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Abstract 6 

When a free-standing column with a given base becomes taller and taller, there is a competition 7 

between the increase in its size (more stable) and the increase in its slenderness (less stable). This 8 

paper investigates how these two competing phenomena affect the stability of tall, slender, free-9 

standing columns when subjected to horizontal and vertical ground shaking. The main conclusion 10 

of the paper is that the outcome of this competition is sensitive to local details of the ground 11 

shaking and the dominant frequency of a possible coherent, distinguishable pulse. The often 12 

observed increase in stability due to increase in height (despite the increase in slenderness) may 13 

be further enhanced due to a sudden transition from the lower mode of overturning with impact to 14 

the higher mode of overturning without impact. The paper proceeds by offering a simple 15 

mathematical explanation why the vertical ground acceleration has a marginal effect on the 16 

stability of a slender, free-standing column; and concludes that the level of ground shaking that is 17 

needed to overturn a tall free-standing column of any size and any slenderness  is a decreasing 18 

function of the length scale, 
2

ppTa  of the dominant coherent acceleration pulse normalized to the 19 

base-width of the column. 20 

 21 
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Introduction 22 

During ground shaking, the more slender among two equally tall structures is less stable and one 23 

can show via static equilibrium that the ground acceleration needed to uplift a free-standing 24 

rectangular column is g (width/height). Nevertheless; upon uplifting, there is a safety margin 25 

between uplifting and overturning of slender, free-standing columns and that as the size of the 26 

column increases (when the slenderness is kept constant) this safety margin increases appreciably 27 

to the extent that large free-standing columns enjoy ample seismic stability (Kirkpatric 1927, 28 

Housner 1963, Yim et al. 1980, Ishiyama 1982, Zhang and Makris 2001, Konstantinidis and 29 

Makris 2005, Makris 2014 and references report therein). Accordingly, when a column with a 30 

given base b2 , becomes taller and taller, there is a competition between the increase in the size 31 

of the column (more stable) and the increase in its slenderness (less stable). This paper investigates 32 

how these two competing phenomena affect the stability of tall, slender, free-standing columns 33 

when subjected to horizontal and vertical ground shaking. The findings of this study are used to 34 

assess the trend through the centuries of increasing the size and slenderness of free-standing 35 

columns that create the emblematic peristyles of archaic, classical and roman temples. Our findings 36 

have also implications in the design of tall bridge piers where the concept of rocking isolation 37 

becomes attractive (Makris and Vassiliou 2014, Makris 2014). 38 

Figure 1 shows the size and slenderness of selected monolithic columns from the peristyles of 39 

ancient temples ranging from the archaic period to the early roman period (Powell 1905, Dinsmoor 40 

1975, Mark 1993, Fletcher 2001). Interestingly, with the exception of the slenderness of the 41 

column from the Temple of Olympic Zeus in Syracuse (480 B.C.), the general trend is that the 42 

slenderness of monolithic columns increases with time; while, some of the columns built in the 43 
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A.D. years assume very large size while being most slender ( 1.0tan a , Dinsmoor 1975, Fletcher 44 

2001).  45 

This paper presents a comprehensive stability analysis together with the associated overturning 46 

diagrams of three free-standing columns having width at their base, mmb 0.2,0.12   and m0.447 

(as shown in Figure 2). The height of each column during the stability analysis with a given base 48 

is increased incrementally in order to create larger columns with larger slenderness values. Both 49 

horizontal and vertical ground accelerations are considered.  50 

 51 

Equation of motion of a free-standing rocking column subjected to Horizontal 52 

and Vertical Accelerations  53 

With reference to Figure 3 and assuming that the coefficient of friction is large enough so that 54 

there is no sliding, the equation of motion of a free-standing column with size 
22 bhR  , 55 

slenderness )/(tan 1 hb  and rotational inertia 0I  subjected to a horizontal and a vertical 56 

ground acceleration, )(tug
  and )(tvg

  respectively, when rocking around O and O’, is (Yim et 57 

al.1980; Ishiyama 1982; Taniguchi 2002 and references report therein) 58 

0)()],(sin[)()](cos[)()](sin[)(0  ttRtvmtRtumtmgRtI gg
  (1) 59 

0)()],(sin[)()](cos[)()](sin[)(0  ttRtvmtRtumtmgRtI gg
  (2) 60 

Rocking motion initiates when,  tan)
)(

1()( g
g

tv
tu

g

g


 . The aforementioned equations of 61 

motion can be expressed in the compact form (Zhang and Makris 2001, Makris and Vassiliou 62 

2012) 63 
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In equation (3), the quantity oImRgp / is the frequency parameter of the block and is an 65 

expression of its size. For rectangular blocks, )4/(3 Rgp  . Accordingly, overturning diagrams 66 

where the horizontal axis is the size of the column, R , can also be viewed as overturning spectra 67 

given the one-to-one correspondence between the frequency parameter, p , and the size, R of the 68 

column.  69 

The oscillation frequency of a rocking column under free vibration is not constant because it 70 

strongly depends on the vibration amplitude (Housner 1963, Yim et al.1980).  Nevertheless, the 71 

quantity )4/(3 Rgp   is a measure of the dynamic characteristics of the column given that it is 72 

the natural frequency of a rectangular plane with diagonal R2 that is hanging by one of its top 73 

corners. For the mm 74.124.7   free-standing column of the Temple of Apollo in Corinth 74 

(Dinsmoor 1975), sradp /4.1 , whereas for the tall piers of a valley bridge ( mh 202  ), 75 

sradp /8.0 or even less.  76 

Figure 3(right) shows the moment-rotation relationship during the rocking motion of a free-77 

standing column. The system has infinite stiffness until the magnitude of the applied moment 78 

reaches the value sinmgR (without vertical acceleration), and once the column is rocking, its 79 

restoring force decreases monotonically, reaching zero when  .  80 

During rocking motion the ratio of kinetic energy before and after the impact is 
2

