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Abstract
Nodes can be ranked according to their relative importance within a network.
Ranking algorithms based on random walks are particularly useful because they
connect topological and diffusive properties of the network. Previous methods
based on random walks, for example the PageRank, have focused on static
structures. However, several realistic networks are indeed dynamic, meaning that
their structure changes in time. In this paper, we propose a centrality measure for
temporal networks based on random walks under periodic boundary conditions
that we call TempoRank. It is known that, in static networks, the stationary density
of the random walk is proportional to the degree or the strength of a node. In
contrast, we find that, in temporal networks, the stationary density is proportional
to the in-strength of the so-called effective network, a weighted and directed
network explicitly constructed from the original sequence of transition matrices.
The stationary density also depends on the sojourn probability q, which regulates
the tendency of the walker to stay in the node, and on the temporal resolution of
the data. We apply our method to human interaction networks and show that
although it is important for a node to be connected to another node with many
random walkers (one of the principles of the PageRank) at the right moment, this
effect is negligible in practice when the time order of link activation is included.
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1. Introduction

Random walks of various types are prototypical dynamical processes on networks. Random walk
models are not only objects of pure theoretical interest but the study of their dynamics enlightens
general properties of diffusive processes. For instance, properties of random walks are tightly
connected to those of interacting particle systems such as stochastic opinion formation models
[1, 2] and to current flow in electric circuits [3]. Furthermore, random walks have been applied to
searching and routing on networks [4–8], detection of network communities [9] and respondent-
driven sampling [10, 11]. A particularly successful application is on ranking of nodes. The
PageRank algorithm used for ranking websites and other entities is equivalent to the stationary
density of a random walk [12, 13]. Other definitions of centrality (i.e. ranking) of nodes in
networks on the basis of the random walk have also been proposed [14–18].

Previous research mostly focused on static structures, i.e. snapshots of networks where the
links between the nodes are fixed. Nevertheless, various networks in which node ranking is
relevant are dynamic, meaning that a link is used only occasionally in time. The structure of the
web graph, for instance, is continuously fluctuating with webpages and links being added and
removed at every moment [19]. Human interaction networks derived from, for example, face-to-
face conversations [20, 21], sexual contacts [22] and email communication [23] are highly
dynamic and follow irregular temporal patterns. As a consequence, the respective interaction
matrices vary over time, and a static network representation of such systems becomes deficient.
Such varying structures, in which the time order of link availability is relevant, are collectively
called temporal networks [24] in contrast to aggregate (or weighted static) networks, in which all
interactions within a time-window are collapsed into weighted links.

In the present paper, we propose a centrality measure, named TempoRank, for temporal
networks on the basis of the random walk. To realize that, we have to formulate and characterize
random walks on temporal networks. Previous studies have addressed diverse properties of the
dynamics of random walks on temporal networks, for instance, the cover time [25], mean first-
passage time [26, 27], the stationary density [27], mixing time [28, 29], conditions for stationarity
and ergodicity [30], and properties of the so-called active random walk [31, 32].

However, to apply a random walk centrality measure to real data, we have to understand
random walks on real temporal network data. This is non-trivial for at least two reasons. First,
available data are ubiquitously non-stationary. Second, with a high temporal resolution, a
snapshot of a network at each time is often sparse, which limits possible pathways for random
walkers such that the walk has less choices and the entropy of the process can be considerably
reduced. By simulating random walk dynamics in real temporal networks, Starnini and
colleagues analyzed the coverage and the mean first-passage time of a random walk model on
temporal network data. They found that the diffusion was slower on the temporal network in
comparison to the aggregate version [33]. In contrast to their work, we are interested in the
stationary density of the random walk in the present study. In another study, Ribeiro and
colleagues connected temporal network data to the stationary density of the random walk
[34]. They obtained the degree (or weighted degree, also called the strength) of the aggregate
network from the data to determine the Poissonian node activity of an evolving network
model. Temporal and structural patterns beyond those contained in the node degree of the
aggregate network, such as the global structure of the aggregate networks and distributions
and correlation of interevent times, were ignored. In contrast to [34], we use temporal network
data to directly define the pathways for random walkers, as done in [33].
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We formulate the random walk under periodic boundary conditions and regard temporal
network data as sequences of snapshots, each of which is an observation of a network within a given
time window. We use discrete time random walks. A model in continuous time may enhance the
realism of the random walk toy model. Nevertheless, careful discussion of the benefits and
limitations of each approach is out of the scope of the present article. We adopt discrete time for
mathematical convenience and to readily compare the proposed model with previously proposed
centrality measures based on random walk. We examine the stationary density of this random walk
and argue that the local inflow considered in the so-called effective network, explicitly constructed
from the original network, is sufficient for accurately approximating the stationary density, or the
centrality, of the nodes in the temporal networks. We also show that the stationary density depends
on the sojourn probability, which regulates the tendency of the walker to stay in the current node,
and on the temporal resolution of the network data.

2. TempoRank: a temporal random walk centrality

In this section, we define the TempoRank, i.e. the temporal random walk centrality of a node in
temporal networks. TempoRank is the stationary density of the random walk under the periodic
boundary condition in time. We also discuss the conditions under which the random walk
converges to a unique stationary density.

