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SUMMARY 
This paper examines the eigenvalues of multi-span seismically isolated bridges in 

which the transverse displacement of the deck at the end-abutments is restricted. With 

this constraint the deck is fully isolated along the longitudinal direction, while along 

the transverse direction the deck is a simple supported beam at the end abutments 

which enjoys concentrated restoring forces from the isolation bearings at the center 

piers. For moderate long bridges the first natural period of the bridge is the first 

longitudinal period, while the first transverse period is the second period, given that 

the flexural rigidity of the deck along the transverse direction shortens the isolation 

period offered by the bearings in that direction. This paper shows that for isolated 

bridges longer than a certain critical length, the first transverse period becomes longer 

than the first longitudinal period despite the presence of the flexural rigidity of the 

deck. This critical length depends on whether the bridge is isolated on elastomeric 

bearings or on spherical sliding bearings. This result is also predicted with established 

commercially available numerical codes only when several additional nodes are added 

along the beam elements which are modeling the deck in-between the bridge piers. On 

the other hand this result can not be captured with the limiting idealization of a beam 

on continuous distributed springs (beam on Wrinkler foundation) –a finding that has 

practical significance in design and system identification studies. Finally, the paper 

shows that the normalized transverse eigenperiods of any finite-span deck are self-

similar solutions that can be represented by a single master curve and are independent 

of the longitudinal isolation period or on whether the deck is supported on elastomeric 

or spherical sliding bearings.     
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INTRODUCTION 
Seismic isolation, either with elastomeric or sliding bearings, is at present widely 

adopted as an effective technology for the seismic protection of highway and railway 

bridges (Skinner et al.[1], FHWA [2]). Traditionally, many conventionally designed 

bridges use elastomeric bearings (pads) between the deck and its supports to 

accommodate thermal movements. The long experience with this technology had a 

positive role on the implementation of modern seismic protection technologies in 

bridges (Kelly [3]).  

The most commonly used isolation bearings are either elastomeric bearings or 

spherical sliding bearings. Figure 1 shows the view of two neighbor railway bridges 

currently under construction in central Greece. Both bridges are seismically isolated 

on identical spherical sliding bearings with radius of curvature mR 2.2 . The 

isolation period of the spherical bearings alone, in any horizontal direction is  
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Figure 1. Elevation of two seismically isolated bridges. Top: 5-span 200m long bridge; Bottom: 9-span 400m long bridge 
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Figure 2. Cross section of the deck at the end-abutment which restrains the transverse motion 

of the deck. 

 

sec98.2/2  gRTI  . Figure 2 shows a cross section of the deck at the end-

abutments of both bridges where the motion of the deck is restrained along the 

transverse direction. This restriction is nearly imperative in railway bridges in order to 

avoid misalignment of the rails at the deck-abutment joints during earthquake 

shaking; while, it is also common in highway bridges. 

The eigenvalue analysis of both bridges can be conducted with a linear stick model 

using elastic beam elements. The stick model allows for the flexure of the center piers 

and the finite stiffness of pile foundations in the horizontal, vertical, rocking and cross 

horizontal- rocking directions (Zhang and Makris [3]).  

Table 1 shows the eight first eigenvalues of the two seismically isolated bridges 

shown in Figure 1, for the case where 100/ sp EE ( pE =Young’s modulus of pile 

GPa25  for the concrete used, and sE =Young’s modulus of soil). Table 1 shows 

that the five-span, m200 long bridge has as first eigevalue the longitudinal, 

sec07.31  LTT , a value that is slightly larger than the spherical bearing period,  

sec98.2/2  gRTI  , due to the finite flexibility of piers and piles connected 

in series with the bearings. The second eigenvalue of the five-span, m200 -long, 

bridge is the first transverse eigenvalue,  sec17.22  TTT , a value that is 

appreciably smaller from the spherical bearing period, 

sec98.2/2  gRTI  ,due to the added transverse flexural rigidity of the deck 

which is simple-supported at the end-abutments (see Figure 2).  
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Table 1 also shows that the longer nine-span, m400 long, bridge has as first 

eigenvalue, the first longitudinal eigenvalue, sec16.31  LTT and very close, yet  

 
Table 1. Eigenperiods of the 200m and 400m long isolated bridges shown in Figure 1. 