1

2

2 / r ; which 81 

means that the angular velocity after the impact is only r times the velocity before the impact. 82 

Conservation of angular momentum just before and right after the impact gives (Housner 1963): 83 
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
r      (4) 84 

The value of the coefficient of restitution given by equation (4) is the maximum value needed for 85 

a free-standing rigid block with slenderness   to undergo rocking motion. Larger values of the 86 

coefficient of restitution than the upper bound value given by equation (4) result to loss of contact 87 

(jumps) during impact. In the event that additional energy is lost because of the inelastic behavior 88 

during impact, the value of the actual coefficient of restitution r will be less than the one computed 89 

from equation (4).  90 

 91 

Overturning Spectra due to Idealized Pulse-Excitations and the Implications 92 

of Multiple Modes of Overturning  93 

Over the last half century an ever increasing database of recorded ground motions has shown that 94 

the kinematic characteristics of the ground near the fault of earthquakes contain distinguishable 95 

acceleration pulses. The early work of Veletsos et al. (1965) on producing elastic and inelastic 96 

spectra due to pulse excitations was followed by the papers of Bolt (1976), Singh (1985), 97 

Somerville and Graves (1993), Hall et al. (1995), Makris (1997), Somerville (1998), Makris and 98 

Chang (2000a,b), Abrahamson (2001), Alavi and Krawinkler (2001), and more recently by the 99 

papers of Mavroeidis and Papageorgiou (2003), Baker (2007) and Vassiliou and Makris (2011) 100 

who used the Mavroeidis and Papageorgiou model (2003) in association with wavelet analysis to 101 

develop a mathematically formal and objective procedure to extract the time scale, pT , and length 102 

scale, 
2

ppTa , of strong ground motions. 103 
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The identification of the pulse period, pT , and the pulse amplitude, pa , of the dominant coherent 104 

pulse is of particular interest because the product, epp LTa 
2

, is a characteristic length scale of 105 

the ground excitation and is a measure of the persistence of the most energetic pulse to generate 106 

inelastic deformation (Makris and Black 2004a,b). The persistence of the pulse, epp LTa 
2

, is a 107 

different characteristic than the strength of the pulse that is measured with the peak pulse 108 

acceleration, pa  (Makris and Black 2004a,b, Makris and Psychogios, 2006 Karavasilis et al.2010). 109 

This paper shows that the level of the overturning acceleration from several pulse-like records 110 

exhibit a decreasing trend when ordered with the characteristic length scale, 
2

ppe TaL  , of the 111 

coherent pulse of the records used. The solid dark line in Figure 4(a) that approximates the long-112 

period acceleration pulse of the NS component of the Takarazuka motion recorded during the 113 

January 17, 1995 Kobe earthquake is a scaled expression of the symmetric Ricker wavelet (Ricker 114 

1943; 1944) 115 
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The value of ppT  /2 is the period that maximizes the Fourier spectrum of the symmetric 117 

Ricker wavelet. Similarly, the solid line in Figure 4(b), which approximates the long-period 118 

acceleration pulse of the Gilroy, Array #6, fault normal motion recorded during the 1979 Coyote 119 

Lake, California earthquake, is a scaled expression of the antisymmetric Ricker wavelet (Ricker 120 

1943, 1944, Vassiliou and Makris 2011). 121 
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in which   is a factor equal to 1.3801 that enforces the aforementioned function to have a 123 

maximum equal to pa . 124 

Prior to the work on wavelike functions and wavelet analysis (Mavroeidis and Papageorgiou 2003, 125 

Baker 2007, Makris and Vassiliou 2011) simple trigonometric pulses have been proposed by the 126 

senior author and his coworkers (Makris 1997; Makris and Chang 2000a,b; Makris and Black 127 

2004a,b) to extract the period and amplitude of the coherent distinguishable pulse. For instance, 128 

the heavy line in Figure 4(c) which approximates the strong coherent acceleration pulse of the 129 

OTE record from the 1973 Lefkada, Greece earthquake is a one-sine acceleration pulse  130 

pnpg Tttatu  0),sin()(      (7) 131 

The various mathematical idealizations of coherent pulse-type ground motions as described by 132 

equations (7)-(9) and shown in Figure 4 are invariably characterized by a pulse period, 
p

pT


2
 , 133 

and a pulse acceleration amplitude, pa . From equation (3), the response of a free-standing rocking 134 

column subjected to a horizontal ground acceleration pulse only, is a function of five variables  135 

),,,,()( ppagpft        (8) 136 

According to the Vashy-Buckingham  -theorem (Barenblatt 1996, Makris and Vassiliou 2012) 137 

equation (8) can be expressed in terms of dimensionless  -products  138 













g

a

p
t

pp
,tan,)( 


      (9) 139 

where   ,  
p

p
  , tan a  and 

g

a p

g  .  140 
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Figure 5 shows the overturning acceleration spectrum of a rigid block with slenderness oa 14                  141 

( 25.0tan/  hb ) due to one-sine acceleration pulse. Figure 5 indicates that as 
p

p
   142 

increases, the acceleration needed to overturn the free-standing column becomes appreciably 143 

larger than the one needed to uplift it  tang . Most importantly, Figure 5 shows that in the case 144 

of a one-sine pulse there are two distinct modes of overturning: (I) overturning with one impact, 145 

and (II) overturning without impact. These two modes of overturning exist for columns up to a 146 

certain size (that is 2.8/ pp  when 25.0tan α ); whereas, larger columns excited to higher 147 

frequency pulses overturn only without impact (mode II).  148 

This bifurcation phenomenon –that beyond a certain size a free-standing column overturns only 149 

without impact; therefore, a much larger acceleration is needed to create overturning –has 150 

important implications on the stability of freestanding columns. This is because, a tall and most 151 

slender column that is large enough so that it can only overturn without impact; may be more stable 152 

than a shorter (less slender) column with the same base that can overturn with one impact. 153 

