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ABSTRACT 

This paper is motivated from the wider need in system identification studies to 

identify and interpret the eigenvalues of seismically isolated bridges from field 

measurements. The paper examines the transverse eigenvalues of multispan bridges 

which are isolated in both transverse and longitudinal directions at all supports 

including all center piers and end-abutments. The paper shows that regardless of the 

value of the longitudinal isolation period of the deck, the length of the bridge and the 

number of spans, the first transverse (isolation) period is always longer than the 

longitudinal isolation period of the deck. This result cannot be captured with the 

limiting idealization of a beam on continuously distributed springs (beam on Winkler 

foundation) which yields the opposite result–that the first transverse period is always 

shorter than the longitudinal isolation period. This fundamental difference between 

the response of a flexural beam supported on distinct, equally spaced springs and that 

of a beam supported on continuously distributed springs has not received the attention 

it deserves in the literature of structural mechanics-dynamics. Finally, the paper 

shows that the first normalized transverse eigenperiod of any finite-span isolated deck 

follows a single master curve and the solutions from all configurations are self-similar 

and are not dependent on the longitudinal isolation period or on whether the deck is 

isolated on elastomeric or spherical sliding bearings.  
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INTRODUCTION 

Traditionally several conventionally designed bridges use elastomeric bearings (pads) 

between the deck and its supports to accommodate thermal movements. The long 

experience of bridge engineers with the technology of bearings had a positive role in 

the implementation of isolation bearings to protect bridges from earthquakes. Seismic 

isolation, with either elastomeric or sliding bearings, is at present widely adopted as 

an effective technology for the seismic protection of highway and railway bridges 

(Skinner et al.1993, FHWA 1995).  

In an earlier publication (Makris et al. 2010), the authors examined the eigenvalues of 

a seismically isolated deck with its ends restricted from translating along the 

transverse direction (pinned supports at the end-abutments); while, the deck was fully 

isolated along the longitudinal direction. Restricting the ends of the deck from 

translating laterally is nearly imperative in railway bridges in order to avoid 

misalignment of the rails at the deck-abutment joints during earthquake shaking and it 

was concluded that for isolated bridges longer than a certain length the first transverse 

isolation period despite the flexural rigidity of the deck is longer than the longitudinal 

period; this critical length depends on whether the bridge is isolated on elastomeric 

bearings or on spherical sliding bearings.  
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In highway bridges there are usually shear keys at the end abutments; however, the 

gap between the deck and the shear keys may be large enough (5.0 to 8.0cm), so that 

under small amplitudes of vibration the ends of the deck behave as free ends. This 

paper complements the work of Makris et al. (2010) and examines the eigenvalues of 

seismically isolated bridges free to translate at the end abutments.  

The paper concludes that, regardless of the value of the longitudinal isolation period 

of the deck, the length of the bridge and the number of spans; the first transverse 

(isolation) period is always longer than the longitudinal isolation period of the deck. 

This result cannot be captured with the limiting idealization of a beam on 

continuously distributed springs (beam on Winkler foundation) which yields the 

opposite result –that the first transverse period is always shorter than the longitudinal 

isolation period. 

Furthermore, when the stiffness of the isolation bearings is relatively small compared 

to the stiffness of the deck (as in the case of medium size bridges, say 300L m ), the 

isolated deck tends to translate along the transverse direction with a nearly rigid body 

motion and the transverse isolation period tends to the longitudinal isolation period. 

On the other hand, when the distributed stiffness of the beam on Winkler foundation 

is relatively small compared to the stiffness of the deck with length L , the first 

transverse period of the system is the first flexural period of a free-free end beam, 

4

1 8/(9 ) /FF

TT mL EI –a fundamentally different behavior.  

This fundamental difference in the behavior of the two systems has not received the 

attention it deserves given that occasionally beams isolated on distinct springs with 

stiffness, K , and spaced at equal distances, d , are invariably treated in the literature as 

beams on continuously distributed springs with coefficient /k K d (Ugural and 

Fenster 1995).  
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Our study proceeds with the mathematical analysis of the two limiting-case 

mechanical models: (a) that of a flexural beam supported with continuously 

distributed springs (beam on Winkler foundation); and (b) that of an isolated beam 

with isolation bearings at its two ends and at its mid-span. The analytical results 

derived in this study are confirmed numerically with commercially available software 

on a four-span and an eight-span isolated deck. The entire modal analysis presented in 

this paper hinges upon a linear bearing behavior; therefore, it assumes that the 

isolated system is fully engaged and that the displacements above isolators are large 

enough so that the second slope of the bilinear idealization of the bearings controls 

the response. This analysis is conducted within the context of the linear theory of 

seismic isolation in analogy to the modal analysis presented for the 2-dof isolated 

structures presented in textbooks (Kelly 1997). 

