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: Image cosegmentation is a newly emerging research area in image processing. It refers to the problem
of segmenting the common objects simultaneously in multiple images by utilizing the similarity of foreground
regions among these images. In this paper, a new active contour model is proposed by using shape-similarity and
foreground discovery scheme. The foreground discovery scheme is used to obtain the rough contours of the common
objects which are used as initial evolution curves. The energy function includes two parts: an intra-image energy and
an inter-image energy. The intra-image energy explores the differences between foreground regions and background
regions in each image. And the inter-image energy is used to explore the similarities of the common objects among
target images, which composes of a region color feature energy term and a shape constraint energy term. The region
color feature term indicates the foreground consistency and the background consistency among the images; and the
shape constraint energy term allows the global changes of shapes and truncates the local variation caused by
misleading features. Experimental results show that the proposed model can improve the accuracy of the image
cosegmentation significantly through regularizing the changes of shapes.

Keywords: TImage cosegmentation; shape similarity; foreground discovery scheme.

1. Introduction

Image segmentation is a fundamental problem in image processing, which is beneficial to many
applications, e.g., image editing, object recognition and object retrieval. During the past decades,
segmentation methods have been developed in a variety of directions, among which the active
contour model (ACM) [1] is a very influential one. Generally, ACMs transform image segmentation
mto an energy minimization problem where the energy function describes image features and the
unknown variables represent the contours of different objects. The ideal result is that the contour
curve right stops on the true boundary of the object.

Although ACMs can achieve high precision in edge detection and keep the continuity of
boundaries, they are prone to be corrupted by missing or misleading features. Furthermore, without
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clear definitions of subsequent applications, segmentation is not well defined since the definitions
of complete objects vary according to their applications. For example, an image contains a bear and
arock, as illustrated in Fig. 1(a), which object do you want to segment? This problem is eased when
a common object exists in multiple images. In this case the common object becomes prior
mformation to guide segmentation.

Recently, extracting common objects (i.e. foreground objects) from multiple images has
become an active research topic. A variety of methods have been proposed to solve multiple-image-
based segmentation problems. Among them, a popular one is the image cosegmentation (IC) method.
Given a group of images that contain a common object, the goal of IC is to simultancously identify
the common object in each image. This approach was firstly proposed by Rother et al. [2], in which
a common object shared by two images is detected by measuring the similarity between their
foreground histograms in L1-norm. Early IC methods [2-5] only use a pair of images as input under
the assumption that they share a common foreground object. In recent years, numerous approaches
[6-9] have been proposed to co-segment multiple images. All these IC methods have achieved more
accurate result than traditional single-image-based segmentation methods. However, these IC
methods do not perform well when foreground regions and background regions have overlapping
color distribution. In this case, it is difficult to find the common object automatically.

Meng et al. [10] proposed an IC method in the ACM framework for images with similar
background, as illustrated in Fig. 1. The method simultaneously considers the foreground
consistency and the background consistency, and it can achieve right segmentation results for
similar scenes cosegmentation. However, the performance of this method is not good when it is
confused by misleading features. Meanwhile when multiple images come from complex scenes, the

method is time-consuming,

(a) (b)

Fig. 1. An example of image cosegmentation. Bear (enclosed with red boundary) is the common

foreground object between the two 1mages.

We observe that images from similar scenes usually have similar topological structures. Based
on this observation, this paper proposes a shape-similarity-based and foreground discovery scheme
image cosegmentation model, which does not require knowing the shape models of the segmented
objects in multiple images beforehand. Instead of using the time-consuming shape learning
mechanism, a low-rank shape matrix strategy is used to regular changes of shapes. The foreground
discovery scheme is used to find common objects and then rough shape curves of the objects are



extracted. Shape curves are stacked into a matrix and the shape similarity of the foreground objects
1s measured by the rank of the matrix.

