Cloud-based cyber-physical intrusion detection for
vehicles using Deep Learning

George Loukas, Tuan Vuong, Ryan Heartfield, Georgia Sakellari, Yongpil Yoon, and Diane Gan

Abstract—Detection of cyber attacks against vehicles is of
growing interest. As vehicles typically afford limited process-
ing resources, proposed solutions are rule-based or lightweight
machine learning techniques. We argue that this limitation
can be lifted with computational offloading commonly used for
resource-constrained mobile devices. The increased processing
resources available in this manner allow access to more advanced
techniques. Using as case study a small four-wheel robotic land
vehicle, we demonstrate the practicality and benefits of offloading
the continuous task of intrusion detection that is based on
deep learning. This approach achieves high accuracy much more
consistently than with standard machine learning techniques and
is not limited to a single type of attack or the in-vehicle CAN
bus as previous work. As input, it uses data captured in real-
time that relate to both cyber and physical processes, which it
feeds as time series data to a neural network architecture. We
use both a deep multilayer perceptron and a recurrent neural
network architecture, with the latter benefitting from a long-short
term memory hidden layer, which proves very useful for learning
the temporal context of different attacks. We employ denial of
service, command injection and malware as examples of cyber
attacks that are meaningful for a robotic vehicle. The practicality
of the latter depends on the resources afforded onboard and
remotely, as well as the reliability of the communication means
between them. Using detection latency as the criterion, we have
developed a mathematical model to determine when computation
offloading is beneficial given parameters related to the operation
of the network and the processing demands of the deep learning
model. The more reliable the network and the greater the
processing demands, the greater the reduction in detection
latency achieved through offloading.

I. INTRODUCTION

Over the last few years, there have been multiple examples
of both proof of concept and real-world attacks against ve-
hicles. While in the past, these would be focusing primarily
on unlocking automobiles and defeating their immobilisers’
cryptographic protection, they have now progressed into being
increasingly cyber-physical [1]], affecting the integrity and
availability of core physical functions, including steering,
accelerating and braking. In 2010 and 2011, researchers from
the University of Washington and University of California San
Diego [2], [3]] were the first to demonstrate highly practical
wireless attacks on a common production automobile, able
to affect several of its core functions, including disengaging
the brakes or selectively engaging them on only one side of
the vehicle while driven at high speed. Since then, several
other researchers have showcased attacks on a variety of
automobiles, and even time-constrained automotive hacking
competitions have taken place within security conferences.
As a result, automotive cyber security is now considered a
primary concern in the industry [4] and an effort has been

made to document a variety of exploitable automotive security
vulnerabilities [5]. At the same time, reports of attacks on
U.S. drones have emerged during the wars in Afghanistan and
Iraq [6], as well as in relation to the alleged hijacking of a
drone by the electronic warfare unit of the Iranian army [7].
Since then, researchers have turned their attention to the cyber
security of unmanned vehicles too, including GPS spoofing
[8]] as well as sensory channel attacks exploiting the physical
limitations of the vehicles’ LIDAR systems [9] and gyroscopes
[10]. Security becomes even more important as driverless
automobiles are becoming a reality, because ensuring their safe
and uninterrupted operation is key for their acceptability by
the public. In the meantime, there is also increasing interest
in the security of industrial, reconnaissance, rescue and other
types of robotic vehicles, each with their own vulnerabilities
and scale of physical impact of cyber attacks against them
(L1]I, [12]].

While vehicles may differ enormously in terms of their type,
size, operation and how safety-critical they are, most tend
to share the following characteristics which make them chal-
lenging to secure: (a) Any cyber security functions on them
are resource-constrained, either because of lack of processing
power or because minimising energy consumption has priority;
(b) most cyber-physical operations that an attacker would tar-
get are time-critical, especially if they affect mobility; and (c)
unlike cyber threats to conventional computer systems, which
have been meticulously observed and statistically analysed for
decades, threats here are largely unknown, and consequently
there are no meaningful datasets to be used for benchmarks.

In combination, the above challenges mean that one cannot
rely on purely preventive security measures, such as cryptog-
raphy, but needs to assume that some attacks will go through
and will need to be detected by the vehicle or its operator
quickly and accurately, using only the very limited resources
that can be afforded for an intrusion detection system (IDS).
One approach for this is to include an onboard intrusion
detection module, which would be trained offline to learn
simple rules in relation to its own normal behaviour [[13]], [[14]
or to the signatures of different types of known attacks based
on different monitored features. When in actual operation,
the vehicle would then monitor these features and apply the
simple rules, which would have a relatively low processing
load. This approach can work well for simple and previously
seen attacks. It can have low detection latency and relatively
high accuracy [15], [16]], but can be considerably less effective
when it encounters unusual conditions or complex attacks.

An alternative approach, which we evaluate here is to run
the intrusion detection process not onboard, but offloaded

to a powerful external processing system, such as a cloud
infrastructure. This can reduce the processing load on the
actual vehicle, but importantly, it can also allow leverag-
ing much more complex intrusion detection techniques, for
instance involving deep learning. In the following sections,
we provide the related work in terms of vehicular intrusion
detection (Section [M), our deep learning based approach to
intrusion detection (Section , and our testbed, experimental
methodology and results for different configurations (Section
[[V). We evaluate the practicality of offloading detection based
on a mathematical model, which we validate experimentally
(Section [V-C). We conclude in section [VI] with a summary of
our findings and recommendations for future work.

II. RELATED WORK

Although relatively recent as a scientific problem, there
have already been some first attempts to provide intrusion
detection for vehicles, primarily for manned and unmanned
aircraft, robotic vehicles and driverless automobiles. Some
intrusion detection approaches are highly specialised, focusing
on specific aspects of a vehicle’s communication, actuation or
sensing, while others take a more holistic view of its health
across all three.

In terms of in-vehicle communication, recent work by Cho
and Shin [17] has shown that it is possible to infer the
origin of an attack on an in-vehicle CAN bus network (e.g.,
the particular Electronic Control Unit inside a car) from its
voltage profile, the fingerprint of which has been learned by
their detection system. Although relatively narrow in scope,
performance evaluation in two real cars has shown that there
is great merit in learning the normal behaviour of different
aspects of a vehicle, so as to detect and pinpoint attacks. Along
similar lines, Moore et al. [[18] have developed an algorithm to
detect anomalies in the CAN bus network traffic by monitoring
the refresh rates of certain commands, which are shown to
be indicative of signal injection attacks. Tackling the same
problem, Martinelli et al. [19] have argued that normal CAN
messages are triggered by human action, and as such can
be modelled by fuzzy techniques. So, they have developed a
technique based on fuzzy-rough nearest neigbour classification
to distinguish between legitimate CAN messages generated by
the human driver and injected ones generated by an attacker.

In terms of external communication, Lauf et al. [20] and
Strohmeier et al. [21] have focused on the automatic dependent
surveillance-broadcast (ADS-B) protocol used by aircraft to
periodically broadcast their position and other situational data
to other aircraft and air traffic control ground stations. An
ADS-B spoofing attack could severely compromise the safety
of the aircraft. To spot signs of such spoofing attacks, the
method proposed by Lauf et al. looks for suspicious peaks
in the probability density functions of types of data requests
between nodes, as well as any behaviour correlations that
would indicate cooperation between intruders. However, their
assumption is that direct data requests between aircraft are
possible, which is not currently the case in ADS-B. In [21],
Strohmeier et al. have used as input features only statistics
related to the received signal strength (RSS), assuming that

the RSS of spoofed ADS-B signals coming from an attacker
on the ground would differ considerably to that of legitimate
signals coming from aircraft.

Other approaches focus on the actuation of a vehicle and
especially what makes it a vehicle, which is its movement
control. For example, Birnbaum et al. [22] have proposed
a prototype monitoring system geared specifically towards
detecting hardware failures, tampered hardware and suspicious
behaviour of the flight control computer. It captures data on
roll, pitch, yaw, and servo motor control parameters, such as
elevator, throttle, rudder and aileron. Their approach adapts
the recursive least squares method as an estimator of airframe
and controller parameters. By establishing a set of parame-
ter estimations for each drone’s control law, the monitoring
system can compare the parameters in between flights using
normalised root mean square deviation. A large value for the
latter indicates a significant difference in parameters and as
such can be used as the basis of an anomaly detection system.
For experimental verification, the approach has been tested on
open-source flight simulation platforms.

Beyond communication and actuation, a vehicle’s safe
operation also depends on sensing. Especially autonomous
vehicles are almost entirely dependent on the robustness of
their sensing processes. This makes them particularly attractive
targets to sensory channel attacks and network-based false
data injection attacks that affect the integrity or availability
of a vehicle’s sensor data, for instance, to disrupt its collision
avoidance subsystem. One approach that is commonly used to
detect attacks on sensors is to treat them as standard sensor
failure events and utilise statistical anomaly detection methods.
For instance, if it can be assumed that the rate of change
of a sensor’s data cannot exceed a particular value, then the
recursive least-square filter can be used to discard data that do.
Gwak et al. have demonstrated this approach on a small robotic
vehicle whose obstacle avoidance does not have the luxury
of cross-checking between different types of sensing and is
limited to only ultrasonic sensors [23]]. The simple approach
followed is that if a sensor’s data are deemed to be unreliable,
the particular sensor is excluded from the vehicle’s collision
avoidance procedures.