 

MECHANICAL IDEALIZATION OF ISOLATED BRIDGES 

Figure 1 shows the mechanical idealization of a seismically isolated bridge where the 

longitudinal and transverse motion of the deck is isolated with springs at the center 

piers and at the abutments. In order to capture the dynamic behavior of the 

mechanical configuration shown in Figure 1 we examine the mathematical solution of 

the two limiting cases–those of a beam that is fully isolated in both directions and has 

either (a) infinite distributed longitudinal and transverse springs along its span (beam 

on Winkler supports) as shown in Figure 2, or (b) longitudinal and transverse 

isolation springs at the mid-span and the end abutments as shown in Figure 3.  

In this paper we examine the transverse versus the longitudinal eigenperiods of an 

isolated deck assuming that the isolation bearings are supported on rigid supports in 

an effort to bring forward the main characteristics of the dynamics of the system. In 

reality most bridge decks are supported on piers with finite flexibility and this results 
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in a minor increase of both transverse and longitudinal periods. More specifically, 

given that most bridge piers have their strong axis along the direction of the deck and 

their weak axis perpendicular to the direction of the deck, the longitudinal period 

tends to lengthen slightly more than the transverse period (Buckle et al. 2006); 

therefore, modifying the results presented in this work which are for rigid piers in 

both directions. It is worth mentioning that the effect of soil-structure interaction on 

the lengthening of the isolation periods is marginal (of the order of 1.5% to 2.5%) 

even for cases with 1000/ sp EE ( pE and sE are Young modulus of piles and soil 

respectively).  

 

LONGITUDINAL AND TRANSVERSE EIGENVALUES OF A 

PRISMATIC BEAM WITH CONTINUOUSLY DISTRIBUTED 

SPRINGS 

For a beam on continuously distributed elastic supports with stiffness 2[ ] /[ ]k F L and 

distributed mass, [ ] /[ ]m M L ; and assuming that the axial rigidity of the beam is large 

compared to its flexural rigidity EI , its first longitudinal eigenvalue is the isolation 

frequency along the longitudinal direction i.e.  

m

k

mL

kL
ILL  1  .                                           (1) 

 

The configuration of a beam with distributed elastic support is examined given that in 

the literature the problem of a long beam supported by individual springs with 

stiffness K , spaced at equal distance d , is simplified by replacing the individual 

supports with continuously distributed springs with coefficient dKk / (Ugural and 

Fenster 1995).  
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Under free vibration, the dynamic equilibrium of a beam with flexural rigidityEI  

along the transverse direction gives (Timoshenko et al. 1974, among others) 

0)()(
)( 2

4

4

 xwmk
dx

xwd
EI  .                               (2) 

where ( )w x is the transverse deflection of the beam along its length.  

Case 0: 2 0k m   

We examine whether the beam with distributed elastic supports may possess a 

transverse eigenfrequency equal to the longitudinal eigenfrequency 

/IT IL k m     . In this event, 2k m , and Equation (2) contracts to : 

0
)(

4

4


dx

xwd
EI                                               (3) 

The solution of Equation (3) is  

DCxBxAxxw  23)(                                (4) 

The boundary conditions of this configuration for vibrations along the transverse 

direction are zero moments ( 2 2 2 2(0) / ( ) / 0d w dx d w L dx  ) and zero shear forces 

( 3 3 3 3(0) / ( ) / 0d w dx d w L dx  ) at the end-abutments. Given that the second 

derivative of Equation (4) is  

BAx
dx

xwd
26

)(
2

2

 ,                                  (5) 

the condition 2 2(0) / 0d w dx   yields 0B  ; and upon enforcing the condition 

2 2( ) / 0d w L dx  , then 0A  . The value of 0A   also satisfies the boundary 

conditions for zero shear forces at the end abutments. Accordingly for the 

case
2k m , the elastic line of the beam on distributed springs is ( )w x Cx D  , 

which is the equation of a straight line; therefore, there is no transverse flexure of the 

beam.  
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Consequently, in the event that 1 /T k m   , the isolated deck can only 

experience transverse rigid body motion (translation and rotation) with frequency 

equal to the longitudinal frequency /IL k m  .  