Eigenperiods (sec)T , 100/ sp EE  

Modes 200m long bridge 400m long bridge 

1 3.07 3.16 

2 2.17 3.13 

3 0.77 2.29 

4 0.36 1.38 

5 0.34 0.84 

6 0.28 0.71 

7 0.23 0.71 

8 0.22 0.571 

second eigenvalue, the transverse eigenvalue, sec13.32  TTT . This numerical 

result, where the transverse period has reached so closely the longitudinal period, was 

the main motivation for this study in order to examine whether it is possible that the 

transverse period may exceed the longitudinal period.  

Our study proceeds with the mathematical analysis of the two limiting-case 

mechanical models: (a) that of a beam with transverse restrains at the end abutments 

supported with continuously distributing springs (beam on Wrinkler foundation); and 

(b) that of an isolated beam with transverse restrains at the end abutments and a single 

transverse and longitudinal spring at mid-span.  The remarkable analytical result 

derived in this study -that beyond a certain length the two-span isolated bridge with 

transverse restrains at the end-abutments has a transverse period that exceeds the 

longitudinal period- is confirmed numerically with commercially available software 

for a 4-span and an 8-span bridge. The corresponding span lengths of the 4-span and 

8-span bridge that this phenomenon happens are technically realizable, therefore this 

finding has practical significance in design and system identification studies.   

 

MECHANICAL IDEALIZATION OF ISOLATED BRIDGES 
Figure 3 shows the mechanical idealization of the isolated bridge where the transverse 

motion of the deck is isolated with springs at the center piers and restrained at the 

end-abutments; while, the longitudinal motion is isolated with elastic springs 

everywhere. In order to capture the dynamic behavior of the mechanical configuration 

shown in Figure 3 we examine the mathematical solution of the two limiting cases – 

that of a beam that is fully isolated along the longitudinal direction while restrained at 

the end abutments along the transverse direction and having either (a) infinite 

distributed transverse springs along the span (beam on Winkler supports) as shown in 

Figure 4, or (b) a single longitudinal and a single transverse spring at the mid-span as 

shown in Figure 5.  
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Figure 3. Mechanical idealization of an isolated deck which is fully isolated along the 

longitudinal direction while along the transverse direction the deck is isolated at the center 

supports and simple supported at the end-abutments. 

 

 

 
 

Figure 4. Plan view of a beam with continuous distributed springs along its length (Winkler 

foundation) that is simple supported along the transverse direction at its ends 

 

 
 

Figure 5.Top:Elevation of a two-span beam that is fully isolated along the longitudinal 

direction; Bottom: Plan view of the beam that is isolated at mid-span and is simple supported 

at its ends. 
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LONGITUDINAL AND TRANSVERSE EIGENVALUES OF A BEAM 

WITH CONTINUOUSLY DISTRIBUTED SPRINGS 

For a beam on continuously distributed elastic supports with stiffness 
2]/[][ LFk and 

distributed mass, ]/[][ LMm ; and assuming that the axial rigidity of the beam is 

large compared to its flexural rigidity, its first longitudinal eigenvalue is the isolation 

frequency along the longitudinal direction 

m

k

mL

kL
ILL  1                                             (1) 

Under free vibration, the governing equation of motion along the transverse direction 

is (Timoshenko et al. [5], among others) 

0)()(
)( 2

4

4

 xwmk
dx

xwd
EI                                 (2) 

Case 0: 02  mk  

We examine whether the beam with distributed elastic supports may posses a 

transverse eigenfrequency equal to the longitudinal eigenfrequency 

mkILIT /  . In this event, 
2mk  , and Equation (2) contracts to : 

0
)(

4

4


dx

xwd
EI                                               (3) 