Other researchers have addressed intrusion detection more
holistically, looking at the wider picture of a vehicle’s state.
Vuong et al. [[11]], [15]], [16] have focused on denial of service,
false data injection and different types of malware attacks
against a robotic vehicle. Their detection method is based
on decision trees with a training phase that involves a range
of attacks and measures their impact on a set of cyber and
physical features. Unsurprisingly, it is the cyber features that
are the most relevant, especially network-related ones, but it
has also been shown that introducing physical features too,
such as battery consumption and physical vibration of the
chassis, can noticeably improve the accuracy of the specific
detection method. In particular, physical vibration appears to
be the result of continuously losing network connection to
the remote controller of the vehicle, and as a result often
entering fail-safe mode for brief durations. Spotting these
physical manifestations early helps reduce detection latency.
One of the most complete solutions for a drone’s onboard

security monitoring framework is R2U2 by Schumann et al.
[24]], which monitors traffic on the flight computer and com-
munication buses, including inputs from the GPS, the ground
control station, sensor readings, actuator outputs, and flight
software status. It looks for commands that should not be run
because they are nonsensical, repeated, ill-formatted, illegal
commands or otherwise dangerous (e.g., “Reset Flight Soft-
ware” while in-flight), and also monitors system behaviour,
including oscillations of the aircraft around any of its axes,
deviation from flight path, sudden changes or consistent drifts
of sensor readings, as well as memory leaks, real-time failures
and other unusual software behaviour. Probabilistic security
diagnosis is based on a bayesian network engine. For instance,
if barometric measurements and laser altitude coincide, any
transients in GPS signal strength would indicate a likely attack.
Implementation on a reconfigurable field-programmable gate
array and performance evaluation on a NASA DragonEye
drone has provided promising results in detecting spoofed
GPS signals and malicious commands sent to the aircraft.
Bayesian networks have also been used by Bezemski et al.
[25] to classify the nature of the source of an attack (cyber or
physical) on a robotic vehicle that uses the United Kingdom’s
Generic Vehicle Architecture approach for military vehicles
[26]].

A very different family of intrusion detection techniques is
behaviour specification, where it is an expert user that specifies
the rules of what is normal. For instance, the rules used by
Mitchell and Chen for drones [27] included that weapons need
to be disarmed outside the target area, that minimum thrust is
used when loitering, that information is only transmitted to
whitelisted destinations etc. These are transformed into state
machines, where the “attack state” is the result of violation of
any of the specified behaviour rules. In their evaluation, their
state machine consisted of 165 safe and 4443 unsafe states,
with probabilities assigned for going from one state to another
one, and using binary grading for each state (completely safe
or completely unsafe). Then, the proportion of time a device
is in safe states is a measure of the degree of compliance
to the behaviour rules. This was extended in [28]] where the
authors showed more thoroughly that the approach offers the
flexibility of adjusting the strength of detection to reduce false
negatives at the expense of increasing the false positives. The
main disadvantage of this approach is that it typically needs
an impractically large number of states to be specified to
accurately capture all safety specifications for all altitudes,
environmental conditions etc.

An aspect of robotic vehicles that is of increasing interest,
whether they are autonomous or not, is their participation in
teams that coexist in the same physical space and share a set
of common interaction rules. For example, when drones detect
a possible collision, the interaction rule may be “turn right”,
but this assumes that a drone will always follow the rules,
which is not the case in a cyber intrusion scenario. Martini et
al. [29] have developed a distributed misbehaviour detection
mechanism to be run onboard each drone, based on a Boolean
consensus protocol on the events as they are observed by
them. Each drone uses its own sensors and information from
its neighbours to predict the allowed trajectories that another

drone can follow if it abides by the interaction rules. If its
actual trajectory does not match the predicted one, then that
drone is deemed as uncooperative. The particular approach
has been tested experimentally with success on a team of four
real drones, including a misbehaving one. However, extending
any conclusions to larger teams with several misbehaving ones
requires rigorous analysis of the consensus mechanism based
on the Byzantine Generals problem [30]]. In the same space,
but for land vehicles, Alheeti et al. [31]] have looked into
the use of vehicular ad hoc networks for the communication
between driverless automobiles, raising the question of what
happens when one of the vehicles misbehaves and launches a
cyber attack on other vehicles on the same network. In this
initial work, they have used NS-2 and mobility simulation
tools to evaluate the performance of an intrusion detection
system based on artificial neural networks. Its input features
were some of the ones typically used in standard network
intrusion detection systems, such as payload sizes, hop counts
etc. The same authors have extended their work to take into
account magnetometer sensors [32]] and gyroscopes [33]], and
address grey hole attacks [34].

A common characteristic of all detection mechanisms pro-
vided above, whether local or distributed across multiple
vehicles, is a focus on minimising the processing load, ei-
ther by applying lightweight techniques from statistics or by
predefining simple behavioural rules that are easy to monitor.
This is because they are all limited by the onboard capabilities
of the vehicle at hand. As a result, they usually cannot lever-
age modern classification techniques, such as those currently
developed in the field of deep learning. In effect, the stronger
the detection algorithm, the greater the energy consumption,
and in turn the less attractive a solution is for a resource-
constrained vehicle. To overcome this limitation, we turn to
the emerging field of cloud robotics [35]]. Our proposal is to
offload the bulk of the processing required to benefit from deep
learning to a more powerful infrastructure (whether a single
server, cloudlet or cloud). By computation offloading, we
refer to the process of executing certain computational tasks
on more resourceful computers which are not in the user’s
immediate computing environment. The concept has similari-
ties with the online forensics techniques used for cloud-based
detection of malware and tainted data on Android smartphones
[36], [37]. However, instead of crowd-sourcing detection, we
focus on utilising computational offloading to allow access
to deep learning based techniques without the processing
and energy cost which would otherwise be prohibitive for a
vehicle. Figure] illustrates the conceptual difference between
onboard and offloaded intrusion detection for a vehicle. In both
cases, data collection and aggregation occurs on the vehicle.
In the onboard case, the reasoning (the analysis of the data
to determine whether there is an attack or not) is also on the
vehicle. In the offloaded case, the data aggregated onboard are
sent via a network to a cloud infrastructure or equivalent to
perform the reasoning.

Over the past couple of years, the growing maturity in
deep learning algorithms has led to wider use outside of
its traditional applications in image and natural language
processing, e.g. in detecting malware [38]] or rogue certificates

from trusted certificate authorities [39]. It has also been used
to improve intrusion detection accuracy in traditional computer
networks [40], [41]], but not for cyber-physical systems, such
as vehicles. An exception is the recent work by Kang et al.
[42], which is geared towards the automotive industry and
detection of attacks on CAN bus. While a promising start,
the particular work is limited to a generic command injection
attack, which is detected by monitoring a single type of data
source and using a simple and generalist deep neural network
architecture, which does not account for the overall state of the
vehicle through multiple features or for temporal information
(the fact that the impact of the attack changes over time during
the attack). Also, it has been evaluated only in simulation.

Here, we progress considerably further with the following
key contributions:

« We design and evaluate two neural network architectures
for the real-time analysis of multiple sources of data col-
lected periodically onboard the vehicle and representing
both its cyber and physical processes.

« We produce a prototype implementation of deep learning
based intrusion detection for cyber-physical attacks on
a real robotic vehicle, tested for three different types
of attacks and compared against the best-performing
generalist machine learning techniques typically used in
intrusion detection.

o We evaluate both experimentally and using a mathemat-
ical model the practicality of a computational offloading
configuration for providing resource-constrained cyber-
physical systems with access to high-end intrusion detec-
tion.

Note that an early version of this work has been included
in the second author’s PhD dissertation [43]]. Here, we expand
through evaluation of two deep learning approaches, a more
practical setup with a single deep learning model for all attacks
rather than individual for each attack, as well as evaluation on
an unseen attack and an updated literature review.

III. CYBER-PHYSICAL INTRUSION DETECTION USING DEEP
LEARNING

In real-world cyber-physical attacks, interactions between
sensors, actuators and computational components often exhibit
temporal correlations based on complex time dependencies,
of arbitrary length. For example, in a cyber-physical system
such as a robotic vehicle, a rogue operator executing remote
command injection may command the vehicle to accelerate
forward. As a result, this may cause a spike in network traffic
leading to a change in vehicle wheel speed, which increases
power consumption and current. Here, these feature interac-
tions may occur one after the other in a specific sequence. The
result of such sequential temporally-related behaviours leads
to the generation of time series datasets with the potential
for high-dimensional inputs that change over time. For feed-
forward neural networks this type of temporal information
can be lost, because they look for occurrences of the same
patterns in the feature-space based on current state, irrespective
of the prior input patterns that came before. By comparison,
recurrent neural networks exhibit dynamic temporal behaviour

Fig. 1: Conceptual comparison between onboard and offloaded
intrusion detection for a vehicle

Onboard IDS

Onboard
reasoning

Onboard data
aggregation

Onboard data collection

Offloaded IDS

Onboard data
aggregation

)

Onboard data collection

Offloaded reasoning

by using internal memory to process sequences of inputs
based on interconnected hidden layers from previous input
states, feeding the hidden layers from the previous states as an
additional input into the next state. In this manner, recurrent
neural networks are trained based on historic and current input,
where the likelihood of an attack occurring depends both on
prior states of the features and the current states of the features
at that point in time.

As cyber-physical attacks occur as a series of both cyber
and physical events over time, we have chosen to evaluate
the approach of using a recurrent neural network approach for
the development of our cyber-physical IDS, which has proven
highly appropriate for handling multivariate sequential time
series data [44]], [45]. The approach taken for construction of
the deep learning IDS starts with launching different types of
cyber attack against the robotic vehicle and collect data with
regards to a series of features, appending the ground truth
labels based on the timings of the attacks (whether an attack
was really in action at each point in time or not). As the data
from different features come at different times and at different
sample rates, we synchronise them in a pre-processing phase.
The output of pre-processing is a data stream with a data
point sample interval 7. In the learning phase, the data is
split into a training set and a validation set. The recurrent
neural network algorithm is applied on the training data to
produce a detection model, as defined by the weights of the
connections between neurons. The model is then validated
using the validation set before producing the final classifier,
which is evaluated experimentally using real-time testing data.
(The precise configuration parameters are summarised in Table
M

Figure shows the recurrent nature of the learning process,
where X () is the vector of input features and V() is the
binary detection decision (0 if no attack, and 1 if attack) at

Fig. 2: learning process using recurrent neural network

W W W W
Time

time ¢, and Y = WX® 4 RX(*=1, with W and R being
the weight matrices in relation to X and the incorporation of
the output of the previous step respectively.