 154 

Overturning Diagrams due to Idealized Pulses-Horizontal Accelerations Only 155 

In an effort to assess the competing effects of size and slenderness, Figure 6 plots the minimum 156 

overturning acceleration of a one-sine pulse that is needed to overturn a column with base mb 12   157 

(left –say a column from the Temple of Aphaea, Aigina, Greece or a column from the Temple of 158 

Zeus, Aezanoi, Turkey –see Figure 1); a column with base mb 22   (center –say a column from 159 

the Temple of Apollo, Syracuse, Italy) and a column with base mb 42  (right –say one of the 160 

center piers of a modern valley bridge). The horizontal axis shows the size of the column, R  in 161 
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meters, and all three plots originate at a value of R  that corresponds to a minimum slenderness 162 

4/1tan  . In each plot, results are plotted for different values of the duration, pT , of  163 

the pulse ( sssTp 00.1,75.0,50.0 and s50.1 -see Figure 4). Since each plot is for a given value of 164 

the column base, in each plot the slenderness of the column increases as the size R increases.  165 

Figure 6 shows a remarkable result –that for moderately-long duration pulses (say as long as 166 

sTp 0.1 ) the increase in the column size offsets the anticipated decrease in the column stability 167 

due to the increase in slenderness. Interestingly, for values of 8/1tan   a further increase in the 168 

column height (further increase in the slenderness), the overturning diagrams assume a slightly 169 

positive slope indicating that size “wins” over slenderness. On the other hand, for the longer 170 

duration pulse where sTp 50.1 , the overturning diagrams assume a negative slope indicating that 171 

slenderness prevails over size.  172 

The two opposite trends can be explained by examining the participation on the moment of inertia 173 

of the column (proportional to the square of the size) in the equation of motion given by (3). In the 174 

event of a long duration pulse (a slowly increasing ground acceleration), upon the column uplifts 175 

(  tan)( gtug
 ) it will rotate slowly developing a feeble angular acceleration. Given the low 176 

angular acceleration the engagement of the rotational inertia (proportional to 2R ) of the column is 177 

weak and in this case the slenderness of the column has a dominant effect over size.  178 

In the event of a shorter duration pulse (more high-frequency pulse), the free-standing column 179 

experiences finite rotational accelerations which engage vividly the rotational inertia of the column 180 

(Makris 2014). In this case the dynamic seismic resistance of the free-standing column is enhanced 181 

with the active participation of its rotational inertia –a quantity that is proportional to the square 182 

of the column size. Accordingly, in this case the increase in the size of the column offsets the effect 183 

due to the increase of the slenderness.  184 
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Figure 7 plots the minimum overturning acceleration of a symmetric Ricker wavelet that is needed 185 

to overturn the three free-standing columns shown in Figure 2 with base mmb 0.2,0.12   and 186 

m0.4 . Again the horizontal axis expresses the size of the column, R , in meters and all three plots 187 

originate at a value of R that corresponds to a minimum slenderness of 4/1s . In each plot, 188 

results are plotted for different values of the duration, pT  of the Ricker pulse. For the column with 189 

width mb 0.42  , the overturning acceleration amplitudes that correspond to a duration of 190 

sTp 5.0 are not shown because they are exceedingly large (over 20g). In each plot as the size R191 

increases, the slenderness of the column also increases given that each plot is for a given value of 192 

a column base.  193 

 194 

Bifurcation to a higher overturning mode 195 

In Figure 7, in addition to the trends that were observed and discussed in Figure 6 (overturning 196 

diagrams for a one-sine pulse) we observe a new trend that is due to the multiple modes of 197 

overturning discussed in the previous section. In all three plots shown in Figure 7, there are 198 

occasions where the overturning diagrams show a sudden jump to higher overturning 199 

accelerations. This happens because as the size of the column increases (even if it becomes more 200 

slender) the column assumes a size that is large enough so it can no longer overturn with one 201 

impact; and it can only overturn without impact –therefore, requiring an appreciable larger 202 

overturning acceleration. It is because of this bifurcation phenomenon (transitioning to a higher 203 

overturning mode) that a tall and slender column may be appreciably more stable than a much 204 

shorter column with the same base b2 . For instance, Figure 7 (center, mb 0.22  ) indicates that 205 

when a column with slenderness 8/1 ( m16 tall) is excited by a Ricker pulse with period 206 
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sTp 75.0 it is more stable that the column with the same base ( mb 0.22  ) and slenderness, 207 

6/1s ( m0.12 tall). 208 

Figure 8 illustrates this bahavior by plotting rotation and angular velocity time histories of two 209 

columns having width mb 0.22  and heights mh 0.122  (left) and mh 0.162  (right). The m0.12  210 

tall column on the left overturns with one impact (the rotation history crosses the 0α/)(t  line). 211 

On the other hand the m0.16 tall column on the right experiences an initial very high rotation 212 

without overturning and during the course of re-centering it reverses its motion prior to impact and 213 

overturns without experiencing any impact.  214 

Figure 9 illustrates the same behavior by plotting the rotation and angular velocity time history of 215 

the two columns having width mb 0.42  and heights mh 0.202  (left) and mh 0.242  (right). 216 