The solution of Equation (3) is  

DCxBxAxxw  23)(                                (4) 

The boundary conditions of this configuration for vibrations along the transverse 

direction are zero translation at the end-abutments ( 0)()0(  Lww ) and zero 

moments at the end-abutments ( 0
)()0(

2

2

2

2


dz

Lwd

dz

wd
). Given that the second 

derivative of Equation (4) is  

BAx
dz

zwd
26

)(
2

2

 ,                                     (5) 

the condition 0/)0( 22 dzwd  yields 0B ; and upon enforcing the condition 

0
)(

2

2


dz

Lwd
, 0A . Accordingly, DCxxw )( , and the application of the 

conditions 0)()0(  Lww  yield that 0 DC . 

Consequently, since all the integration constants are zero the, case 02  mk , 

yields no admissible deformation shape for the beam along the transverse direction; 

and therefore, the frequency value, mk / , cannot be an eigenvalue along the 

transverse direction.  

 

Case 1: 02  mk  

For 02  mk  the solution of (2) is well known to the literature (Timoshenko et 

al. [5], Ugural & Fenster [6] among others), 
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)sincos()sincos()( zDzCezBzAezw zz    
,   (6) 

where  

0
2

4 



EI

mk 
 .                                           (7) 

With the aforementioned boundary conditions for flexure along the transverse 

direction 0/)()(/)0()0( 2222  dzLwdLwdzwdw  , the eigenvalues of 

the system are obtained from the solution of the homogeneous system 
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(8) 

The solution of the associated characteristic equation is given by:  

)2cosh()2cos( LL                                            (9) 

Equation (9) can be satisfied only when 0L  (see graphs on Figure 6) which 

implies that 0 ; therefore, from Equation (7), 02  mk  -a finding that 

contradicts the initial assumption of this case, that 02  mk . The above analysis 

shows that when the frequency is kept low enough so that 02  mk , then this 

low frequency range does not contain any eigenvalues of the structure along the 

transverse direction. Accordingly, the eigenvalues of the system belong in the range 

02  mk . 

 

Case 2: 02  mk  

It is well known in the literature (Timoshenko et al. [5], Clough & Penzien [7] among 

others) that the eigenvalues of the homogeneous equation given by (2) for 

02  mk  are given by the expression  

 ,...2,1,
4

44  n
mL

EI
n

m

k
Tn                       (10) 

Equation (10) shows that the lowest transverse eigenfrequency ( 1n ) of the isolated 

deck is 
44

1 // mLEImkT   , therefore, it will be always longer than the 

first longitudinal frequency mkL /1  . Consequently, the limiting case model 

which idealizes the isolated deck on distinct bearings with a flexural beam with 

continuously distributed springs yields that, no matter how long the bridge is, the first 

transverse isolated period is always smaller than the isolated longitudinal period due 

to the flexural rigidity of the deck )/( 42 mLEI .  

 

 



8 

LONGITUDINAL AND TRANSVERSE EIGENVALUES OF A BEAM 

WITH A SINGLE LONGITUDINAL AND TRANSVERSE SPRING 

AT THE MID-SPAN 
We now proceed with the eiganvalue analysis of the other limiting mechanical 

idealization -that of a beam where its transverse motion is isolated with springs at the 

mid-span and restrained at the end supports; while the longitudinal motion is isolated 

with identical elastic springs at all three supports (see Figure 5). 

 

Transverse Periods 

Given the symmetry of the problem we can analyze half of the beam with 2/Ll   

where the right free end has zero slope ( 0/)( dxldw ) and the shear equals to the 

spring reaction. Note that this model yields only the odd eigenvalues. 

The solution of the vibration of a beam with flexural rigidity, EI  and distributed 

mass, m is (Timoshenko et al. [5], Clough and Penzien [7]),  

xDxCxBxAxw  coshsinhcossin)(      (11)     

where now 

 04

2


EI

m
                                             (12) 

The boundary conditions of this configuration for vibrations along the transverse 

directions are zero translation and zero moment at the left end-support 

( 0/)0()0( 22  dxwdw ), while at the right end ( 2/Llx  ) 0/)( dxldw  

and 0)(2//)()( 33  lwkdxlwdEIlV , where k is the transverse stiffness 

of the bearing(s) at the mid-span.  

