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Abstract 

It is a well-known criticism that if the distribution of wealth follows a power law, survey data is 

hardly reliable when it comes to analyzing the richest parts of society. This paper addresses 

this criticism by providing a general rationale of the underlying methodological problem as 

well as by proposing a specific methodological approach tailored to correcting the arising 

bias. We illustrate the latter approach by using Austrian data from the Household Finance 

and Consumption Survey (HFCS). Specifically, we identify suitable parameter combinations 

by using a series of maximum-likelihood estimates and appropriate goodness-of-fit tests to 

avoid arbitrariness with respect to the fitting of the Pareto-distribution. Our results suggest 

that the alleged non-observation bias is considerable, accounting for about one quarter of 

total net wealth in the case of Austria. The method developed in this paper can easily be 

applied to other countries where survey data on wealth are available. 

JEL: C46, C81, D31 
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1. Introduction 

The recent interest in distributional issues came along with the publication of unprecedented 

data sources such as ‘The World Top Income Data Base’, the wealth series published in 
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Piketty & Zucman (2014) or the Eurozone’s Household Finance and Consumption Survey 

(HFCS). In this context, the investigation of the distribution of wealth is either based on 

surveys, like the HFCS, or on administrative data, which is mostly based on tax return 

statistics. Both methods suffer from their own limitations even though administrative data is 

often considered to be more reliable than survey data (e.g. Piketty, 2014). However, the 

differences between both data sources are subtle: While, for instance, inheritance tax data 

allows for estimating representative results for the top age cohort, such data does not 

necessarily deliver solid estimates related to the entire population. Additionally, the concept 

of “wealth” used in most administrative sources might be considerably narrower than 

expected at first hand, simply due to tax-exemptions. Tax avoidance might be an additional 

problem, especially if rich households are more prone to conceal their assets or have more 

resources at disposal to minimize taxes within or beyond legal boundaries. 

Unfortunately, also survey data is far from perfect. Since voluntary participants are not 

required by law to provide correct answers, the reliability of the collected data is often judged 

worse as compared to tax reports, where such a legal enforcement is indeed the case. 

Moreover, sample sizes of typical surveys are much smaller than sample sizes in 

administrative data, which leads to a downward-bias in final estimates, since typical surveys 

do not capture the subtle distributional properties at the very top of the wealth distribution. 

This lack of reliability due to small sample sizes – labelled non-observation bias in what 

follows – is especially relevant for the top of the distribution. In a similar vein, evidence from 

the Fed’s Survey of Consumer Finance (SCF) shows that rich households are less likely to 

participate in surveys about household-wealth, yielding sample selection problems, referred 

to as non-response bias in the literature (Kennickell and McManus 1993, Singer 2006, ECB 

2013). Nevertheless, there are also advantages of survey data. Probably the most important 

one is that surveys usually do not only collect the variable of interest, but also a rich set of 

supplementary information and, thus, allow for asking different and more nuanced research 

questions. Moreover, high quality surveys such as the SCF and the HFCS, employ 

administrative data to improve the sample-design. Specifically, these data allow for taking 

non-observation and non-response problems into account by means of oversampling of rich 

households.1 

In this context our study focuses at the phenomenon of the “missing rich”, that is the 

underrepresentation of very rich households in surveys caused by non-observation bias. 

While in principle the probability of non-observation is the same for all households in the 

population and independent of the level of net wealth, only omissions at the top cause a 

significant bias, since in the segment of the very rich (those within the upper 0,5%-1%), very 

                                                           
1 Within the HFCS this strategy was implemented in the case of Belgium, Germany, Greece, Spain, 
France, Cyprus, Luxembourg, Portugal and Finland (cf. ECB, 2013, 10). 
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few households decisively influence estimations for total wealth and wealth inequality due to 

the power-law characteristics of the underlying distribution (Hoeller et al., 2012, Avery et al., 

1986). In short: wealth at the very top is so skewed, that the few households drawn from this 

segment are not considered as representative for the underlying population. Correcting for 

non-observation bias would allow for addressing one of the major drawbacks of survey data 

compared to administrative data. This latter point is of special importance for those surveys, 

which refrain entirely from oversampling or only use geographical information instead of 

administrative tax data to design the oversampling strategy. Under the hypothesis that wealth 

at the very top follows a Pareto distribution2, we show that wealth estimates based on the 

fitted parameters of that distribution, are able to correct for non-observation bias arising from 

small sample sizes.  

Since neither the issue of the “missing rich” in wealth survey data, nor the correction via fitted 

Pareto distributions is entirely novel, these issues have already motivated a series of studies. 

Cowell (2011), for instance, illustrates how the estimates for wealth inequality depend on the 

scale parameter (i.e. the minimum value m) of the Pareto distribution using data for the 

Netherlands, Sweden, the UK and the US. Bach et al. (2010, 2014) and Bach and Beznoska 

(2011) estimate a Pareto distribution (i.e. the shape parameter α ) for Germany based on a 

journalists’ list of the richest German households, where they choose the scale of the 

distribution on an ad-hoc basis. Vermeulen (2014) uses HFCS data and presents estimates 

of the shape parameter based on arbitrarily chosen minimum values. Additionally, he also 

compares these results to estimates where he adds observations from the Forbes list of 

billionaires to the sample. Finally, Eckerstorfer et al. (2014) estimate the top of the wealth 

distribution in a way that is quite similar to the one in the present study. However, they also 

choose the scale parameter on a simple ad-hoc basis.  