In terms of the deep learning architecture designed for
our intrusion detection methodology, in the input layer, U,
U® ., U™ is the time series dataset in a period 7', which
corresponds to n = % data points. We group k consecutive
data points together into X *), X (k+1) X (") a5 shown in
Figure |3] The purpose of grouping is to help the algorithm
have a picture of more than a single point in taking a
detection decision, but without using the whole dataset (of
n data points in one period 7' either, which would increase
considerably the detection latency. So, 1 < k < n. The
hidden layer includes a Long-Short Term Memory (LSTM)
layer, a dense layer and Sigmoid activation. Conventional
recurrent neural networks find it difficult to train with long
step sizes due to the*“vanishing gradient” problem in gradient-
based activation functions (such as sigmoid or tanh). The
vanishing gradient relates to the exponential decrease in the
size of the gradient (from which the network learns changes
in the input parameters which effect the expected output) by
iteratively mapping large input regions into smaller output
regions through sequential layers or long inputs sequences in
the neural network [46]. As a result, when the gradient reaches
a value near zero, the recurrent nature of the neural network
produces small outputs even for large changes in input and as
a result affects the ability of the neural network to learn from
early layers or inputs in long training sequences or over many
hidden layers.

LSTM helps solve this problem by employing a “gating”
function (1 to remember the input and pass it to the next
hidden node/layer or O to forget the input) that replaces the
activation function. The network is trained on the combination
of the gates in the network and as long as the gates are
1 along the input sequence or across all hidden layers in
the network, the network can remember the values of early
input to identify how it affects the expected output. We use a
standard LSTM architecture, with each block containing gates
that determine the significance of the input and whether it
should continue to remember its value or forget it, and when
it should output it. The LSTM layer is followed by a dense
layer, where the number of hidden nodes serves as our main

Fig. 3: RNN with LSTM deep learning architecture

Input layer Hidden

layer

Sigmoid
activation

layer

Dropout

-
23
8 Dense
2
[a}

G30- 06

-@wﬂﬂ (xm-2)
LSTM

[t

=, Forget
gate

tuning parameter. Then, a sigmoid activation function converts
the values produced by the dense layer into real values between
0 and 1. Finally, a binary detection decision (0 or 1) is taken
based on a predefined threshold. Below this threshold, the
detection decision is that there is no attack, and above it, that
there is an attack.

Alongside our RNN deep learning approach, we also de-
velop a deep multi-layer perceptron (MLP) classifier as an
example feed-forward neural network to directly compare the
detection performance between a deep learning architecture
which benefits from learning time-based sequences and one
that does not (RNN with LSTM Vs. MLP). Unlike RNNs,
feed-forward networks send signals in one-direction from input
to output with no feedback loops; the output of any layer in the
MLP classifier does not affect that same layer, as connections
do not form as a cycle as in RNNs.

Figure {4 shows the MLP architecture adopted here. It
consists of a input layer, one or more hidden layers with Leaky
Rectified Linear Units (LReLU) as an activation function and
an output layer. For MLP neural networks, ReLLU activation
is a preferred method over sigmoid to avoid the vanishing
gradient (in logistic gradient descent activation) occurring
over multiple hidden layers in the MLP network. A ReLU
function output is either 0 for input than is smaller than
0 (e.g., negative) or 1 for input that is larger than O (e.g.,
positive), which allows a MLP network to employ multiple
layers without neuron gradients being saturated for input.

However, one problem with ReLLU activation, known as “dy-
ing ReLU”, results when ReLUs (neurons) are activated with
a value of 0 which forces their gradient to be set to zero (i.e.,
inactive) in back-propagation (e.g., all inputs). This means that
potentially large numbers of neurons in a network “die” as they
are stuck in an in active state, between layers, which results

Fig. 4: MLP deep learning architecture

Hidden Layer 1 Hidden Layer N

LRelU

o -
@ 2 Activation
y N REE——)

’ #@\%“%ﬂ#.
QN
Sy v e
SIS
\\ / 25K ~

LReLU
Activation

Input Layer

Output Layer

£
g!//‘

Bias Bias

in decreasing model capacity as they are no longer used. To
avoid this, one method is to adjust the network learning rate
through methods such as dropout, or by utilising LReLUs.
Instead of setting ReLU neurons to 0, LReLUs assign non-zero
gradient (e.g., 0.01) when a neuron is not active, which allows
the neuron to remain active for negative input between each
layer of the MLP. Inline with our RNN approach, for the MLP
classifier, we also introduce input and hidden layer dropout to
reduce overfitting during network training. During training of
the MLP, we have used the same number of neurons tested
within the RNN LSTM modelling, and test up to three hidden
layers to establish whether increasing the network depth and
non-linearity of the deep learning architecture improves attack
detection performance over RNN, which is designed with a
single hidden layer using LSTM gates.

For the deep learning development and implementation, we
have used Keras [47] to run on top of TensorFlow/Theano
library. Keras is an extensible Python neural network library
that supports fast prototyping.

Attack-specific supervised signature-based IDS models’ can
be impractical and inefficient, as the attack surface grows
and the potential attack configurations increase in number.
Semi-unsupervised and unsupervised IDS models do not re-
quire attack vectors to be present within training data, but
provide low detection accuracy for identifying specific threats
(which help identify the source and type of attack), because
training either develops a concept of normal operation (semi-
unsupervised), or is used to express clusters of membership
between data points (unsupervised). Furthermore, if a dataset
for classification is particularly noisy, this can have a dramatic
effect on performance, especially as there is little (semi-
unsupervised) to no (unsupervised) guiding information as to
potential attack states. We have opted to design our deep
learning IDS using a supervised signature-based detection
model. To increase practicality, we develop a single deep
learning model trained on a dataset that comprises all three
types of attacks considered here. The presence of multiple
attack signatures within the model form the basis of being
able to determine whether the vehicle is under attack or not,

6

but with the increased intelligence of potentially understanding
what type of attack it might be.

IV. EXPERIMENTAL METHODOLOGY
A. Testbed: Robotic Vehicle

The testbed we have developed for the experimental evalu-
ation is a 40 cm long remote-controlled 4x4 robotic vehicle,
with an on-board computer based on a dual-core Intel Atom
D525 CPU and 2 GB of DDR3 RAM, running the Fedora
operating system. The vehicle’s motors are controlled by an
Arduino micro-controller. Network access is via Wi-Fi or
Ethernet cable, and remote control is over a TCP socket to the
vehicle’s control board. In addition to network traffic related to
control of the movement of the vehicle, there is also network
traffic generated by the onboard camera video streaming and
control of its actuation (pan and tilt).

Fig. 5: The robotic vehicle architecture. The input features
used for the detection are shown in black background

[POW]Watts
[POW]Amps SENSIN —
"' i accelerometer
energy meter | V5P Logitech |camera Pan/tilt
C525 USB | Pan Servo HS-422
Camera |Tilt Servo HS-422
Quadrature |1G32P 24VDC 190 RPM
Encoders (x2) | Gear Motors (x4)

(encioiff_L Jil

[ACCIRMS(X,Y,Z)

ACTUATION

Electronic usB
Compass

| 12cT

LV-MAXSonar-
EZ1 Ultrasonic

RS232 Basic Micro [— | RoboClaw
ARC32 % P TI'L) 2x15A m
microcontroller motor controller
uss |

Intel Atom D525
SSDOCZOnyx32GB
Kingston 2GB DDR3 1066
Pico-PSU-80-WI-32V
Wireless B/G/N USB

CPU]Total%
K]WriteKBTot
TIRxKBTot

T]TxKBTot

S|
E
E

ywy

Fedora Linux Unit
CONTROL

WiFi | |EFthernet cable

(CJrunction [Remote PC]

|:| Device C# Interface program

B Feature

REMOTE OPERATION

B. Features

It has been previously shown that for cyber-physical sys-
tems, taking into account also the physical manifestation of
cyber attacks on the vehicles can improve detection accurady
and reduce detection latency [[15]. In other words, the adverse
impact of a cyber-physical attack can also be seen as an
opportunity for improved intrusion detection. Here, we adopt
the same approach, which allows observing an attack’s impact
on computation, communication and physical operations of
the vehicle. We focus on types of data that are available
and can be extracted on most vehicles without considerable
overhead. We have identified eight input features, four related
to communication and processing, which we refer to as the
cyber input features, and four related to the physical properties
of the robot, which we refer to as the physical input features.
The attack label is the ground truth for the scenario.

