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Abstract 
This paper examines whether the “effective period” of bilinear isolation systems, as defined 

invariably in most current design codes, expresses in reality the period of vibration that 

appears in the horizontal axis of the design response spectrum. Starting with the free vibration 

response, the study proceeds with a comprehensive parametric analysis of the forced vibration 

response of a wide collection of bilinear isolation systems subjected to pulse and seismic 

excitations. The study employs Fourier and Wavelet analysis together with a powerful time 

domain identification method for linear systems known as the Prediction Error Method. When 

the response history of the bilinear system exhibits a coherent oscillatory trace with a narrow 

frequency band as in the case of free vibration or forced vibration response from most 

pulselike excitations, the paper shows that the “effective period” effT of the bilinear isolation 

system is a dependable estimate of its vibration period; nevertheless, the period associated 

with the second slope of the bilinear system
2

T  is an even better approximation regardless 

the value of the dimensionless strength, 1/1)/( 2  yuKQ , of the system. As the 

frequency content of the excitation widens and the intensity of the acceleration response 

history fluctuates more randomly, the paper reveals that the computed vibration period of the 

systems exhibits appreciably scattering from the computed mean value. This suggests that for 

several earthquake excitations the mild nonlinearities of the bilinear isolation system 

dominate the response and the expectation of the design codes to identify a “linear” vibration 

period has a marginal engineering merit.  

Keywords: Seismic Isolation; Equivalent Linearization; Bilinear Behavior; System 

Identification; Health Monitoring; Earthquake Protection. 

 

1. Introduction 
Starting in the late 1950s researchers began recognizing the importance of studying the 

response of structures deforming into their inelastic range and this led to the development of 

the inelastic response spectrum. In parallel with the development of inelastic response spectra 

in the 1960s (Veletsos and Newmark 1960, Veletsos et al. 1969, Veletsos and Vann 1971), 

there has been significant effort in developing equivalent linearization techniques (Caughey 

1960;1963, Roberts and Spanos 2003, Crandall 2006) in order to define equivalent linear 

parameters (natural periods and damping ratios) of equivalent linear systems that exhibit 

comparable response values to those of the nonlinear systems (Iwan and Gates 1979, Iwan 

1980).  

In the mid 1970s seismic base isolation has emerged as a practical and economical alternative 

to conventional structural design (Kelly et al. 1977, Kelly 1986, Buckle and Mayes 1990). 

Given that the two most practical and widely accepted type of isolation bearings are the lead 

rubber bearing and the spherical sliding bearing which both exhibit a bilinear behavior, the 

bilinear hysteretic system is by now the most widely used model in describing the nonlinear 

behavior of practical seismic isolated systems. Despite that the behavior of the most practical 

seismic isolation systems is bilinear, the fundamental concept of seismic isolation, as 

expressed in most current design codes (AASHTO 1991, NZMWD 1983, FEMA 1998, 

Eurocode 2009 among others), is that an isolation system shall offer a flexible support so that 
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the period of vibration is lengthen sufficiently to reduce the force response. Accordingly, 

while the behavior of the most practical isolation systems is bilinear, all design codes 

invariably ask the design engineer to work with a vibration period –that is the “isolation” 

period. In view of this demand the concept of equivalent linear parameters has become central 

in the analysis and design of seismic isolated structures and this led to the wide acceptance of 

the “effective period” and the associated “effective stiffness”.  The main scope of this work is 

to access the engineering merit of these quantities.  

This work has been mainly motivated from system identification studies on seismic isolated 

structures in which modal periods and damping ratios are expected to be extracted from 

recorded response histories above and below isolators. This work shows that there are 

appreciable differences between the first modal period extracted with identification 

techniques and the “effective period” which according to the design codes is expected to be 

the “period of vibration”. During the effort to uncover these differences this work also 

concludes that when the response history of the bilinear system has a coherent oscillatory 

trace with a narrow frequency band, the effective period, effT  as derived from the non-

existing effective stiffness, effK ,of the bilinear system (in which iterations are needed to be 

determined) is a dependable estimate of its vibration period; nevertheless, the period 

associated with the second slope of the bilinear system 2T is an even better approximation of 

the vibration period regardless the value of the dimensionless strength, 1/1)/( 2  yuKQ . 

Accordingly, whenever the concept of a vibration period is meaningful, the effective period, 

effT  can be replaced with 2T  which is known a priori.  

Initially, the “effective stiffness” effK , was introduced by practicing engineers in an effort 

to reach an estimate for the peak forces that develop in seismic isolated structures with 

bilinear (inelastic) behavior by simply employing a statically equivalent linear analysis. At 

present, effK , together with the corresponding effective period, effT  and the associated 

effective damping coefficient, eff , consist the most widely used quantities for estimating 

through an iterative procedure peak inelastic displacements and the associated peak shear 

forces/overturning moments according to most current design codes (AASHTO 1991, FEMA 

1998, Eurocode 2009 among others). 

The main challenges that effT  is facing are: (a) that it depends on the unknown peak inelastic 

displacement; and therefore, iterations on the design spectrum are required to reach 

convergence, (b) in seismic isolation applications it has not been established to what extent 

the effective period, effeff KmT /2 , (what appears in the horizontal axis of the design 

spectrum)  is indeed the vibration period (the time needed to complete one cycle) of a mass, 

m , supported on a system with bilinear behavior (mass isolated on lead rubber or spherical 

sliding bearings); and (c) that in several occasions there are significant departures of the peak 

inelastic deformation/force of the bilinear system from the elastic displacement/force of the 

“effective” linear system. 

The concerns with challenge (b) have been expressed indirectly in several review-type 

publications and textbooks (Naeim 2001, Naeim and Kelly 1999) where, while they introduce, 

effeff KmT /2  as the “vibration period” of a structure isolated on bearings with bilinear 

behavior ( I effT T —what appears in the horizontal axis of the spectrum);  for the case of 

spherical sliding bearings (where the first slope is 200 to 500 times larger than the second 

slope—a much more aggressive bilinear behavior), the concept of the effective period, 

effeff KmT /2  is suddenly abandoned, and the isolation period (vibration period), is 

derived from the second slope of the system, gRTTI /22  . Fig. 1 (left) plots typical 

bilinear force displacement loops that correspond to a lead rubber bearing (say strength 
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mgQ 05.0 , period that corresponds to the second slope, 2K , is 2.5 sec, and 

1 2/ 1/ 10K K   ); while Fig. 1 (right) plots the corresponding force displacement loops 

from a spherical sliding bearing ( 2.5 1.55 , 0.00025I yT s R m u m     and coefficient of 

friction 0.05f  ; therefore 1 2/ 1/ 1 / 311yK K fR u    ). 

The above inconsistency, where the entire concept of the effective period is abandoned in the 

very case where the bilinear behavior is most pronounced (large difference between 1K and

2K ) remains confusing to the non-expert and most importantly uncovers potential technical 

weaknesses in the concept of the “effective period”, effT . This paper revisits the practical 

significance and engineering merit of the “effective period”, effT , while investigates to what 

extent it expresses the oscillatory characteristics of an isolated structure. In this regard, the 

dynamic response of several bilinear hysteretic systems (with different normalized strengths 

and second slopes) is investigated for three types of excitation: free vibration, pulse-type 

forced vibration and earthquake forced vibration. The investigation methods include: 

similitude, Fourier spectrum response analysis, wavelet response analysis, and the Prediction 

Error Method response analysis. 