This study proposes a novel method to correct for the absence of the “missing rich” in survey 

data, which has several advantages compared to previous approaches. First, and most 

importantly, it employs a non-arbitrary strategy to determine the parameters of the Pareto 

distribution based solely on statistical testing. Specifically, we do not have to resort to ad-hoc 

assumptions when choosing the scale parameter, which is a key difference to other recent 

and similar contributions like Vermeulen (2014) or Eckerstorfer et al. (2014). Second, our 

approach does not rely on additional sample information. External data such as rich lists 

provided by popular magazines are often not available and entail unresolved concerns about 

data-quality. Third, we motivate our approach solely with reference to a non-observation bias 

and show that the latter is already a sufficient condition for receiving biased survey 

estimates. Hence, we abstain from assuming a differential non-response bias, i.e. that 

                                                           
2 According to the survey of Davies and Shorrocks (2000), empirical work on personal wealth-holdings 
shows that the top tail of wealth distributions is indeed well approximated by a Pareto distribution. 
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wealthier households have a higher propensity to refuse participation in surveys, which 

would reinforce the downward bias in survey data but is hardly observable in practice.3 

However, our proposed approach is nonetheless applicable to situations where non-

observation and differential non-response biases occur simultaneously: since both biases 

lead to a lack of information at the top of the distribution, the very same treatment should 

also suffice to remedy such a collusion of biases. 

The remaining paper is structured as follows: Section 2 motivates our paper and illustrates 

the non-observation bias and its emergence via a Monte Carlo experiment. This approach 

allows us not only to illustrate the bias, which arises when small samples are drawn from 

skewed distributions, but also to show how estimates can be improved by means of the 

suggested procedure in a relatively simple setup, given the assumption of a Pareto 

distribution is indeed valid. The third section focuses on this latter point and explains the 

more specific method used to test the validity of the underlying Pareto assumption and to 

correct the original data for the case of the Austrian HFCS-sample. Section 4 presents the 

corrected wealth measures and compares them with the original HFCS statistics. Section 5 

assesses the robustness of our findings by comparing them to non-estimated data from the 

Austrian counterpart of the Forbes list of billionaires (the so called Trend list) and also 

presents upper and lower bounds with respect to irregularities and outliers within the dataset. 

The final section concludes. 

2. Non-observation bias in surveys: an illustration  

Heavily skewed distributions behave very differently compared to commonly used normal 

distributions. In the case of the Pareto distribution a small number of observations at the very 

top have a strong impact on aggregate parameter estimates. Thus, a sample from a 

population following a Pareto distribution needs to be rather large in order to capture some of 

these few but highly important observations at the very top, which are necessary to obtain 

representative results. Since actual surveys only cover tiny fractions of the underlying 

population (SCF 2010: 0.06‰, HFCS net-samples: e.g. Austria 0.63‰, Germany 0.09‰, 

France 0.54‰) standard sampling strategies under these circumstances lead to a significant 

underestimation of population quantiles.4 This section is dedicated to illustrate this problem 

by means of a Monte Carlo simulation. In turn we also demonstrate the effectiveness of 

estimating a Pareto distribution in order to deal with the underlying bias. 

Assume the following setup: the top of a country’s wealth distribution consists of 

000,500=N  households. Within this group net wealth is greater or equal than € 100,000 

                                                           
3 Although there exists some empirical evidence pointing to this possibility; see, for instance, 
Kennickel and McManus (1993). 
4 Given the sample design does not include or only includes low quality oversampling procedures 
(using geographical instead of information on household income and wealth from tax statistics). 
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(our scale parameter m) and distributed according to a Pareto distribution with a shape 

parameter 3.1=α . How well can one estimate the population’s total wealth based on 

random sampling?  

In order to answer this question, we first compute each household’s wealth holdings based 

on the distribution parameters. This can be done by exploiting the facts that the 

complementary cumulative distribution function (ccdf) in the Pareto case is given by 

α)/()( xmxXP =>  and that )( xXP >  can be approximated by Nr /  where r is the rank of 

the individual with wealth x and N denotes the population size. As a result each individual’s 

wealth can be computed as a function of its rank r, population size N and the two parameters 

of the distribution (m and α ). Total wealth of this population is equal to € 208 billion.  

In a next step we draw random samples with increasingly large sample sizes (n), beginning 

from 0.1‰ in steps of 0.1‰ up to 0.5% of the population. Since we draw 200 independent 

samples in each step, we arrive at a total of 10,000 synthetic datasets and estimate the 

population wealth based on the means of these samples. The telling results are summarized 

in Figure 1: We group the 200 wealth estimates obtained in every step into deciles and plot 

the decile averages. Accordingly, the lower line in Figure 1 shows the average estimated 

total wealth in the first (i.e. lowest) decile for increasingly large sub-samples, while the top 

line shows the average estimated total wealth for the 10th decile. Furthermore, the grey 

horizontal line represents the true population wealth and the two vertical lines show the 

actual sample sizes used by the SCF (0.06‰) and the HFCS in Austria (0.63‰). There are 

three striking results: First, independent of the sample size, estimates in the first seven 

deciles underestimate total wealth. Second, estimates in the 10th decile yield extremely 

volatile and exaggerated estimates. Third, underestimation in the lower deciles as well as 

overestimation in the 10th decile decreases with increasing sample size.  

<INSERT FIGURE 1 HERE> 

Figure 1 directly visualizes the non-observation problem: In most cases the samples do not 

contain enough very rich individuals and therefore underestimate total wealth at the top of 

the distribution. In contrast, when the sample does contain observations of very rich 

individuals, implicitly the weight assigned to these observations is too high and total wealth is 

overestimated accordingly. When interpreting these results it is important to keep in mind 

that surveys such as the SCF and HFCS use samples of 0.06‰ to 0.6‰ of the underlying 

population. For such small segments biases are most intense and underestimation of top 

wealth individuals is highly probable. 

The next step is to demonstrate how estimates of the population wealth can be improved by 

using estimated distribution parameters instead of the sample mean. Thus for each sample 
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the shape parameter is estimated based on a maximum likelihood approach.5 Again we draw 

on the properties of the ccdf to obtain estimates of the population wealth. Similar to figure 1, 

the left panel of Figure 2 shows the decile averages of the estimated total wealth based on 

fitted distribution parameters. On the right, the median as well as the 25th and the 75th 

percentile of the mean-based (grey lines) and Pareto-based estimates (black lines) are 

compared. Both graphs depict samples from 50=n  (i.e. 0.1‰) up to 500,2=n  (i.e. 0.5%). 