With the abovementioned boundary conditions the eigenvalues of the system for 

vibrations along the transverse direction are obtained from the solution of the 

homogeneous system.  
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in which EIkk 2/
~
 . The solution of the associated characteristic equation gives  

0]~

32
tan[tanhcoscosh

~
2 

k
llllk


               (14) 

Equation (14) is satisfied either when 0cos l or when 

0
~
/2tantanh 3  kll  . The condition 0cos l corresponds to 

)2/)(12(   nl , which gives the eigenvalues of the simple supported beam 

(without springs at the mid-span). For instance the first transverse period, 
SS

TT 1 , of 

the simple supported beam with length L  is ( 0n ). 

EI

mL
T

SS

T

4

1

2


                                         (15) 
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while the second modal period , 4/12
SS

T
SS

T TT  . By setting the quantity in 

brackets in Equation (14) equal to zero, one obtains  






3)(4
tantanh

l
ll                                (16) 

where EIkL 8/3 is a dimensionless parameter which expresses the relative 

contribution of the spring at the mid-span to the transverse flexural rigidity of the 

deck.  

 

 
Figure 6. Graphical solution of the transcendental Equation (16).  

 

The solution of the transcendental equation given by (16) is obtained for various 

values of  either numerically with a Newton-Raphson method or graphically with 

the Creskoff diagram shown in Figure 6.  

We first examine the solution of (16) at the limit of small  (very soft spring or very 

rigid deck). Figure 7 plots the left-hand and the right-hand side of Equation (16) for 

01.0 and shows that there is a solution for 2/ l ; which is the solution of 

the first eigenvalue of the simple supported beam with length lL 2 (see Equation 

(15)).  

At the other limit of large  (very stiff spring or very flexible deck) Equation (16) 

reduces to  

ll  tantanh                                        (17) 
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which is the characteristic equation of a beam with length 2/Ll  and with one end 

simple supported while the other fixed. In this case the first root is for 

4/5)4/11(  l and the first modal period of this configuration is  

SS

T

LSF

T T
EI

mL
T 1

4
)2/(

1
25

4

25

8



                      (18) 

 Accordingly, as the stiffness of the bearing at the mid-span increases the transverse 

period of the bridge goes from the period of the simple supported beam with length 

lL 2  given by Equation (15) to the period of the free-end-fixed-end beam with 

length 2/Ll   given by Equation (18). Figure 8 shows schematically the evolution 

of the mode shapes of the two-span beam as   increases.  

 

 

Figure 7. Behavior of the term  /)(4tan 3ll  at the limiting cases of small and 

large values of  . 

 

We now return to Figure 6 where for finite values of, EIkL 8/3 , the 

transcendental Equation (16) has real and positive solutions, say lS )()(   with 

2/Ll   and 0/)()( 4 2  EIm  . Accordingly,  

4

2
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2
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mL
S T 
                                     (19) 

or 
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4

2 )(4)(
mL

EI
ST   .                                 (20) 

Equation (20) with the help of Equation (15) gives  

)(

1

4 2

2

1




ST

T
SS

T

T                                         (21) 

in which, TT , is the first transverse period of the two-span beam supported with a 

bearing at the mid-span. Figure 9 plots the expression given by Equation (21) after 

finding the roots of Equation (16), lS )()(   , for the entire range of   that is of 

interest. Note that for 0 the ratio, 
SS

TT TT 1/ , tends to one; while, as  , 

16.025/4/ 1 
SS

TT TT as is expected from Equation (18). 

 
 

Figure 8. Schematic evolution of the transverse mode shape of a two-span beam as the 

stiffness of the center spring increases. 