2.1. Temporal networks

A temporal network with N nodes and length T is defined as a sequence of r time snapshots of equal
size =T T rw . A temporal network data set typically consists of a list of contacts, and a contact is
defined by the identities of the two interacting nodes (i, j), the beginning time t of the contact, and
sometimes the duration Δt of the contact. The number of contacts between nodes i and j that occur
in the tth snapshot, i.e. between time −t T( 1) w and tTw, where = …t r1, , , is denoted w t( )ij . The

N × N adjacency matrix at time t is given by =w t w t( ) ( ( ) )ij . We assume that links are undirected

and thus the adjacency matrices are symmetric. However, the matrices may be weighted with link
weights restricted to integers if multiple contacts are observed between two nodes during a single
snapshot. The aggregate network (sometimes called the static network) is given by ∑ = w t( )

t

r

1
.

2.2. Transition probability

The definition of a transition matrix for temporal networks is non-trivial because it is necessary to
determine the transition probability at isolated nodes. In general, some nodes may be isolated in a
snapshot even if the aggregate network is connected. This is particularly the case when the time
window for defining the snapshot, Tw, is small. We thus assume that the random walker at an
isolated node does not move in the corresponding snapshot. We also assume that the random walker
does not move with some probability q (i.e. the sojourn probability) if the node is not isolated. A
similar idea of lazy random walks was introduced in [34], and the case q = 0 was explored in [33].
When < <q0 1, the random walk process converges to the unique stationary density for any
temporal network whose aggregate network is connected (see section 2.3 for more on this).

To define the transition probability, we start with the case in which nodes i and j are
adjacent and they are not adjacent to any other node at time t. Then, we assume that in this
snapshot a walker at i moves to j with probability − q1 and stays at i with probability q.
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Similarly, a walker at j moves to i with probability − q1 and stays at j with probability q. If
other node pairs ′i and ′j are adjacent, and ′i and ′j are not adjacent to any other node at time t,
the walkers transit between ′i and ′j with the same probabilities.

If i is adjacent only to node j
1
at time t and node j

2
at time +t 1, the walker persists to node

i after two time steps with probability q2. On the basis of this observation, we assume that the

walker at i does not move with probability q2 in the snapshot in which i is adjacent to j
1
and j

2
.

The walker moves to either j
1
or j

2
with probability − q(1 ) 22 . It should be noted that the

probability of the move to j
1
and j

2
is equal to − q(1 ) and −q q(1 ), respectively, when the two

contacts (i, j
1
) and (i, j

2
) appear consecutively, not simultaneously. In this case, the temporal

order of the two contacts matters because − > −q q q(1 ) (1 ). In contrast, the two probabilities
are the same when nodes j

1
and j

2
are simultaneously adjacent to i.

In general, we define the transition probability from node i to node j at time t as

δ

=

= ⩽ ⩽

⩾ =

− ⩾ ≠

⎧
⎨
⎪⎪

⎩
⎪⎪ ( )

( )
( )
( )

( )

( )
( )

( ) ( ) ( )

B t

s t j N

q s t i j

w t q s t s t i j

0, 1 ,

1, ,

1 1, ,

(1)( )

( )

ij

ij i

s t
i

ij
s t

i i

i

i

where δij is the Kronecker delta and

∑≡
=

( ) ( )s t w t (2)i
j

N

ij
1

is the node strength, i.e. the number of contacts that node i has, at time t. Note that

∑ == B t( ) 1
j

N
ij1

. The transition matrix at time t is given by =B t B t( ) ( ( ) )ij .

We define an one-cycle transition matrix for the temporal (abbreviated as tp) network as

∏≡
=

( )P B t . (3)
t

r
tp

1

The stationary density of the random walk under the periodic boundary condition is given
by the leading eigenvector (corresponding to the eigenvalue equal to unity) of Ptp. The periodic
boundary condition is given by the sequence …, w(1), w(2), …, w r( ), w(1), w(2), … and is
necessary because of the finite observation time of an empirical temporal network [33]. When

≈q 1, equation (1) is reduced to

δ

ϵ

ϵ

≈

= ⩽ ⩽

− ⩾ =

⩾ ≠

⎧
⎨
⎪⎪

⎩
⎪⎪

( )
( )
( )

( )
( )

( ) ( )
( ) ( )

B t

s t j N

s t s t i j

w t s t i j

0, 1 ,

1 1, ,

1, ,

(4)ij

ij i

i i

ij i

up to the first order of ϵ ≡ − ≪q1 1. By combining equations (3) and (4) and neglecting ϵO( )2

terms, we obtain
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∑

ϵ

ϵ
=

− =

≠
=

⎧
⎨⎪

⎩⎪
( )

( ) ( )
P

s i j

w t i j

1 ,

,
(5)ij

i

t

r

ij

tp

ag

1

where

∑ ∑∑≡ =
= = =

( ) ( )s s t w t (6)i
t

r

i
t

r

j

N

ij
ag

1 1 1

is the node strength in the aggregate (abbreviated as ‘ag’ in equation (6)) network. Equation (5)
is the transition probability of the continuous-time random walk on the aggregate network for
infinitesimally small time ϵ.

2.3. Mixing property

In the present work, we say that the random walk is mixing if the modulus of the second largest
eigenvalue of the corresponding transition matrix, such as Ptp, is smaller than unity [35]. This
property is necessary and sufficient for the convergence of the random walk to a unique
stationary density starting from an arbitrary initial density.