Clearly, the behavior illustrated in Figures 8 and 9 is mainly due to the smooth shape of the single-217 

frequency Ricker wavelet input. In the event of a recorded earthquake ground motion that contains 218 

several frequencies this kind of behavior is harder to observe; nevertheless, it may happen. For 219 

instance, in his seminal paper Ishiyama (1982) characterizes the seismic response and overturning 220 

of free-standing column as “highly irregular given that taller columns are sometimes more stable 221 

than shorter ones of the same breadth”. The analysis presented in this section offers a physically 222 

motivated explanation for the reason that in some occasions size prevails over slenderness.  223 

Nearly Self-Similar Response 224 

The overturning diagrams shown in Figure 6 and 7 have significant practical value since they 225 

reveal in a direct way the remarkable result, that for moderately long duration pulses the increase 226 

in the column size not only can offset the anticipated decrease in the column stability due to the 227 

increase of slenderness, but in some occasions it may increase appreciably its stability.  228 
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We are now interested to examine whether the several response diagrams appearing in Figures 6 229 

(of Figure 7) are related to each other; or whether each one contains independent information. 230 

Equation (9) dictates that in order to uncover any manifestation of self-similar behavior, the 231 

overturning acceleration values need to be expressed in terms of the dimensionless products, 232 

pp / ,  tana  and ga pg / .  233 

Figure 10 indicates that when the overturning acceleration values are plotted in terms of the 234 

dimensionless products ( ag  /  vs ,  ) all data presented on the three subplots of Figure 7 or 235 

Figure 8 are crowded together; without however collapsing precisely to a single master curve for 236 

overturning with one impact and a different master curve for overturning without impact. This is 237 

because the plots shown in Figure 10 are for all slenderness values (any 41tan /α ). In reality, 238 

the dynamics of the free-standing rocking column is governed by three dimensionless products (239 

αtan,,   



g

a

p

p

g

p
) and only when the overturning spectra are plotted for a single 240 

slenderness (as is the overturning spectrum shown in Figure 5), the data are mathematically self-241 

similar.  242 

 243 

 244 

 245 

Response to Earthquake Excitation-Effect of the Vertical Component 246 

Our investigation proceeds by examining how size and slenderness affect the stability of tall, 247 

slender, free-standing columns when excited by recorded ground motions. Our numerical 248 

investigation first focuses on the monolithic columns of: (a) the Temple of Aphaia, Aegina, Greece 249 

( 101.0tan,27.52,99.02  αmhmb ); and (b) the Temple of Zeus, Aezanoi, Turkey    (250 
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101.0tan,55.92,97.02  αmhmb ). Given that the base-width of these two columns is almost 251 

one meter, the results from the earthquake response analysis can be compared with the  252 

results from the overturning spectra for mb 0.12  under pulse excitations presented at the left of 253 

Figures 6 and 7.  254 

Figure 11 plots the rotation and angular velocity time histories at the verge of overturning of the 255 

two abovementioned free-standing columns when excited by the amplified horizontal only (left) 256 

and horizontal and vertical components (right) of the OTE ground motion recorded during the 257 

1973 Lefkada, Greece earthquake. In this work, overturning of the free-standing columns is 258 

achieved by gradually amplifying the horizontal and vertical recorded motions by the same 259 

multiplication factor as if the columns were tested physically on a shaking table.  260 

The first observation, is that the vertical acceleration has a marginal effect on the dynamics of 261 

rocking and it confirms the same observation made by Ishiyama (1982) more than three decades 262 

ago. For instance, the Aphaia-Aegina column overturns at 1.784 times the horizontal component 263 

of the 1973 Lefkada record ( gPGA 95.0 ); whereas it overturns at 1.766 times the horizontal and 264 

vertical component of the same record ( gPGA 94.0 ). Interestingly, the Zeus-Aezanoi column 265 

survives a higher level of horizontal ( gPGA 86.0 ) and vertical acceleration ( gPGA 13.0 ) than 266 

when excited by a horizontal acceleration ( gPGA 84.0 ) alone.  267 

There are three reasons for the marginal importance to overturning of the vertical component of 268 

the ground motion. The first and foremost reason is the structure of the equation of motion given 269 

by equation (3). In equation (3) the horizontal input acceleration, )(tu g
 , is multiplied with 270 

)](cos[ tα ; whereas, the vertical input acceleration is multiplied with )](sin[ tα . Given that 271 

we are dealing with slender columns ( 250tan .α ), the quantity, )](cos[ tα , is of the order of 272 

one; whereas, )](sin[ tα  is of the order of )(tα ; which is a small angle. Accordingly, even 273 
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if there is a strong vertical ground acceleration, it enters the dynamics of rocking after being 274 

suppressed with the factor 1)(  tα . The second reason for the marginal importance of the 275 

vertical component of the ground motion is that in general it is a much more high-frequency ground 276 

motion; therefore, it has limited influence on the dynamics of a larger column with appreciable 277 

rotational inertia. The third reason is that the level of the vertical acceleration is in general lower 278 

than the level of the horizontal component. The marginal effect of the vertical acceleration on the 279 

rocking response of the free-standing columns is also shown in the subsequent response analysis 280 

histories presented in this paper.  281 

Our numerical investigation proceeds with the dynamic response analysis of (a) the monolithic 282 

column from the Temple of Apollo, Syracuse, Italy ( 252.0tan,98.72,0.22  αmhmb ); and 283 

(b) a taller column with the same base, mb 0.22   and a height, mh 0.162  ( 125.0tan α ).  284 

Figure 12 plots rotation and angular velocity time histories at the verge of overturning of the two 285 

abovementioned free-standing columns when excited by the amplified horizontal (GIC-180) only 286 