 

Figure 9 also shows that regardless whether the two-span deck is isolated on 

elastomeric or sliding bearings, the normalized transverse period of the two-span deck, 
SS

TT TT 1/ , is offered by a single master curve that is only a function of the 

normalized stiffness of the transverse spring at the mid-span EIkL 8/3 .  

This result can be also obtained qualitatively from dimensional analysis without 

solving the eigenvalue problem and the associated characteristic Equation (16). The 
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transverse period of the two-span deck, ][TTT shall be only a function of the flexural 

rigidity of the beam, 
23 ][]][[ TLMEI , the distributed mass, 

1]][[ LMm , the 

length of the beam, ][LL , and the stiffness of the transverse spring at mid-span 

2]][[ TMk . 

),,,( kLmEIfTT                                          (22) 

The five variables appearing in Equation (22) involve three reference dimensions, that 

of length ][L , time ][T and mass ][M and according to Buckingham’s  -theorem 

the number of independent dimensionless  -products is equal to the number of 

physical variables appearing in Equation (22) (five variables) minus the number of 

reference dimensions (two). Accordingly,  235 -terms. 

 

Figure 9. Comparison of the normalized first transverse period TT of a two-span isolated 

deck of length L (solution of Equation (16)) against the longitudinal isolation periods 

EB
LT or 

FPS
LT (EB =Elastomeric Bearings, FPS =Friction Pendulum System). 

 

)()(
/

2

3

41  
EI

kL

EImL

TT
                      (23) 

Note that the denominator in the left hand side of Equation (23) is within a constant 

( /2 ), the first modal period of the simple supported beam given by Equation (15); 

whereas, the independent, dimensionless EIkL /32  variable is within a constant 

( 8/1 ) equal to  . The structure of Equation (23) dictated the synthesis of Figure 9 as 

well as the presentation of results regarding the eigenperiods of multi-span bridges in 
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Figure 11. The numerical solution of the transcendental Equation (16) (heavy dark 

line in Figure 9) serves to validate the computations of the commercially available 

software, SAP (Computers and Structures [8]), which yields the point-circles when 

elastomeric bearings are used and the point-squares when friction pendulum bearings 

are used.  

 

Longitudinal Periods 

a) Elastomeric Bearings 

When the two-span deck of Figure 5 is supported at each of the three supports (end 

abutments and mid-span) on identical elastomeric bearings with lateral stiffness k , 

the longitudinal period of the bridge is  

k

mL
T

EB

L
3

2                                            (24) 

The dimensionless stiffness of the bearing, EIkL 8/3 , appearing in the right-

hand side of the characteristic Equation (16) gives 

3

8

L

EI
k


                                                  (25) 

Substitution of Equation (25) to (24) gives,  

EI

mL
T
EB

L

4

2

1

6

1 


                                    (26) 

From Equation (15) the first transverse period of the simple supported beam with 

length L is EImLT
SS

T /
2 4

1


 , and therefore Equation (26) gives  



 1

43

2 2

1


SS

T

EB

L

T

T
                                   (27) 

Figure 9 plots the expressions given from Equation (27) next to the line given by 

Equation (23). Note that the two lines cross at an approximate value of 12 , 

beyond which the transverse period of the two-span bridge supported on elastomeric 

bearings exceeds the longitudinal isolation period, 
EB
LT , given by Equation (27). 

This result is quite remarkable given that the solution from the beam on elastic 

foundation (infinite bearings) does not predict any crossing (the transverse period of a 

beam on Wrinkler foundation is always shorter than the longitudinal period regardless 

the length of the deck: Equation (10)).  