Case 1: 2 0k m    

For 2 0k m   the solution of Eq. (2) is well known to the literature (Timoshenko et 

al. 1974, Ugural and Fenster 1995 among others), 

)sincos()sincos()( xDxCexBxAexw xx    
,   (6) 

where  

0
4

2

4 



EI

mk 
 .                                           (7) 

With the aforementioned boundary conditions for flexure along the transverse 

direction 2 2 3 3 2 2 3 3(0) / (0) / ( ) / ( ) / 0d w dx d w dx d w L dx d w L dx    , the eigenvalues 

of the problem are obtained from the solution of the homogeneous system 
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(8) 

The solution of the associated characteristic equation is given by:  

)2cos(2)2cosh( LL                                            (9) 

Equation (9) can be satisfied only when 0L   (see graphs on Figure 4) which 

implies that 0  . For 0   Equation (7) gives that 
2 0k m  –a finding that 

contradicts the initial assumption of this case, that 
2 0k m  . The above analysis 

shows that when the frequency is kept low enough so that
2 0k m  , then this low 
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frequency range does not contain any eigenvalues of the structure along the transverse 

direction. Accordingly, the eigenvalues of the system belong in the range 2 0k m  . 

Case 2: 2 0k m   

For 2 0k m   the solution of Equation (2) is also well known in the literature 

(Timoshenko et al. 1974, Clough and Penzien 1993),  

xDxCxBxAxw  sinhcoshsincos)(         (10) 

where now,  

0
2

4 



EI

km
                                       (11)                                             

By applying the zero moment and zero shear boundary conditions the eigenvalues of 

the problem are obtained from the solution of the homogeneous system,  
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The characteristic equation of the system reduces to  

1coscosh LL                                             (13) 

and the solutions of Equation (13) lead to the eigenfrequencies 

  ,...2,1,)
2

1
(

4

44  n
mL

EI
n

m

k
Tn

       (14) 

Equation (14) shows that the lowest transverse eigenfrequency ( 1n  ) of the isolated 

deck is 4 4

1 / (3 / 2) /T k m EI mL   ; therefore, it will always be larger than the 

first longitudinal isolation frequency 1 /L k m   (rigid body motion along the 

longitudinal direction). Consequently, the limiting case model which idealizes the 

isolated deck on distinct isolation bearings with a flexural beam with continuously 

distributed springs yields that, no matter how long the bridge is, the first transverse 
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isolated period that involves flexure of the deck is always smaller (stiffer 

configuration) than the longitudinal isolation period.  

At this point it is interesting to note that the eigenfrequencies of a beam on Winkler 

foundation with free-free ends are higher (stiffer configuration) than the 

eigenfrequencies when both ends are pinned. This result is consistent with the result  

that a “flying” oscillating beam (free-free end) has higher eigenfrequencies (those of 

the fixed-fixed end beam) than the eigenfrequencies of a pinned-pinned end beam 

(Timoshenko et al. 1974). Table 1 summarizes the characteristic equations and the 

resulting transverse eigenvalues for a free-free end and a pinned-pinned end beam on 

Winkler foundation.  

 

 

LONGITUDINAL AND TRANSVERSE EIGENVALUES OF A BEAM 

WITH A LONGITUDINAL AND TRANSVERSE SPRING AT ITS 

MID-SPAN AND ITS SUPPORTS  

We now proceed with the eigenvalue analysis of the other limiting mechanical 

idealization–that of a beam where its longitudinal and transverse motion is isolated 

with springs at its three supports (see Figure 5).  

 

Transverse Periods 

Given the symmetry of the problem we can analyze half of the beam with / 2l L  as 

shown in Figure 5. Note that this model yields only the symmetric modes. 

The solution of the vibration of a beam with flexural rigidity, EI  and distributed 

mass, m is (Timoshenko et al. 1974, Clough and Penzien 1993, Chopra 2001 among 

others),  
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xDxCxBxAxw  coshsinhcossin)(      (15)     

where now 

04

2


EI

m
                                             (16) 

The boundary conditions of this configuration for vibrations along the transverse 

directions at the left end-support are zero bending moment ( 2 2(0) / 0d w dx  ), and 

shear force equal the spring reaction, 3 3(0) / (0)AEI d w dx K w  , while at the right 

end ( / 2x l L  ) the slope is zero ( ) / 0dw l dx   and the shear force equals half  the 

spring reaction 3 3( ) / ( / 2) ( )MEI d w l dx K w l . In the above expressions AK  and 

MK are the stiffnesses of the bearing(s) at the abutment and at the central pier (mid-

span) respectively.   