As we all known, it is required to give an initial contour firstly to start the evolution of ACMs.
Different initial contour usually leads to the different result. Manually initializing the contour for
each 1mage is time-consuming, tedious and impractical, especially in large scale image datasets.
Inspired by the newly active research on saliency detection, we build a saliency-inspired way to
discover the common foreground object to deal with this initialization problem, which can detect an
mitial curve around the true object boundary.

The main contributions of this paper are follows: (1) We propose a framework that introduces
shape similarity and foreground discovery scheme for IC. (2) A saliency-inspired method is
designed for discovering foreground objects. (3) The rank of the matrix consisting of multiple
weighted shape curves is used to measure the shape similarity. Each curve is assigned a weight
coefficient to balance the trade-off between the similarity and the correctness of the curve.

The remainder of this paper is organized as follows: Section 2 briefly reviews the related works.
Section 3 1s to detail our proposed model, and the minimization is described in Section 4. Section 5
conducts the extensive experiments and comparisons. Finally, some conclusions are presented in

Section 6.
2. Related Works

The idea of IC was firstly proposed by Rother et al. [2] which exploited the histogram
matching of the foreground in the Markov Random Field (MRF) framework. Due to its
success in other computer vision applications, such as image classification and image
retrieval, IC has been actively studied in recent years. The authors of [3-5] tried to use
other measuring methods to compare the two foreground histograms for
cosegmentation. Recent works [6-8, 11, 12] extended previous IC methods which use
only a pair images by cosegmenting multiple images. The work of [9, 12, 13] also
extended the foreground-background binary segmentation to multiple-regions
segmentation being able to co-segment multiple images with multiple objects. The IC
method for a large scale dataset was proposed in [14]. All the methods mentioned above
are unsupervised cosegmentation methods. These methods may not perform well when
there are overlapping color distribution between foreground regions and background
regions. Interactive IC methods [15, 16] can avoid this problem by indicating the
foreground objects with sparse scribbles. For example, Batra et al. [16] proposed an
interactive cosegmentation method, which enable the user to adjust the inconsistent
segmentation by adding scribbles. They proposed a recommendation method to help
users choose the regions where the scribbles are necessary. All these methods use region
features such as color histogram and SIFT to guide segmentation.

IC methods based on region color features have achieved great success in the past
several years. However, the similarity of aforementioned region color features cannot
provide powerful and precise auxiliary information. One potential problem of region
color features is that it is easy to segment unnecessary objects when foreground and
background regions have overlapping color distribution, so they may not provide strong
prior information for segmentation. Therefore, it is necessary to add some other



constraints to assist the cosegmentation.

IC based on shape feature is less involved. The earliest research is the work of
Kumar et al. [17], where the shape model should be learned beforehand. Cosketch [18]
is an unsupervised learning framework. It performs well on images where similar shape
patterns repeat themselves in the same image. However, sketch learning is a time-
consuming process and the influence of similar background sketch cannot be ignored.
Zhou et al. [19] used the similarity of object shapes to guide the cardiac segmentation
for ultrasound images. They used the rank of the matrix formed by the shape curves to
measure shape changes and avoid trapping into misleading features. Inspired by this
idea, we introduce a weighted shape similarity into a cosegmentation model to improve
the performance of segmentation. We will give more details of our model in the
following section.

3. Proposed Framework

The keys of the proposed model are twofold: (1) Common foreground objects discovery;
(2) Foreground similarity measurement. We use region saliency and region repeatability
to discover the common foreground object. The foreground similarity measurement is
composed of two parts: color similarity and shape similarity.

3.1 Problem Formulation

Given a set of N images {I;}", for image cosegmentation, each image I; is firstly
segmented into a group of regions R; = {ri j};n:l by an over-segmentation method [20]

for computational efficiency. A curve C; divides the image I; into the foreground
region set w!™ and the background region set w?“‘. In the context of the proposed
ACM model, the problem of co-segmenting these N images is converted to find the
optimal curves {C;}}; minimizing the following energy function:

N
E({CL}) = 2 Eintra (CI.) + }\Einter(Ci)- (1)
i=1

Where E;..., 1sthe conventional single image segmentation term used to describe the
distinctions between the foreground set w!® and the background set w?*® of each
image, Ei.... 1s the multiple image term used to measure the foreground consistency
between the image /; and the image I, and 2 is the trade-off parameter. Fig. 2 gives
a general schematic framework of the proposed model, which not only utilizes the

global color information but also exploits the shape information.