 

b) Spherical-Sliding Bearings 

We consider now the alternative situation where the two-span bridge of Figure 5 is 

supported at each of the three supports (end-abutments and mid-span) on identical 

spherical sliding bearings with radius of curvature R . In this case the longitudinal 

period of the bridge is 

g

R
T

FPS

L 2                                          (28) 
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Given that the two-span beam is a continuous beam, the vertical reaction at the center 

bearing is mgLNC 8/5 , while the vertical reaction at the end-bearings is 

mgLNe 16/3 . Accordingly, the lateral stiffness of the center spherical sliding 

bearing is, RmgLRNk C /8/5/  and the dimensionless stiffness of the center 

bearing is 

REI

mgL

EI

kL 43

64

5

8
                                   (29) 

Substitution in (29) the ratio Rg /  from Equation (28) gives,  



 1

44

5 2

1


SS

T

FPS

L

T

T
                                 (30) 

Figure 9 also plots the expression given from Equation (30) next to the line given by 

Equation (21). Note now that the two lines cross at an approximate value of 116 . 

This result shows that the transverse period of a two-span isolated bridge with 

spherical sliding bearings which is transversely restrained at the end abutments may 

exceed the longitudinal isolation period gRT
FPS
L /2 ; however, this may 

happen when the two-span bridge is significantly longer than the corresponding length 

of the two-span bridge isolated on elastomeric bearing that offer the same longitudinal 

period.  

This remarkable result shows that while a bridge designer may use either elastomeric 

or spherical sliding bearings to achieve a desirable isolation period along the 

longitudinal direction, the transverse period of the deck when spherical sliding 

bearings are used will be always shorter (stiffer configuration) than the transverse 

period offered by elastomeric bearings which give the same isolation period along the 

longitudinal direction.  

 

THE TRANSVERSE EIGENVALUES OF MULTI-SPAN ISOLATED 

BRIDGES RESTRAINED AT THE END-ABUTMENTS 
Our investigation proceeds with the analysis of a 4-span and 8-span isolated deck with 

transverse restrains at the end-abutments. Similarly to the mechanical idealization 

shown in Figure 3, the 4-span and 8-span isolated beam have transverse restrains only 

at the end abutments while they are fully isolated along the longitudinal direction. A 

series of eigenvalue analyses have been conducted for bridge decks with different 

values of length and MPaEc 25000 , 
4100mI  , mMgm /50 and isolation 

periods along the longitudinal direction sTL 0.3 and sTL 0.2 . Both elastomeric 

bearing and spherical sliding bearing ( mR 2.2 for sTL 0.3  and mR 0.1 for 

sTL 0.2 ) have been considered.  

Figure 10 (top) plots the first transverse period, 1TT , of the 4-span deck normalized to 

the longitudinal isolation period, LT  as a function of the length of the deck. For a 4-

span deck the longitudinal period is given either by  

k

mL
TT

EB

LL
5

2                                        (31) 
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where k is the lateral stiffness of the identical elastomeric bearings at each support, or 

by Equation (28) in which R is the radius of curvature of any of the identical 

spherical sliding bearings. Regardless of the value of the isolation period, LT and 

whether the deck is isolated on elastomeric or spherical sliding bearings the ratio 

LT TT /1 crosses the value one (1) in all cases; therefore, it is clear that in the case of a 

4-span deck there are values of the length of the deck, L , beyond which the first 

transverse period, 1TT , exceeds the longitudinal isolation period, LT . Note that in the 

case of spherical sliding bearing (FPS) the first transverse period exceeds the 

longitudinal isolation period at deck lengths, L , appreciably longer than the length 

for which this happens when elastomeric bearings are used. This finding further 

confirms and generalizes the result discovered in Figure 9 (for a 2-span deck) that the 

transverse period of the deck when spherical sliding bearings are used will be always 

shorter (stiffer configuration) than the transverse period offered by elastomeric 

bearings which give the same isolation period (as the sliding bearing) along the 

longitudinal direction. Furthermore, note that this finding now has not only theoretical 

interest but also significant practical interest given the resulting span-lengths, 4/L , 

are of the order of 60m to 75m which are technically realizable.  

Figure 10 (bottom) shows that the same phenomenon happens in the case of an 8-span 

deck. In the event that the 8-span deck is isolated at each of its nine (9) supports with 

elastomeric bearings having stiffness, k , the longitudinal period is given by 

kmLTT
EB
LL 9/2 , while 

FPS
LT is given by Equation (28). 