The mixing property holds true for < <q0 1, if and only if the aggregate network is
connected. If the aggregate network is disconnected, trivially the random walk is not mixing.
On the other hand, if the aggregate network is connected, there is a path of length Lij from any

node i to any node j in the aggregate network. With a positive probability, a random walker
located at i travels on the first link of this path in a snapshot and does not move in all other
snapshots in the first cycle of the application of Ptp. Then, the random walker moves to the
neighbor of i on the mentioned path. Similarly, a random walker moves to a next node on the
path in the second cycle with a positive probability, and so on. Therefore, the walker moves
from i to j after Lij cycles with a positive probability. In addition, for any ⩾n( 0), the walker

moves from i to j after +L nij cycles with a positive probability by never moving in n of the

+L nij cycles. Because i and j are arbitrary, ℓP( )tp is a positive matrix for ℓ = Lmaxi j ij, ,

i.e. any entry of ℓP( )tp is positive. Therefore, the random walk is mixing.
Nevertheless, if q = 0, the mixing property is not necessarily satisfied even if the aggregate

network is connected. For example, the adjacency matrix of the triangle is a positive matrix
such that the random walk on the static triangle network is mixing. However, in the temporal
network with r = 3 in which each of the three snapshots contains just one contact,
i.e. = = = = = =w w w w w w(1) (1) (2) (2) (3) (3) 112 21 13 31 23 32 , and all other =w t( ) 0ij , the walker

starting from node 1 comes back to node 1 with probability one at t = 3. This means that the
random walk on the temporal network is not mixing although that on the corresponding
aggregate network (i.e. triangle) is. For example, if each node has at most one neighbor in each
snapshot, the random walk on the temporal network is not mixing because the walker has to
move to a unique destination within each snapshot. This situation typically occurs when the
temporal resolution of the data is high and Tw is small. Then, the random walk is periodic and
the stationary density does not exist. In particular, if the walker starts from one node, the density
is concentrated on a single node at any time. Finally, if q = 1, the walker never moves, and the
random walk is not mixing
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2.4. Stationary density and the definition of the TempoRank

Assume that the random walk induced by Ptp is mixing. We denote the unique stationary
density of the random walk, i.e. the leading left eigenvector of Ptp, by

= ⋯( )( ) ( ) ( ) ( )v v v v1 1 1 1 , (7)N1 2

where v(1)i ( ⩽ ⩽i N1 ) is the stationary density at node i. In other words,

=( ) ( )v v P1 1 . (8)tp

The normalization is given by ∑ == v (1) 1
i

N
i1

.
In fact, v(1) is the stationary density when we observe the random walk at t = mr, where

m is integer and tends to ∞. In general, the density fluctuates even in the stationary state
because we periodically apply different snapshots to move the walker. For example, the
stationary density when we observe the random walk at = +t mr 1, where → ∞m , is given by

≡v v B(2) (1) (1). The long-term stationary density, i.e. that averaged within a cycle, is given by

∑≡
=

( )v v
r

t
1

, (9)
t

r

1

where

∏= ′
′=

−

( ) ( ) ( )v v Bt t1 . (10)
t

t

1

1

We define = ⋯v v v( )N1 as the temporal random walk centrality, abbreviated as the
TempoRank.

Similar to the case of the random walk on static networks, vi is also interpreted as the total
inflow to node i. In the stationary state, the inflow to node i at time = +t mr 1 is given by

=v B v( (1) (1) ) ( (2) )ii because v(1) is the stationary density at t = mr and B (1) is the transition
matrix at = +t mr 1. The inflow to node i at = +t mr 2 is given by =v B v( (2) (2) ) ( (3) )i

because v(2) is the stationary density at = +t mr 1 and B(2) is the transition matrix at
= +t mr 2. Same for = + … +t mr m r3, , ( 1) . The total inflow of the probability to node i in

a cycle is given by + + ⋯ + + = +v v v v B v vr r r( (2) ) ( (3) ) ( ( ) ) ( ( ) ( ) ) ( (2) ) ( (3) )i i i i i i

+⋯ + v r( ( ) )i + =v rv( (1) )i i . Therefore, vi is equal to the average inflow to node i per time step.
The stationary densities v(1) and v depend on the value of q, which contrasts with the

results obtained from a different model [34]. The temporal random walk induced by Ptp

coincides with the continuous-time random walk in the aggregate network in the limit →q 1
(equation (5)). Here, we mean by the continuous-time random walk that the hopping rate on
each link is equal to unity such that the hopping rate for a node is equal to the nodeʼs degree. In
general, the stationary density of the continuous-time random walk in a connected network is
given by N1 at each node [36]. Therefore, we obtain v t( ) ⩽ ⩽t r(1 ), → ⋯v N(1 1) in the
limit →q 1.
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2.5. Random walk on the aggregate network

The transition matrix of the discrete-time random walk on the aggregate network is given by

∑ ∑≡
=

−

=

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥( ) ( )P D wt t , (11)

t

r

t

r
ag

1

1

1

where the N ×N diagonal matrix D t( ) is defined by δ= ∑ℓ= ℓD t w t( ) ( )ij ij
N

i1
δ= ∑ℓ= ℓw t( ( ) )ij

N
i1

. The

diagonal elements of ∑ = D t( )
t

r

1
are equal to the node strength of the aggregate network given by

equation (6).
Pag is distinct from Ptp or its weighted versions. For example, >P 0ij

tp if there is a temporal

path from i to j whose length is at most r, whereas >P 0ij
ag ( ≠i j) if and only if i and j are

adjacent.