Input image Initial curve shape Segmentation result

Fig. 2. Workflow of our proposed model.

In what follows, we shall firstly explain how the foreground object discovery is
derived, and how to use the foreground information to guide the following segmentation
process.

3.2 Foreground Object Discovery Scheme

The iteration method will be used to solve the minimization problem of Eq.1. To do this,
initial positions of the curves {C;}, will be set firstly. In this paper, the saliency
detection is used to obtain the initial curves. Saliency detection is used to calculate a
saliency map that highlights the salient foreground objects and suppresses the
background. In this paper, we assume that the regions considered as salient areas have
high probabilities of containing parts of the common objects. That is, the object regions
are not only common but also salient ones among images. The saliency maps ®; =

{qbi j }7:1 of the image I; can be obtained by the cellular automate [21].

We use a high-dimensional feature vector to measure similarities between any two
regions from different images. The color information of each region is represented by
the HSV, and the texture of the region is represented by a bag of SIFT visual words. Let
¢;j and t;; be the HSV and SIFT feature vector of the region 7;;, respectively. For
each region r;; of image I;, its most similar region in image I, is decided by the
distance

d(rij, 1) = min({ley = Cpqll +¥llty; = Lpq [D - (2)

1;; 18 now associated with N — 1 distances {d(ri s Ip)}pﬂ. Then we choose the first

half smallest distances to compute the average distance d;;. The sigmoid function [11]
is used to define the region repeatability

1
S — 3
1+ eXp(—¥)




Where p and o are the parameters adjusting the shape of the sigmoid function (u =
0.1 and ¢ = 0.2 in all our experiments based on the empirical study).

According to the above region saliency prior and region repeatability
measurement, the likelihood of a region is defined by

Yij = ¢ij X @i.(4)

It is not easy to use thresholding methods, i.e., Otsu’s method [22], to choose a proper
threshold for all saliency images to get initial foreground objects from background
regions. Additionally, it needs a way to obtain a connected contour curve. Considering
that there is no a sharp contrast between the saliency values from foreground objects
and background regions, we use the CV [23] model to get the binary segmentation.
Thus, the resultant curve is our initial curve shape set S, = {C;}I;.

3.3 Image Feature Extraction

In this paper, we use the HSV color histogram to describe color feature. The HSV has
a uniform color distribution which not only reflects the human perception of color but
also brings benefits to uniform sampling. Moreover, the HSV is appropriate when
illumination condition changes significantly. For any region 7;; to be evaluated, we
use Hellinger [25] distance to define the color similarity of the region 7;; and the
foreground region set w'™ as follows:

f(rijrwén) = \/1 - Zi:l hrk ' hwk (5)

Where ¢ is the number of bins, h,, and h,, are the normalized color histograms of

r;; and the foreground region set w!™, respectively. A smaller value means a higher

similarity between them.

The second feature used in our paper is related to shape. For each curve C;, it
could be represented by a series of landmark points (x;;,y;;) on its curve, that is, the
curve can be represented as a vector: C; = [X;1, «-) Xik» Vity --» Yix ]| . Assuming that C;
is generated from C; through an affine transformation, then C; and C, are two
identical shapes and would satisfy the following condition:

C, = ©,T,.(6)
Where

fex o ¢ 0 10
1=l ¢ oo ¢ 0 1|

And T; i1s an affine transformation matrix defined by T; =
[myq1, My1, Mo, Myy, t, t,], which describes the shape changes, such as rotation,
translation and scaling. Therefore, a shape matrix which consists of N identical shapes
also will be satisfied the following condition:
S =[Cy ..., Cy] = O[Ty, ..., Ty]- (8)

Since rank(®;) < 6, the shape matrix also satisfies rank(S) < 6. The more
difference between a curve shape and other curve shapes are, the harder for the curve
shape 1s represented by others. Therefore, rank(S) will increase when some shapes



change. The rank of shape matrix can be used to represent the difference between
different shapes in multiple images.