Fig. 6: The impact of the three attacks on an indicative selection of the features monitored, for Denial of Service attack scenario
(top left), Command Injection attack (top right), Malware (Net) attack (bottom)

Attack intervals Attack intervals
9000 - - - — 06 170 3.0 — - —

7000 '

N
0

150
6000

o
IS

g
o

4000

o
w

130,

- L

RxKBTot, TxKBTot (KB/s)
"
3
3
S
RMS (m"2/5)
S
8
RxKBTot, TxKBTot (KB/s)

w
3
S
S

/” | [0 -0 1.0 jﬂ‘ ‘:

| 1
1 . - 00
0 3000 4000 6000 8000 10000 12000 1000 2000 3000 4000 5000 6000 7000 8000

Data point Data point

|
M
“L

RxKBTot
TxKBTot

RMS
diff_encoder_|

[
n

I

RxKBTot, TxKBTot (KB/s)

410

0'00 2000 400 6000 8000 10000 12 800 -0
Data point
« Network Incoming: Received network traffic rates. ments where the robot is under denial of service (DoS) attack,
« Network Outgoing: Transmitted network traffic rates. command injection attack, and malware attack targeting the
o CPU: The total CPU utilisation. network interface. The attacks are intermittent. They appear in-
« Disk Data: The rate of data being written to the disk. between sections of normal operation, where all network traffic

« Encoder: Magnetic encoders have been fitted to the rear and applications running are legitimate, and correspond to the
wheel motors, which provide real-time values of their operator’s legitimate interaction with the vehicle, including
angular position. The speed is represented by measuring commands and sensor values exchanged. Their precise timings
the difference between two consecutive encoder value are highlighted in Figure [6] in the form of grey sections (the
readings in a fixed period of time. The default value for attack intervals).
this period is 33 ms.

o Denial of Service (DoS) attack. Here, the aim of the
o Accelerometer: Represents the vibration of the chassis

attack is to flood the vehicle’s network interface with

(using accelerometer measurements). An external device TCP traffic to disrupt the communication between the
has been attached to the chassis to capture these readings. legitimate operator and the vehicle. In the particular

« Power: The overall power consumption of the vehicle as testbed, an attack rate of 100 Mbits/s was sufficient to
measured by a WattsUp? energy mete

o Current: The overall current drawn by the vehicle.

« Attack label: This is the ground truth label, which states
whether there is an attack or not at a particular point in
time. This is used to train the model and also to evaluate
its performance.

overwhelm the communication channel. The resulting
intermittent connectivity causes the vehicle to trigger
temporarily its fail-safe mechanism, which is simply to
stop when communication is lost, and then resume its
movement. This causes intermittent physical vibration of
very short duration. The top left in Figure [6] shows the
effect of the attack on some of the features monitored on
C. Attacks used in training the model the vehicle. Naturally, for a denial of service attack based
on volumes of network traffic, it is Network Incoming (in
the figure, referred to as RxKBTot) that is the feature most
obviously affected during an attack, but even physical
www.wattsupmeters.com features (e.g., RMS value) seem to be affected by the

As representative of a wide range of possible families of
attacks against a robotic vehicle, we have conducted experi-

1

accompanied vibration.

¢« Command injection attack. The robot receives com-
mands from its legitimate operator to move forward, and
at the same time receives rogue “stop” or “turn left”
commands from an attacker. The conflicting commands
cause consistent and frequent physical jittering, as the
vehicle attempts to process and act on both commands
within very small periods of time and continuously. This
effect can be observed in the top right graph of Figure
[l especially in relation to the instantaneous speed value
for each wheel, as represented by the encoder value (in
the figure, referred to as diff_encoder_I), as well as by
the very high RMS values, which are the result of the
consistent physical jittering.

« Malware attack. A piece of malware already installed
in the robot’s onboard control software utilises the Linux
kernel’s network scheduler to modify the network traffic
control setting and introduced network delay. The result
in physical space is that the robot’s movement becomes
erratic with frequent and relatively consistent stops during
the attacks. The bottom graph in Figure [6] illustrates the
effect of the attack on some of the features monitored on
the vehicle, as captured experimentally.

D. Experimental deep learning results

We have designed the recurrent neural network (RNN)
architecture as shown in Figure [3] with the configuration
parameters of Table[It here we have used the same parameters
for the MLP architecture with the exception of the activation
function and sequence group (k) which is not relevant to
MLP. As primary metric of the performance of the intrusion
detection model, we have used accuracy ACC = (TP +
TN)/(TP 4+ FP + TN + FN), where TP corresponds to
the true positives (correct detection of attack), FP to the
false positives (incorrect detection of attack), TN to the true
negatives (correct detection of non-attack), and FN to false
negatives (incorrect detection of non-attack).

1) Performance against previously seen types of attacks:
Here, we evaluate the performance of the model in real-time
as it is exposed to the three types of attacks that the model
has already seen. So, the actual data collected are new, but the
same types of attacks have been seen previously in training
and validation. In terms of the sizes of the dataset collected for
each attack, attack and non-attack intervals in each experimen-
tal run. The denial of service experiments produced 3,114 data
points, of which 2,451 were distributed in four attack intervals
and 663 were non-attack data points in intervals between the
attacks. The command injection experiments produced 3,432
data points, of which 1,402 were in five attack intervals and
2,030 were non-attack data points in intervals between attacks.
The malware (Net) experiments produced 2,390 data points in
seven attack intervals, of which 950 were attack and 1,439
were non-attack data points in intervals between attacks.

Figure [7] shows the overall accuracy of the RNN LSTM
model against the number of neurons in the hidden layer. We
vary the number of neurons from 600 to 1,000 neurons. We
see that 800 neurons are sufficient to achieve high average

detection accuracy (85.7%) across the three previously seen
attack types, and indeed accuracy does not increase as we
increase the number of neurons to 1,000. Figure [§| provides a
comparative measure for the deep MLP model.

| Parameter | Value
Interval T' ls
Single point sample interval 7 | 0.02 s
Sample size n per interval 50
Grouping k 10*
Number of hidden nodes 600, 800, 1000
Number of epochs 300
Dropout ratio 0.3
Validation ratio 0.3
Loss function Binary cross entropy
Optimiser adam
Activation function Sigmoid*, LReLU**
Metric Accuracy (ACC)
Decision threshold 0.5
*RNN **MLP

TABLE I: Deep learning training parameters

We also compare the detection accuracy of the deep learn-
ing approach against standard statistical machine learning
algorithms, which are considered safe generalist choices for
classification problems across a range of domains, including
intrusion detection. A comprehensive study by Delgado et al.
[48], which put to the test 179 different machine learning
classifiers across 121 different datasets from different areas
of application, showed that random forest was the overall
best performing technique, with an average accuracy of 94%
and reporting over 90% accuracy across 84% of the datasets,
followed closely by Support Vector Machines (SVM) with
an average of 92% accuracy. Random forest and SVM are
commonly used in intrusion detection [49]], and for this reason,
in Table[ll} we compare our deep learning based approach with
random forest, two SVM variants (with radial kernel and with
linear kernel), as well as with the standard lightweight ap-
proaches of using logistic regression and decision trees (C5.0)
previously utilised for cyber-physical intrusion detection in
[15]].

Logistic Regression employs Bernoulli distribution to es-
timate the probability of a binary response based on one
or more independent features and their relationship with the
attack label. SVMs employ the concept of a hyperplane in n-1
dimensional space that best separates two classes of data points
with the maximum margin. In SVM, data points that support
either side of the hyperplane are the support vectors” and
in cases where these data points are not linearly separable,
are projected to a higher dimensional space where linear
separation is possible. In our case where multiple classes are
present (multiple feature variables and a dependent variable), a
one versus many binary classification approach is taken. C5.0
functions as a decision tree classifier employing Boolean logic
in series of decision rules, inferred by the feature data, to
determine which class the data belongs to. Random Forest is

an ensemble tree classifier that trains a number of decision
trees with different re-sampled versions of an original dataset,
reducing the high variance inherent in a decision single tree
and improving the generalisation of model performance by
averaging the standard error of all trees across the ensemble
in order to produce a final model with low variance.

In our experimental comparison, the deep learning based
approach achieves the highest overall detection accuracy rate
as an anomaly-based supervised classification model reporting
an average classification accuracy of 86.9% compared to SVM
with radial kernel at 79.9%. Surprisingly, the SVM radial
classifier outperformed the deep MLP overall, and for two
out of three of the attacks (DoS, command injection). For
individual classification, deep learning with RNN using LSTM
outperformed all ML algorithms for detecting command injec-
tion with an accuracy of 83.2% compared to random forest
at 78.6% accuracy. However, for the deep MLP, detection
accuracy for command injection was the second lowest of all
algorithms only beating logistic regression by 1%. The RNN
LSTM deep learning model effectively equaled decision trees
(C5.0), reporting a detection accuracy of 82.2% compared
to 82.4% for the network malware attack (wht MLP close
behind at 80.7%), but was slightly worse than SVM with
a radial kernel for detecting the network denial of service
attack, with 95.4% accuracy compared to SVM’s 97.4%. By
comparison, the deep MLP outperformed the RNN LTSM deep
learning classifier for DoS attack detection by 0.8%. Overall,
these experimental results give a good indication of utilising
the RNN deep learning models’ general ability to perform
accurate detection across a range of different attacks when
compared to more lightweight machine learning techniques,
which were much less consistent across the three attacks
tested. Furthermore, the capability of the RNN LSTM to learn
attack behaviour over time proved superior to the MLP deep
learning architecture. However, this consistency achieved by
deep learning with a RNN comes at the expense of greater
processing requirements and consequently long processing
times.

Note that in Figure [/] for the unseen type of attack (bottom
curve of the figure), increasing the number to 1,000 neurons
proves useful; for the deep MLP this was not the case, adding
a second layer improved accuracy slight which also decreased
when adding further hidden layers. We detail this part of our
experimentation in the next subsection.

2) Evaluating the deep learning IDS on an unseen type of
attack: Here, we introduce a fourth attack against the robotic
vehicle which takes the form of a malware which generates
a random, but significant processing load on the vehicle’s
CPU. We will be referring to this here as malware (CPU)
to differentiate from the malware (Net) included in the attacks
used in the training of the model. The purpose of this fourth
attack is to serve as an unseen type of attack. The malware
(CPU) experiments produced 11,383 data points, of which
6,483 were attack and 4,900 were non-attack data points in
intervals between attacks.