 

  

Figure 1. The hysteretic loops of lead rubber bearings (left, say mmcmu y 202  ) and 

spherical-sliding bearings (right, say 0.25yu mm ) together with the inconsistent code 

definition of the isolation period, 
I
T , as the yield displacement decreases ( effK is abandoned 

in the right plot).  

 

2. Review of Design Codes and Related Past Publications 
The currently available design specifications AASHTO (1991), FEMA (1998), IBC (2000), 

Eurocode (2009) among others use invariably the equivalent linear static procedure. Details 

on the specific steps followed by the most widely accepted codes can be found in Mayes et al. 

(1991), Hwang and Sheng (1993); (1994) as well as and in the original documents of the 

abovementioned design specifications.  Below we only revisit the main steps followed by the 

1991 AASHTO Guide Specification for Seismic Isolation Design given that all subsequent 

design specifications follow a similar approach.  
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2.1. The AASHTO Guide specifications 

The code specifications that established the quantity, effK , of the bilinear system shown in 

Fig. 1 as a key quantity for the response analysis of seismically isolated structures  is 

apparently the 1991 AASHTO Guide Specifications for Seismic Isolation Design. At that 

time the code did not make a distinction between the Design Base Earthquake (DBE) and the 

Maximum Credible Earthquake (MCE) and merely offers the design spectrum presented in 

Fig. 2. According to the AASHTO Guide specification the statically equivalent seismic force 

is given by  

 
eff iF K d                                                    (1)  

where effK is the sum of the effective linear stiffnesses of all bearings supporting the 

superstructure and id  is the displacement across the isolation bearings given by  

        
A

effeffi

Di
S

T

B
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2
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
  ,                                 (2) 

where ,A
iS and B are the acceleration, site and damping coefficients offered in the AASHTO 

Guide specifications and the effective period, effT is given by  

2eff

eff

W
T

K g



 .                                           (3) 

The effective linear stiffness effK of the isolators used in the analysis shall be calculated at the 

design displacement, however iterations on the design spectrum are needed given that the 

effective period effT  as offered by equation (3) updates the maximum displacement as defined 

by equation (2).  

The conceptual weakness of the Statically Equivalent Seismic Force Procedure offered by 

equation (1) - (3) is that while its ultimate goal is to reach an estimate for the peak design 

“static” forces, the estimation of the isolators displacement i Dd S  involves the effective 

period, effT given by equation (3). By involving the effective period, effT , the “static” 

procedure also takes a stand on the oscillatory character of the bilinear system; and the  

 

 

Figure 2. The AASHTO Acceleration spectrum.  
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effective period , effT , which originates from the non-existing, effK , is silently upgraded with 

unsubstantiated liberty to a real physical quantity–that is the time needed for the isolated 

structure to complete one cycle of vibration. This technically weak concept is rooted to such 

an extent in the profession that several documents show values of effT  with superficial 

precision up to two decimal digits. Part of the motivation of this study is to investigate to 

whatextent the effective period, effT , may express the oscillatory response of a system with 

bilinear behavior.  

 

2.2. Simple Geometric Relations 

With reference to Fig. 1 (left) one can derive via the use of similar triangles a relation 

between the effective stiffness, effK  and the first slope of the bilinear model, 1K .  

        


 )1(1
1


 KK

eff
                                 (4) 

and in terms of periods equation (4) gives 

)1(1
1







TT

eff
                                         (5) 

In the above equations, max / yu u   is the displacement ductility and 2 1/K K  is the 

second-to-the-first stiffness ratio. Equations (4) and (5) are well known in the literature 

(Hwang and Sheng (1993); (1994) and references reported therein). They are popular 

geometric relations which are valid for any value of the parameters 1K ,  and  . 

Nevertheless, while the expression given by equation (5) is geometrically correct, its physical 

value remains feeble since there is no physical argument that associates the results of equation 

(5) with the vibration period of mass supported on a bilinear hysteretic system.  

Fig. 3 plots with a solid line the values of the period shift, 1/TTeff , as given by equation (5) as 

a function of the displacement ductility  . The top-left plot of Fig. 3 is for values of 

5.6/115.0/ 12  KK , which is the value of   recommended by the New Zealand 

Ministry of Works and Development (NZMWD 1983) for lead rubber bearings. Fig. 3 

(bottom-left) plots the results of equation (5) for the widely used value of 05.0 (Hwang 

and Sheng 1993;1994); while, Fig. 3 (right) plots the results of equations (5) when spherical 

sliding bearings are used. With reference to Fig. 1, yy uuKQK /)( 21  and therefore, 

1
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   (6) 

For a typical spherical sliding bearing gmQ 05.0/  , mmmu y 00025.025.0  (Mokha et 

al. 1990, Constantinou et al. 1990), sgRT 5.2/22   , equation (6) yields a value of 

0032.0 . In the interest of completeness Table 1 offers the values of 12 / KK  for the  

typical values of strength, mQ / , second period, 2T , and values of yield displacement 

yu ranging from spherical sliding bearings to lead rubber bearings. Fig. 3 shows that 

regardless of the value of, 12 / KK , the period shift, 1/TTeff , eventually tends 

asymptotically to the value /1/ 12 TT  as the value of the ductility   increases. This 

asymptotic trend in association that in spherical sliding bearings (SSB) the ductility   is very 

large was probably the reason that several review type publications and textbooks (Naeim 

2001, Naeim and Kelly 1999) abandoned the concept of the effective period,
 

effeff KmT /2  and they introduce, to the surprise of the non-expert, that for SSB,  
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             Lead Rubber Bearings 

 

Spherical Sliding Bearings 

 
 

  
 

Figure 3. Values of the period shift, 1/TTeff  , as a function of the displacement ductility 

yuu /max as they result from similar triangles and other approximate expression 

presented in the literature.  

 

 

Table 1. Values of 12 / KK  for typical values of isolation strength,  mQ /  and yield 

displacement, yu . 

 
12

/ KK  

gmQ 03.0/   gmQ 05.0/   gmQ 07.0/   

)(cmu y  )(cmu y  )(cmu y  

)(2 sT  0.025 0.5 1.0 2.0 0.025 0.5 1.0 2.0 0.025 0.5 1.0 2.0 

2.0 0.0083 0.1435 0.2509 0.4012 0.0050 0.0913 0.1674 0.2867 0.0036 0.0670 0.1256 0.2231 

2.5 0.0053 0.0968 0.1766 0.3001 0.0032 0.0604 0.1140 0.2046 0.0023 0.0439 0.0842 0.1552 

3.0 0.0037 0.0693 0.1296 0.2295 0.0022 0.0428 0.0820 0.1516 0.0016 0.0309 0.0600 0.1132 

3.5 0.0027 0.0519 0.0986 0.1795 0.0016 0.0318 0.0616 0.1160 0.0012 0.0229 0.0448 0.0857 
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gRTTI /22   –not effT . Assuming a common inelastic displacement, maxu , for lead 

rubber and spherical sliding bearings, Fig. 3 shows that the effective period effT as offered by 

equation (5) approaches the value of 2T  in a comparable way (when we look to the 

corresponding values of ductilities for LRB and SSB). Accordingly the question that rises is 

whether 2T  may also replace effT in the case of lead rubber bearings as well. Part of the scope 

of this paper is to offer an answer to this question. 