However, when some inconsistent shapes (caused by the foreground object
discovery or other possible conditions) are significantly different from the latent
common shapes of the image set, the curves are prone to be affected to converge to
false boundaries during the evolution. Although we can increase penalty to reduce the
error, most specific details of shapes would be removed and inaccurate segmentation
results would be obtained. Thus, it is unreasonable to directly constrain all curves by a
low rank matrix. The consistency of one curve shape to the common curve shapes
need to be considered. In this paper, we use the similarities between any two curves
to measure the consistency. Hu moments [24] are invariant to image changes, such as
rotation and scaling. Thus it is suitable for describing the shape contexts of foreground
objects. The similarity between two curves is defined by

|sign(hi) - loght — sign(hy) - logh?|
L= |sign(hé) . loghél .

%)

Where hi and h? are Hu moments of C; and C,, respectively. For each curve C;,

we use v; to represent the average of the distances from C; to other curves as
follows:

N
1
v, = Nz dy, (C,,C,). (10)
p=1

Since smaller d;, indicates higher similarity between two curves, we choose the top
K smallest values and then rewrite v; as

Z dy, (C,,C,)-(11)
p=1

v =

x| -

Where K is a constant, which is set to K = E]

We use logistic function to compute the consistency coefficient of each curve as
follows

1—-1
= 1+ e—0(®i—0.5)

w; +1.(12)

Both 7 and ¢ are constant.
For each curve obtained by foreground object discovery scheme, it would be
represented by a weighted shape matrix as follow:
S=w-C =[wC, ..., o5 Cy]- (13)

3.4 Energy Function Design

As mentioned in Eq.1, the energy function in the proposed model is composed of two
parts: the intra-image energy term and the inter-image energy term.



3.4.1 Intra-image Energy

The intra-image energy is used to measure the consistency within a single image,
which ensures the smoothness of the object boundaries and keeps the distinction
between the foreground and the background in each image. The intra-image energy
consists of three components: the regularization term, foreground consistency term
and background consistency term, which is expressed as

Eintra(ci) = AscEiSC(Ci) + AstiSf + AstiSb' (14’)

Regularizing term Ef 1is used to describe the attributes of the curve C;:
EF(C) =u -Area(wé”) + v Length(C,). (15)
Where Area(w!™) refers to the area enclosed by the curve, Length(C;) refers to the
curve length, u and v represent the weights.

The foreground consistency term E;¢ is used to measure similarities of the
foreground region of a single image, which is defined as the sum of the color similarities
between the region 7;; in " and the interior region set w{" itself, which is
expressed as

TijEwlm
Small value means high consistency in the interior region set w!™.

The background consistency term Ef? is used to measure similarities of the
background region of a single image. Similar to the foreground consistency energy, the
energy of background consistency is defined as the sum of'the color similarities between
the region 7;; in w{* and the exterior region set w{"* itself, which is expressed as

EiSb = f f(rij! a){’“t)dr(17)
T 'Ew?ut

Similar to the foreground consistency, small values means high consistency in the
exterior region w{“t.

3.4.2 Inter-image energy

The inter-image energy term is designed to measure the foreground consistencies
among multiple images, which is described by an inter-image color energy term and
an inter-image shape energy term:

Einter (Ci) = AsEinter—shape + Einter—cotor- (18)

The inter-image color energy term is designed to measure the foreground
consistencies and background consistencies of multiple images. The foreground
consistency of multiple images measures similarities of foreground regions among
images. For a given image I;, the energy E/ is defined as the sum of the color
similarities between the interior region set w!™ of the i- th image and the interior
region set w;,p =1,2,..,N,P # i of the rest of the images, which is expressed as



L .
T‘ijEw;

B= > f(rij, 0idr. (19)

p=1,p=*i "

E/ will have a small value when it is consistent to most of the foreground regions of
other images, otherwise, a large value will be obtained.