[ML algorithm | Attack | ACC (%) | Overall ACC(%) |

Denial of Service 95.5

Logistic Regression Command Injection 56.9 73.7
Malware (Net) 68.6
Denial of Service 73.2

Decision Tree (C5.0) Command Injection 66.5 74.0
Malware (Net) 82.4
Denial of Service 71.8

Random Forest Command Injection 78.6 71.3
Malware (Net) 81.6
Denial of Service 97.4

SVM (Radial Kernel) Command Injection 67.7 79.9
Malware (Net) 74.5
Denial of Service 95.2

SVM (Linear Kernel) Command Injection 48.0 71.6
Malware (Net) 71.6
Denial of Service 96.2

Deep learning (MLP) | Command Injection 58.0 78.3
Malware (Net) 80.7
Denial of Service 95.4

Deep learning (RNN) | Command Injection 83.2 86.9
Malware (Net) 82.2

TABLE II: Comparing the performance of our deep learning
based approach against popular machine learning algorithms
for intrusion detection

ML algorithm | Attack | ACC (%) |
Logistic Regression Malware (CPU) 59.0
Decision Tree (C5.0) | Malware (CPU) 53.4
Random Forest Malware (CPU) 58.8
SVM (Radial Kernel) | Malware (CPU) 62.9
SVM (Linear Kernel) | Malware (CPU) 59.0
Deep learning (MLP) | Malware (CPU) 55.0
Deep learning (RNN) | Malware (CPU) 66.9

TABLE III: Deep learning Vs. other machine learning algo-
rithms detection accuracy for detecting the “unseen” malware
CPU attack

As shown in Table here the RNN LSTM deep learning
classifier (configured as a 1,000-neuron model) produces the
highest detection accuracy for the CPU malware attack, with a
4% increase in detection accuracy over SVM (Radial kernel).
Similar to the command injection attack, the deep MLP re-
ported low detection accuracy (second lowest), only 2% higher
than decision trees in this case, but almost 12% lower than
RNN. In this case the deep MLP is using two hidden layers,
with the same number of neurons which reported the most
optimal accuracy at 55%, compared to 53.5% with a single
hidden layer; adding further hidden layers failed improve
detection accuracy. This result indicates that ability for the
RNN classifier to learn different attack behaviours over time
contributes in a meaningful way to predicting attacks which
might share similar behavioural characteristics (observed in
cyber and physical features) in the lead up to or execution of
an attack.

The relatively lower accuracy rates across all algorithms
are not unexpected, as these are all techniques designed for
seen types of attacks. So, to further evaluate the usefulness
of utilising deep learning in this context too, we compare
also with an unsupervised and a semi-supervised technique

Command Injection

= = = - Malware (Net) e N\alware (CPU) - Unseen

95.23 95.36

83.19

CLASSIFCATION ACCURACY (%)

600 800 1000

NUMBER OF NEURONS IN DEEP LEARNING MODEL

Fig. 7: Detection accuracy using the RNN LSTM deep
learning model. The top three are attack types that have
been previously seen, while the bottom one is an attack
not previously seen.

typically employed for unseen types of attack. We have chosen
a one-class SVM as a semi-supervised approach which trains
a model based on a single-class “concept”, which refers to the
understanding of a single known state (e.g., normal operation
behaviour=TRUE) based on the training data supplied. For
prediction, if the model identifies that this state has deviated
or the ”concept” has drifted, then an anomaly state is classified
(e.g., normal operation behaviour=FALSE). For unsupervised
learning, we employ k-means clustering to produce two cluster
classes.

Again, the deep learning approach outperforms the semi-
unsupervised and unsupervised machine learning algorithms
we have tested for the unseen type of attack (and naturally also
for the seen ones). Moreover, as with the supervised machine
learning models tested, our deep learning model outperformed
both the one-class SVM and k-means in detecting the malware
(CPU) attack. These results are encouraging especially as the
unsupervised algorithms selected have been proven to work
well within the field of anomaly-based IDS systems for cyber
attacks in different contexts [SO[-[52]]. Of course, it can be
argued that different attacks lead to different detection accu-
racy, but see sufficient evidence that for types of attack that are
meaningful in the context of the cyber-physical security of a
robotic vehicle, deep learning with LSTM is more dependable
than the standard machine learning approaches traditionally
used.

However, due to the processing limitations of the vehicle,
running deep learning onboard the vehicle can take too long to
be practical. Indicatively, when running the model periodically
every 1 s based on the last 1 s worth of data collected, the
detection latency for the 600, 800 and 1000-neuron architec-
tures is on average (over five runs) 1.163 s, 1.541 s and 1.704 s
respectively (Table [V]). So, a detection result for one detection
run may not have been produced before the next periodic run
starts.

V. OFFLOADING INTRUSION DETECTION

To reduce the processing time for reaching a detection
decision, we turn to the concept of offloading, where a

Command Injection
o [\alware (CPU) - Unseen

g 96.2 95.8 95.8
Ie] 80.3
e
2 m==ea
5 80.70 ~=749
L-4
g
2 55.00
=
g (2 hiden layer) 5533'50
2 50.50
2 .-.-_'-'---__
3
e 50.40
39.8
600 800 1000

NUMBER OF NEURONS IN DEEP LEARNING MODEL

Fig. 8: Detection accuracy using the MLP deep learning
model. The top three are attack types that have been
previously seen, while the bottom one is an attack not
previously seen.

[ML algorithm | Attack | ACC (%) | Overall ACC(%) |

Denial of Service 92.0
Command Injection 46.82

K-means Malware (Net) 42.14 5726
Malware (CPU) 48.2
Denial of Service 7591
o Command Injection 47.82

One-class SVM Malware (Net) 4014 57.84
Malware (CPU) 65.5
Denial of Service 94.39
. Command Injection 76.3

Deep learning (RNN) Malware (Net) 80.01 79.39
Malware (CPU) 66.87

TABLE IV: Comparing the performance of the RNN 1000
neuron deep learning model against k-means clustering and
one-class SVM unsupervised learning

Number of neurons | Detection latency (s) ‘

600 1.163
800 1.541
1000 1.704

TABLE V: Mean detection latency of local deep learning
based detection on particular robotic vehicle

higher-end computing infrastructure carries out the processing.
However, in doing so, we introduce network delays and
potential for network failures, which place extra volatility on
the overall detection latency. In the following sections, we
discuss the network configuration of an experimental testbed
for evaluating the feasibility of offloading detection to the
cloud. We then present a mathematical model to estimate the
conditions under which offloading is practical and preferable to
local on-board detection. We validate the model by comparing
to experimental measurements in our testbed.

A. Testbed: Cloud-based IDS

For our offloading experiments, we have implemented a
private cloud using OpenStack for cloud provisioning of six
“datacentre-class” server nodes; each node containing an 8-
core (16 threads) Intel Xeon E5-2640 v3 CPU, 16 GB of

Fig. 9: Experimental testbed including vehicle and offloading infrastructure

Local Gateway

|
1
1
1
1
1

1

1

RAM and 1 TB of storage. The private cloud was configured
using the standard Ubuntu Openstack reference architecture
[53], where MAAS (Metal as a Service) was employed to
provision one of the six physical servers solely to run the deep
learning IDS system. Very similar cloud-based resources are
available via existing cloud providers such as EC2 of Amazon
Web Services, with options to lease virtual machine instances
with dynamic or fixed resources, or even independent physical
servers in the providers datacentre supplied as Infrastructure-
as-a-Service (IaaS). Here, we have opted to emulate the latter.

B. The networking configuration of offloading

The network testbed consists of three modules: an 8§02.11n
wireless local area network (WLAN), a point to point wide
area network (WAN) utilising the WANem wide area network
emulator and a remote Openstack cloud platform. The WLAN
provides the vehicle with mobile connectivity to a local net-
work gateway conducting port forwarding between the vehicle
and the deep learning server for offloading, through an SSH
tunnel over the WAN. Using the client-side URL transfer
library libcurl [54]] and PyCURL (Python Interface to libcurl),
the vehicle offloads detection tasks by uploading sensor data
samples, at interval period 7.

We have designed the offloading process to employ a
lightweight mechanism that is both robust to different network
conditions and suitably secure, enforcing data confidentiality,
integrity and authenticity. For this the HTTPS (HTTP over
Transport Layer Security 1.2 (TLS)) protocol was selected to
perform network offloading to a web server (via PyCURL),
using the traditional client-server model to transfer over a au-
thenticated and encrypted communication channel. Certificate-
based public key server authentication was employed to guar-
antee the identity of the cloud test-bed (and the trustworthiness
of the detection results source). Aside from data confidentiality
and integrity protection supplied by TLS 1.2, HTTP was
selected as a robust network transport protocol due to its
native reuse of existing persistent connections via keep-alive
functionality; ensuring the TLS handshake is performed only
during the initial connection. As a result, a HTTP request to

WANem

offload data to the web server will reuse an existing HTTP con-
nection as long as the detection offload period and transport la-
tency is smaller than the HTTP keep-alive timeout configured.
In this configuration latency incurred by the TLS handshake
is effectively avoided after the vehicles initial offload (e.g.,
when the vehicle turns on, or connects to a network), with
subsequent cipher-text introducing negligible encryption and
decryption latency. Moreover, HTTP provides a lightweight
choice for data transport as it employs data transfer pipelining
and automatic data compression which helps optimise TCP
performance and packet transfer speed, reducing network load
and symptomatically decreasing detection latency.

All data communication between the vehicle and remote
web server is vehicle initiated, through use of python scripts
making calls to the libcurl library. The scripts operate as a set
of continual loops. On initiation, a sensor sample generated at
interval T is retrieved and transferred via an HTTP POST to
the deep learning cloud for every detection period Ty. If the
POST is successful, another loop is then spawned, continually
polling the server with HTTP GET requests until a detection
result is successfully retrieved. On receipt of the detection
result, the next sensor sample is then collected when the next
detection period is reached and the HTTP data transfer process
is repeated. Figure [9] shows a high level overview of the
network topology used to remotely access the cloud.