With the abovementioned boundary conditions the eigenvalues of the system for 

vibrations along the transverse direction are obtained from the solution of the 

homogeneous system.  
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 The associated characteristic equation is  
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     (17)           

Equation (17) is satisfied either when cos 0l  , or when the quantity in brackets is 

equal to zero. The condition cos 0l  corresponds to (2 1)( / 2)l n   , which gives 

the eigenvalues of the simply supported beam (without the spring at the mid-span). 

The first transverse period, 1

SS

TT , of the simply supported beam with length L  is  
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EI

mL
T

SS

T

4

1

2


                                         (18) 

while the second modal period, 2 1 / 4SS SS

T TT T . By setting the quantity in brackets in 

Equation (17) equal to zero, one obtains  

}))(
coscosh

1
1()(4tan])(2{[

)(2

1
tanh 336

6 MAMA

MA

l
ll

lll
l
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




 




         (19) 

where 3 3/(8 ), /(8 )A A M MK L EI K L EI    are dimensionless parameters which 

express the relative contribution of the stiffness of the isolation bearings at the 

abutment and the mid-span, to the transverse flexural rigidity of the deck respectively.  

We first examine the limiting expressions of Equation (19) as A  and M tend to 

various limiting values. When A   (very stiff springs at the end-abutments), 

Equation (19) reduces to Equation (16) in the paper by Makris et al. (2010)  

M

l
ll






3)(4
tantanh  ,                                   (20)  

which describes the transverse behavior of a simply supportedbeam with an elastic 

spring in the mid-span. According to Makris et al. (2010) as M   (very stiff 

spring at the mid-span or very soft deck) Equation (20) reduces to 

tanh tanl l  which is the characteristic equation of a beam with length / 2l L and 

with one end simply supported while the other end is fixed. In this case the first root 

is (1 1/ 4) 5 / 4l      and the first modal period of this configuration is  

SS

T

LSF

T
T

EI

mL
T

1

4
)2/(

1
25

4

25

8



.                          (21) 

On the other hand, when 0M  and A   , Equation (19) yields the solution that 

corresponds to a simply supported beam with length 2L l , i.e. / 2l  . Now when 
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both spring stiffnesses are zero, 0A M   ,(vibrating beam with free ends), 

Equation (19) contracts to  

ll  tantanh  .                                         (22) 

Equation (22) offers the odd roots of Equation (13) which is the characteristic 

equation of a beam with fixed-fixed ends and length 2L l (see graphs in Figure 4). 

The reason that Equation (22) offers only the odd roots is that the semi-beam shown 

in Figure 5 can capture only the symmetric mode shapes. Equation (22) does not 

capture the rigid body motion but only frequencies associated with flexure. The first 

root of Equation (22) is 3 / 4 2.356l    (see Figure 4) and the corresponding 

modal period is  

SS

T

FF

T
T

EI

mL
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1
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4
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8
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
.                              (23) 

However, when one approaches the zero-stiffness limit by letting the values of the 

spring stiffnesses tend gradually to zero ( 0A  ,  0M  ) with Equation (19), an 

early root of the original Equation (19) appears which corresponds to the gradual 

degeneration of the flexural mode to a rigid body mode (see Figure 6). Figure 6 plots 

the left-hand side tanh l and the right-hand side of Equation (19) for a small value 

of 0.01M  . As stated before, as M tends to zero the right-hand side of Equation 

(20) exhibits a small hump at the early values of l which crosses the 

function tanh l . The value of / 2l L  where this early crossing happens 

corresponds to the first mode of the system which, while containing some mild 

flexure of the beam, is essentially a rigid body mode. The next solution of the 

transcendental Equation (19) is / 2 3 / 4 2.356l L     (see Figure 6) and 

corresponds to the first flexural mode of a free-free end beam as predicted by 

Equation (22). As M tends continuously to zero, the early hump that produces the 
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solution corresponding to the rigid body mode is further squeezed in the vicinity of 

zero bringing the corresponding mode closer and closer to a fully rigid body mode.   

a) Spherical-Sliding Bearings 

We consider now the case where the two-span bridge of Figure 5 is supported at each 

of the three supports (end-abutments and mid-span) on identical spherical sliding 

bearings with radius of curvature R , both in longitudinal and transverse direction. 