Returning now to equation (4), the reader recognizes that as the yield displacement decreases, 

equation (4) combines very large ( 1K  and  ) and very small ( ) numbers. At the limiting 

case of a spherical sliding bearing, the first stiffness 
1

y

Q
K

u
   –that is the elasticity of the 

teflon layer of the articulated slider before sliding occurs, is a very large quantity and totally 

indifferent to the design engineer while the corresponding value of 12 / KK  is a very 

small number as shown in Table 1.  

Accordingly, the reader shall recognize that as the value of the ductility, max

y

u

u
  , of 

the bilinear system increases, equations (4) and (5) while they remain correct as geometric 

relations, their engineering value becomes marginal. What is much more interesting is to 

multiply and derive equation (4) by the second slope of the system, 2K ; therefore, relating 

effK and 2K  via the equation  

2

1 ( 1)
effK K

 



 
                                      (7) 

In terms of periods equation (7) becomes  

2
1 ( 1)

effT T


 


 
                                  (8) 

 

In studying the response of isolated structures, the displacement ductility max

y

u

u
   may vary 

either because the maximum displacement, maxu , increases or because the yield displacement 

decreases when shifting from lead rubber bearings to spherical sliding bearings and in this 

case the ratio 2 1/K K  varies as well. Accordingly, the behavior of equation (8) as the 

value of the ductility increases depends on the values that the product  assumes (not just 

the values of  ). Therefore, it is worth investigating the behavior of the product   as   

increases.  

With reference to Fig. 1, 1 2y yK u Q K u  ; therefore, 

2
2y y

K
u Q K u


                                            (9) 

Dividing equation (9) by the elastic force that develops in the isolation system 2 maxK u , it 

yields 

2 max

1

1Q

K u









                                           (10) 

And 
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Q

uK

elfor

max2

arg
lim 


                                         (11) 

Equation (11) shows that for large values of the displacement ductility, max

y

u

u
  , the term, 

 , becomes a constant equal to the ratio of the elastic forces that develop in the isolation 

system, 2 maxK u , to the strength of the isolation system, Q . Accordingly, for large values of 

 and after taking that 11  equation (8) gives 

      
2

max2

arg

1

1
T

uK

Q
T

elfor

eff






                               (12) 

When 
2 max

1
Q

K u
 , equation (11) can be expanded into a Taylor series,  

2

2 2 max 2 max

1 3
1 ( ) ...

2 8

effT Q Q

T K u K u
                       (13) 

In the event that one insists on using the concept of the effective period, effT , equation (12) 

(or 15) has much more physical meaning than equation (5) (or 10) since the displacement 

ductility,  , is a quantity of marginal interest in seismic isolation.  

Given the introduction of the effective stiffness max

max

eff

F
K

u
 by the aforementioned design 

codes, the main motivation of this paper is to examine to what extent equation (5) (or 

equation 10) which is a geometric relation that has been derived solely from similar triangles 

reflects indeed a physical reality–that is whether it expresses to a satisfactorily extent the 

oscillatory character of a bilinear system.  

 

2.3. The work of Iwan and Gates (1979) and Iwan (1980) 

Early theoretical work of the effective period and damping of stiffness-degrading structures 

was presented by Iwan and Gates (1979). The hysteretic model examined by Iwan and Gates 

(1979) is a collection of linear elastic and Coulomb slip elements which can approximate the 

phenomenon of cracking, yielding and crushing. A special case of their hysteretic model is the 

bilinear model that is of interest in this study. What is important to emphasize is that the Iwan 

and Gates (1979) study was motivated by the yielding response of traditional concrete and 

steel structures where the initial elastic stiffness, 1K , is a dominant parameter of the model; 

while, the displacement ductility assumes single digit values (say 8  ). Iwan and Gates 

(1979) observed that the average inelastic response spectra resemble the linear response 

spectra except for a translation along an axis of constant spectral displacement. The above 

observation was a major contribution at that time for it indicates that the effective period of 

each corresponding linear system would be of some constant multiple of the first period of the 

hysteretic system.   

1effT CT                                                      (14) 

Equation (14) is similar to equation (5); however, in the work of Iwan and Gates (1979) the 

constant, C , appearing in equation (14) is not an outcome from similar triangles (which 

result by assuming that effK is the slope of the line that connects the axis origin with the point 

on the backbone curve where we anticipate the maximum displacement to occur), but is the 

outcome from minimizing the root mean square (RMS) of the difference between the spectral 

displacements of a bilinear system and a family of potentially equivalent linear systems.  
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In a subsequent publication (Iwan (1980)), the period shift,  1/effT T , was graphed as a 

function of the ductility,  . The least square log-log fit of these data resulted for a bilinear 

system with, 2 1/ 0.05K K   , the following expression 

8,])1(121.01[
1

939.0   TT
eff

                      (15) 

It is worth mentioning that the work of Iwan and Gates (1979) and Iwan (1980) examined 

bilinear systems which exhibit values of displacement ductility up to 8  .  

Fig. 3 (bottom-left) plots with a heavy solid line the values of the period shift, 
1

/TT
eff

, as 

offered by equation (15) for 0.05  and up to values of ductility, 8  . These values are 

compared with the results from AASHTO (1991) geometric relation given by equation (5). As 

indicated earlier, the minimization procedure presented by Iwan and Gates (1979) and Iwan 

(1980) results an appreciably smaller period shift, 1/effT T , that what is predicted by the 

geometric relation given by equation (5).  

 

2.4. The work of Hwang and Shang (1993), (1994) and Hwang and Chiou (1996)  

While the work of Iwan and Gates (1979) investigated the effective period and damping of a 

bilinear system that approximates the nonlinear behavior of traditional concrete and steel 

structures (moderate values of the displacement ductility, 8  ); Hwang and Sheng (1993); 

(1994) investigated the effective period of the bilinear system that approximates the nonlinear 

behavior of lead rubber isolation bearings where the displacement ductility can reach the 

value of 25  or greater.  

Initially, Hwang and Sheng (1993); (1994) argued that the effective stiffness and the 

associated effective period of the bilinear system as suggested by the 1991 AASHTO Guide 

Specifications for seismic isolation (eq.(5)) is an unrealistic representation of what happens in 

reality and suggested the following expression for the effective period for all practical values 

of 2 1/K K   

1

137.1 ]})1(13.01ln[1{ TT
eff

                         (16) 

The predictions of equation (16) which was presented later as the Caltrans Method (Hwang 

and Chiou 1996) are also shown in Fig. 3(top-left) with a thin solid line.  

Equation (16) as well as any empirical equation that attempts to offer an estimate on the 

effective period effT shall also satisfy the constraint–that the proposed period effT  shall always 

be less than or equal to the period 2T which corresponds to the second slope of the bilinear 

system. Accordingly,  



1

1

2

1


T

T

T

T
eff

                                         (17) 

Fig. 3 (top-left) shows that for 2 1/ 0.15K K   equation (16) proposed by Hwang and 

Sheng (1993, 1994) violates the physical constraint given by equation (17) for values 20  ; 

whereas, Fig. 3 (bottom-left) shows that for 2 1/ 0.05K K   equation (16) offers an 

isolation period that is even shorter than the isolation period which results from the geometric 

relation given by equation (5) adopted by AASHTO 1991.  