The decile plot shows that estimates based on distribution parameters do not systematically 

underestimate population wealth. Rather, over- and undervaluations occur with roughly equal 

probabilities. Moreover the plot on the right reveals that the median of pareto-based 

estimates is very close to the underlying true value. In comparison, the mean-based median 

constantly fluctuates well below that. In addition the 25th percentile of the distribution-based 

estimates is much closer to the true value than its mean-based counterpart. The pareto-

based 75th percentile is larger than the mean-based, especially for small sample sizes up to 

1‰. Overall the right part of Figure 2 demonstrates that the ML approach is able to remove 

the systematic underestimation and to decrease the estimator’s variance.   

<INSERT FIGURE 2 HERE> 

The results presented above are robust to the chosen parameter values of N, m and α . 

Replications of this exercise with α ’s in the range of 1.1 to 2 can be found in the online 

Appendix (part I); further results based on a variation of a broader set of parameter values 

can also be found in the online Appendix. After having demonstrated that the non-

observation problem of the “missing rich” can be tackled by fitting a Pareto distribution (under 

the hypothesis that such a distribution describes the data well), we move on to bring that 

procedure to a real world application. In doing so we are leaving the neatly defined Monte 

Carlo environment behind and have to deal with the twin problem of empirically determining 

statistically adequate distribution parameters and critically asking whether our estimated 

distribution really represents the underlying data. The remaining paper will be dedicated to 

deal with these issues. 

3. Estimating the missing rich: a methodological su ggestion  

In short our methodical approach can be described as follows: In a first step, we fit a Pareto 

distribution6 to the upper tail of the HFCS sample. At this stage the selection of an adequate 

                                                           

5 Starting from the pdf 1/)( +⋅= ααα xmxp  one obtains the log-likelihood function 

∑ +−+=
n

j
jxmxL ln)1(lnln),( αααα  and maximization yields ( )∑= mxn j /ln/α̂ . For 

derivations with slightly different notation see Hill (1975) or Appendix B in Clauset et al. (2009). 
6 The assumption of a Pareto distribution is widely used in studying the distribution of income (see, 
e.g., Feenberg and Poterba, 1993, Piketty, 2003, Piketty and Saez, 2003) and wealth (e.g. Alvaredo 
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scale parameter is of crucial importance, since choosing a lower bound that is too high 

ignores useful information (which reduces the precision of the estimate), while choosing a 

lower bound that is too low leads to a bias in the results (since estimation would involve non-

Pareto distributed data). Therefore, we apply in a second step a bootstrap procedure to test 

the validity of the distribution estimated in the first step. These two steps closely follow the 

method suggested in Clauset et al. (2009). In a third step we eliminate all observations with 

reported net wealth beyond a € 4 million cut-off point from the sample and replace them with 

data points based on the previously estimated Pareto distribution. We illustrate our method 

using data from the HFCS for Austria, but in principle this method can be applied to survey 

data for any other country. Figure 3 provides a graphical illustration of these three steps. The 

elimination mainly affects observations from the 100th percentile and accounts for the fact 

that the sample does not contain observations on net wealth exceeding € 15 million but 

claims to be representative for the whole population. In this context the assumption that the 

data follow a Pareto distribution in the first step is not a restrictive one, since we are only 

interested in the upper tail. Commonly used alternative distributions for modelling household 

wealth such as Dagum or Singh-Maddala are designed to describe the entire interval of 

positive household wealth and the upper tail of those distributions converges towards a 

Pareto distribution. Dagum (2006) even considers this latter property as an essential 

characteristic for any distribution used to describe the behavior of household wealth. 

<INSERT FIGURE 3 HERE> 

In what follows we find that accounting for non-observation bias of the very rich households, 

increases aggregate net wealth (compared to the original HFCS data) by roughly 28% to € 

1,278 billion. The share of the top 1% increases from 23% to 38% and the share of the top 

5% increases from 48% to 59%. Although we limit the maximum wealth obtained from the 

estimated Pareto distribution to € 1 billion per household for reasons of conservatism, i.e. we 

do not use the upper part of the distribution’s tail (see below), we find that the latter describes 

the total wealth of the richest families as reported by the Austrian list of billionaires 

reasonably well (deviating +5% for the richest 30 and -0.7% for the richest 60; see section 

5.1). Since this list, however, fails to distinguish between households and family clans and 

the quality of the data is also difficult to assess, it must be used with caution. 

3.1 Data 

The Household Finance and Consumption Survey (HFCS) is the first comprehensive survey 

on tangible assets, financial wealth, liabilities and expenditures of private households carried 

out in parallel in 15 countries of the Euro Zone (Ireland and Estonia chose to opt out of the 

                                                                                                                                                                                     

and Saez, 2009, Durán-Cabré and Esteller-Moré, 2010, Kopczuk and Saez, 2004, Bach and 
Beznoska, 2011, Bach et al., 2010, 2014, Eckerstorfer et al., 2014, Vermeulen, 2014).  
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HFCS). In Austria the Austrian National Bank conducted the survey in cooperation with the 

Institute for Empirical Social Studies (IFES). In what follows we give a brief overview of the 

survey design (for more details see Albacete et al., 2012). 

The basic reporting unit in the HFCS is the household, which is represented by the single 

person within the household, who felt most competent with regard to the household finances. 

The survey is based on personal interviews conducted between September 2010 and May 

2011. The initial sample consisted of 4,436 households. Eventually, 2,380 households have 

been successfully interviewed, indicating a response rate of roughly 56%. The selection of 

households is based on a 2-stage stratified sampling design, to ensure that the randomly 

drawn participants adequately reflect the composition of the Austrian population. 

Stratification was based on Austrian NUTS-3 regions and municipality size in order to assure 

that households from different regions enter the sample proportionally. Data collection was 

based on computer-assisted interviews. 

It is typical for surveys, especially for those that try to evaluate sensitive information such as 

wealth, income or debt, that participants refuse or are unable to answer certain questions 

(item non-response), which can bias the results. In order to reduce such a bias, missing 

values were inserted ex post using multiple imputation. In this process, missing values are 

replaced through estimated values. This preserves the correlation structure of the dataset 

since one does not have to drop all incomplete observations.7 Imputation was repeated five 

times, producing five different samples – so called implicates. The problem of non-

observation of very rich households (problem of coverage), however, cannot be 

compensated for with this method (nor could any potential bias arising from differential non-

response be compensated by these means).  