C. Evaluating the practicality of offloading detection

Recently, Canziani et al. conducted a study that compared
the computational performance between multiple state-of-the-
art neural network architectures in terms of classification
accuracy, memory footprint, parameters, operations count,
inference time and power consumption [55]]. The study showed
that for a minor increase in classification accuracy, the com-
putational cost (e.g., processing time) was also significantly
increased. Therefore, given the resource constraints inherent
in a power-limited vehicle, it would be more efficient to off-
load this task to an external and likely more powerful system
in order to reduce computational processing time and as a
result minimise detection latency.

In this manner, realising the benefits of offloading detection
across a distributed service to a server, cloud or cloudlet, the
transportation of detection data requires network connectivity
that is resilient to and practically useful over variable condi-
tions; especially over the public Internet where no reliability
or quality of service is guaranteed. For cyber-physical systems
relying on fast and reliable attack detection, the problem
is exacerbated by the risk of dropping crucial data due to
unreliable network connectivity. Therefore, a trade-off between
on-board detection and remote offloading is largely determined
by the available local resources and the quality of network
conditions to the remote detection system.

We consider the task of offloaded periodic cyber-physical
intrusion detection, which involves uploading the latest sample
of data collected from the vehicle to a remote server in time
t:, processing the data on the remote server to produce a
detection result in time ¢, and transmitting the result back
to the vehicle in time ¢,, followed by possible idle time
t; until the next iteration. So, the detection period Ty is
Ty =ty +ts + t, + t;. Detection can be practical (and not
cause an infinitely increasing queue of delayed results) only
if t; > 0, as presented visually in Figure

Assuming that detection is accurate and attack has occurred
at a random point in time within the previous interval T},
then the detection latency t; is the time between occurrence
of attack and beginning of next detection cycle plus the
time to upload the data, process them, and return the result.
Assuming uniform distribution of the probability of the attack
having occurred at a random time within 7y, then the mean

corresponding delay is %, and overall the mean detection
latency is:
- Ty -
tl:?""taz"_ts'*'tr (l)

The time to complete the processing to produce the detec-
tion result depends on the algorithm chosen, implementation
approach and the processing resources that are available.

Our aim is to evaluate the upper limits for ¢; with CPU re-
sources available in a typical public cloud platform that allow
periodic offloaded detection to be practical, which translates
into ¢; not dropping below 0. In ideal communication condi-
tions, where there are no packet losses or network failures,
and in accordance with the standard practice in computation
offloading modelling [56], [57]], the time to upload or receive
data over a communication channel can be modelled in relation
to the data size uploaded D, and received D, by the vehicle
and the corresponding transmitting rate I?, and receiving rate
R, as:

— (idea D:E
£ = 22 @)
— (idea Dr
t,-(deal) - Rf (3)

Thus, the mean detection latency in ideal communication
conditions can be represented as:
s Ty D _ D
t(zdeal):7+7z+t+7r 4
l 2 Rm s Rr ()
In non-ideal communication conditions, where we consider
packet loss with a probability p, we assume that, the delay

Fig. 10: Example of variable offloading detection latency
within the constraints of detection period 7,. The top and
middle figure correspond to the practical cases, where ¢; > 0
or t; = 0 respectively, while the bottom figure corredsponds
to the impractical case, where t; < 0.

.. tx 'm tr ti vee

in establishing that a packet is lost and retransmitting means
that each bit lost incurs an increase in communication delay
equivalent to the time it would take to transmit [bits, where
I € R*. Mean detection latency in the presence of packet loss
becomes:

=’ T — (idea — (idea
fi =5ttt (L) () + 6,070 ()
Td D:c Dr
= — +t 1+p)(—=—+ — 6
3t (L) +) ©)

Mean detection latency increases further if we also take
into account the likelihood of a network failure occurring
after random time ¢y since last failure and being repaired after
random time t;. We assume that failures occur independently
and the number of failures occurring in a period 7T follow a
Poisson distribution with constant mean %, where 0 € Rt is
the mean time between failures (MTBF). We assume that the
time to repair after a failure follows a normal distribution with
a mean time to repair (MTTR) &.

Communication mechanisms used to transmit the data sam-
ple or receive the detection result may implement a form
of “keep alive” functionality, which keeps a network session
alive for up to Tk time after a failure has occurred. If
this time elapses, the session needs to be re-established with
handshakes, e.g., for SSL. We denote the delay incurred by
the handshakes as ¢j,.

So, the extra delay incurred by one failure can be repre-
sented as:

]l[tg < TK}Q +]l[tg > TKth + th)
=te + ﬂ[t& > Tkltn
The mean extra delay due to one failure becomes:
&+ (1 — P(tg < TK)>t_h

In a detection period 7y, due to the Poisson property, the
expected number of failures is %Td. So, the mean detection
latency in the presence of both packet losses and network
failures is:

1 T _
=0+ €+ (1= Plte < Tic))in) (7)

Fig. 11: Network offloading time sequence for offloaded IDS detection with detection period 7;;. The practicality of offloading
depends largely on the time ts needed to complete detection on the server, which in turn depends on the server’s processing

resources

I T4

Ty

ty

time

Attack starts manifesting here

= +u+ﬂ+@@§ =)
T

+%(5 + (1= P(te < Tk))tn)

Ty | - D D
2

o

®)

To evaluate the maximum mean time that processing should
take to produce the detection result, we take the extreme case
of no idle time between detection intervals, hence t; = 0 and
consequently Ty = ts maz + tz + t,. Equivalently:

Es,maz = Td - ({z + t;) (9)

The mean latency introduced after the data sample has been
collected on the vehicle is (based on (I)):

_ _ _ _ T,
u+u+u:n—§r (10)
_ _ D, D,
te +t. = (1 +lp)(R— + R—)
r (11)

T,
+5 (6 + (1= Plte < Tc))in)
So, (9) becomes:

D, D,
tsmar—Td_(1+lp)(R J'_Ri)

P(te <Tk))tn)

(12)
T
—er -

Now, let us consider the general case where the detection
period may be different to the data sample collection period 7.
So, T, = aTy, a € (0,1]. If a = 1, the detection mechanism
runs often enough to ensure complete coverage of time, while
a < 1 means that the mechanism covers a fraction of the time
and an attack may be missed if it occurs outside this fraction.

Substituting T,; by % yields:

_ T. D, D,

smaz = — — (1 l == _—
, A+ (e +)

. (13)
_;;(5 + (1 — P(te < Tk))tn)

We evaluate our mathematical model experimentally by
emulating multiple network scenarios to determine the practi-
cality of cloud-based intrusion detection and its associated per-
formance over different network conditions; for this we have
used the wide area network emulator WANem [58|]. WANem

CPU resources

.0
N

Assuming accurate
detection, vehicle finds
t; out about attack here

ts

Processing time

enables the design and development of a variety of network
scenarios and has been utilised in multiple research studies
for the evaluation of defences against cyber attacks against
critical infrastructures [59], lightweight security schemes for
vehicle tracking [60], and wide area network emulation for
testing automated covert channel modelling [61].

[Profile | Network 1 | Network 2 | Network 3 | Network 4 |
Round-trip time 4 ms 12 ms 54 ms 200 ms
Packet Loss (p) 0 0.001 0.01 0.03
MTBEF () 160 s 60 s 20 s 10s
MTTR (&) 45 4 5s 5s
R, bitrate 174 Kbps | 158 Kbps | 116 Kbps 29 Kbps
R, bitrate 82 Kbps 21 Kbps 5.62 Kbps | 0.392 Kbps
Keep alive time (T'x) 5s 5s 5s 5s
Handshake time () 37 ms 52 ms 102 ms 416 ms

TABLE VI: Network Scenarios used in experiments and by
mathematical model

To form a realistic set of cloud-based offloading scenarios
that form the basis of our experimental testing, we configure
WANem with representative network latency parameters from
different network types. For network 1, we use the existing
lab test-bed server to present a LAN-based server. Network
2 represents an ideal cloud service, profiled by measuring
real cloud services via the cloudharmony[] web service. The
network latency results were used to determine a baseline aver-
age transmission delay from London (the experiment test-bed
location) to Google Compute Engine cloud platform for the
round-trip time (RTT) of a HTTPS GET request. For network
3, we have utilised the performance statistics from the 2014
OFcom mobile broadband study in the UK [62]]; providing an
accurate measurement of latency for a typical 4g/3g network
service. Network 4 represents a highly unstable network with
a high packet loss, frequent connectivity failures and increased
latency. Table [VI] provides each set of configuration parameters
defined in the WANem configuration for each of the network
scenarios in the detection offloading experiment.

Figure shows the comparison between model and ex-
periment for the four network configurations specified in
terms of the detection latency. Our experimentation for each
case involved five runs, each 300 s of continuous offloaded

Uhttps://cloudharmony.com/speedtest

Mean detection latency (Network 1)

Model Experiment et Local

=
T 2
S 18
T 16 e
c 14 /
212
§ ! /
=08 =
T 06
§ 04
0.2
=
0 200 400 600 800 1000
Number of neurons in Deep Learning model
(a) Network configuration 1
Mean detection latency (Network 3)
- Model Experiment embmm= Local
T 2
g 18
T 16 —
c 14 /
S 12
2 1 /
‘T 038 _—
T 06
g 04
s %
0 200 400 600 800 1000

Number of neurons in Deep Learning model

(c) Network configuration 3

Mean detection latency (Network 2)

Model Experiment emmtmmLocal

0
S 2
S 18
T 16 ——
c 14 /
O 12
g1 =
S o5 —
% 04
0.2
z2
0 200 400 600 800 1000
Number of neurons in Deep Learning model
(b) Network configuration 2
Mean detection latency (Network 4)
D Model Experiment e=t==|ocal
g s
o 45
L
© 4
g 35
2 3
8 25
1] 2
s _—
c 1 e —
[—
s %
0 200 400 600 800 1000

Number of neurons in Deep Learning model

(d) Network configuration 4

Fig. 12: Mean detection latency as measured experimentally and estimated mathematically for the case of network configurations
1-4. The black curve corresponds to the detection latency when the processing occurs on the vehicle itself without offloading

via a network.

detection with T; = T, = 1s. Here, we report the mean
detection latency values. For network configurations 1-3, the
model’s estimation is very close to the actual detection latency
values obtained via the experiments. In the case of the very
unreliable network (network configuration 4), the model is less
accurate (off by 15-33%), mainly because it assumes that a
network returns to its healthy state immediately after recovery
and handshakes. In practice, some residual delays may occur
in highly congested networks. Nevertheless, we have found
that the model’s accuracy in reasonably reliable networks is
excellent and can be used to take offloading decisions (whether
detection should run onboard or offloaded).