(left) and the horizontal (GIC-180) and vertical components (right) of the Geotechnical 287 

Investigation Center ground motions recorded during the 1986 San Salvador earthquake. The 288 

interesting observation in this case is that when only the horizontal acceleration is considered 289 

(GIC-180) the Apollo Syracuse column overturns at 89.7  times the horizontal component of the 290 

GIC-180 record ( gPGA 75.3 ); whereas, the two times taller and two times more slender column 291 

shown at the bottom of Figure 13 needs 8.95 times the same acceleration record to overturn (292 

gPGA 25.4 ); confirming to a certain extent the findings uncovered with the overturning 293 

diagrams shown in Figure 7. The same trend is observed when the two columns of interest are 294 

subjected to the horizontal (GIC-180) and vertical components of the Geotechnical Investigation 295 

Center showing that a higher acceleration level is needed to topple the taller and more slender 296 
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column.  297 

Clearly, while this behavior shown in Figure 12 documents the appreciable contribution of the size 298 

to the column’s stability, it needs to be recognized that such behavior is sensitive to the local 299 

kinematic characteristics of the ground motion. Figure 13 plots rotation and angular velocity time 300 

histories at the verge of overturning of the same two columns appearing in Figure 12 when excited 301 

by the amplified horizontal (GIC-90) only (left) and the horizontal (GIC-90) and vertical 302 

component (right) of the Geotechnical Investigation Center ground motions recorded during the 303 

1986 San Salvador earthquake. In this case, when only the horizontal acceleration is considered 304 

(GIC-90), the Apollo Syracuse column survives a higher acceleration level ( gPGA 94.4 ) than 305 

the two-times taller and two-times more slender column which overturns with a gPGA 14.4  306 

acceleration level. Interestingly, the situation is again reversed when in addition to the horizontal 307 

acceleration (GIC-90), the vertical acceleration is also considered.  308 

Figure 14 plots the best matching acceleration wavelet on the GIC-180(a) and GIC-90(b) 309 

components of the GIC ground motion recorded during the 1986 San Salvador earthquake. While 310 

macroscopically both records are best fitted by essentially the same wavelet (there is only a small 311 

difference of a 1/10 of a second in the duration, pT , of the predominant pulse); the results presented 312 

in Figures 12 and 13 show that it is the local kinematic characteristics of the ground motion that 313 

control the final outcome–that is whether eventually size prevails on slenderness (see Figures 13 314 

and 14). 315 

The parameters pa , pT ,  and   of the best matching wavelets of the GIC-180 and GIC-90 records 316 

shown in Figure 14 have been obtained by employing the extended wavelet transform proposed 317 

by Vassiliou and Makris (2011) where in addition to a time translation and a dilation-contraction, 318 
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the proposed transform allows for a phase modulation and the addition of half-cycles. The need to 319 

include four ( pa , pT ,  and  )  rather than two ( pa , pT ) parameters in the mathematical expression 320 

of a single wavelike function to characterize the coherent pulse of a pulse-like record has been 321 

voiced and addressed by Mavroeidis and Papageorgiou (2003). Their proposed elementary 322 

wavelike function that approximates the coherent velocity pulse of a pulse-like record is the 323 

product of a harmonic oscillation with an elevated cosine function, 324 

)2cos(
2

cos1
2

1
)( 






























 p

p
ft

f
tv    (10) 325 

In equation (10), pp Tf /1 , is the frequency,  is the phase and  is the number of half-cycles of the 326 

wavelike function. Equation (10) is a slight modification of the Gabor (1946) “elementary” signal in which 327 

the harmonic oscillation (last term in equation 10) was multiplied with a Gaussian envelop. Both the Gabor 328 

(1946) “elementary” signal and the wavelike function given by equation (10) do not always have a zero 329 

mean; therefore, they are not wavelets with the context of the wavelet transform where the wavelet function 330 

needs to have finite energy and zero mean. Nevertheless, the time derivative of equation (10) is a zero mean 331 

signal and it has been defined as the Mavroeidis and Papageorgiou (M&P) wavelet 332 
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In equation (11), the scale s , of the M&P wavelet is merely the period of the wavelet 334 

pp fTs /1 .  335 

In this work, in addition to the records shown in Figures 4 and 14, four additional strong pulse-336 

like records are used in the response analysis of the free-standing columns. They are all listed in 337 
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Table 1 together with their corresponding parameters pa , pT ,  and   of the dominant, coherent 338 

acceleration pulse as they result from the Vassiliou and Makris (2011) extended wavelet transform. 339 

The four additional acceleration records from the 1971 San Fernando, 1983 Coalinga, 1992 340 

Erzincan and 2004 Parkfield earthquakes are shown in Figure 15 together with their best matching 341 

wavelets.  342 

Figure 16 plots the rotation and angular velocity time histories at the verge of overturning of the 343 

two free-standing columns shown when excited by the amplified horizontal-NS (left) and the 344 

horizontal-NS and vertical component (right) of the ground motions recorded during the 1992 345 

Erzincan, Turkey earthquake. Figure 16 confirms that for longer duration pulses, rocking columns 346 

rotate slower and develop a relatively feeble rotational acceleration. In this case (which for very 347 

long duration pulses asymptotically tends to a quasi-static loading) slenderness dominates over 348 

size.  349 

Figure 17 summarizes the amplified acceleration levels (overturning seismic coefficient,  ) due 350 

to a horizontal ground acceleration alone ( h ) or a combined horizontal and vertical ground 351 

acceleration ( vh  ) of the eight strong records considered in this study which are needed to 352 

overturn: (a) the monolithic column from Temple of Apollo, Syracuse, Italy                                                               353 