Each observation in the dataset received a probability weight in order to adjust the sample to 

the statistical population and to reduce the sample variance. The final survey weights 

emerge from the design weights, which account for unequal probability to be part of the 

sample due to the stratified sample design (unequal probability sampling bias), the post-

stratification weights, which try to correct for erroneous exclusion for instance in the case of a 

wrong postal address (frame bias) and non-response weights, which try to correct for 

unequal probabilities of households not participating in the sample (non-response bias). 

Weight corrections in the latter case only account for factors like the experience of the 

interviewer but do not correct for the potential linkages between household wealth or income 

and response probabilities.  

                                                           
7 If the probability of non-response for certain questions correlates with household characteristics, this 
gives rise to item-non-response bias in sample estimates. By means of multiple imputation this bias is 
corrected and thus we do not address it further. Throughout the paper we use non-response as a 
synonym for unit-non-response in contrast to item-non-response. 
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These preliminary measures, however, cannot resolve the already discussed problem of 

downward-biased estimates at the top of the distribution. This claim is easily confirmed by a 

quick look at the gap between the richest household in the survey (net wealth of € 15 

million8) and the richest individual reported by the Forbes list (€ 3.6 billion, see Table A1 in 

part III of the online Appendix) or the 60th rank (i.e. the “poorest” household) of the list of 

wealthy Austrian individuals and families published by the Trend-magazine (€ 405 million, 

see also Table A1 in part III of the online Appendix). In what follows we provide a statistical 

approach to compensate for this gap and thereby to improve the reliability of estimates by 

correcting for the “missing rich” at the top end of the distribution. 

3.2 Estimating the Distribution Parameters 

Generally, a Pareto distribution has to be established for each implicate. The associated 

cumulative distribution function is denoted in the following way.  

ii
i

i
iiii mxiimplicates

x

m
xXxP

i

≥∧=∀







−=≤= 5...11)Pr()(

α

  (1) 

In this context ix  represents observed net wealth of a given household, im  is the true but 

unknown scale parameter above which the sample data can be described using a Pareto 

distribution and, finally, iα  is an as well unknown shape parameter describing the specific 

form of the underlying power distribution (Pareto alpha). Our approach closely follows 

Clauset et al. (2009) and can be summarized in the following way: the estimators im̂  and iα̂  

are determined by estimating Pareto distributions systematically for increasing subsets of the 

data and choosing that subset and its corresponding parameters which exhibits the best fit to 

the data. We employ Cramer-Von-Mises (CvM) test statistics to compare the relative fit of the 

estimated distributions.9 The exact procedure is documented in the online Appendix (part II) 

to this article, which contains the Mathematica code we used to carry out the steps described 

below. 

First, we fit Pareto distributions by maximum likelihood to increasingly large subsamples 

starting from the 100th percentile. Through expanding the subsample by one additional 

percentile until we reach the 71st percentile, we get 30 different estimates for each iα  and 

im , where im  is equal to the smallest observation within each subsample. The smallest 

subset includes only the data points within the 100th percentile and the largest contains all 

observations between the 100th and 71st percentile. Maximum likelihood (ML) is our preferred 

                                                           
8 Average net wealth of the richest household across all 5 implicates. 
9 A rationale for using the test statistics instead of standard p-values available in software packages is 
provided in section 3.3. 
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estimation method since it is a well-established result that ML estimators are superior to 

other approaches if the data of interest follows a power law (Clauset et al., 2009, Greene, 

2012). The ML estimator in our case is equivalent to the so-called Hill estimator (Hill 1975, 

see also footnote 5 in the previous section). 

Second, we perform a goodness of fit test for each of the 30 subsamples per implicate by 

computing the CvM statistic ( its ), which increases with the difference between the observed 

sample and the estimated Pareto distribution. Thus, low test statistics point to relatively good 

fits. Figure 4 plots these statistics for the upper 30 percentile-subsamples10 and the 

corresponding α̂  across all five implicates. As is evident from Figure 4, the test statistics 

vary considerably between implicates and even more do the α̂ ’s, especially for the first few 

sub-samples. The huge variation in the top of the distribution is very likely the effect of small 

sample sizes, since each percentile only contains roughly 24 observations. 

<INSERT FIGURE 4 HERE> 

Both, the estimations of iα̂  as well as the computations of its , were performed using the 

HFCS data without the corresponding weights. This operation is the only one where we 

ignore weights and we believe there are good reasons for doing so: First, estimation results 

hardly change when weights are taken into account. The difference in the average α̂  across 

implicates is equal to -0.00317, demonstrating not only a minor relative effect, but also 

leading to slightly more conservative estimates (i.e. wealth is distributed more evenly). 

Second, the construction of sampling weights by the Austrian central bank involves a battery 

of unknown regression models and assumptions about the determinants of response 

probabilities. By only using weights for linking the sample to the underlying population, which 

is, for instance, required for the definition of wealth percentiles, we strongly limit the influence 

of those unknown implicit assumptions. Third, if using weighted data to carry out the CvM 

tests, one needs to handle the variation involved in the construction of weights by using re-

sampling weights. While the question how to combine the CvM test with those re-sampling 

weights is far from trivial, such a procedure would also greatly increase complexity and 

computation time involved, since total operations (estimation of iα  and computation of its  for 

each subsample) would increase from 300 to more than 150,000 if the full set of re-sampling 

weights provided by the Austrian central bank is used. 