For a more clear view of the evaluation of the mathematical
model across different scales, we have extended experimenta-
tion to lower numbers of neurons too (20 and 200). Note that
the observations below hold only for the specific processing
power of the vehicle (and hence processing delays) we worked
with. Naturally, for a more powerful vehicle, offloading will
be practical only for a larger number of neurons, and for a
less powerful one, it will be practical for a smaller number
of neurons. It is beyond the scope of this paper to predict
processing delay based on processing resources. We consider
the processing delays as input to the model. Both model and
experimental evaluation agree that, from the perspective of
mean detection latency, offloading detection via networks 1
and 2 is preferable to running it onboard, if the deep learning
architecture includes 200 neurons and above. This number
increases to approximately 600 neurons for network 3. With

the same criterion of reducing detection latency, it is never
practical to offload detection via network 4 in any of the cases
evaluated (between 20 and 1000 neurons).

As we are satisfied with the accuracy of the model in
enabling offloading decisions, we can utilise it to estimate
configuration parameters that render it practical, in terms of
achieving detection latency that is lower than the onboard
(local) case, as above, or lower than the T,. Figure il-
lustrates the latter. Specifically, it Shows £ ;4. as represented
in equation [I3] for different values for a in the four network
configurations.

We observe that out of the four network configurations
utilised, only the fourth, which corresponds to the least reliable
network, would be impractical for offloading the task of
continuous deep learning based intrusion detection. For the
cloud infrastructure used in our experiments, the mean time to
complete the processing £, was 0.279 s for the 1000-neuron
case and lower for the other cases. So, offloading was not
only practical, but also preferable for reducing overall delay
in networks 1-3.

However, for network 4, £, s,maz Would drop below 0, making
it impractical for coverage ratio a above 0.4 regardless of
the processing power of the remote infrastructure. Naturally,
reducing a, increases ts mqq, but also increases the likelihood
that particularly short-duration attacks with no lasting cyber
or physical impact may be missed by the detection process
altogether if not captured within the time periods covered.

Fig. 13: fs,max against different values of a for the four network configurations

Max practical processing time for networks 1-4

9
7
g Network s

“
=
S 3
S 1
%
>~

0 0.2 04

0.6 0.8 1

Coverage ratio a

VI. CONCLUSION

We have shown experimentally that utilising RNN-based
deep learning enhanced by LSTM can increase considerably
intrusion detection accuracy for a robotic vehicle, when com-
paring against standard machine learning classifiers or MLP-
based deep learning, which cannot take into account the tem-
poral elements of a cyber attack. We have also shown that the
key disadvantage of a deep learning based approach, which is
detection latency due to the increased processing demands, can
be addressed through cloud-based computational offloading.
For this, we produced a practical implementation and have
also presented and validated experimentally a mathematical
model for evaluating when offloading is practical from the
detection latency perspective.

However, we also need to consider that there is a fundamen-
tal difference between running a cyber security task (such as
intrusion detection) onboard the vehicle or offloaded remotely,
which is the reliance on an external communication network,
not only in terms of its availability and performance, but also
its security. For vehicles, this is particularly true because, in
almost all realistic cases, offloading needs to be carried out via
a wireless medium, and consequently is vulnerable to security
threats itself. The security of the wireless medium was not
within scope here, but needs to be taken into account in real-
world deployment of such an approach. For this work, we have
utilised HTTPS as a means to provide a satisfactory level of
confidentiality and integrity of the process, but have not taken
any measures against a physical availability threat, such as
communication jamming. A reasonable approach here would
be to resort to a lightweight machine learning classifier, such as
logistic regression, random forest or SVM, for as long as the
vehicle is in a communication-denied environment, whether
naturally or as a result of an attack on the wireless medium.

Further considerations are the availability, cost and security
of the remote infrastructure used for offloading. Here, we have
used a trusted private cloud, but other options could be using
another, resource-rich vehicle (for example, when operating
within a platoon of driverless vehicles), which may itself
have been compromised, or extend to potentially “unfaithful”
clouds. For the latter, there is excellent work being produced
in the area of secure computation offloading [63], [64], which

could be adopted in this context too. As for the cost of
offloading, it could be monetary or energy-related, both being
interesting directions of further research.

Perhaps the greatest advantage of offloading is the potential
of having a common cloud-based infrastructure that can be
used by a large number of vehicles of different owners, opera-
tional patterns and environments. This would allow collecting
data regarding the normal or attack behaviour of a type of
vehicle much more widely than in the limited conditions
experienced during the training of the IDS of a single vehicle.
There is also a strategic strength in this direction of research.
Both deep learning and cloud security are areas of considerable
activity. By positioning this work where the two meet, the
approach of cloud offloading of deep learning based intrusion
detection will benefit further in the future by advances in these
two fields.

REFERENCES

[1] G. Loukas, Cyber-Physical Attacks: A Growing Invisible Threat.
Butterworth-Heinemann (Elsevier), 2015.

[2] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,
D. McCoy, B. Kantor, D. Anderson, H. Shacham, and S. Savage,
“Experimental security analysis of a modern automobile,” in [EEE
Security and Privacy. 1EEE, 2010, pp. 447-462.

[3] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Sav-
age, K. Koscher, A. Czeskis, F. Roesner, and T. Kohno, “Comprehensive
experimental analyses of automotive attack surfaces,” in Usenix Security
Symposium. USENIX, 2011.

[4] D. Ward, 1. Ibarra, and A. Ruddle, “Threat analysis and risk assessment
in automotive cyber security,” International Journal of Passenger Cars,
vol. 6, no. 2, pp. 507-513, 2013.

[5] M. Ring, J. Durrwang, F. Sommer, and R. Kriesten, “Survey on ve-
hicular attacks-building a vulnerability database,” in IEEE International
Conference on Vehicular Electronics and Safety (ICVES). 1EEE, 2015,
pp. 208-212.

[6] A. Javaid, W. Sun, V. Devabhaktuni, and M. Alam, “Cyber security
threat analysis and modeling of an unmanned aerial vehicle system,” in
IEEE Conference on Technologies for Homeland Security (HST). 1EEE,
2012, pp. 585-590.

[7] G. McGraw, “Cyber war is inevitable (unless we build security in),”
Journal of Strategic Studies, vol. 36, no. 1, pp. 109-119, 2013.

[81 A. J. Kerns, D. P. Shepard, J. A. Bhatti, and T. E. Humphreys,
“Unmanned aircraft capture and control via gps spoofing,” Journal of
Field Robotics, vol. 31, pp. 617-636, 2014.

[9] J. Petit and S. Shladover, “Potential cyberattacks on automated vehicles,”
IEEE Transactions on Intelligent Transportation Systems, vol. 16, no. 2,
pp. 546-556, 2015.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

Y. Son, H. Shin, D. Kim, Y. Park, J. Noh, K. Choi, J. Choi, and Y. Kim,
“Rocking drones with intentional sound noise on gyroscopic sensors,”
in 24th USENIX Security Symposium. USENIX, 2015, pp. 881-896.
T. Vuong, A. Filippoupolitis, G. Loukas, and D. Gan, “Physical indi-
cators of cyber attacks against a rescue robot,” in IEEE International
Conference on Pervasive Computing and Communications. 1EEE, 2014,
pp. 338-343.

A. Greenberg, “Hackers remotely kill a jeep on the highway with me
in it,” 2015.

A. Bezemskij, R. J. Anthony, G. Loukas, and D. Gan, “Threat eval-
uation based on automatic sensor signal characterisation and anomaly
detection,” in The Twelfth International Conference on Autonomic and
Autonomous Systems (ICAS 2016). 1ARIA, 2016.

A. Bezemskij, G. Loukas, R. J. Anthony, and D. Gan, “Behaviour-based
anomaly detection of cyber-physical attacks on a robotic vehicle,” in
Eighth International Symposium on Cyberspace Safety and Security.
CPS, 2016.

T. Vuong, G. Loukas, and D. Gan, “Performance evaluation of cyber-
physical intrusion detection on a robotic vehicle,” in Proceedings of
13th International Conference on Pervasive Intelligence and Computing
(PICOM). IEEE, 2015.

T. Vuong, G. Loukas, D. Gan, and A. Bezemskij, “Decision tree-based
detection of denial of service and command injection attacks on robotic
vehicles,” in Proceedings of 7th International Workshop on Information
Forensics and Security (WIFS). 1EEE, 2015.

K.-T. Cho and K. G. Shin, “Viden: Attacker identification on in-vehicle
networks,” in 24th ACM Conference on Computer and Communications
Security (CCS17). ACM, 2016, pp. 164-170.

M. R. Moore, R. A. Bridges, F. L. Combs, M. S. Starr, and S. J. Prowell,
“Modeling inter-signal arrival times for accurate detection of can bus
signal injection attacks: a data-driven approach to in-vehicle intrusion
detection,” in Proceedings of the 12th Annual Conference on Cyber and
Information Security Research. ACM, 2017, p. 11.