3. The effective network and the in-strength approximation

In this section, we show that the TempoRank is equal to the stationary density of the discrete-
time random walk on a static weighted and directed network, which we call the effective
network. In other words, we map the random walk on a temporal network into a directed
weighted static network. This program apparently sounds trivial owing to the fact that Ptp is a
transition matrix. Here we explicitly construct the effective network from the given sequence of
interaction matrices w(1), w(2), …. This relationship allows us to give a new interpretation to
the TempoRank and to develop a local approximator.

Under ⩽ <q0 1, equation (1) is equivalent to

=
∑

′

′ℓ= ℓ

( )
( )

( )
B t

w t

w t
, (12)ij

ij

N
i1

where

δ

=

= ⩽ ⩽

− ⩾ =

⩾ ≠

′

⎧
⎨
⎪⎪

⎩
⎪⎪

( )
( )
( )
( )

( )

( )

( ) ( )

( ) ( )

w t

s t j N

s t q q s t i j

w t s t i j

0, 1 ,

1 1, ,

1, .

(13)( ) ( )
ij

ij i

i
s t s t

i

ij i

i i

In terms of the undirected weighted matrix =′ ′w t w t( ) ( ( ) )ij , we obtain

∑ ∑ ∑ ∑

∑

= ⋯

=

′

′

′

′

′

′…
ℓ

ℓ
ℓ

ℓ
ℓ

ℓ

ℓ
ℓ

−

−

−

( )
( )

( )
( )

( )
( )

( )
( )

P
w

w

w

w

w r

w r

w

w

1

1

2

2

1

1
, (14)

ij
k k

ik

i

k k

k

k j

k

ij

i

tp

, ,

tp

tp

r

r

r

r r1 1

1

1

1

1 2

2

1 2

1

1

New J. Phys. 16 (2014) 063023 L E C Rocha and N Masuda

7



∑ ∑ ∑ ∑

∑

= ⋯

=

′

′

′

′

′

′…
ℓ

ℓ
ℓ

ℓ
ℓ

ℓ

ℓ
ℓ

−

−

−

( )
( )

( )
( )

( )
( )

( )
( )

P
w

w

w

w

w r

w r

w

w

1

1

2

2

1

1
, (15)

ji
k k

jk

j

k k

k

k i

k

ji

j

tp

, ,

tp

tp

r

r

r

r r1 1

1

1

1

1 2

2

1 2

1

1

where

∑≡
⋯

∑ ∑ ⋯∑
′ ′ ′

′ ′ ′… ℓ ℓ ℓ ℓ ℓ ℓ−

−

−

( )
( ) ( ) ( )

( ) ( ) ( )
w

w w w r

w w w r
1

1 2

1 2
, (16)ij

k k

ik k k k j

i k k

tp

, , r

r

r r r1 1

1 1 2 1

1 1 2 1 2 1

∑≡
⋯

∑ ∑ ⋯∑

′ ′ ′

′ ′ ′… ℓ ℓ ℓ ℓ ℓ ℓ−

−

−

( )
( ) ( ) ( )

( ) ( ) ( )
w

w w w r

w w w r
1

1 2

1 2
. (17)ji

k k

jk k k k i

j k k

tp

, , r

r

r r r1 1

1 1 2 1

1 1 2 1 2 1

In fact,

∑ =
=

( )w 1 1 (18)
j

N

ij
1

tp

holds true for each i such that the denominators of the right-hand sides of equations (14) and
(15) are equal to unity.

Equations (14) and (15) indicate that Ptp is the transition matrix of the discrete-time
random walk on the static weighted network defined by =w w(1) ( (1) )ij

tp tp . We call this

network the effective network. In general,

≠( ) ( )w w1 1 . (19)ij ji
tp tp

Each snapshot ′w t( ) and the aggregate network are undirected networks. However, the
concatenation of the different snapshots makes the effective network directed due to the arrow
of time, which creates asymmetry in the sequence of link activation.

For static directed networks, the in-degree is often accurate in approximating the stationary
density of the random walk [37–41]. Here we develop the same type of local approximation of
the TempoRank by considering the in-strength of nodes in the effective network. The in-degree
of node i does not generally depend on the out-degree of the upstream neighbors of i. In
contrast, the in-strength is large (small) when the out-degree of an upstream neighbor is small
(large). The in-strength of node i for the effective network is given by

∑≡
=

( ) ( )s w1 1 . (20)i
j

N

ji
tp

1

tp

The in-strength is considered to be an appropriate approximator to the stationary density
because equations (8), (14), and (18) imply

∑ ∑= ≈ =
= =

( ) ( ) ( ) ( ) ( ) ( )
v v w v w

s

N
1 1 1 1 1

1
, (21)i

j

N

j ji
j

N

ji
i

1

tp

1

tp
tp
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if all ( )v 1j ʼs are approximated by an ensemble average given by =v N(1) 1/ . Equations (19)

and (20) imply ∑ == s N(1)
i

N
i1
tp . Therefore, equation (21) provides a normalized in-strength

approximator to v(1).
We calculate the in-strength approximator to v as follows. Because

= ⋯ =v P v B B B vr(1) (1) (1) (2) ( ) (1)tp implies that + ⋯ ⋯v B B B Bt t t r( ) ( ) ( 1) ( ) (1)
− =B vt t( 1) ( ) ( ⩽ ⩽t r2 ), v t( ) is the stationary density of the random walk in the static

network =w t w t( ) ( ( ) )ij
tp tp defined by

∑≡
+ ⋯ −

∑ ∑ + ⋯∑ −
′ ′ ′

′ ′ ′… ℓ ℓ ℓ ℓ ℓ ℓ−

−

−

( )
( ) ( ) ( )