In a subsequent publication, Hwang and Chiou 1996 proposed a refined model for lead rubber 

bearings where the effective period is offered by the following equation: 

12

1
(1 0.737 )

1 ( 1)
effT T

 

  


 

 
  (18) 

Equation (18) is merely the geometric relation adopted by AASHTO (1991) given by 

equation (5) modified by the multiplication factor
2/)1(737.01   . The predictions of 
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equation (18) (dashed line) are also offered in Fig. 3 (left) which is relevant to lead rubber 

bearings. Note that the predictions of equation (18) follow very closely the geometric relation 

adopted by AASHTO (1991), revealing that the multiplication factor 
2/)1(737.01  

has a minor effect. The proximity of equation (18) that was finally proposed by Hwang and 

Chiou (1996) to the predictions of equation (5) adopted by AASHTO (1991) leaves the reader 

perplexed given the initial comments of Hwang and Sheng (1993); (1994) that the effective 

period of the bilinear system as suggested by the 1991 AASHTO Guide Specifications is an 

unrealistic representation of what happens in reality.   

 

3. The Relative Importance of the Parameters of the Bilinear Model 

Associated with the Behavior of Seismic Isolation Bearings 
Before proceeding with the evaluation of the engineering merit of the “effective period” of the 

bilinear system, in this section we discuss the relative significance of the parameters of the 

bilinear system. With reference to Fig. 1 (left) the bilinear model is fully described with any 

three of the five parameters shown in Fig. 1, which are the strength, Q , the initial stiffness, 

1K , the yield force, yF , the yield displacement, 
y
u , and the second stiffness, 2K .  

The main difference between the behavior of bilinear isolation bearings and the behavior of 

traditional steel and reinforced concrete structures which also exhibit a bilinear behavior is in 

the values of strength and peak inelastic deformation. Isolation bearings have intentionally 

lower strength (say 0.03  mgQ / 0.09); and therefore, experience large values of inelastic 

displacements. Accordingly, the behavior of bilinear isolation bearings is primarily controlled 

by the strength, Q , and the second stiffness, 2K ; while, the yield displacement, 
y
u , and the 

associated first stiffness, 1K  have marginal significance. The marginal significance of the 

yield displacement, 
y
u , in the peak response of a bilinear isolation system has been shown in 

the past via parametric studies (Makris and Chang (2000)) and subsequently through formal 

dimensional analysis (Makris and Black (2004), Makris and Vassiliou (2011)). Given the 

marginal significance of the yield displacement, yu , the displacement ductility yuu /max

is also of marginal interest in seismic isolation and should be avoided as a dimensionless 

quantity (see equations (12) or (13)).  

Now while the design codes on seismic isolation do not state explicitly the marginal 

significance of the first stiffness, 1K , the iterative procedure proposed by the design codes 

introduced in the previous section to converge on the effective stiffness, effK ,  involves only 

the strength, Q , and the second stiffness, 2K  (the first stiffness, 1K , and the yield 

displacement, yu , are immaterial in estimating 
max
u ). Accordingly, the behavior of the 

bilinear model is described in a robust way by the controlling parameters,Q  and 2K  together 

with one of the marginal parameters 1K , 
y
u  or yF . In this study, for the third parameter we 

select yu . Its value ranges from mm25.0  (spherical sliding bearing, Mokha et al. (1990)) up 

to cm2  or even higher (for lead rubber bearings).  

 

4. Free-Vibration Period of a Bilinear System 

Our evaluation on the engineering merit of the effective period, effT , commences with the 

free-vibration response analysis of a mass m supported on a mechanical system with bilinear 

behavior. Given that the bilinear behavior is fully described by the normalized strength, mQ / , 

the normalized second stiffness mK /2  and the yield displacement, 
y
u , the free vibration 

period–that is the isolation period, IT is a function of  
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2( , , )I y

Q K
T f u

m m
                                              (19) 

The four variables appearing in equation (19) 

2 22[ ], [ ][ ] , [ ], [ ]I y

Q K
T T L T u L T

m m

     involve only two reference dimensions; 

that of length ][L and time ][T . According to Buckingham’s Π-theorem, the number of 

independent dimensionless products that describe the problem is the number of total physical 

variables =4 minus the number of reference dimensions =2. Therefore, the number of 

dimensionless products that describe the problem is 4 2 2  . Since the repeating variables 

need to have independent dimensions, the choice for the repeating variable is the period 

associated with the second slope; 2 22 / [ ]T m K T  and the yield displacement [ ]yu L . 

Consequently, the two dimensionless products are 2 2/ /(2 / )T IT T T m K    and 

2 2( / ) (1/ ) ( / ) /( )Q y yQ m u m K Q K u     . With the two dimensionless Π-products 

established equation (19) reduces to  

      
2

22

2

)()(

2

T
uK

Q
T

uK

Q

K

m

T

y

I

y

I 



          (20) 

Equation (20) indicates that the free-vibration period of the bilinear system is equal to the 

period associated with the second slope, 2 22 /T m K , while being modified by some 

function 2( /( ))yQ K u . In order to find the expression of the function 2( /( ))yQ K u  we 

conduct a series of numerical runs to compute the free-vibration response of the bilinear 

system. A rigid mass supported on bilinear bearings with second slope 2K  is set away from 

equilibrium at a given initial displacement (say 0 20 , 30 ,u cm cm and 40cm ) and zero 

initial velocity and is let free to undergo free vibration.  

 

4.1. Fourier Analysis 

In our investigation only runs where a full cycle or more was completed were retained and the 

free-vibration period was defined as the period where the peak value in the Fourier spectrum 

happens. Fig. 4 shows selective force displacement loops of the bilinear system under free 

vibration response together with the corresponding Fourier spectra. The vibration period of 

the system, IT , is extracted at the period where the maximum of the Fourier spectrum 

happens. Fig. 5 (left) plots the computed isolation period, IT , normalized to the period 

associated with the second slope, 2/(2 / )IT m K , as a function of the dimensionless 

product 2 1 2/( ) / 1 1/ 1Q yQ K u K K       . Regression analysis from all the data 

yields a mean value for 99.0/ 2 TTI , indicating that the function 2( /( ))yQ K u  appearing 

in equation (19) is merely a constant with value, 199.0  . The remarkable finding from 

this analysis is that the vibration period of a bilinear isolation system is precisely the period 

associated with the second slope 2T . Furthermore, the standard deviation of the computed 

values from the mean value 99.0/ 2 TTI  is very small, 045.0SD , showing that the 

computed data are strongly correlated with the vibration period 2T . Fig. 5 (right) plots the 

computed isolation period, IT , from the Fourier analysis normalized to the effective period, 

effT . In this calculation the effective stiffness, 0max / uFK eff  was computed as the ratio of 

the peak force maxF , that develops at the peak initial displacement, 0u , prior to the initiation  
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Figure 4. Selective force-displacement loops from the free vibration response of bilinear 

isolation systems ( sT 5.22  ) and the associated Fourier spectra. 
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Figure 5. Values of the vibration period of bilinear isolation systems during free vibrations 

extracted with Fourier analysis  

 

of the motion which is a calculation that selects the longest possible effT . The regression 

analysis from all data yields a mean value for 06.1/ effI TT , and a very small standard 

deviation, 053.0SD , indicating that effT  is a dependable approximation of the vibration 

period of the bilinear system; nevertheless, the period associated with the second slope, 2T  is 

an even better approximation (see Fig. 5 left). 