Our focus was on determining im̂  such that on the one hand it is not sensitive to sample size 

problems (as seems to be the case in the highest percentiles), and on the other hand it does 

                                                           
10 The results do not change if one considers the upper 50 percentiles instead of the upper 30. Fitting 
Pareto distributions to subsamples including data below the 50th percentile is not supported 
theoretically nor does it yield satisfactory fits as the CvM statistics rapidly increase. 
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not rely on ad hoc assumptions alone (e.g. Bach and Beznoska, 2011, Bach et al., 2014) or a 

merely visual inspection of well-known log-log graphs (e.g. Cowell 2011). In this context 

Clauset et al. (2009) illustrate the effect of using unreliable scale parameters on the 

estimates of the shape parameter. Choosing a scale parameter below the true value im  

leads to the inclusion of non-Pareto distributed data and thus to downward biased estimates 

of α . Conversely, choosing a scale parameter above im  ignores potentially useful 

information and, thus, lowers the statistical precision of the estimates and also biases the 

results upwards. Although the method provided by Clauset et al. (2009) is in principal a 

suitable guide to the estimation of the scale and shape parameter, in our case the presence 

of five different and autonomous implicates leads to an additional complication, namely how 

to synchronously identify a good fit across all five implicates. In the application of Wald’s well 

known maximin model (Wald, 1945) we found a satisfying answer to the latter concern: The 

maximin model posits that in the face of different alternatives with uncertain consequences, 

one should rank these alternatives on the basis of their worst-case consequences, which in 

our case corresponds to the worst fit across all implicates, and choose that option where the 

worst-case is at least as good as all other alternatives. The maximin principle introduces a 

certain degree of conservatism to the chosen estimation results by focusing on the relatively 

worst fits and nullifying the impact of single exceptionally well-fitting subsamples across all 

implicates. In detail, we first choose the maximal test statistics (i.e. the worst fit) across 

implicates for each sample size and then identify the minimum of these test statistics (i.e. the 

best fit) across all sample sizes. By applying this procedure we find that the threshold value 

of the 78th percentile proves to be the most suitable candidate for providing a statistically 

reliable estimate for the true value of im . Additionally the interval around the result is 

characterized by small test statistics as well as stable alpha parameters across implicates, 

which increases our confidence in our estimation results, which are presented in Table 1. 

<INSERT TABLE 1 HERE> 

So far we have established what we deem to be a non-arbitrary technique of fitting a Pareto 

distribution to the upper tail of the Austrian HFCS sample. However, even if this upper tail 

does not follow a Pareto distribution, the according parameters could still be estimated 

without noticing the mistake. Therefore, we rigorously test the hypothesis that our data is 

actually drawn from a Pareto distribution prior to using these estimates for correcting the 

HFCS sample. 

3.3 Testing the Pareto-Hypothesis  

In the previous subsection we elaborated on how to find reliable distribution parameters. 

However, it remains to be shown that the estimated distributions truly represent the data. On 
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first sight this might seem superfluous, since the p-values based on the Cramer von Mises 

tests would provide an immediate answer to the question whether the data within a given 

subsample is statistically different from the estimated distribution or not. However, those 

standard p-values are derived under the assumption that the distribution against which the 

data is tested is perfectly known, whereas in our case the distribution to test against is just an 

estimation. As a result, the standard p-values are not suitable for clarifying this issue.  

In this context we again follow Clauset et al. (2009), who suggest comparing the goodness of 

fit of the original data and its estimated distribution with the goodness of fit of newly created 

data vectors based on the original data as well as the estimated distribution. While these new 

data vectors are created by means of a bootstrap – that is repeated random drawing from the 

estimated distribution (above im̂ ) and the original data (below im̂ ) – the general idea is to 

test the goodness of fit of the original estimation against the goodness of fit of a series of 

estimations based on these newly generated data vectors, where the data for top-wealth 

households (i.e. all households above im̂ ) is already known to truly follow a Pareto 

distribution. If the goodness of fit of the original estimation is not significantly worse than the 

goodness of fit of the estimations based on the newly generated data vectors, there is good 

reason to believe that the estimated distribution adequately represents the underlying data.  

Following this strategy, we create 000,10=B  synthetic datasets ( ibX  where Bb ...1= ) for 

each implicate by drawing a number ijx  with probability nt i /  from the previously estimated 

distribution with the parameters iα̂  and im̂ , where 380,2=n  is the number of total 

observations and it  is the number of observations above im̂ . With probability nt i /1−  we 

pick a random element ijx  from the original dataset below im̂ . Repeating this process from 

nj ...1=  yields a synthetic dataset with 2,380 observations where all elements above im̂  are 

drawn from the originally estimated distribution. For each implicate we use these 10,000 data 

sets to compute an artificial p-value ( ip ) for the hypothesis test that the original data follows 

a Pareto distribution with iα̂  and im̂  more closely than the synthetic datasets follow their 

estimated distributions. Thus we want to define a p-value for testing the Null-hypothesis that 

the HFCS data truly follows a Pareto distribution above our estimated scale parameter 

against the alternative hypothesis that it does not follow a Pareto distribution. In order to 

obtain this p-value, we repeat all the steps from section 3.2 for each of these synthetic 

datasets: Scale parameters ibm̂  and shape parameters ibα̂  are estimated as described 

above and the corresponding CvM test statistics ibts  are computed. Since the synthetic 

datasets truly follow a Pareto distribution above ibm̂  these test statistics are capturing only 
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random variations but no systematical differences between the synthetic data and the 

estimated distribution. Thus whenever the condition 

ibi tsts ≤   (2) 

holds, the difference between the original data and the original estimation is actually smaller 

or equal than the difference between the synthetic data vectors and their respective 

estimated distributions which is purely due to random variation. By counting the instances 

where (2) holds (denoted by ic ) we obtain the p-value ( p ) for our hypothesis after averaging 

over all implicates, i.e.  

∑
=

=
5

1

/
5

1

i
i Bcp   (3) 

The interpretation of this artificial p-value is pretty standard, namely that below the 10% level 

the Null-hypothesis is rejected since the difference between the HFCS data and the 

estimated Pareto distribution is significantly greater than the differences due to random 

variation in our synthetic datasets. However if enough synthetic test statistics are larger than 

its , the difference between the actual data and the estimated Pareto distribution is mostly 

smaller or equal than pure random variation and thus the Null-hypothesis cannot be rejected. 

Unfortunately the results for each single implicate are partially idiosyncratic and far from 

consistent across all implicates. 