( 252.0tan,98.72,0.22  αmhmb ); and (b) a twice as tall column with the same base, 354 

mb 0.22  and height, mh 162   ( 252.0tan α ). Figure 17 reveals that when the overturning 355 

seismic coefficient,  , is ordered as a function of the peak horizontal ground acceleration of the 356 

records, the results do not exhibit any trend. This is because while a recorded ground motion may 357 

exhibit a high peak ground acceleration (see for instance the Pacoima Dam record from 1971 San 358 

Fernando earthquake shown in Figure 15), the column overturns due to a longer duration, 359 
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destructive, coherent pulse (Bertero et al. 1978).  360 

 361 

Analysis at the Limit State (Verge of Overturning) 362 

Figure 17 clearly indicates that the peak-ground acceleration is a poor intensity measure to access 363 

the overturning potential of strong pulse-like ground motions. This is because the overturning 364 

potential of pulse-like ground motion depends not only on the amplitude of the acceleration pulse, 365 

pa , but even more so, on the duration of the acceleration, pT  which influences the seismic 366 

displacement demand with its second power. Accordingly, the overturning potential of pulse-like 367 

ground motions is expressed in this work with the energetic length scale of the pulse
2

ppe TaL   368 

(Makris and Black 2004a,b, Vassiliou and Makris 2011).  369 

Figure 18 plots the same results shown in Figure 17 which are now ordered as a function of the 370 

energetic length scale of the dominant coherent pulse of the record,  
2

ppe TaL   (see Table 1). The 371 

first observation is that, while there is some scattering (due to some high-frequency spikes), the 372 

seismic coefficient gu
overt

g / , needed to create overturning is a decreasing function of the 373 

length scale of the coherent acceleration pulse, eL .Furthermore, Figure 18 shows that for larger 374 

values of eL  (say mLe 5 ) –that is for longer duration pulses, a shorter column is more stable 375 

than the equal-base taller column (slenderness prevails over size). In contrast, for lower values of 376 

eL  (say  mLe 4 ) –that is for shorter duration pulses; therefore, there is a more vivid engagement 377 

of the rotational inertia of the column (Makris 2014), the results are mixed and there are situations 378 

where size prevails over slenderness.  379 
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Within the context of a capacity design framework and with reference to Figure 19, the limit state 380 

of a free-standing rocking column is reached when during ground shaking its rotation,   reaches 381 

its slenderness, –that is when the center of gravity is above the pivot point. Accordingly, within 382 

the context of capacity design, the displacement capacity of a free-standing rocking column is 383 

merely,  384 

bRu  sinmax      (12) 385 

Equation (12), while very simple, shows in a primitive; yet direct way that the seismic capacity of 386 

a slender free-standing column is the product of the two competing size parameters; the size, R , 387 

and the slenderness,  . It essentially indicates that the seismic stability of a tall, free-standing 388 

column depends directly on its base-width  sin22 Rb  rather than solely on the size, R , or 389 

solely on the slenderness,  , of the column. 390 

In view of the result offered by equation (12), the overturning seismic coefficient,  , needs to be 391 

expressed as a function of the length scale of the dominant coherent pulse of the record, 392 

2

ppe TaL  , normalized to the displacement capacity of the free-standing column,  sinRb . 393 

Accordingly, we introduce the overturning potential index, 
αR

Ta

b

L ppe

sin

2

 , to express the 394 

overturning potential of a pulse-like ground motion with acceleration amplitude, pa , and duration, 395 

pT , on a tall free-standing column with any height and any slenderness and base width b2 . The 396 

practical value of the overturning potential index, bLe / , is illustrated in Figure 20 which in 397 

addition to the results presented in Figure 18 it plots the overturning seismic coefficients,  , which 398 

are needed to overturn the remaining columns shown in Figure 2 with bases mb 0.12   and 399 
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mb 0.42  .  400 

Figure 20 reveals that the seismic coefficient, gu
overt

g /
.  that is needed to overturn a tall column 401 

of any size and any slenderness is a decreasing function of the overturning potential index, 402 

bLe / . When 10  any tall, free-standing column most likely overturns. Furthermore, Figure 403 

20 indicates that while a tall, slender column will uplift when the seismic coefficient exceeds the 404 

slenderness (  tan ), the overturning seismic coefficient assumes very large values indicating 405 

that tall, physically realizable, free-standing columns are most stable under earthquake shaking.  406 

On the other hand, the finding from Figure 20, that when 10  any tall, free-standing column 407 

most likely overturns, is valid provided that the peak-ground acceleration ( PGA ) of the ground 408 

shaking is capable to induce uplifting ( tangPGA  ). It is worth mentioning that some, 409 

otherwise devastating, ground motions such as the recent Lamjung-90 record from the 2015 Nepal 410 

earthquake shown in Figure 21 (bottom) may exhibit very long pulse durations, yet, relatively low 411 

ground accelerations. Given that the Lamjung-90 record has a gPGA 16.0 , any column with 412 

16.0tan  , upon uplifting will also overturn given the very long duration of the dominant pulse 413 

( sTp 0.5 ). Figure 21 (top) shows that the mm 00.1600.2  column                                   (414 