 

4.2. Wavelet Analysis 

The result offered by Fig. 5–that the free-vibration period of the bilinear system is essentially 

the period associated strictly with the second slope, is further confirmed by analyzing the 

free-vibration response histories with wavelet analysis. Over the last two decades, wavelet 

transform analysis has emerged as a unique new time-frequency decomposition tool for signal 

processing and data analysis. There is a wide literature available regarding its mathematical 

foundation and its applications (Mallat 1999, Addison 2002 and references reported therein). 

Wavelets are simple wavelike functions localized on the time axis. For instance, the second 

derivative of the Gaussian distribution, 
2 / 2te

, known in seismology literature as the 

symmetric Ricker wavelet (Ricker 1943; 1944; and widely referred as the “Mexican Hat” 

wavelet, Addison 2002),  
22 / 2( ) (1 ) tt t e                                               (21) 

is a widely used wavelet. Similarly the time derivative of equation (21) or a one cycle cosine 

function are also wavelets. A comparison on the performance of various symmetric and 

antisymmetric wavelet to fit acceleration records is offered in Vassiliou and Makris (2011). In 

order for a wavelike function to be classified as a wavelet, the wavelike function must have: 

(a) finite energy, 

2
( )E t dt





                                           (22) 

and (b) a zero mean. In this work we are merely interested to achieve a local matching of the 

response history of a bilinear system with a wavelet that will offer the best estimates of period,

IT . Accordingly, we perform a series of inner products (convolutions) of the acceleration 

response history of the bilinear system, ( )u t  with the wavelet  ( )t by manipulating the 

wavelet through a process of translation (i.e. movement along the time axis) and a process of 

dilation-contraction (i.e. spreading out or squeezing of the wavelet)  
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Figure 6. Matching the free vibration acceleration histories of bilinear systems ( sT 5.22  ) with 

symmetric Ricker wavelets together with the associated scalograms. In a symmetric Ricker wavelet 

the period ST 2  , where S  is the scale of the wavelet. 
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Figure 7. Values of the vibration period of bilinear isolation systems during free vibrations extracted 

with wavelet analysis.  

 

( , ) ( ) ( ) ( )
t

C s w s u t dt
s


 






                                  (23) 

The values of s S  and     for which the coefficient, ( , )C s  becomes maximum offer 

the scale and location of the wavelet ( ) ( )
t

w s
s





that locally matches best the free-

vibration response history, ( )u t . Equation (23) is the definition of the wavelet transform. The  

quantity ( )w s  outside the integral in Equation (23) is a weighting function. Typically, ( )w s  

is set equal to 1/ s in order to ensure that all daughter wavelets , ( ) ( ) ( )s

t
t w s

s



 


  at 

every scale s have the same energy. The same energy requirement among all the daughter 

wavelets , ( )s t  is the default setting in the MATLAB wavelet toolbox (2002) and what is 

used in this analysis. A detail analysis on the role of the weighting function in the definition 

of the wavelet transform is presented in Vassiliou and Makris (2011). Each set of plots in Fig. 

6 show the best matching Ricker wavelet on selected free vibration responses of bilinear 

isolation systems (center); while, the associated scalogram (bottom) shows contours of the 

value of ( , )C s  as defined by equation (23) for all locations, t , and all scales,  . The 

maximum value ( , )C s   happens at the most bright location of the contour.  

Similar to Fig. 5 (left), Fig. 7(left) plots the computed isolation period IT  normalized to the 

period associated with the second slope 2/(2 / )IT m K , as a function of the dimensionless 

product 2 1 2/( ) / 1 1/ 1Q yQ K u K K        as extracted with wavelet analysis. In Fig. 7 

the period of free vibration of the bilinear system has been extracted with  

the symmetric Ricker wavelet. Regression analysis from the data yields a mean value for 

01.1/ 2 TTI  and a small standard deviation, 044.0SD  which confirms in a decisive 

manner that the function   appearing in equation (5) is a constant with 1  . Fig. 7 (right) 

shows that the regression analysis from all data yields a mean value for 06.1/ effI TT  and a 

small standard deviation, 027.0SD , indicating that effT as results from 0max / uFK eff   is 

a good approximation of the vibration period of the bilinear system, nevertheless, the period 
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associated with the second slope, 2T is an even better approximation. Consequently, the 

results presented in Fig. 5 and 7 suggest that as long as a bilinear system completes one cycle 

under free vibration the period that prevails during its free vibration is 2T  –that is the period 

associated with the second slope 2K ; and this result is independent of the value of the 

dimensionless strength 

2

1
1Q

y

Q

K u 
    .  

 

5. Predominant Period of a Bilinear System under Forced 

Excitation  

 
5.1. Pulse Excitation 

Our evaluation on the engineering merit of the effective period, effT , proceeds with the 

forced vibration response analysis of the bilinear system which is first subjected to a pulse 

excitation. The motivation for first using pulse excitations is to deal initially with coherent 

excitations that contain only a narrow frequency band. As excitation pulse we select the 

symmetric Ricker acceleration pulse (Ricker 1943;1944)  

2 22 ( )
2

2

( )
( ) [1 2 ]

p

p

t T

Tp

g p

p

t T
u t a e

T








                     (24) 

which is a popular wavelike function to approximate the coherent pulse that appears in several 

recorded near source ground motions (Garini et al. 2010, Vassiliou and Makris 2011. The 

right hand side of equation (24) is merely the mother Ricker wavelet given by (21) which has 

been magnified with an acceleration amplitude pa dilated by a scale 
2

2
ps T


 and translated 

by pT . The forced vibration response of the bilinear system is fully described by the three 

parameter mentioned before which describe its bilinear behavior–that is the normalized 

strength, 
Q

m
, the normalized second slope, 

2

2 2
K

m
T  , and the yield displacement, yu ; 

together with the two parameters that describe the pulse excitation–that is  the pulse 

acceleration, pa , and the pulse period, pT . Accordingly, the period that dominates the forced 

vibration response of the bilinear system –that is the isolation period, IT , is a function of 

2( , , , , )I y p p

Q
T f u T a T

m
  .                               (25) 

The six variables appearing in equation (26) ][,]][[/],[ 2 LuTLmQTT yI  
 

2

22 ]][[],[/2  TLaTKmT p and [ ]pT T  involve again only two reference 

dimension that of length [ ]L and time [ ]T ; therefore, the number of dimensionless products 

 

that describe the problem is 6-2=4. As in the previous sections the choice for the repeating 

variables is the period associated with the second slope, 2 22 / [ ]T m K T  and the yield 

displacement, [ ]yu L . Based on this organization the dependent dimensionless product  