<INSERT TABLE 2 HERE> 

Table 2 indicates that the Pareto distribution is a plausible model for implicates 2, 4 and 5 

and that it is strongly rejected for implicate 1 and weakly for implicate 3. On average, 

however, the hypothesis still holds. We focus on this latter result since the variability 

expressed by the single implicates is due to imputing missing data based on a series of 

different statistical models. Thus, only an average across those implicates seems to be a 

justifiable criterion, since the different implicates have to be interpreted conjointly to 

appropriately consider the variability between implicates.   

3.4 Correcting the Data 

After identifying iα̂  and im̂  we use this information to correct the “missing rich” by removing 

all observations exceeding € 4 million in net wealth from the original data set. We choose this 

€ 4 million cut-off point because the frequency of observations starts to markedly decline 

beyond this level of net wealth. Since patterns slightly differ across implicates, and to verify 

the robustness of our results, we also included two scenarios with € 3 and € 5 million cut-off 
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points respectively (see Figure 5). These variations had only a minor impact on the final 

results (see footnote 11).  

In the standard case all eliminated observations are part of the 100th percentile (except for 

the second implicate, where the 100th percentile starts at € 4.6 million) and represent 

between 11,374 and 44,081 households depicted by 8 to 30 observations depending on the 

specific implicate under consideration. This treatment implies that we assume that the 

alleged non-observation bias affects this group of households and instead suggest relying on 

the estimated Pareto distribution for observations above € 4 million in net wealth.  

<INSERT FIGURE 5 HERE> 

To determine how many households should be added to the sample based on the estimated 

Pareto distribution we look at the number of households ( iHH ) with net wealth holdings 

above im̂  and below ≡µ € 4 million according to the HFCS data set. iHH  varies between 

785,924 for 2=i  and 817,418 for 1=i . By drawing on the properties of the underlying 

probability distribution function we compute the number of households above € 4 million ( iH ) 

by:  

)(

)(1

µ
µ

i

i
ii P

P
HHH

−
=    (4) 

iH  varies between 22,982 for 5=i  and 40,251 for 2=i . This approach ensures that the 

correction for rich households only depends on high quality observations from the HFCS 

data. Given iH , one can derive the wealth ix  for each household above µ  by exploiting the 

fact that  

( )
ii

x

i

i
iiii HHH

H

x

m
xXxP i

i

+
≡








=>=−

α

Pr)(1  

Rearranging terms gives  
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where 
ixH  is the number of households reporting a net wealth of at least ix  or, put 

differently, the rank of a given household. By applying (5) consecutively we generate new 

observations for net wealth above µ . It is important to note, however, that we limit net assets 

by € 1 billion in our application (specifically: any observation above that value was set equal 
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to € 1 billion). This truncation of the newly generated sample is motivated by our preference 

for conservative estimates as well as a certain modesty regarding the possibility to correctly 

estimate net wealth for a tiny group of people at the far end of the distribution. However, we 

will return to this issue when asking for the robustness of our final results (section 5).  

Finally, we have to slightly adapt the sample weights, since the number of households added 

and the number of households removed from the sample differ. The net-change, which is the 

difference between the number of households above € 4 million according to the original 

HFCS sample and iHH  varies between +16,280 ( 1=i ) and – 3,828 ( 2=i ). In the latter 

case, the original HFCS data set reported a higher number of households above µ  

compared to the estimated Pareto distribution. Thus in this case the weights of the remaining 

observations below the estimated scale parameter need not to be reduced but increased. In 

either situation the alteration of sampling weights is done proportionally to the total number of 

households less the observations above im̂ . For example the net change in the first 

implicate (+16,281) in relation to the number of households below im̂  equals 0.55% of total 

weights. As a result the weights for observations below the scale parameter are reduced by 

0.55%. On average (across the implicates) the weights are reduced by 0.21%. After having 

corrected our survey data for the “missing rich” we may now contrast the estimates derived 

from the corrected data with those obtained from the original HFCS-data 

4. The Impact of the Missing Rich: Distributional S tatistics 

Looking at the impact of the proposed data correction on the overall structure of the sample 

shows how the population is distributed among different segments of wealth, where the 

relative changes between original and corrected data have been highlighted (Figure 6). In 

this representation we only observe minor changes: The share of the population possessing 

net wealth greater than € 500,000 slightly increases (from 11.32% to 11.48%) due to the 

increase in very rich households. Correspondingly the remaining shares decrease slightly. 

<INSERT FIGURE 6 HERE> 

While Figure 6 implies that the overall structure of the sample really has not changed much, 

it remains unclear how the increase in the top-group of wealth-holders affects aggregate 

estimates. In this context Table 3 (where values for the original HFCS data can be found in 

parenthesis) is more revealing: it indicates that the total wealth of the richest percentile grows 

by more than 100%, namely from € 237 billion to € 497 billion. From this it follows that total 

wealth also increases significantly from roughly € 1000 billion to about € 1,278 billion.11 Thus, 

                                                           
11 When the cut-off point above which HFCS observations are replaced by the estimated Pareto 
distribution is changed from € 4 million to € 3 or € 5 million, the resulting total wealth estimates are € 
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this analysis indicates an increase of 28% in the estimate for total wealth due to the 

proposed data correction. In this context the decrease in the share of percentiles 99-96 is 

due to the correction of the number of households richer than € 4 million, which in turn 

implies that all households drop in ranks.  

<INSERT TABLE 3 HERE> 

Correspondingly, the share of wealth held by selected population groups changes 

significantly, with the most remarkable change in the share of the richest percentile, which 

increases from 22.9% to 38.2%. The share of the poorest 50% of the wealth distribution, on 

the other hand, decreases from 2.8% to 2.2%. 

These changes in estimates for total wealth and its distribution are mirrored by the change of 

central indicators like the Gini-coefficient, which rises from 0.762 to 0.811 if its calculation is 

based on the corrected data. To further illustrate the changes in the estimated wealth 

distribution, Figure 7 compares a Lorenz curve for the original data to a Lorenz curve for the 

corrected data. As can already be inferred from Table 3, we observe a significant shift in the 

Lorenz curve due to the correction of the data as exemplified in the foregoing section. 