Similarly, the background consistency can be expressed as
N

EP = 2  fry,egdr. (20)
p=lp=i" y&¥i

Thus, the energy functional of inter-image color feature is
Einter—color(ci) = AfElf + AbELb (21)

When the backgrounds of images are not similar, 4, will be set as zero for computation
efficiency.

In real applications, the performance of ACMs sometimes is corrupted due to
missing or misleading features. Shape prior as a kind of auxiliary information has been
introduced to improve the robustness of cosegmentation. The authors of [19] use rank
of shape matrix to measure the correlation among the shapes, and describe the degree
of freedom of the shape change. The low-rank constraint will allow the global change
of curves such as rotation, scaling, translation and principal deformation to fit the image
data and truncate the local variation caused by image misleading feature. Since rank is
a discrete operator, nuclear norm replacing the rank operator is used to describe the
shape change. Following the idea of [19], the inter-image shape energy term
Einter—snape 15 defined as

Einter—shape = llw - Cll.. (22)

In the proposed model, Ei,q and Eiier_coior are focused on measuring the
region features, and Ejn.r—snape coNstrains the similarity of shapes. The similarity
shape means the outline of foreground always keep similar no matter how the poses and
viewpoints change. Spired by [19], we firstly evolve the curve according to the region
feature and then impose the shape similarity regularization via singular value
thresholding to aid the segmentation.

4. Iterative optimization algorithm

The intra-image energy term and inter-image region energy term are differentiable with
Lipschitza continuous gradient, thus we use the Proximal Gradient method [19] to
minimize Eq.1. Our energy function belongs to the following optimization category

mCinF(W “C)+aR(w-C).(23)

Where R(w - C) = ||lw - C||.. The differentiable function F(-) is given by

N
F(W ) C) = Z AlEintra(a)iCi) + AZEinter—color(wiCi)

i=1



N N
=) E@iC) = ) @i (C) =w - F(C).(24)
i=1 i=1

PG method produces a sequence of following iteration C**',k =0,1,2,.. that
converges to the optimum C*,

w:- k= argmcin%”W'C— [W' c* —%VF(W' Ck)]||2 +%R(W'C).(25)
F

Where ||z denotes the Frobenius norm, a and B are constants. VF(w:C*)=

[w1VE(CF), ..., wnVEN(CK)]. According to [26], the Eq.25 could be solved by using
singular value thresholding algorithm. Hence, we obtain a new iterative procedure as
follow:

cktt =w 1t -D% (W' c* —%VF(W' Ck)).(26)

Where D« is a singular value thresholding operator [26]. After several iterations, more
B

accurate and stable results are obtained. The pseudo-code of the proposed algorithm is
summarized in Algorithm1.

Algorithm1 Shape Similarity and foreground discovery scheme based image Cosegmentation

Input: Image set 7 ={I,I,, ..., Iy}.

Output: The cosegmentation results € = {C;, C, ..., Cy }.

1: For 7 ={I,1,, ..., Iy}, do foreground objects discovery by Eq. 4 to get initial curve shape set
So = {Cio}liv=1~

2: For Sy, calculate consistency coefficient by Eq. 12 to get weighted curve shape set S = w -
C = [wCq, ..., 05Cy].

3:For 7 ={I,,I,, ..., Iy}, calculate region similarity measurement by Eq. 5.

4: Initialize C° = S.