125.08/1tan  ), upon uplifting immediately overturns when subjected to the Lamjung-90 415 

record given that 27.38

2


b

Ta
L

pp

e .  416 

 417 

Conclusions 418 
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This paper investigates how the seismic stability of a free-standing column is affected when its 419 

height increases while its width is kept constant. When a column with a given base becomes taller 420 

and taller there is a competition between the increase in the size of the column (more stable) and 421 

the increase in its slenderness (less stable); and the paper concludes that the outcome of this 422 

competition is sensitive to the local details and the frequency of the predominant coherent pulse 423 

of the excitation.  424 

When a free-standing column is excited by a single-frequency mathematical pulse excitations two 425 

opposite trends are identified: (a) in the event of a long duration pulse with a slowly increasing 426 

ground acceleration, upon the column uplifts ( αtan)( gtug  ) the engagement of the rotational 427 

inertia of the column (proportional to 2R ) is feeble; and in this case the slenderness has a dominant 428 

effect over size; and (b) in the event of a shorter duration pulse (more high-frequency pulse), the 429 

free-standing column experiences appreciable rotational accelerations which engage vividly the 430 

rotational inertia of the column (proportional to 2R ) and in this case the increase of the size offsets 431 

the effects due to the increase of the slenderness.  432 

The increase in the stability due to increase in height may be further enhanced due to a sudden 433 

transition from the lower mode of overturning with impact to the higher mode of overturning 434 

without impact. Because of this bifurcation phenomenon a tall and slender column (which can only 435 

overturn without impact) may be appreciably more stable than a much shorter column with the 436 

same base (which can overturn with impact -see Figure 7-). In the event of a recorded earthquake 437 

ground motion that contains several frequencies the abovementioned enhanced stability of a taller 438 

column is harder to observe; nevertheless, it may happen as shown in Figures 12 and 13.  439 

The paper confirms an observation that has been reported in the literature for more than three 440 

decades (yet it has not received the attention it deserves) –that the vertical ground acceleration has 441 
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a marginal effect on the stability of a free-standing column. This is primarily because the vertical 442 

ground acceleration enters the equation of motion after being multiplied with 1)](sin[  tα ; 443 

whereas, the horizontal acceleration enters the equation of motion after being multiplied with 444 

0.1)](cos[  tα .  445 

Finally the paper concludes that the level of ground shaking that is needed to overturn a tall, free-446 

standing column of any size and any slenderness is a decreasing function of the length scale, 
2

ppTa447 

, of the dominant, coherent acceleration pulse normalized to the base-width of the column. 448 
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Table 1. Information pertinent to the strong records used in this study together with the parameters of the best matching wavelet of their 549 

dominant, coherent acceleration pulse.  550 

Earthquake Record 
Magnitude 

WM  

Epicentral 

Distance  

km 

)(gPGA  )(ga p  )(sTp      )(mLe  

1971 San Fernando Pacoima Dam/164 6.6 11.9 1.23 0.3 1.35 0 3 5.36 

1979 Coyote Lake Gilroy Array #6/230 5.74 3.11 0.42 0.35 1.00 0 1 3.43 

1983 Coalinga  Transmitter Hill/270 5.18 10.03 0.78 0.46 0.80 0.79 1.5 2.89 

1986 San Salvador  Geotech Inv. Center/090 5.4 4.3 0.70 0.45 0.70 0 3 2.16 

1986 San Salvador  Geotech Inv. Center/180 5.4 4.3 0.42 0.45 0.80 0 3 2.83 

1992 Erzincan Erzincan/NS 6.9 13.0 0.52 0.34 1.55 1.57 1 8.01 

1995 Kobe Takarazuke/000 6.9 1.2 0.70 0.49 1.15 1.57 1 6.36 

2004 Parkfield Cholame#2/360 6.0 3.01 0.37 0.40 0.90 2.36 1.5 3.49 

 551 

 552 
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Figure 1. Top: Dimensions in meters of selected monolithic ancient columns in chronological order 553 

(Dinsmoor 1975; Fletcher 2001); Bottom: The corresponding slenderness values of the columns shown 554 

above. A free-standing column uplifts when the ground acceleration exceeds tang . 555 

 556 

 557 

 558 

 559 
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 560 

Figure 2. The three columns studied in this paper with constant width mmb 0.2,0.12   and m0.4 ; and 561 

increasing size.  562 

 563 

 564 

 565 

 566 

 567 
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Figure 3. Left: Geometric characteristics of the free-standing column. Right: Moment-rotation diagram of 568 

a rocking column. 569 

 570 

 571 
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 575 

 576 
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Figure 4. Acceleration time histories recorded during (a) the 1995 Kobe, Japan earthquake -NS 577 

component of the Takarazuka record, together with a symmetric Ricker wavelet; (b) the 1979 Coyote 578 

Lake, California earthquake –fault normal component of Gilroy Array#6 record, together with an 579 

antisymmetric Ricker wavelet; (c) the 1973 Lefkada, Greece earthquake –OTE record, together with a 580 

one-cycle sine pulse. 581 
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 582 

 583 

Figure 5. Overturning acceleration spectrum of the free-standing rocking column with 25.0tan 584 

when is subjected to a one-sine acceleration pulse, Lower overturning boundary: overturning with one 585 

impact (mode I); Higher overturning boundary: overturning without impact (mode II). For this given 586 

slenderness 25.0tan α , whenever 2.8/ pp  the free-standing column overturns only without 587 

impact (mode II).  588 
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Figure 6. Overturning acceleration diagrams due to a one-sine pulse that is needed to overturn a free-596 

standing column with base mb 0.12  (left), mb 0.22  (center), mb 0.42  (right). 597 

 598 

 599 

 600 

   