<INSERT FIGURE 7 HERE> 

In sum our estimations suggest that the size of wealth omitted due to the non-observation 

bias (possibly colluded with differential non-response effects) inherent in survey designs 

related to private wealth holdings is indeed significant. The estimate for total wealth changed 

by roughly a quarter although the correction of the data affected less than 1% of the 

underlying population. Consequently, one has to conclude that the implications of these 

biases are far from trivial and can hardly be ignored when dealing with top-wealth data. 

However, one possible objection to this conclusion is to question the robustness of the 

estimated distribution used for the correction of the initial data, since the reliability of the 

results presented here strongly depend on the validity of our distributional assumptions. In 

what follows we offer a series of such robustness checks, thereby scrutinizing the adequacy 

and plausibility of our methodological setup as well as the resulting estimations. 

5. Robustness Checks 

Given the sharp increase in net wealth holdings in the 100th percentile due to the data 

correction we suggest in section 3, the reader may be interested in the uncertainty of our 

estimates or be sceptical about our results anyway since they depend entirely on the 

statistical Pareto model. One way to assess the validity of our estimates is to compare them 

                                                                                                                                                                                     

1,266 and 1,284 billion respectively. The share of the 100th percentile changes from 38.2% to 38.6% in 
case of € 3 million and remains unchanged when a € 5 million cut-off is used.  
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to the results of similar studies based on the same dataset. Two such studies became 

available very recently (Eckerstorfer et al. 2014, Vermeulen 2014) and their results are 

broadly comparable to ours: Eckerstorfer et al. 2014, for instance, estimate the share of the 

top-1% of wealth-holders to be 39.7% whereas the estimates provided by Vermeulen (2014) 

range from 30% to 41%. Our estimate of 38.2%, hence, seems to be well in line with the 

results obtained from broadly comparable studies. In addition to this comparison we try to 

validate the robustness of our results in two ways: first we compare some specific 

implications of our estimated Pareto distribution with real data provided by journalists’ lists of 

very rich households. Second, we provide upper and lower bounds of estimated net wealth 

with respect to data variability across subsamples by means of a bootstrap.  

5.1 Comparing results to the Austrian list of billionaires 

When correcting the original HFCS-data for non-observation bias we assumed maximal 

wealth to be equal to € 1 billion. Practically, this implied that net wealth of all households 

exceeding € 1 billion according to the estimated Pareto distributions where set to € 1 billion. 

Although this restriction might lead to a significant underestimation of total wealth, we 

nonetheless imposed it for reasons of statistical conservatism. However, even though we do 

not want our estimates to rely on the upper end of the distribution’s tail, we can still relax this 

restriction in validating our results as well as our general strategy.  

In doing so we first compared the estimated number of households with net wealth greater 

than € 1 billion as implied by our estimated distributions with the available media information. 

The latter varies considerably between years (and it is unclear whether these variations are 

due to actual changes in wealth or just to changes in journalists’ informational status), from 

19 for 2010, to 24 for 2011 (the year of the HFCS survey, see Table A1 in part III of the 

online Appendix) to 30 as reported in 2013. Moreover, it does not distinguish between 

households and family clans: some of the entries can be decomposed into several 

households. Accounting for this can increase or decrease the number of billionaires, since 

some clan fortunes are large enough to make its individual members billionaires and others 

are not. In order to get a rough understanding of this, we tried to decompose this list into 

individual households (see Table A2 in part III of the online Appendix). In doing so we used 

information available in the media to assess the number of members (households) of these 

family clans and divided the fortune equally among them. We are aware that this method is 

rather crude, but the reader should remember that this comparison only serves to get a 

better intuition for the reliability of our results. In our case this adjustment does not lead to a 

change in the number of billionaires, which stays constant at 24, since some families drop 

out while others split into several billionaires. Our own calculations from the Pareto function 

point to 30 billionaires and thus are well in line with the figures reported by journalists. 
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Probably more interesting than the number of billionaires is the total volume of wealth at the 

top as reported by journalists and as predicted by the Pareto distribution. The results of such 

a comparison are shown in Table 4. Specifically, the total net wealth of the richest 30 

households according to the (unrestricted) Pareto distribution is 5% lower than net wealth 

reported by the top 30 entries of the journalist list. If we look at the upper 60 entries, we see 

that the Pareto distribution comes even closer to just 0.7% deviation. However, as we have 

already argued, the journalist list has the disadvantage that it does not distinguish between 

clans and single households. If we compare the Pareto estimates to the list where we tried to 

take this fact into account, using the Pareto distribution to estimate the richest 30 households 

leads to an overestimation of 11.8% (Top 30) and 13.2% (Top 60) respectively. However, 

this rather close alignment between our estimation and the available journalists’ data should 

not be overvalued, since net wealth reported by the Forbes list (which reports only five 

Austrian billionaires) differs substantially from net wealth reported in the Trend list (see again 

Table A1 in part III of the online Appendix). At the same time this also points to the problem 

related with using information from journalist lists. 

<INSERT TABLE 4 HERE> 

5.2 Assessing the Sampling Variation 

Due to the complex survey design of the HFCS, which involves stratified sampling as well as 

multiple imputation to correct for item-non-response, one is confronted with serious 

complications when trying to compute confidence intervals reflecting the uncertainty of the 

estimation process. While current literature offers procedures to compute confidence 

intervals with either multiply imputed data (Rubin, 1987) or data from complex surveys (Rao 

and Wu, 1998, Rao et al., 1992, Kolenikov, 2010), there is, according to our knowledge, no 

contribution which shows how to construct appropriate confidence intervals when multiple 

imputation as well as a complex survey design are used in the data collection process. 