2

I
I

T

T
                                                    (26) 

is a function only of the independent dimensionless products  



  17 

 

y

Q
uK

Q
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                                                (27) 

2
T

T
p

T
                                                    (28) 

y

p

a
u

Ta
2

2
                                                (29) 

While the first two dimensionless products Q and T have a clear engineering significance, 

the engineering significance of a is not clear. Nevertheless, the quantity, 

2/ 4 /a Q pma Q   which is the ratio of the inertia forces to the strength of the system 

has a clear engineering significance. Accordingly, the dimensionless product given by (29) is 

replaced with the dimensionless product  

2

1

4

pa
aq

Q

ma

Q


  


,                                   (30) 

and equation (27) is reduced to  

      
2

22222

),,(),,( T
Q

ma

T

T

uK

Q
T

Q
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uK

Q
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T pp

y
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I            (31) 

As in the free vibration case, equation (31) indicates that the period which prevails during 

force vibration–that is the isolation period is equal to the period associated with the second 

slope 2 22 /T m K , while being modified by some function
2 2

( , , )
p p

y

T maQ

K u T Q
 .  

The dynamic response of a mass, m , supported on isolation bearings with bilinear behavior 

as described in Fig. 1 is governed by  

)()()(
2

2
tutz

m

Q
tuu

g
     (32) 

where )(tu  relative to the ground displacement history, )(tu g
 ground acceleration, 

mQ / specific strength, 22 /2 T   and )(tz hysteretic dimensionless quantity with 

1)( tz  that is governed by 

0)()()()()()()(
1




tutztutztztutzu
nn

y
   (33) 

The model given by equations (32) and (33) is the Bouc-Wen model (Wen 1975; 1976 in 

which  , and n are dimensionless quantities that control the shape of the hysteretic loop. 

Fig. 8 plots with a solid line the acceleration responses above isolators of two different 

isolation systems subjected to a Ricker pulse excitation shown below.  

  

5.1.1. Wavelet Analysis 

The identification of the vibration period of bilinear isolation systems subjected to pulse 

excitation is first achieved with the wavelet analysis introduced in the previous section. Fig. 8 

(left) plots with a dashed line the best matching wavelet (Vassiliou and Makris 2011) on the 

acceleration response history above isolators with bilinear behavior. A number of bilinear 

systems and Ricker pulse excitations have been selected to cover a wide range of the 

dimensionless products given by equation (27), (28) and (30). Fig. 9 (left) plots the computed 

isolation period IT  normalized to the period associated with the second period 

2 22 /T m K  as a function of the dimensionless products 
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2 1 2/( ) / 1 1/ 1Q yQ K u K K        as extracted with wavelet analysis in which the 

daughter wavelet is the Mavroeidis and Papageorgiou (M&P) wavelet (Vassiliou and Makris 

2011). Regression analysis from all data yields a mean value for 2/ 1.05IT T  , indicating that 

the function ),,(
22 Q

ma

T

T

uK

Q pp

y

 appearing in equation (19) is a constant with value

05.1 . At the same time it shall be recognized that the standard deviation now is 

082.0SD  which is two times larger than the value of the standard deviation computed 

during the free vibration response (see Fig. 5 and 7). Fig. 9 (right) plots the computed 

vibration (isolation) period, IT , with wavelet analysis normalized to the effective period, effT . 

In this calculation the effective stiffness, maxmax / uFK eff  was computed by finding the 

peak force developed at the peak inelastic displacement maxu identified during the response 

history and regression analysis from all data yields a mean value for / 1.15I effT T  and a 

standard deviation 076.0SD . Accordingly, this analysis shows that effT as given by 

equation (5) is a dependable approximation of the vibration period of the bilinear system; 

nevertheless, the period associated with the second slope, 2T , is an even better approximation.  

 

5.1.2. Time Domain Analysis 

Over the years, various powerful time domain methods have been developed and applied 

successfully. Perhaps, the most well known and powerful method in the system identification 

community is the Prediction Error Method (PEM). 

It initially emerged from the maximum likelihood framework of Aström and Bohlin (1965) 

and subsequently was widely accepted via the corresponding MATLAB (2002) identification 

toolbox developed following the theory advanced by Ljung (1987); (1994); (2002). Fig. 

8(right) shows the identification of the acceleration history above isolators of two bilinear 

isolation system with PEM when excited by the symmetric Ricker wavelets shown in the left 

of Fig. 8. The identification has been conducted only in the segment of the time history where 

the bearing deformation enters the second slope.  

The engagement of the second slope is monitored with the dimensionless internal variable 

( )z t  which is governed by equation (33) and assumes the values ( 1, 1)  when the bearing 

displacement, ( ) yu t u . The time histories of the ( )z t are also shown in Fig. 8 (right). Fig. 

10 (left) plots the computed vibration (isolation) period IT , with the prediction error method 

(PEM) normalized with the second period, 2T . While there are several data on the 1/ 2 TTI

line in particular for large values of Q , the data show a wider scattering than the data 

obtained with wavelet analysis (see Fig. 9) resulting a mean value for  89.0/ 2 TTI  with a 

standard deviation 160.0SD . Fig. 10 (right) plots the computed vibration (isolation) 

period IT , with PEM normalized to the effective period, effT . As in the wavelet analysis, in 

this calculation the effective stiffness max max/effK F u was computed by finding the peak 

force developed at the peak inelastic displacement maxu identified during the response history 

and regression analysis from all data yields a mean value for / 0.97I effT T  and a standard 

deviation 0.164SD  . Accordingly, when the PEM is employed the period associated with 

effT appears to be a better approximation.  

 

5.2. Earthquake Excitation 

Our evaluation on the engineering merit of the effective period, effT , continues with the 

forced vibration response analysis of the bilinear system when subjected to earthquake  
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Wavelet Analysis 

 
 

PEM 

 

  
 

 
 

 

 
 

Figure 8. Matching the acceleration response histories above isolators with bilinear behavior 

with wavelet analysis (left) and the Prediction Error Method (right) which is applied only in 

the interval of the response history where the second slope, 2K is engaged ( ( ) 1z t  ). 
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Figure 9. Values of the vibration period of bilinear isolation systems identified during forced 

vibration (symmetric Ricker pulses) with wavelet analysis.  

 
 

Figure 10. Values of the vibration period of bilinear isolation systems during forced vibration 

(symmetric Ricker pulses) extracted with the Prediction Error Method (PEM).  

 

excitation. For the seismic response analysis we select six historic earthquake records listed in 

Table 2 which cover a wide range of spectral accelerations. 

Under earthquake excitation the period that dominates the forced vibration response of the 

bilinear system –that is the isolation period, IT  , is a function of 

),,,(
2

parametersexcitationTu
m

Q
fT

yI
   (34) 

In analogy to the dimensional analysis presented for the case of forced vibrations under pulse 

excitation (see eq.33), equation (34) can be expressed in terms of dimensionless products 

,(
22 y

I

uK

Q

T

T
  dimensionless excitation parameters)           (35) 

As in the case of pulse excitation, equation (35) indicates that the period which prevails 

during force vibration–that is the isolation period is equal to the period associated with the  
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Wavelet Analysis 

 
 

PEM 

 

 
 

 

 
 

 

  

Figure 11. Matching the acceleration response histories above isolators with bilinear 

behavior with wavelet analysis (left) and the Prediction Error Method (right) which is applied 

only in the interval of the response history where the second slope, 2K is engaged ( ( ) 1z t  ). 
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second slope 2 22 /T m K , while being modified by some function ,(
2 yuK

Q


dimensionless excitation parameters).   