In this case three of the four crossings which happen in Figure 10 (bottom) occur for 

lengths of the 8-span deck mLm 400250  which correspond to span-lengths 

from mL 25.318/  to mL 508/  . Such span lengths are most common in 

prestressed isolated bridges in Greece and throughout the world.   

The presentation of the computed transverse period of the 4-span and 8-span decks in 

Figure 10 as a function of the dimensional length, L , of the deck has practical interest 

since it offers directly for the given values of MPaE 25000 , 
4100mI  and 

mMgm /50 the values of length L  for which the ratio LT TT /1  exceeds unity.  

We are now interested to examine whether the four (4) distinct response curves shown 

at the top and bottom of Figure 10 are related to each other; or  each one of them 

contains independent information. Whereas, the ratio LT TT /1 is dimensionless it is 

not the appropriate dimensionless product to extract the physics of the problem. 

Equation (23) dictates that in order to uncover any existence of self-similar response 

the transverse period if the deck needs to be normalized to a time scale that reflects 

the flexural rigidity of the deck (
3/ LEI ), while, the horizontal axis shall reflect the 

normalized lateral stiffness of the bearings k at a single support to the flexural rigidity 

of the deck. Figure 11 (top) presents the same information as Figure 10 (top) in terms 

of dimensionless products 
SS

TT TT 111 / and EIkL 8/32    where 

SS
TT 1 is given by Equation (15). Interestingly, the four distinct response curves 

appearing in Figure 9 (top) collapse to a single master curve shown in Figure 11 (top)  
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Figure 10. First transverse period of a deck isolated either with elastomeric or spherical 

sliding bearings normalized to the longitudinal isolation period ( 0.2LT or sec0.3 ). 

Top: 4-span deck; Bottom: 8-span deck. 
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which is independent of the longitudinal isolation period or whether the deck is 

supported on elastomeric or spherical sliding bearings. This single master 

curve,
SS

TT TT 11 / crosses the normalized longitudinal isolation periods either from 

elastomeric bearings 
SS

T
EB
L TT 1/ or from spherical sliding bearings 

SS
T

FPS
L TT 1/ at two distinct values of  . 

The same remarkable self-similar response emerges in Figure 10 (bottom) for the 8-

span deck. Note that the single master curve,  
SS

TT TT 11 /  also crosses the normalized 

longitudinal isolation periods 
SS

T
EB
L TT 1/  and

SS
T

FPS
L TT 1/ ; however, the 

intersection happens at a smaller angle than in the 4-span beam. Eventually as the 

number of spans increases, the master curve 
SS

TT TT 11 /  tends to become tangent to 

the curves representing the longitudinal isolation periods; and at the limit of infinite 

spans (beam on Winkler foundation) the curves will not cross as predicted by 

Equation (10).  

Now, one shall notice that the self-similar response curves for the 4-span deck on 

Figure 11 (top) and the 8-span deck on Figure 11 (bottom), have also similar shapes.  

Note that the horizontal axis in Figure 11 is EIkL 8/32   , that is the 

normalized lateral stiffness of the bearing(s) at a single support to the flexural rigidity 

of the deck. For any given value of EIkL 8/3 , the 8-span deck enjoys the 

restoring transverse force from the bearings at seven (7) supports; while the 4-span 

deck enjoys the transverse restoring force from the bearings at only three (3) supports.   

We are now interested to express the transverse contribution of the bearing at all the 

supports of a multi-span bridge. Let assume for simplicity a bridge with an even 

number spans, jn 2 ; and let approximate the first half-sine transverse mode shape 

of the deck with a triangle as shown in Figure 12. When the maximum amplitude of 

the mode shape is unity at the center of the deck the amplitude of the mode shape 

above the first pier next to the end abutment is approximately, j/1 , above the second 

pier is, j/2  , while, the amplitude of the deck above the pier before the center pier is, 

jj /)1(  . 