Therefore, we implemented an approach to validate the robustness of our estimates with 

regard to sampling variation and suggest focusing only on the uncertainty arising from the 

variability of the original data. In doing so, we apply a bootstrap in order to test the 

robustness of our results with respect to random resampling. Even though we cannot 

express the uncertainty of the estimation process itself this way, we are still able to 

demonstrate the robustness of our results due to potential outliers and irregularities within 

certain subsets of the original HFCS sample. However, it is still important to bear in mind that 

the bounds reported below do not serve as direct substitutes for traditional confidence 

intervals.  
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The bootstrap procedure for computing an upper and lower bound of iα̂  involves the 

construction of 000,1=U  random samples consisting of 587,13/2 ≈⋅= nnU  observations 

randomly picked from the original HFCS data set for each implicate. Then we re-estimate iα̂  

for each random sample. After ordering them in ascending order, the 26th estimate of iα  is 

identified as the lower and the 975th as the upper bound of iα̂ . By repeating the data 

correction procedure described in section 3.3 for the upper and lower bound iα̂ ’s, we obtain 

new estimates for the distribution of net wealth. The results are reported in Table 5 (already 

averaged across implicates). As one can see, the upper bound of net wealth within the 100th 

percentile deviates approximately by € 135 billion from the point estimate while the lower 

bound deviates by € 110 billion, indicating that the € 237 billion reported in the original HFCS 

data are very likely to be downward biased. 

<INSERT TABLE 5 HERE> 

6. Conclusion 

In this paper we tried to correct for the underrepresentation of the wealthiest households by 

means of a novel approach based on Clauset et al. (2009). There are several conceptual 

advantages of this approach in comparison to former contributions: first, it allows for 

correcting for the downward bias inherent in survey data without resorting to alternative data-

sources on top wealth households. Second, the method can be justified simply by referring to 

a non-observation bias, which naturally arises if small samples are drawn from a skewed 

distribution. Finally, and most importantly, we employed a Cramer-von-Mises test instead of 

graphical evidence or ad hoc assumptions to determine a suitable scale parameter for the 

Pareto distribution.  

In order to illustrate the capability as well as the specific application of our approach we focus 

on the Austrian case. Applying our procedure significantly influences final estimation results. 

The estimated aggregate wealth increase from about € 1000 billion to € 1278 billion, where 

the increase is mainly due to the increase of wealth within the highest percentile (wealth 

within this percentile increases by 110%). Amongst other things it follows that the richest 

10% of Austrian households possess 69.3% of total net wealth instead of the 61% that follow 

from the original HFCS data. The change in the share of the richest percentile is even more 

remarkable: it increases from 22.9% (HFCS) to 38.2%. 

Finally, we address the validity of our results by two main robustness checks: first, we 

compare our results to a detailed list of Austrian billionaires published by Austrian media. 

Thereby, we find that our non-arbitrary approach of fitting a Pareto distribution is very well in 

line with non-sample evidence and also closely fits the data. Second, we compute upper and 
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lower bounds of wealth estimates based on a bootstrap-procedure. Especially the fact that 

the lower bound of our estimates for top wealth is still higher than implied by the original data 

indicates that the underrepresentation of wealthy individuals cannot be explained by potential 

irregularities and outliers in the sample and, hence, is a robust finding. 
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Tables 

Table 1: Estimating the Pareto distribution for the Austrian wealth distribution: Results. 

Implicate iα̂  im̂  

#1 1.28808 € 281,242  

#2 1.14815 € 287,809  

#3 1.3332 € 289,811  

#4 1.24881 € 293,161  

#5 1.36649 € 288,422  

Average  1.276946 € 288,089  

 

Table 2: p-values across all implicates. 

Implicate  #1 #2 #3 #4 #5 Mean 

p-value  0.019 0.2776 0.0983 0.5421 0.1781 0.223 

 

Table 3: Austrian’s richest 5% according to the corrected data.  
Values using original HFCS data in parenthesis. 

Percentile 
Total net 
wealth (in 
billion €) 

Average net 
wealth per 

household (in 
million €) 

Share of 
total net 
wealth 

Culminated share of 
total net wealth 

96 40.8  
(38.8) 

1.1 
(1.0) 

3.2% 
(3.9%) 

58.53% 
(47.6%) 

97 50.3 
(48.7) 

 1.3 
(1.3) 

4.0% 
(4.9%) 

98 66.7 
(65.5) 

 1.8 
(1.7) 

5.2% 
(6.6%) 

99 101.2 
(94.1) 

 2.7 
(2.5) 

7.9% 
(9.3%) 

100 497.3 
(237) 

 13.4 
(6.4) 

38.2% 
(22.9%) 

Total 
Sample 

1,278 
(1,000) 

0.339 
(0.265)  100% 100% 
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Table 4: Total wealth of the richest households (in mio. €) and deviations (%). 

 Top 30 Top 60 

Pareto estimate (total wealth) 87,536 110,077 

Trend list (total wealth) 92,160 109,350 

Trend list, adjusted (total wealth) 78,295 97,201 

Deviation Pareto from Trend list (%) -5.0 0.7 

Deviation Pareto from adjusted Trend list (%) 11.8 13.2 

 

 

Table 5: Upper and lower estimation bounds. 

Lower Bound  Point Estimate  Upper Bound  

Pareto’s Alpha  

35.1=α  28.1=α  21.1=α  

wealth attributed to the richest percentile  

€ 387 billion  € 497 billion  € 633 billion  
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Figures 

Figure 1: Decile averages of the estimated population wealth for sample sizes from 0.1‰ to 0.5% 
(estimations were grouped according to estimated population wealth); estimation based on sample 

mean. 

 

 

Figure 2: left panel: Decile averages of the estimated population wealth for sample sizes from 0.1‰ to 
0.5% (based on a Pareto distribution); right panel: 25th, 50th and 75th percentiles for estimations 

based on the sample mean (grey lines) and a Pareto distribution (black lines). 
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Figure 3: A sketch of the methodological strategy. 

 

 

 

Figure 4: Estimates for Pareto’s α  and corresponding Cramer von Mises test statistics across all 
implicates. 
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Figure 5: Plots of the richest 50 households in each implicate and the cut-off points. 
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Figure 6: Distribution of households along different segments of net wealth based on the corrected 
data and the original HFCS data (in brackets). 

 

 

Figure 7: Lorenz curves for the original data (shaded area) as well as the corrected data. 

 


