon-
nected multiplex. We will further design, simulate and com-
pare different multi-period meta-strategies with dynamic
thresholds. Finally, the multichannel processes can be
instantiated with more granular and higher frequency data
(Serguieva 2016b). We anticipate confirming within the
more dynamic setting, the current result that the potential
for multichannel contagion through the multiplex structure
contributes more to systemic fragility than single-channel
contagion, but multichannel stabilisation also contributes
more to systemic resilience than single-channel stabilisation.
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