Given that the two-span beam is a continuous beam, the vertical reaction at the 

midspan bearing is 5/8MN mgL , while the vertical reaction at each of the end-

bearings is 3/16AN mgL . Accordingly, the lateral stiffness of the center spherical 

sliding bearing and of the bearing above the abutment is, / 5 /8 /M MK N R mgL R   

and / 3/16 /A AK N R mgL R   respectively. The relation between the two 

dimensionless stiffnesses is 

MA

M

A

M

A

M

A

R

mgL
R

mgL

K

K

EI

LK
EI

LK





3.0

10

3

8

5
16

3

8

8
3

3

     (24) 

b) Elastomeric Bearings 

When the two-span deck of Figure 3 is supported at each of the three supports (end 

abutments and mid-span), both in longitudinal and transverse direction on identical 

elastomeric bearings with lateral stiffness A MK K K  , the relation between the 

dimensionless bearing stiffnesses becomes, 

MA

M

A

M

A

K

K





 1                            (25) 

Thus, for a given value of M , Equation (19) yields different results for the two types 

of isolation bearings.  
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The solution of the transcendental Equation given by (19) is obtained for various 

values of ,A M  either numerically with a Newton-Raphson method or graphically 

with the Creskoff diagram shown in Figure 7. Figures 6 and 7 show that, for finite 

values of, 3 3/8 , /8A A M MK L EI K L EI   , the transcendental Equation (19) has real 

and positive solutions, say ( , ) ( , )A M A MS l     with / 2l L and 

24( , ) ( , ) / 0A M A Mm EI       . 

Accordingly,  

4

2
),(

2
),(

EI

mL
S MAT

MA


                                     (26) 

or 

4

2 ),(4),(
mL

EI
S

MAMAT
  .                                 (27) 

Equation (26) with the help of Equation (18) gives  

),(

1

4 2

2

1 MA

SS

T

T

ST

T




                                        (28) 

in which, TT , is the transverse period of the two-span isolated beam. Figure 8 plots 

the expression given by Equation (28) after finding the roots of Equation 

(19), ( , ) ( , )A M A MS l     , for the range of A  and M  that is of interest. 

Figure 8 plots the eigenvalues of the two-span bridge in logarithmic scale. In addition 

to the solid dark lines which plot the results of Equation (28), Figure 8 presents with 

isolated points (circles and squares) the solution that one obtains for the same 

problem by using the commercially available software SAP (Computers and 

Structures 2006). Note that the software captures with great accuracy the first and 

second transverse periods of the bridge for both configurations with either spherical 

sliding bearings (FPS) or elastomeric bearings (EB). In the SAP analysis the bearings 
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are merely modeled with linear elastic springs. For spherical sliding bearings the 

corresponding spring stiffness is RNK / , where N  is the vertical load on the 

bearing and R  is the radius of curvature of the bearing. When elastomeric bearings 

are used the stiffness of the idealized springs is the second slope of the force-

displacement loop of the elastomeric bearing—the slope that defines the isolation 

period.  

The chained lines appearing in Figure 8 show the transverse eigenperiod that one 

computes by using the solution of the beam on a Winkler foundation 

4 4

1 2 / / (3 / 2) /( )TT k m EI mL   in which ( / ) / /k mgL R L mg R   for the 

spherical sliding bearings and 3 /Mk K L  for the elastomeric bearings. What is most 

interesting about this idealization is that, as the value of the distributed stiffness 

k tends to zero, the solution of the beam on Winkler foundation given by (13) and 

(14) tends to the first flexural mode of a free-free end beam 4

1 8/ 9 /FF

TT mL EI –

not to the translational rigid-body mode with period 1 2 /TT R g  for spherical 

sliding bearings or 1 2 / 3T MT mL K  for elastomeric bearings which are the 

straight dashed lines in Figure 8 (bottom). It is worth noting that the solutions for the 

transverse periods of an isolated deck on distinct bearings in the bottom plot of Figure 

8 appear to “avoid” the solutions for the transverse periods of a beam on Winkler 

foundation that has the same longitudinal isolation period as the deck on distinct 

isolation bearings. Similar trends are observed in the eigenvalue analysis of decks 

with a larger number of spans.  

 

Longitudinal Periods 

a) Spherical-Sliding Bearings  
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When the two-span bridge of Figure 5 is supported at each of the three supports (end-

abutments and mid-span) on identical spherical sliding bearings with radius of 

curvature R , the longitudinal period is 

 

g

R
T

FPS

L 2 .                                         (29) 

Recalling that the two-span beam is a continuous beam, the vertical reaction at the 

center bearing is 5/8MN mgL , while the vertical reaction at each of the end-

bearings is 3/16AN mgL . Accordingly, the lateral stiffness of the center spherical 

sliding bearing is, / 5 /8 /M MK N R mgL R  and the dimensionless stiffness of the 

center bearing is 

REI

mgL

EI

LK
M

M

43

64

5

8
                                   (30) 

Substitution in (30) of the ratio /g R  from Equation (29) gives,  

 

M

SS

T

FPS

L

T

T



 1

44

5 2

1

                                  (31) 

Figure 8 also plots with thin dashed line the expression given by Equation (31) 

together with the solution given by Equation (28) in which 0.3A M  . Note that the 

line obtained from Equation (28) is always above the line given by Equation (31). 