( ) ( ) ( )
w t

w t w t w t

w t w t w t

1 1

1 1
, (22)ij

k k

ik k k k j

i k k

tp

, , r

r

r r r1 1

1 1 2 1

1 1 2 1 2 1

∑≡
+ ⋯ −

∑ ∑ + ⋯∑ −

′ ′ ′

′ ′ ′… ℓ ℓ ℓ ℓ ℓ ℓ−

−

−

( )
( ) ( ) ( )

( ) ( ) ( )
w t

w t w t w t

w t w t w t

1 1

1 1
. (23)ji

k k

jk k k k i

j k k

tp

, , r

r

r r r1 1

1 1 2 1

1 1 2 1 2 1

Therefore, the in-strength approximation is given by

≈
∑ = ( )

v
s t

Nr
, (24)i

t

r
i1
tp

where

∑≡
=

( ) ( )s t w t . (25)i
j

N

ji
tp

1

tp

4. Numerical analysis

In this section, we numerically examine the TempoRank. We assess the performance of the in-
strength approximation on empirical temporal networks and discuss the right moment
hypothesis, i.e. the contention that nodes have to contact other nodes at the right moment.

4.1. Data sets

We performed the numerical analysis using the following empirical networks. One
network represents face-to-face interactions between conference attendees (SPC) [20],
another corresponds to the same type of interactions between visitors to a museum (SPM)
[20] and the third to proximity between staff and patients in a hospital (SPH) [21]. The
fourth data set corresponds to sexual contacts between sex-sellers and -buyers extracted
from a webforum (SEX) [22]. The last data set is a sample of email communication
between students and staff within a university (EMA) [23]. These networks represent
human interactions in diverse social contexts and have different topological and temporal
characteristics (table 1).

4.2. Numerical procedures

Consider a given sequence of snapshots w (1), …, w(r). We apply the power method on Ptp

(equation (3)) to obtain the stationary density v(1) and use equations (9) and (10) to calculate
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the TempoRank v. The initial condition is the uniform density = ⋯v N(1) (1 1)init , and

iteration stops when ∣ − ∣ < −v v N(1) (1) 10post pre
2 6 for the first time, where v (1)pre and

v (1)post are the estimation of v(1) before and after multiplying Ptp, respectively, during the power

iteration. The stationary density for the aggregate network, i.e. the normalized leading
eigenvector of the transition matrix Pag (equation (11)), is given by the (normalized) strength of
the node in the aggregate network (equation (6)). This is because the network is undirected
[3, 42].

4.3. In-strength approximation

Figures 1(a)–(c) shows the performance of the in-strength approximator with three values of
q for the SPC data set. The in-strength approximation is accurate for a wide range of values
of q (i.e. from 0.1 to 0.9) for most nodes. In contrast, the in-strength of the aggregate
network, i.e. si

ag, which gives the exact stationary density of the random walk on the
aggregate network, is little correlated with v (1)i for the same three values of q
(figures 1(d)–(f)). The in-strength approximator for the TempoRank (equation (24)) is also
strongly correlated with vi , as shown in figures 1(g)–(i). The results are qualitatively the
same for the other empirical networks, as shown in figure 2 (for SPM data set) and in the
appendix (for the other data sets).

The values of v (1)i and vi are similar for all nodes when q = 0.9 (figures 1(c), 1(f) and 1(i)).
This result is consistent with the theoretical prediction made in section 2.4,
i.e. → ⋯v v N(1), (1 1) as →q 1.

4.4. The right-moment hypothesis

In principle, the stationary density of the random walk at a node is large if the node receives
links from nodes with high stationary densities. This principle underlies the design of the
PageRank [12, 13]. More generally, the principle that being adjacent to a central node is
important, for the node itself to be important, guides the definition of the Katz centrality,
eigenvector centrality and their variants [43]. In the case of the TempoRank, however, we
show in section 4.3 that the in-strength approximation for the effective network, which
ignores the ‘next-to-celebrity’ principle, is pretty accurate for the particular data sets that we
have analyzed.

The ‘next-to-celebrity’ principle accommodated to the TempoRank dictates that a node i
being connected to another node with a large density of walkers at the right moment gains a
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Table 1. Summary information about the empirical networks. Number of nodes (N),
number of links ( = ∑E s 2

i i
ag ), recording time (T), and maximum temporal resolution

(δ).

N E T (d) δ

SPC 113 20 818 ∼2.5 20 s
SPM 72 6 980 ∼1 20 s
SPH 75 32 424 ∼4 20 s
SEX 1302 1 814 50 1 d
EMA 1564 4 461 1 1 s



large inflow at that time, leading to a large vi value. Some centrality measures for temporal
networks on the basis of the right-moment principle have been proposed in different forms
[44, 45]. Our results in section 4.3 implies that the right-moment principle is practically
irrelevant in the TempoRank for the analyzed data sets.