Now, while the normalized transverse stiffness of the isolation bearings above every 

pier is , the participation of the bearing stiffness at each location is proportional to 

the deformation that the bearing undergoes due to the prevailing half-sine mode shape 

of the deck. At the center of the deck where the amplitude of the mode shape 1 , the 

participation is of the bearing above the center pier is  ; while at any other location 

the participation is )1,...,2,1(,)/(  jiji  . Accordingly, for a n-span bridge the 

transverse participation of all bearings from end abutments to end abutments is  


2

]1))1(...21(
2
[)

1
(2...

2
2

1
2

n
jj

jj

j

jj



   (32) 

Given the result of the expression above Figure 13 plots the same information 

presented in Figure 11 (top and bottom) together with the results of Equation (21) (2-

span deck); where now the horizontal axis according to equation (32) is 

EInkLnj 16/)2/( 3  , where n number of spans. Interestingly all curves 

for the normalized transverse periods  (2-span, 4-span and 8-span bridges) 
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Figure 11. Comparison of the master curve of the first transverse period 1TT of an 

isolated deck with arbitrary longitudinal isolation period against the corresponding 

longitudinal isolation periods 
EB
LT or 

FPS
LT (EB =Elastomeric Bearings, 

FPS =Friction Pendulum System). Top: 4-span deck; Bottom: 8-span deck. 
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collapse to a self-similar solution indicating that the first transverse eigenperiod of 

any multi-span isolated deck is given by a single master-curve. This remarkable result 

has significant practical value since the first transverse period of any finite-span 

isolated bridge with transverse restrains at the end abutments is merely offered with 

confidence from the solution of the Equation (16). 

It is worth noting that beyond the value 100)2/( n  the transverse period of the 2-

spn deck departs from the single master curve. This is because beyond 

)2(100  n the spring at midspan is stiff enough so that the mode shape of the 

bridge departs appreciably from the half-sine and tends to the mode shape shown at 

the bottom of Figure 8.  

 

 
 

Figure 12. Approximation of the half-sine transverse mode shape of an isolated deck 

with a triangle together with the normalized transverse displacement of the bearings 

above the piers. 

 

 

CONCLUSIONS 
This paper examines the eigenvalues of relatively long seismically isolated bridges in 

which the transverse displacement of the deck at the end-abutments is restricted. With 

this restriction the deck is fully isolated along the longitudinal direction, while along 

the transverse direction the deck is a simple supported beam at the end-abutments 

which enjoys concentrated restoring forces from the isolation bearings above the 

center piers. This study first investigates mathematically the eigenvalue problem of a 

two-span isolated deck and subsequently examined numerically a 4-span and a 8-span 

isolated deck. The study concludes that regardless of the value of the isolation period 

along the longitudinal direction there is a certain length beyond which the transverse 

period of the deck will exceed the longitudinal isolation period. The value of this 

length depends on whether the deck is isolated on elastomeric or sliding bearings. 

The transverse period of the deck when spherical sliding bearings are used will be 

always shorter (stiffer configuration) than the transverse period offered by elastomeric 

bearings which give the same isolation period along the longitudinal direction. 

Accordingly, this finding may influence the design of the deck in association with the 

selection of the type of isolation bearings in order to achieve the target transverse 

period. The above results were obtained only after considering local springs at the 

deck since the beam on distributed elastic supports (Beam on Wrinkler foundation) is 

unable to capture this phenomenon. Finally, using arguments from dimensional 

analysis the paper shows, that the normalized transverse eigenperiods of any finite-

span deck are self-similar solutions which are independent of the longitudinal  
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Figure 13. Master curve of the first transverse period of any multi-span isolated deck with 

arbitrary longitudinal isolation period.  

 
isolation period of the deck or whether the deck is supported on elastomeric or 

spherical-sliding bearings. This remarkable self-similar behavior dictates that the first 

transverse period of any finite-span isolated deck with transverse restrains at the end 

abutments is merely offered from the analytical characteristic equation of the two-

span beam. 
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