This result, which becomes more visible in the bottom plot of Figure 8 (vertical axis 

in logarithmic scale), shows that the transverse isolation period is always longer than 

the longitudinal isolation period, 2 /FPS

LT R g , regardless of the length of the 

bridge. This remarkable result also holds for the case where the deck is isolated on 

elastomeric bearings. 
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b) Elastomeric Bearings 

In the case that the two-span deck of Figure 5 is supported at each of the three 

supports (end abutments and mid-span) on identical elastomeric bearings with lateral 

stiffness M AK K , the longitudinal period of the bridge is  

M

EB

L
K

mL
T

3
2                                            (32) 

The dimensionless stiffness of the bearing, 3 /8M MK L EI  , gives 

3

8

L

EI
K M

M


                                                  (33) 

Substitution of Equation (33) in (32) gives,  

EI

mL
T

M

EB

L

41

6

1



                                    (34) 

From Equation (18) the first transverse period of the simply supported beam with 

length L is 4

1

2
/SS

TT mL EI


 , and therefore Equation (34) gives  

M

SS

T

EB

L

T

T



 1

43

2 2

1

                                    (35) 

 

 

Figure 8 also plots with a heavy dashed line the expressions given by Equation (35) 

next to the line given by Equation (28) where now A M   . Note that the transverse 

isolation period is always longer than the longitudinal isolation period, given by 

Equation (35); however, it is evident that the solution that corresponds to the 
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spherical sliding bearings (FPS) case is always above (longer normalized transverse 

periods) the solution that corresponds to the elastomeric bearings (EB) case.  

 

THE TRANSVERSE EIGENVALUES OF MULTI-SPAN ISOLATED 

BRIDGES  

Our investigation proceeds with the analysis of a 4-span and an 8-span isolated deck. 

Similarly to the mechanical idealization shown in Figure 1, the 4-span and 8-span 

isolated decks are fully isolated along the longitudinal and transverse direction. A 

series of eigenvalue analyses have been conducted using the software SAP (Computer 

and Structures 2006) for bridge decks with 25000cE MPa , 4100I m , 

50 /m Mg m , different values of length, L , and isolation periods along the 

longitudinal direction 3.0LT s and 2.0LT s . Both spherical sliding ( 2.2R m for 

3.0LT s  and 1.0R m for 2.0LT s ) and elastomeric bearings have been considered.  

Figure 9 (top) plots the first transverse period, 1TT , of the 4-span isolated deck 

normalized to the longitudinal isolation period, LT , as a function of the length of the 

deck. For a 4-span deck the longitudinal period is given either by Equation (29) in 

which R  is the radius of curvature of any of the identical spherical sliding bearings, 

or by 

K

mL
TT

EB

LL
5

2                                        (36) 

where K is the lateral stiffness of any of the identical elastomeric bearings at each 

support. Regardless of the value of the isolation period, LT , and whether the deck is 

isolated on spherical sliding bearings or elastomeric bearings, the ratio 1 /T LT T is 

above unity in all cases.  
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Figure 9 (bottom) shows that the same pattern is observed in the case of an 8-span 

deck. In the event that the 8-span deck is isolated at each of its nine (9) supports with  

elastomeric bearings having stiffness, K , the longitudinal period is given by 

2 / 9EB

L LT T mL k  , while FPS

LT is given by Equation (29). 

We are now interested in examining whether the four (4) distinct response curves 

shown at the top and bottom of Figure 9 are related to each other; or each one of them 

contains independent information. Whereas the ratio 1 /T LT T is dimensionless, it is not 

the appropriate dimensionless product to extract the physics of the problem. With 

simple arguments from dimensional analysis (Barenblatt 1996, Langhaar 1951) one 

can show that in order to uncover any existence of self-similar response, the 

transverse period of the deck needs to be normalized to a time scale that reflects the 

flexural rigidity of the deck; whereas, the horizontal axis shall reflect the normalized 

lateral stiffness of the bearings, K , at a single support to the flexural rigidity of the 

deck (
3/EI L ) (Makris et al. 2010). Figure 10 (top) presents the same information as 

Figure 9 (top) in terms of dimensionless products 1 1/ SS

T T TT T  and 

3 /8K M MK L EI    where 1

SS

TT is given by Equation (18).  