To examine this point, we measure the temporal fluctuation of the density of random
walkers within a cycle. For the SPC data set, the stationary density at the tth snapshot,
i.e. v t( )i , for six nodes is shown as a function of t in figures 3(a), (d), (g) with q = 0.1 and
figures 3(b), (e), (h) with q = 0.5. Each panel represents the time course of the stationary
density for two representative nodes i with low, intermediate and high strengths in the
aggregate network, i.e. the total number of contacts, si

ag. The corresponding results for the
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Figure 1. TempoRank for SPC network. (a)–(c) Relationship between the stationary
density of the temporal transition matrix and the in-strength approximation. Each circle
represents a node, and the dashed lines represent the diagonal. (d)–(f) Relationship
between the stationary density of the temporal transition matrix and the in-strength of
the aggregate network. (g)–(i) Relationship between the TempoRank and the time-
averaged in-strength of the effective network. We set q = 0.1 in (a), (d), (g), q = 0.5 in
(b), (e), (h) and q = 0.9 in (c), (f), (i). The resolution is =T 5w min.



SPM data set are shown in figure 4. The results for the other data sets are shown in the
appendix. Figures 3 and 4 indicate that the fluctuation of v t( )i is large irrespective of the
strength of the node, although it is larger for nodes with larger strength values. The density
of walkers remains constant at times when nodes are not making contacts. In particular, we
identify plateaus for some ranges of t, which correspond to night periods in the case of the
SPC network (figure 3) and the SPH network (see the appendix). In the SPM network
(figure 4), most plateaus correspond to earlier or later times because visits are organized in
groups in this museum, allowing interactions only within limited time windows. The
fluctuations decrease as q increases. This behavior is expected because the stationary
density approaches the uniform density as q increases.

Similar temporal fluctuations are observed when the temporal networks are coarse-grained
(i.e. with a low resolution), as shown in figures 5 and 6 for the SPC and SPM data sets,

New J. Phys. 16 (2014) 063023 L E C Rocha and N Masuda

12

Figure 2. TempoRank for SPM network. (a)–(c) Relationship between the stationary
density of the temporal transition matrix and the in-strength approximation. (d)–(f)
Relationship between the stationary density of the temporal transition matrix and the in-
strength of the aggregate network. (g)–(i) Relationship between the TempoRank and the
time-averaged in-strength of the effective network. We set q = 0.1 in (a), (d), (g), q = 0.5
in (b), (e), (h) and q = 0.9 in (c), (f), (i). The resolution is =T 1w min.



respectively. The same is valid for the other data sets (see the appendix). Therefore, large
fluctuations are a general phenomenon irrespective of the temporal resolution.

The large fluctuations revealed in figures 3–6 suggest that a node should be adjacent to
nodes with high density of walkers at the right moment to secure a large vi value, in favor of the
right-moment principle. Nevertheless, the high accuracy of the in-strength approximation does
not support the relevance of the right-moment principle.

We can resolve this apparent paradox as follows. The in-strength in the effective network,
s (1)i

tp , consists of the contributions from different neighbors (i.e. jʼs in equation (20). Each

w (1)ji
tp is equal to the number of temporal paths from j to i in the one cycle starting and ending at

t = 1 and t = r, respectively. Each path is weighted by the out-degree of the source nodes on the
path. If the out-degree of j is large at t = 1, the flow of the random walk is equally divided by the
downstream neighbors such that a downstream neighbor of j, denoted by k1, receives a relatively
small inflow of the random walk. Then, at t = 2, node k1, which has received the inflow of
probability from its upstream neighbors (including j) at t = 1, sends the flow to k1ʼs downstream
neighbors at t = 2. If the number of neighbors is large, then each downstream neighbor of k1 at
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Figure 3. Time dependence of the stationary density of the random walk for the SPC
data set. In (a), (b), (d), (e), (g) and (h), the density of walkers = ⋯ −v vB Bt t( ) (1) ( 1) is
shown. In (c), (f) and (i), the density of walkers in a snapshot t calculated by

= ⋯ −v v B Bt t( ) (1) (1) ( 1)init , where = ⋯v N(1) (1 1)init , is shown. Each curve
corresponds to a node with different si

ag; the two curves in each panel represent two
representative nodes in the corresponding node-strength category. We set q = 0.1 in (a), (d),
(g) and q = 0.5 in (b), (c), (e), (f), (h), (i). The resolution is =T 5w min.



t = 2 receives a small inflow. Finally, s (1)i
tp is the total inflow, or weighted path count summed

over all the starting nodes j at t = 1. The crucial observation here is that in the in-strength
definition, the starting node is not weighted. In contrast, the exact calculation of v (1)i assumes
that the starting node is weighted according to the stationary density v (1)j , as indicated in the

first equality in equation (21).
Therefore, the fact that the in-strength approximation works well implies that the

fluctuation of the density of walkers within a cycle starting from the uniform density and
that starting from the stationary density do not significantly differ. This is in fact observed.
In figures 3(c), 3(f), 3(i) 4(c), 4(f) and 4(i), we show the fluctuation of the density of walkers
starting from the uniform density, i.e. ⋯ N(1 1) for the same selected nodes as those in
figures 3(b), 3(e), 3(h), 4(b), 4(e) and 4(h) (which correspond to the initial condition v(1)).
The fluctuation is similar between the two initial conditions except in early snapshots.
Therefore, we conclude that the right-moment principle is logically present but practically
unimportant.

4.5. Justification of periodic boundary conditions

We have assumed periodic boundary conditions to transform the original one-shot contact
sequence into an infinitely repeated sequence. This is simply a technical solution to well define
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Figure 4. Time dependence of the stationary density of the random walk for the SPM
data set. The resolution is =T 1w min. See the legend of figure 3 for other details.



the stationary density. However, empirical networks have finite observation times and do not
repeat themselves.