The identification of the “vibration” period of bilinear isolation systems subjected to 

earthquake excitation is first achieved with wavelet analysis. 

Fig. 11 (left) plots with a dashed line the best matching Mavroeidis and Papageorgiou (M&P) 

wavelet (Vassiliou and Makris 2011) on the acceleration response history of a bilinear system 

with strength / 0.03Q m g and period that corresponds to the second slope  sT 32  when 

subjected to the El Centro Array#5 ground motion recorded during the 1979 Imperial Valley 

earthquake. A number of bilinear systems have been selected to cover a wide range of the 

dimensionless product 1/1/ 2  auKQ yQ and values of yield strength 

%7%,5%,3)/( mgQ and %9 . Fig. 12(left) plots the computed isolation period IT  

normalized to the period associated with the second slope 22 /2 KmT   
as a function if 

the dimensionless product 1/1  aQ  as extracted with wavelet analysis in which the 

daughter wavelet is the M&P wavelet (Vassiliou and Makris 2011). Fig. 12 (left) shows that 

the mean value of 94.0/ 2 TTI is close to unity; nevertheless, the scattering of the data from 

the mean value is now appreciable yielding a value for the standard deviation, 310.0SD . 

Accordingly, there are several situations where the identification signals either from wavelet 

analysis or from the prediction error method (shown in Fig. 13) are incapable to yield a 

coherent vibration period. Fig. 12 (right) shows that when the computed isolation period, IT , 

is normalized with the effective period, effT , the mean value is / 1.14I effT T   while the 

scattering is even larger than in Fig. 12 (left), yielding a standard deviation 0.360SD  . 

Table 2. Earthquake records selected for this study. 

Earthquake Record Station Magnitude, 
w

M  PGA(g) 

1979 Coyote Lake, CA Gilroy Array #6 230 5.7 0.43 

1979 Imperial Valley, CA El Centro Array #5 140 6.5 0.52 

1986 El Salvador  Geot. Inv. Center 180 5.5 0.48 

1992 Erzincan, Turkey 95 Erzincan 6.9 0.52 

1992 Cape Mendocino, CA Cape Mendocino/000 7.2    1.49 

1995 Aigion, Greece OTE Building 6.2    0.54 

 

  

Figure 12. Values of the vibration period of bilinear isolation systems identified during forced 

vibration (recorded earthquake motions) with wavelet analysis. 
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Figure 13. Values of the vibration period of bilinear isolation systems identified during forced 

vibration (recorded earthquake motions) with the Prediction Error Method (PEM). 

 

6. A Matching Index 
The forgoing analysis on the free vibration, forced vibration with a single-period 

mathematical pulses and forced vibration with recorded  strong earthquake motions revealed 

that as the frequency content of the excitation widens and the intensity of the excitation 

fluctuates the standard deviations of the predicted “linear vibration period” of the bilinear 

system increases regardless whether this vibration period, IT , is approximated with either the  

effective period, 2 2 max1/(1 /( ))effT T Q K u  or merely with the period associated with the 

second slope, 2T –which in general offers superior results. The wide scattering of some data 

points from the mean values of 2/IT T or /I effT T  in Fig. 9, 10, 12 and 13 is because in the 

corresponding response histories the nonlinearities associated with the bilinear behavior 

dominate the response; therefore, the concept of associating a “vibration period” as required 

by the current design codes is meaningless. Interestingly, the scattering of data does not show 

any correlation with the normalized strength of the system. For instance, Fig. 11 (bottom-left) 

plots with dashed line the best matching M&P wavelet on the acceleration response history of 

a bilinear system with strength 03.0/ mgQ and sT 32  when subjected to the 1979 

Coyote Lake, Gilroy Array #5 record; while Fig. 11 (right) plots with a dashed line the 

response of the best matching equivalent linear system, as identified with PEM during the 

time interval that the second slope of the bilinear system is engaged. With the wavelet 

identification )81.0/66.0/(0.2 2  effIII TTandTTsT while with the PEM 

identification )83.0/69.0/(06.2 2  effIII TTandTTsT . The ratios for 2/IT T  or 

/I effT T given above in association with the assessment after visual observation of the 

scattering of all data in Fig. 12 and 13 suggest that the idea of associating a vibration period in 

several occasions should be abandoned. Consequently, we reach the conclusion that for 

bilinear isolation systems the “period of vibration” as expressed in most current design codes 

(AASHTO (1991), NZMWD (1983), FEMA (1998), Eurocode (2009) among others) can be 

identified only for certain combination of bilinear systems and ground motions. There is a 

class of response histories above isolators that are not capable to reveal any “vibration period”. 

In this section we attempt to identify this class of response histories by proposing a matching 

index. 
 

The idea behind developing a dependable matching index is that the wavelet signal or the 

PEM signal that is derived from the identification algorithms introduced earlier need to match 



  24 

 

to a reasonable extent the acceleration history of the bilinear system (accelerations above 

isolators). Accordingly, we introduce a matching index wavr  and a matching index PEMr as the 

ratio of the inner product of the best matching signal with the record normalized by the energy 

of the record,
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  (36)  

where ( )t  is the best matching wavelet, ( )a t is the acceleration history of the resulted PEM 

signal and ( )bu t  is the acceleration history of the bilinear system above isolators. Clearly,  

 

  

  

Figure 14. Top: Values of the vibration period of bilinear isolation systems identified during 

forced vibration (symmetric Ricker pulses and recorded ground motions) with wavelet 

analysis (all data shown in Figures 9 and 12) plotted vs the matching index, wavr . Bottom: 

Vales of the standard deviation, )( wavrSD  of the data shown above from any given value of 

wavr up to 1wavr . 
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both wavr and PEMr assume values between zero and one. Fig. 14 (top) plots the vibration 

periods of a wide range of bilinear systems identified during forced vibrations (pulse and 

earthquake excitations) with wavelet analysis (all data appearing in Fig. 9 and 12), where now 

they are plotted as a function of the matching index wavr defined by equation (36). Fig. 14 (top) 

reveals that regardless if the data are normalized with 2T  or effT their dispersion decreases as 

wavr increases. Fig. 14 (bottom) plots the standard deviation of the data shown in Fig. 14 (top) 

for any given value of wavr  up to 1wavr . For instance, the value of 15.0SD  shown for 

3.0wavr is the standard deviation of all the data within 13.0  wavr (all points in the 

shaded region). Fig. 15 (top) plots the vibration periods of the bilinear systems identified 

during the forced vibration (pulse and earthquake excitation) with the prediction error method 

(all data appearing in Fig. 10 and 13), where now they are plotted as a function of the 

matching index PEMr defined by equation (36). Fig. 15 (bottom) plots the standard deviation 

of the data shown in Fig. 15 (top) from any given value of PEMr  up to 1PEMr . For instance, 

the value of 15.0SD  shown for 4.0PEMr is the standard deviation of all the data within  

the range 0.14.0  PEMr (all points in the shaded region).  Similar to Fig. 14, Fig. 15 

reveals that regardless if the data are normalized with 2T  or effT their dispersion decreases as 

PEMr  increases.  