S:for k=0:n do

6: C**1 =w 1 Da (W' c* —%VF(W' Ck)>.
B

7. if ||C"Jr1 — Ck||F < tolerance then

8: return

9: end if

10: end for

11: Obtain the cosegmentation results of € = {C},C;, ..., Cy}-

5. Experiments

In this section, some experiments are designed to test the performance of the proposed
model on two commonly used datasets: iCoseg dataset [16] and MSRC dataset [27].
Both iCoseg dataset and MSRC dataset include the ground truth segmentation masks



that are used for quantitative evaluation. The parameters of our algorithm are set up by
lots of experiments. Considering the relationship between each item in Eq. 1, we set
A=1,A¢ = A=Ay = 1,4, = 3,47 € [4,7],a = A, = 45, € [3,5]. ForEq. 2, we
set y=3.In Eq. 11, we set 6 = 10 and t = 0.95. According to [23], we set u =
0.01,v = 0.001 in Eq. 15. All the experiments were implemented in MATLAB
R2012a on a Win XP system.

5.1 Analysis of inter-image energy

In this section, we demonstrate the effectiveness of the inter-image energy by running
out the algorithm on the sheep image group (from MSRC) with and without the inter-
image energy in our total energy function. There is a common sheep in the middle of a
single image. The background region has some soils with the same color distribution as
the sheep. When the algorithm without inter-image shape constraint term only includes
the inter-image region color energy term, and it resembles the SBCS model [10], which
does not consider single image foreground consistency. When the algorithm without
inter-image region color energy term only includes the inter-image shape constraint and
single image energy terms, and it is similar to GS model [19], which draws a circle at
the center of the image as the initial curve. As shown in Fig. 3, the SBCS model and the
GS model cannot perform well due to these soils.

The SBCS model can yield good segmentation results for similar scene
cosegmentation, which combines the multiple image foreground consistency constraint
with the background consistency constraint to form the energy function. However,
when the foreground or background has misleading feature, SBCS model may still fail.
For example, there are some soils in the background region (meadow). These soils
influence the segmentation. In this case SBCS cannot get the right segmentation results.
Region color feature is a global feature. Color histogram describes the global
distribution of colors in the image. It is very easy to segment unnecessary objects when
the original image contains multiple object classes and these object classes have
overlapping color distribution. So region color feature is not enough to provide strong
prior information for segmentation. GS uses the similarity of object shapes to assist the
segmentation. From the experiment results one can find that the results obtained with
the shape similarity constraint are more robust than the results of SBCS model. The
shape constraint regularizes the segmentation so as to keep the shape similar in image
set. GS only focuses on intra-image feature and inter-image shape consistency. Hence,
it cannot perform well for complex scene. One can find that the curve cannot evolve to
the boundary of object. Although the curve keep consistency in the image set, there is
no enough external force to push them to the boundary. This is due to the lacking of the
inter-image region color feature. As shown in Fig. 3, our proposed model can segment
the common sheep and avoid the influence of soils.



Fig. 3. A sheep example to illustrate the inter-image energy function. Row 1: the original images.
Row 2: the segmentation results without the inter-image shape constrain term. Row 3: the
segmentation results without the inter-image region color energy term. Row 4: the segmentation
results by our model.

5.2 Cosegmentation on MSRC and iCoseg Dataset

We firstly show segmentation results on the iCoseg dataset and MSRC dataset.
Example results include eight datasets where five datasets (goose, hot balloon, panda,
bear and pyramid) are from iCoseg dataset shown in Fig. 4, and the other threes
datasets (cat, cow and sheep) are from MSRC dataset shown in Fig. 5. We select four
representative images from each class to illustrate the performance of our proposed
algorithm. Some background regions have similar color distribution to the foreground
object, such as the rock region in the fourth row of Fig. 4 and the ground region in the
fifth row of Fig. 4. From the experiment results one can see that foregrounds (goose,
hot balloon, panda, bear, pyramid, cat, cow and sheep) are correctly segmented from
the backgrounds by the proposed model, and the shapes are globally consistent with
each other throughout the dataset due to the shape constraint. Hence our model is
more resistant to local misleading features.



Fig . The cosegmentation result by the proposed model on iCoseg dataset. Row 1: the results of
goose dataset. Row 2: the segmentation results of hot balloon dataset. Row 3: the segmentation
results of panda dataset. Row 4: the segmentation result of bear dataset. Row 35: the segmentation

results of pyramid dataset.