Figure 7. Overturning acceleration diagrams due to a symmetric Ricker pulse that is needed to overturn a 601 

free-standing column with base mb 0.12  (left), mb 0.22  (center), mb 0.42  (right). The sudden 602 

jumps in some diagrams as the size increases is because beyond a certain size the free-standing column 603 

can only overturn without impact (second mode of overturning); therefore, the need for an appreciable 604 

larger overturning acceleration amplitude.  605 

 606 

 607 
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Figure 8. Rotation and angular velocity time histories of the two free-standing columns having width 608 

mb 0.22  and heights mh 0.122  (left) and mh 0.162  (right) when excited by a symmetric Ricker 609 

wavelet with duration sTp 75.0 . The m0.12 column on the left overturns with one impact; 610 

whereas, the m0.16 column on the right can only overturn without impact when subjected to a 611 

much higher acceleration.  612 

 613 
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Figure 9. Rotation and angular velocity time histories of the two free-standing columns having width 620 

mb 0.42  and heights mh 0.202  (left) and mh 0.242  (right) when excited by a symmetric Ricker 621 

wavelet with duration sTp 0.1 . The m0.20 column on the left overturns with one impact; 622 

whereas, the m0.24 column on the right can only overturn without impact when subjected to a 623 

much higher acceleration.  624 
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Figure 10. Overturning acceleration spectra due to a one-sine pulse (left) and a symmetric Ricker pulse 632 

(second derivative of the Gaussian -right). When the data presented in the three subplots show in each of 633 

the Figure 6 and 7 are plotted in terms of the dimensionless products appearing in equation (10) 634 

appreciable order emerges. The data however do not collapse to a single master curve because they are for 635 

various slenderness values (several  terms).  636 
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 645 

Figure 11. Rotation and angular velocity time histories at the verge of overturning of the 646 

columns from the Temples of Aphaia, Aegina, Greece (top) and Zeus, Aezanoi, Turkey (bottom) 647 
when excited by the amplified horizontal only (left) and the horizontal and vertical components 648 

(right) of the OTE ground motion recorded during the 1973 Lefkada, Greece earthquake. 649 
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 650 

Figure 12. Rotation and angular velocity time histories at the verge of overturning of the columns from 651 
the Temple of Apollo, Syracuse, Italy (top) and taller column with twice the height and slenderness 652 

(bottom) when excited by the amplified horizontal only (left) and the horizontal and vertical components 653 
(right) of the GIC-180 ground motion recorded during the 1986 San Salvador earthquake. 654 
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 656 

Figure 13. Rotation and angular velocity time histories at the verge of overturning of the columns from 657 
the Temple of Apollo, Syracuse, Italy (top) and taller column with twice the height and slenderness 658 

(bottom) when excited by the amplified horizontal only (left) and the horizontal and vertical components 659 
(right) of the GIC-90 ground motion recorded during the 1986 San Salvador earthquake. 660 
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Figure 14. Acceleration time histories recorded during the 1986 San Salvador earthquake: (a) 661 

North-South, GIC-180 record; (b) East-West, GIC-90 record together with the best matching 662 

M&P wavelet (Vassiliou and Makris 2011).  663 
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Figure 15. Acceleration time histories recorded during the (a) 1971 San Fernando earthquake –671 

fault normal component of the Pacoima Dam record; (b) 1983 Coalinga earthquake –East-West 672 

component of the Transmitter Hill record; (c) North-South record from 1992 Erzincan, Turkey 673 

earthquake; (d) 2004 Parkfield earthquake –North-South component of the Cholame Array#2 674 

record; together with their best matching M&P wavelets (Vassiliou and Makris 2011). 675 
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 676 

Figure 16. Rotation and angular velocity time histories at the verge of overturning of the 677 
columns from the Temple of Apollo, Syracuse, Italy (top) and taller column with twice the 678 

height and slenderness (bottom) when excited by the amplified horizontal only (left) and the 679 
horizontal and vertical components (right) of the 1992 Erzincan, Turkey earthquake. 680 
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 681 

Figure 17. Overturning seismic coefficient,  , of the amplified ground motions which are needed to overturn the monolithic column 682 

from the Temple of Apollo, Syracuse (dark dots) and a taller column with the same base m0.2  and twice the height (empty circles). 683 

In most case the effect of including the vertical acceleration ( vh  ) is marginal. The values of the overturning seismic coefficient,  , 684 

are ordered with increasing peak horizontal ground acceleration of the records. The results are scattered without exhibiting any trend. 685 
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 686 

 Figure 18. Overturning seismic coefficient,  , of the amplified ground motions needed to overturn the monolithic column 687 

from the Temple of Apollo, Syracuse (dark dots) and a taller column with the same base m0.2  and twice the height (empty circles). 688 

The values of the overturning seismic coefficient,  , are ordered with increasing length scale, 
2

ppe TaL  ,  of the dominant coherent 689 

acceleration pulse of the pulse-like record. The results exhibit a clear trend that is decreasing with the length scale, eL . 690 
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 691 

Figure 19. Two different height columns that have the same base b2 , have the same seismic 692 

displacement capacity equal to half the base width, iiRb  sin . 693 
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 694 

 Figure 20. Overturning seismic coefficient,  , of the amplified ground motions needed to overturn two columns with base 695 

mb 0.12   and height mh 27.52   and m55.9 ; two columns with base mb 0.22   and height mh 0.82   and m0.16 ; and  two columns 696 

with base mb 0.42   and height mh 0.162   and m0.24 . The values are plotted as a function of the proposed overturning potential 697 

index,  , that is the ratio of the proposed overturning intensity measure, 
2

ppe TaL  , to the displacement capacity of the columns, 698 

 sinRb . When 10 , any tall, free-standing column most likely overturns. 699 
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Figure 21. Rotation and angular velocity time histories of a mm 00.1600.2   column                    700 

( 125.0tan  ) when excited by the horizontal component of the 2015 Nepal earthquake                             701 

( gPGA 158.0 ). The slightly larger gPGA 158.0  than gg 125.0tan   is capable to induce 702 

overturning because of the very long duration ( sTp 1.5 ) of the predominant pulse.  703 

 704 
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