We justify the periodic boundary conditions, at least for sufficiently long data sets, because
the repeated application of Ptp is practically unnecessary to approximate the stationary density.
To show this point, we compare the stationary density and the density of walkers after a single
application of Ptp. Note that the contact sequence is not repeated in the latter case. For various
sojourn probabilities q, the two densities are shown for different nodes for the SPC (figure 7)
and SPM (figure 8) data sets. The figures indicate that the density of walkers at most nodes after
a single application of Ptp is sufficiently close to that in the stationary state. The result that the
fluctuation of the density of walkers after a transient little differs between different initial
conditions (figures 3(c), 3(f), 3(i) 4(c), 4(f) and 4(i)) is also consistent with the results shown in
figures 7 and 8.

4.6. Sensitivity analysis

We do not expect that TempoRank is robust against variations in the temporal resolution Tw,
because changing Tw alters the ordering of link activation and thus the potential paths selected
by the walkers. The dependence of the TempoRank on Tw is shown in figure 9 for three
arbitrarily selected nodes. Both the TempoRank value and the rank based on it depend on Tw. In
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Figure 5. Time dependence of the stationary density for the SPC data set with a lower
resolution. The resolution is =T 20w min. See the legend of figure 3 for other details.



particular, some nodes possess large TempoRank values in narrow ranges of Tw. However, some
other nodes have relatively stable TempoRank values.

A large value of the sojourn probability q slows down the walker so that the network
changes faster than the walker explores the network. Then, the walker would not capture the
temporal variations of the network. The dependence of the TempoRank on q is shown in
figure 10 for five arbitrary nodes. As expected, the ranking as well as the values of the
TempoRank depend on q. Note that all nodes have the same TempoRank values at q = 1.

5. Discussion

We proposed the TempoRank, a node centrality measure for temporal networks. In addition to
the exact computation, we showed that the TempoRank is accurately approximated by the in-
strength of the node in the effective network for some data sets of human interaction. The
effective network is a directed network induced by the undirected temporal network. The
concept of the effective network may be useful for other purposes, such as path counting of
temporal networks and revealing information or viral flow along the arrow of time. A similar
concept named exposure graph, used to define who can reach who in time, was previously
exploited to study temporal centrality in the context of epidemic and information spread (see
e.g. [46]).
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Figure 6. Time dependence of the stationary density for the SPM data set with a lower
resolution. The resolution is =T 10w min. See the legend of figure 3 for other details.
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Figure 7. Density of walkers after a number of iterations of the power method for the
SPC data set. vi

1(1) is the density of walkers after a single application of Ptp and v (1)i is
the density of walkers in the stationary state. In (a)–(c) the resolution is =T 5w min and
in (d)–(f) the resolution is =T 10w min. The initial conditions are given by the uniform
distribution, i.e. = ⋯v N(1) (1 1)init .

Figure 8. Density of walkers after a number of iterations of the power-method for the
SPM data set. v (1)i

1 is the density of walkers after a single application of Ptp and v (1)i is
the density of walkers in the stationary state. In (a)–(c) the resolution is =T 5w min and
in (d)–(f) the resolution is =T 10w min. The initial conditions are given by the uniform
distribution, i.e. = ⋯v N(1) (1 1)init .



In static directed networks, the stationary density of the random walk often deviates
substantially from the in-degree [40, 47, 48], whereas it is accurate in other cases [37–41, 48].
We found that the in-strength of the effective network approximates the TempoRank, i.e. the
stationary density in the effective (directed) network, with high accuracy. There are at least two
possible reasons underlying the high accuracy of the in-strength approximation.

First, the effective network is usually dense. In general, if there is a directed temporal
path from node i to node j in the given temporal network, >w 0ij

tp . Therefore, the link density

in the effective network is equal to the so-called reachability measure [49], except for the
difference in the treatment of the diagonal elements wii

tp(1). In many temporal network data
sets, the reachability is moderately or very large even if each snapshot in the temporal
network is sparse [49–53] unless the number of snapshots (i.e. r) is too small. Then, the
effective networks are dense. In this situation, the summation is taken over many upstream
neighbors of node i for calculating v (1)i (first equality in equation (21)). Then, the
heterogeneity in the TempoRank among the upstream neighbors of i, because of which the in-
strength may deviate from v (1)i (equation (21)), may efficiently cancel out to yield similarity
between the in-strength and v (1)i .

New J. Phys. 16 (2014) 063023 L E C Rocha and N Masuda

18

Figure 9. Dependence of the TempoRank on the size of the time window, Tw.
TempoRank for three arbitrarily selected nodes for (a) SPC and (b) SPM data sets. We
set q = 0.5.

Figure 10. Dependence of the TempoRank on the sojourn probability, q. TempoRank
for arbitrarily selected five nodes for (a) SPC and (b) SPM data sets. We set =T 5w min.



Second, the in-strength may be a significantly better approximator than the in-degree in
general static and temporal networks. In the random walk on model temporal networks, the
stationary density is only weakly correlated with the degree of the aggregate network [27].
Investigating the performance of the in-strength approximator in this situation and also on static
networks may be an interesting research question.