Interestingly, the four distinct response curves, appearing in Figure 10 (top) are very 

close to each other and eventually form a single master curve for values of 20M  . 

This single master curve shown in Figure 10 (top) is independent of the longitudinal 

isolation period of the deck. At the low range of M ( 20M  ) the first normalized 

transverse periods of the deck when supported on spherical sliding bearings are 

slightly higher than the corresponding transverse periods of a deck supported on 

elastomeric bearings following the same trend that was computed analytically for the 

two-span deck shown in Figure 8. What however is most important to note is that the 

normalized transverse periods, 1 1/FPS SS

T TT T  and 1 1/EB SS

T TT T  are, for any given value 
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of M , above the normalized corresponding longitudinal isolation periods, 1/FPS SS

L TT T  

and 1/EB SS

L TT T , respectively. The same remarkable self-similar response emerges in 

Figure 10 (bottom) for the eight-span deck. 

Now, one shall notice that the self-similar response curves for the 4-span deck on 

Figure 10 (top) and the 8-span deck on Figure 10 (bottom), have also similar shapes. 

Nevertheless, the horizontal axis in Figure 10 is 3 /8K M MK L EI   , which is the 

normalized lateral stiffness of the bearings at a single support to the flexural rigidity 

of the deck. For any given value of 3 /8M MK L EI  , the eight-span deck enjoys the 

restoring transverse force from the bearings at nine (9) supports; whereas, the four-

span deck enjoys the transverse restoring force from the bearings at only five (5) 

supports.  

We are now interested in assessing the transverse contribution of the bearings at all 

the supports of a multi-span bridge. The challenge with the free-free end 

configuration is that for small values of M the deformed shape of the deck is a nearly 

straight line parallel to the original position (rigid body motion); therefore, all 

bearings are deforming by almost the same amount. On the other hand, for large 

values of M the deformed shape of the deck resembles a half sine wave; therefore, 

the bearings supporting the center span are deforming more than the bearings 

supporting the end-spans. In a related publication, Makris et al. (2010), have shown 

that the transverse participation of all bearings in an n-span bridge is proportional to 

( / 2) Mn  . Figure 11 plots the same information presented in Figure 10 (top and 

bottom) together with the results of Equation (19) (two-span deck) where now the 

horizontal axis is 
3( / 2) /(16 )M Mn nK L EI   where n is the number of spans. 

Interestingly, all curves of the normalized transverse periods (two-span, four-span and 

eight-span bridges) collapse to a self-similar solution, indicating that the first 
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transverse eigenperiod of any multi-span isolated deck is given by a single master 

curve. 

It is worth noting in Figure 11 that beyond the value ( / 2) 50Mn    the transverse 

period of the 2-span deck departs from the single master curve. This is because 

beyond 50 ( 2)M n    the spring at the mid-span is stiff enough so that the mode 

shape of the bridge departs appreciably from the half-sine and tends to the mode 

shape of the beam with length / 2l L and with one end simply supported and the 

other end fixed (Makris et al. 2010). 

Figure 11 plots the computed first transverse periods of the two-span, the four-span, 

and the eight-span isolated deck in a logarithmic scale as a function of ( / 2) Mn  . The 

self-similar response from all configurations forms a single master curve which is 

plotted with a heavy gray straight line. Regression analysis from all the points 

appearing in Figure 11 resulted in the expression  

775.0)
2

ln(475.0)ln(
1

1 
MSS

T

MS

T
n

T

T
 .                            (37) 

The expression given by Equation (37) can be used with confidence to estimate the 

first transverse eigenperiod of any multi-span bridge with its deck fully isolated at all 

its supports. Typical lengths of spans in prestressed isolated bridges are between 35m 

and 45m while a span of 60m is on the high end. For all practical values of the section 

and material properties of a deck that is physically realizable 

( MPaEmI 25,100 4  ), the values of the dimensionless ratio Mn )2/(  are below 

50, showing that the master curve given by equation (37) can be used with confidence. 

To this end the chained lines appearing in Figure 8 show the transverse eigenperiods 

that one computes by using the solution of the beam on a Winkler foundation, 

4 4

1 2 / / (3 / 2) /( )TT k m EI mL   in which /k mg R  for the spherical sliding 
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bearings and ( 1) /Mk n K L   for the elastomeric bearings ( 2, 4, 8n   number of 

spans). What is most interesting about the beam on Winkler foundation is that as the 

value of the distributed stiffness, k , tends to zero the solution for the eigenvalues 

given by (13) and (14) tends to the first flexural mode of a free-free end beam 

4

1 8/ 9 /FF

TT mL EI –not to the translational rigid-body mode with period 

1 /TT R g  for spherical sliding bearings or 1 /(( 1) )T MT mL n K   for elastomeric 

bearings.  