Fig. 5. The cosegmentation result by the proposed model on MSRC dataset. Row 1: the results of
cat dataset. Row 2: the segmentation results of cow dataset. Row 3: the segmentation results of
sheep dataset.

5.3 Comparison

Next, we quantitatively evaluate the cosegmentation results on both iCoseg and MSRC
dataset to examine the performance of the proposed model. Two metrics (Precision P
and Jaccard Similarity J) are used to do quantitative evaluation. P denotes the ration of
correctly classified labeled pixels (both foreground and background) to the total number
of pixels, and J represents the intersection over the segmentation results and ground
truth masks.

Fig. 6 shows the per-class precision on iCoseg (top) and MSRC (bottom). Table 1
shows the average precision and Jacarrd similarity on iCoseg and MSRC. For the sake
of fair comparison, we use all the images to avoid bias, and compare with multi-class
cosegmentation [9], similar background cosegmentation (SBCS) [10] and joint object
discovery and segmentation (JODS) [28]. Experimental results of [28] are produces by
running the implementation codes from their websites. According to Fig. 6 and Table
1, our algorithm has better performance than other methods. Benefiting from
successfully integrating the region color information and shape constraint, the average
precision of our method is higher than the average precision of other methods.
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Fig. 6. Comparison results on 1Coseg (top) and MSRC (bottom) between our method and other
method: MCCS [9], JODS [28] and SBCS [10]. The ratios of correctly labeled pixels are measured,

and each plot shows the average per-class precision.

Table 1 Average Precision (13) and Jaccard Similarity (]_)

Method iCoseg MSRC

p ] p ]
MCCS [9] 69.6 4477 74.6 497
JODS [28] 88.7 69.8 88.1 71.6
SBCS [10] 86.5 67.9 87.8 79.9
Ours 90.8 90.3 90.4 88.5

5.4 Computational complexity

The experiment results listed in Table 2 demonstrates that the proposed model with
the shape constraint term converged faster than that without the shape constraint
term. Due to the shape constraint term, the proposed model has faster convergence
and fewer iterations. In our model, for an image set with N images, it at most
performs singular value decomposition for 2p X N, where p is the number of
landmarks. The SVD is not very time-consuming.

Table 2 Image groups including the number of images, the rank of output, the number of iterations
for the algorithm to stop, and the computation time. The value in parentheses corresponds to the

results without the shape constraint.

datasets #image rank #iter Time(min)

Goose 12 3 20(50) 3.1(7.0)
Bear 9 4 35(97) 6.0(10.5)




HotBalloon 24 3 18(40) 7.0(15.0)
Panda 10 3 45(100) 6.1(9.7)
Pyramid 8 2 20(44) 6.0(9.0)
Cat 12 4 28(56) 5.2(11.0)
Cow 13 4 32(48) 6.2(11.2)
Sheep 16 5 25(59) 6.3(11.5)

6. Conclusion

In this paper, we propose a shape-similarity based and foreground object discovery scheme ACM
for solving the cosegmentation problem. The energy function describes region color and shape
features, which consists of an intra-image energy term, an inter-image region color term and an
mter-shape constraint energy term. The shape constraint is used to regularize the segmentation.
Object discovery scheme can locate initial curve to start the evolution. Experiment results
demonstrate that the proposed model is more robust than the other models in terms of accuracy and
computation efficiency, and demonstrates the significance of shape constraints. Although our
method performs well on the benchmark datasets in general, there are some problems: (1) The
proposed model is not able to address multi-class foregrounds. The rank of shapes matrix just simply
describes the object shape change, such as scaling and rotation, and cannot achieve topological
structure change, such as merging and splitting. (2) It is very tedious to adjust the value of
parameters to get good segmentation result. Different image group has different parameters. In the
future, we plan to explore more superior shape constraint to make the propose model flexible to
image feature.
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