We assumed the periodic boundary condition in time to define the stationary density of the
random walk. In fact, a real temporal network data set does not repeat itself; the first snapshot
does not follow the last snapshot. In addition, temporal network data are often non-stationary,
swamped by frequent overturns of nodes and links even within a recording period [54–56]. A
justification of the use of the periodic boundary condition is that the convergence of the power
iteration seems to be very fast unless the number of snapshots is small. This was observed when
we started from different initial conditions to have almost the same density of walkers at various
nodes after a short transient within a single cycle (comparison between panels (b), (e), (h) and
panels (c), (f), (i) in figures 3–6). The fast convergence was also supported by the fact that just a
one-shot application of the transition matrix transforms a uniform initial density to an
approximately stationary density. Therefore, the TempoRank represents the probability flow as
we sequentially apply the snapshots in a single cycle at least for the data sets analyzed in the
present study. Investigating the generalizability of this result warrants future work.

The diffusive dynamics in the continuous time is described by Laplacian dynamics. The
Laplacian dynamics driven by the unnormalized Laplacian matrix has uniform stationary
density both for the temporal network represented by a succession of snapshots and the
aggregate network [57]. In contrast, we showed that the stationary density differed between the
temporal and aggregate networks when the diffusive dynamics was considered in discrete time.
A lesson drawn from this consideration is that we should be careful in discrete versus
continuous time when considering diffusive processes on temporal networks. Analyzing a
continuous-time counterpart of the TempoRank or the stationary density, as touched upon in
[30, 31], requests further studies. The continuous-time random walk allows for independently
controlling the speed of the walker and the aggregation window, which is useful for studying
systems in which the diffusion may be faster or slower than the variations in the network
structure. Nevertheless, if one uses the random walk to mimic real processes, the speed of the
walker may be as difficult to estimate as the sojourn probability in the discrete-time formalism.

To assure the mixing property in arbitrary connected temporal networks, we assumed that
the walker resided in the current node with probability q. The original PageRank employs the
so-called teleportation probability to make the random walk mixing for arbitrary static networks
[12, 13]. The sojourn probability q, however, is unrelated to the teleportation probability. The
latter dictates that a walker jumps to an arbitrary node with a given equal probability
irrespective of the current position, while q specifies the laziness of the random walk to move,
as assumed in [34]. In our model, a random global jump probability is unnecessary because the
initial network is assumed to be undirected and periodic boundary conditions are adopted,
which removes the possibility that walkers are trapped on certain nodes. Furthermore, the
teleportation adds another hyperparameter (i.e. the teleportation probability) and blurs the effect
of the original network because it is a network-independent random jump. However, the
teleportation would be necessary if we extend the present framework to the case of directed
temporal networks.
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Figure A1. TempoRank for SPH network. (a)–(c) Relationship between the stationary
density of the temporal transition matrix and the in-strength approximation. Each circle
represents a node and the dashed lines represent the diagonal. (d)–(f) Relationship
between the stationary density of the temporal transition matrix and the in-strength of
the aggregate network. (g)–(i) Relationship between the TempoRank and the time-
averaged in-strength of the effective network. We set q = 0.1 in (a), (d), (g), q = 0.5 in
(b), (e), (h) and q = 0.9 in (c), (f), (i). The resolution is =T 5w min.



Appendix

The appendix contains the results for the in-strength approximation and for the right-moment
hypothesis for the SPH, SEX and EMA data sets. These results agree with the theoretical
predictions described in the main text.

In-strength approximation

The performance of the in-strength approximator for three values of the sojourn probability q is
shown in figure A1 (SPH), figure A2 (SEX) and figure A3 (EMA). The in-strength
approximation (panels (a)–(c)) is accurate for all tested values of q (i.e. from 0.1 to 0.9). As is
the case for the other data sets, the in-strength of the aggregate network, i.e. si

ag, which gives the
exact stationary density of the random walk on the aggregate network, is little correlated with
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Figure A2. TempoRank for SEX network. The resolution is =T 2w d. See the legends of
figure A1 for other details. The axes are in log-scale.



vi(1) for the same three values of q (panels (d)–(f)). The in-strength approximator for the
TempoRank (see the main text) is also strongly correlated with vi (panels (g)–(i)). Correlation is
stronger for the SPH data set in comparison to SEX and EMA data sets which correspond to
considerable sparser networks.

The right-moment hypothesis

The stationary density at the tth snapshot, i.e v t( ), is shown as a function of t in figure A4 (SPH),
figure A5 (SEX) and figure A6 (EMA). In each figure, we use two values of q and calculate v t( )i

for representative nodes i with low, intermediate and high strengths in the aggregate network,
i.e. the total number of contacts, si

ag. Fluctuations are significant in all cases.
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Figure A3. TempoRank for EMA network. The resolution is =T 1w hour. See the
legends of figure A1 for other details. The axes are in log-scale.
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Figure A4. Time dependence of the stationary density of the random walk for
the SPH data set. In (a), (b), (d), (e), (g) and (h), the density of walkers

= ⋯ −v vB Bt t( ) (1) ( 1) is shown. In (c), (f) and (i), the density of walkers in a
snapshot t calculated by = ⋯ −v v B Bt t( ) (1) (1) ( 1)init , where = ⋯v N(1) (1 1)init ,
is shown. Each curve corresponds to a node with different si

ag. We set q= 0.1 in (a),
(d), (g), and q= 0.5 in (b), (c), (e), (f), (h), (i). The resolution is =T 5w min.

Figure A5. Time dependence of the stationary density of the random walk for the SEX
data set. The resolution is =T 2w d. See the legend of figure A4 for other details.
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