 

CONCLUSIONS 

This paper examines the eigenvalues of multi-span long seismically isolated bridges 

where the deck is fully isolated along the longitudinal and transverse direction, 

therefore enjoys concentrated restoring forces from the isolation bearings above the 

piers and the abutments. This study first investigates mathematically the eigenvalue 

problem of a two-span isolated deck and subsequently examines numerically a 4-span 

and an 8-span isolated deck. The study concludes that regardless of the value of the 

isolation period in the longitudinal direction, the length of the bridge and the number 

of spans, the first transverse isolation period is always longer than the longitudinal 

isolation period of the deck. This result cannot be captured with the limiting 

idealization of a beam on continuously distributed springs (beam on Winkler 

foundation) which yields the opposite result–that the lower transverse period is 

always shorter than the longitudinal period.  

More specifically, when the stiffness of the isolation bearings is relatively small 

compared to the stiffness of the deck, the first transverse period of the isolated deck 

tends to the longitudinal period from above (the deck tends to translate along the 

transverse direction with a rigid-body motion). On the other hand, when the 
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distributed stiffness of the beam on Winkler foundation is relatively small compared 

to the stiffness of the deck, the first transverse period of the system is the first flexural 

period of a free-free end beam–a fundamentally different behavior. This fundamental 

difference shows that when the distributed stiffness of the beam on Winkler 

foundation tends to zero the beam tends to a flexural mode–not a rigid body mode 

(see also Table 1 of this paper) as the deck on distinct isolation bearings does.  

Finally, using arguments from dimensional analysis the paper shows that the 

normalized transverse eigenperiods of any finite-span isolated deck are self-similar 

solutions that are independent of the longitudinal isolation period of the deck or 

whether the deck is supported on elastomeric or spherical sliding bearings. In a 

logarithmic plot this self-similar behavior collapses to a single straight line which 

offers the first transverse isolation period on any finite-span isolated deck.   
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  Table 1.Eigenfrequencies of a beam on Winkler foundation with finite length L , Left: Free 

ends, Right:Pinned Ends. 

Configuration 

Plan View 

Free ends 

 

Pinned Ends 

 

Governing Equation:                     0)()(
)( 2

4

4

 xwmk
dx

xwd
EI   

 

Case 0 

02  mk
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Fig. 1.  Mechanical idealization of an isolated deck which is fully isolated along both 

longitudinal and transverse direction. 
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Fig. 2. Plan view of a beam with continuous distributed springs along its length (Winkler 

foundation). 

 
Fig. 3. Elevation (top)and plan view (bottom) of a two-span beam that is fully isolated along 

the longitudinal and transverse direction. 

 
Fig. 4. Graphical solutions of various characteristic equations pertinent in this study. 
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Fig. 5. First transverse mode shape of a two-span isolated deck and free body diagram of its 

left-half. 

 
Fig. 6. Behavior of the right hand side of Equation (19) at the limiting cases of small values 

of ξ. 
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Fig. 7. Solution of the transcendental Equation (19). 
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Fig. 8. Comparison of the normalized first and second transverse periods TT of a two-span 

isolated deck of length L (solutions of Equation (19) given by the solid lines) against the 

longitudinal isolation periods 
EB
LT or 

FPS
LT (EB =Elastomeric Bearings, FPS =Friction 

Pendulum System) given by the dashed lines. Top:Semilog plot, Bottom:Logarithmic plot. 

Additional chain lines correspond to the transverse eigenperiods from an equivalent beam on 

Winkler foundation 
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Fig. 9. First transverse period of a deck isolated either with elastomeric or spherical sliding 

bearings normalized to the longitudinal isolation period ( 0.2LT or sec0.3 ). Top: 4-

span deck; Bottom: 8-span deck. 
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Fig. 10. Comparison of the master curve of the first transverse period 1TT of an isolated deck 

against the corresponding longitudinal isolation periods 
EB
LT or 

FPS
LT (EB =Elastomeric 

Bearings, FPS =Friction Pendulum System). Top: 4-span deck; Bottom: 8-span deck. 
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Fig. 11. Master Curve of the first transverse period of any multi-span isolated deck with 

arbitrary longitudinal isolation period; Top:Semilog plot, Bottom:Logarithmic plot, showing 

also the transverse periods obtained from the equivalent beam on Winkler foundation of a 2,4 

and 8-span deck. 

 

 