Fig. 14 and 15 show that there are several response histories with wavr or PEMr –values as low 

as 0.3 or even less while, their corresponding “vibration period” departs from the mean value 

to such an extent that creates disproportional growth in the standard deviation when wavr  or 

PEMr  approaches the axis origin. 

Accordingly, there is a need to develop a procedure to separate the “good” response histories 

where the concept of associating a “vibration period” as required by the current design codes 

is meaningful. This separation is most useful in system identification studies which attempt to 

extract the isolation period of seismically isolated bridges from recorded signals above and 

below isolators.  

 

7. Selection of the “Good” Response Histories  
The final goal of this paper is to separate the response histories of bilinear systems where the 

concept of associating a “vibration period”  as required by the current design codes is 

meaningful; from the response histories where the concept of associating a vibration period is 

meaningless. This separation can be achieved if one observes the plots of the standard 

deviations, )( wavrSD and )( PEMrSD , shown in Fig. 14(bottom) and 15(bottom) which 

exhibit a growing values of SD  when 3.0wavr  or when 4.0PEMr . Our aim is to take the 

best elements offered by the wavelet analysis and by the Prediction Error Method (PEM). We 

return now to Fig. 11 (bottom) where the isolation system with 03.0/ mgQ and sT 32 

when excited by the 1979 Coyote Lake, Gilroy Array#6 record experienced few and small 

displacements beyond the yield displacement yu (see the few and small plateaus in the z-

history). In such situations the response history above isolators contains poor information 

regarding the isolation period, 2T , associated with the second slope of the bilinear system. 

Accordingly, when evaluating a response history we need also to include a measure that 

indicates to what extent the second slope of the bilinear system  
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Figure 15. Top: Values of the vibration period of bilinear isolation systems identified during 

forced vibration (symmetric Ricker pulses and recorded ground motions) with PEM (all data 

shown in Figures 10 and 13) plotted vs the matching index, PEMr . Bottom: Vales of the 

standard deviation, )( PEMrSD  of the data shown above from any given value of PEMr up to 

1PEMr . 

 

was engaged. This need is served with the engagement ratio   ii NplateauN / where

plateauNi are the number of data points within the segment where 1)( tz and iN are all 

the data points between the first and last yielding of the system during the excitation.  

Our selection process proceed by taking only the data in Fig. 14 with 3.0wavr or the data in 

Fig. 15 with 4.0PEMr and re-evaluate them by computing an improved matching index 

which incorporates the engagement ratio  
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Any response history with either 3.0wavr or 4.0PEMr is retained as a potentially “good” 

response history and its identified vibration period appears in Fig. 16.  

Accordingly, Fig. 16 (top) shows the vibration periods extracted from the responses of 

bilinear systems that passed the first screening ( 3.0wavr or 4.0PEMr ) and are plotted as a 

function of the improved matching index, r , given by equation (37). Therefore, the number 

of data shown in Fig. 16 is smaller than the number of the data appearing in Fig. 14 or Fig. 15. 

It is interesting to note in Fig. 16, several response histories which passed the first screening 

( 3.0wavr or 4.0PEMr ) their improved r index is now poor ( 3.0r )–therefore, the need 

for a more refine selection. Fig. 16 (bottom) plots the standard deviation of the data shown in 

Fig. 16 (top) from any given value of  r  up to 1r . For instance, the value of 1.0SD

shown when 5.0r  is the standard deviation of all the data within 0.15.0  r .  

 

  

  

Figure 16. Top: Values of the vibration period of bilinear isolation systems under forced 

vibrations with matching index 3.0wavr or 4.0PEMr plotted vs the improved index r

given by equation (36). Bottom: Values of the standard deviation )(rSD of the data shown 

above from any given value of r up to 1r . 
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Interestingly, for values 5.0r the values of the standard deviation )(rSD exhibits a finite 

jump above the value of 1.0SD  and for values of 35.0r , )(rSD exhibits a rapid 

increase as we move towards the axis origin. 

In conclusion, recorded time histories with 5.0r are characterized as “good” response 

histories and the identified period IT  is strongly correlated with the period associated with the 

second slope of the bilinear system, 2T or with the effective period effT . In contrast, this 

analysis shows that for recorded time histories above isolators with 5.0r , the concept of 

assigning a “vibration period” becomes feeble and shall be abandoned.  

 

8. Conclusions  
This paper examines whether the “effective period” of bilinear isolation systems, as defined 

invariably in most current design codes, expresses in reality the period of vibration that 

appears in the horizontal axis of the response spectrum. The study employs Fourier and 

Wavelet analysis together with a time domain identification method for linear systems known 

as the Prediction Error Method (PEM) to process the vibration response of a wide collection 

of bilinear isolation systems subjected to pulse and earthquake excitations.  

When the response history of the bilinear system exhibits a coherent oscillatory trace with a 

narrow frequency band as in the case of free vibration of forced vibrations from most 

pulselike excitations, the paper shows that the “effective period”= effT of the bilinear isolation 

system is a dependable estimate of its vibration period. At the same time the paper concludes 

that the period associated with the second slope of the bilinear system 2T is an even better 

approximation of the “vibration period” regardless of the value of the dimensionless strength 

1/1)/( 2  yuKQ of the system. Consequently, this study concludes that whenever the 

concept of associating a “vibration period” is meaningful the “effective” period,
 effT  can be 

replaced with 2T which is a period that is known a priori (no iterations are needed) and offers 

in general superior results. This finding serves both simplicity and a more rational estimation 

of maximum displacement. Simplicity is served because instead of looking for effT —a 

quantity that derives from the non-existing effK , for which iterations are needed to be 

approximated, the paper shows that the period associated with the second slope of the 

bilinear system 2T  (that is known a priori—no iterations are needed) is a better 

single-value descriptor of the frequency content of the dynamic response of a bi-linear 

isolation system. Given that 2T is always longer than effT the peak inelastic displacement 

does no run the risk to be underestimated.  

Most importantly, the paper shows that as the frequency content of the excitation widens and 

the intensity of the acceleration response history fluctuates more randomly the computed 

vibration period of the bilinear isolation system exhibits appreciable scattering from the 

computed mean value. This scattering of the identified period values is due to the nonlinear 

nature of the response signal; and therefore, for this class of response histories the expectation 

of the design codes to identify a “linear vibration period” has marginal engineering merit.  

The paper develops a physically motivated matching index that permits the separation of the 

response histories of bilinear systems where the concept of associating a “vibration period” is 

meaningful from those where the concept of associating a “vibration period” is feeble. 

In conclusion, the engineering merit of the effective period effT of bilinear isolation systems 

as given by equation (5) is marginal given that: (a) whenever the concept of associating a 

“vibration period” is meaningful ( 5.0r ), this “vibration period” can be approximated in a 

superior way with the period associated with the second slope 2T
 
as (see Fig. 5,7 and 9); 

and (b) when the matching index r is low (say 5.0r ) the concept of associating a 

“vibration period” has marginal engineering value.  
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