F. Martinelli, F. Mercaldo, V. Nardone, and A. Santone, “Car hacking
identification through fuzzy logic algorithms,” in Fuzzy Systems (FUZZ-
IEEE), 2017 IEEE International Conference on. IEEE, 2017, pp. 1-7.
A. Lauf, R. Peters, and W. Robinson, “A distributed intrusion detection
system for resource-constrained devices in ad-hoc networks,” Ad Hoc
Networks, vol. 8, no. 3, pp. 253-266, 2010.

M. Strohmeier, V. Lenders, and I. Martinovic, “Intrusion detection
for airborne communication using phy-layer information,” in 12th
Conference on Detection of Intrusions and Malware & Vulnerability
Assessment (DIMVA). Springer, 2015.

Z. Birnbaum, A. Dolgikh, V. Skormin, E. O’Brien, and D. Muller, “Un-
manned aerial vehicle security using recursive parameter estimation,”
in International Conference on Unmanned Aircraft Systems (ICUAS).
IEEE, 2014, pp. 692-702.

C. Gwak, M. Jo, S. Kwon, H. Park, and S. Son, “Anomaly detection
based on recursive least-square filter for robust intelligent transportation
systems,” in Proceedings of the 2015 Korea Institute of Communication
Sciences Summer Conferences. KICS, 2015, pp. 438-440.

J. Schumann, P. Moosbrugger, and K. Rozier, “R2u2: Monitoring and
diagnosis of security threats for unmanned aerial systems,” in Proceed-
ings of 15th International Conference on Runtime Verification. Springer,
2015.

A. Bezemskij, G. Loukas, D. Gan, and R. Anthony, “Detecting cyber-
physical threats in an autonomous robotic vehicle using bayesian net-
works,” in Proceedings of IEEE Cyber, Physical and Social Computing
(CPSCom). 1IEEE, 2017.

G. Pearson and M. Kolodny, “Uk mod land open systems architecture
and coalition interoperability with the us,” in Proc. of SPIE Vol, vol.
8742, 2013, pp. 87420C-1.

R. Mitchell and I. Chen, “Specification based intrusion detection for
unmanned aircraft systems,” in Proceedings of the first ACM MobiHoc
workshop on Airborne Networks and Communications. ACM, 2012,
pp- 31-36.

——, “Adaptive intrusion detection of malicious unmanned air vehicles
using behavior rule specifications,” IEEE Transactions on Systems, Man,
and Cybernetics: Systems, vol. 44, no. 5, pp. 593-604, 2014.

S. Martini, D. Di Baccio, F. Romero, A. Jimnez, L. Pallottino, G. Dini,
and A. Ollero, “Distributed motion misbehavior detection in teams of
heterogeneous aerial robots,” Robotics and Autonomous Systems, vol. 74,
pp. 30-39, 2015.

L. Lamport, R. Shostak, and M. Pease, “The byzantine generals prob-
lem,” ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 4, no. 3, pp. 382-401, 1982.

(31]

[32]

[33]

[34]

(35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]
(48]

[49]

[50]

[51]

[52]

[53]
[54]

K. Alheeti, A. Gruebler, and K. McDonald-Maier, “An intrusion detec-
tion system against malicious attacks on the communication network of
driverless cars,” in Proceedings of the 12th Consumer Communications
and Networking Conference (CCNC). IEEE, 2015, pp. 916-921.

K. M. A. Alheeti and K. McDonald-Maier, “An intelligent intrusion
detection scheme for self-driving vehicles based on magnetometer
sensors,” in Students on Applied Engineering (ICSAE), International
Conference for. 1EEE, 2016, pp. 75-78.

K. M. A. Alheeti, R. Al-Zaidi, J. Woods, and K. McDonald-Maier, “An
intrusion detection scheme for driverless vehicles based gyroscope sen-
sor profiling,” in Consumer Electronics (ICCE), 2017 IEEE International
Conference on. 1EEE, 2017, pp. 448—449.

K. M. A. Alheeti, A. Gruebler, and K. McDonald-Maier, “Intelligent
intrusion detection of grey hole and rushing attacks in self-driving
vehicular networks,” Computers, vol. 5, no. 3, p. 16, 2016.

G. Hu, W. Tay, and Y. Wen, “Cloud robotics: architecture, challenges
and applications,” Network, vol. 26, no. 3, pp. 21-28, 2012.

A. Houmansadr, S. Zonouz, and R. Berthier, “A cloud-based intrusion
detection and response system for mobile phones,” in IEEE/IFIP 41st
International Conference on Dependable Systems and Networks Work-
shops. 1EEE, 2011, pp. 31-32.

G. Portokalidis, P. Homburg, K. Anagnostakis, and . Bos, H., “Paranoid
android: versatile protection for smartphones,” in 26th Annual Computer
Security Applications Conference. ACM, 2010, pp. 347-356.

W. Hardy, L. Chen, S. Hou, Y. Ye, and X. Li, “Dl4md: A deep learning
framework for intelligent malware detection,” in Proceedings of the
International Conference on Data Mining (DMIN). WorldComp, 2016,
p. 61.

Z. Dong, K. Kane, and L. Camp, “Detection of rogue certificates from
trusted certificate authorities using deep neural networks,” Transactions
on Privacy and Security (TOPS), vol. 19, no. 2, p. 5, 2016.

J. Kim, J. Kim, H. L. T. Thu, and H. Kim, “Long short term memory
recurrent neural network classifier for intrusion detection,” in 2016 In-
ternational Conference on Platform Technology and Service (PlatCon).
IEEE, 2016, pp. 1-5.

A. Y. Javaid, Q. Niyaz, W. Sun, and M. Alam, “A deep learning
approach for network intrusion detection system,” in Proceedings of
the 9th EAI International Conference on Bio-inspired Information and
Communications Technologies (formerly BIONETICS) on 9th. 1CST,
2016, pp. 21-26.

J. W. Kang, M. J.and Kang, “Intrusion detection system using deep
neural network for in-vehicle network security,” PloS One, vol. 11, no. 6,
2016.

T. P. Vuong, “Cyber-physical intrusion detection for robotic vehicles,”
Ph.D. dissertation, University of Greenwich, UK, 2017.

T. G. Barbounis, J. B. Theocharis, M. C. Alexiadis, and P. S. Dokopou-
los, “Long-term wind speed and power forecasting using local recurrent
neural network models,” IEEE Transactions on Energy Conversion,
vol. 21, no. 1, pp. 273-284, 2006.

Y. Du, W. Wang, and L. Wang, “Hierarchical recurrent neural network
for skeleton based action recognition,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 1EEE, 2015,
pp. 1110-1118.

Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies
with gradient descent is difficult,” IEEE transactions on neural networks,
vol. 5, no. 2, pp. 157-166, 1994.

F. Chollet, “Keras,” https://github.com/fchollet/keras, 2015.

M. Fernandez-Delgado, E. Cernadas, S. Barro, and D. Amorim, “Do we
need hundreds of classifiers to solve real world classification problems,”
J. Mach. Learn. Res, vol. 15, no. 1, pp. 3133-3181, 2014.

M. A. M. Hasan, M. Nasser, B. Pal, and S. Ahmad, “Support vector
machine and random forest modeling for intrusion detection system
(IDS),” Journal of Intelligent Learning Systems and Applications, vol. 6,
no. 1, p. 45, 2014.

W. J. . M. A. Wang, Y., “Anomaly intrusion detection using one class
svm,” in nformation Assurance Workshop, 2004. Proceedings from the
Fifth Annual IEEE SMC. 1EEE, 2004, pp. 358-364.

P. R. D. R. M. . R. E Giacinto, G., “Intrusion detection in computer
networks by a modular ensemble of one-class classifiers,” Information
Fusion, vol. 9, no. 1, pp. 69-82, 2008.

H. S. . L. B. Jianliang, M., “The application on intrusion detection
based on k-means cluster algorithm,” in Information Technology and
Applications, 2009. IFITA’09. International Forum on. 1EEE, 2009,
pp- 150-152.

Canonical, “Ubuntu openstack reference implementation,” 2014.

D. Stenberg, “curl,” 2016. [Online]. Available: https://curl.haxx.se/

https://github.com/fchollet/keras
https://curl.haxx.se/

[55]

[56]

(571

[58]

[59]

[60]

[61]

[62]

[63]

[64]

A. Canziani, A. Paszke, and E. Culurciello, “An analysis of deep
neural network models for practical applications,” arXiv preprint
arXiv:1605.07678, 2016.

K. Kumar and Y. Lu, “Cloud computing for mobile users: Can offloading
computation save energy?”’ Computer, vol. 43, no. 4, pp. 51-56, 2010.
G. Loukas, Y. Yoon, G. Sakellari, T. Vuong, and R. Heartfield, “Compu-
tation offloading of a vehicle’s continuous intrusion detection workload
for energy efficiency and performance,” Simulation Modelling Practice
and Theory, 2016.

H. K. Kalitay and M. K. Nambiarz, “Designing wanem: A wide
area network emulator tool,” in Third International Conference on
Communication Systems and Networks (COMSNETS 2011). 1EEE,
2011, pp. 1-4.

L. Aniello, D. Luna, L. G. A., G., and R. Baldoni, “A collaborative event
processing system for protection of critical infrastructures from cyber
attacks.” in International Conference on Computer Safety, Reliability,
and Security. Springer Berlin Heidelberg., 2011, pp. 310-323.

A. Ukil, S. Bandyopadhyay, A. Bhattacharyya, and A. Pal, “Lightweight
security scheme for vehicle tracking system using coap,” in Proceedings
of the International Workshop on Adaptive Security. ACM, 2013, p. 3.
F. Rezaei, M. Hempel, and H. Shrestha, P. L. andSharif, “Evaluation and
verification of automated covert channel modeling using a real network
platform,” in 2014 IEEE Military Communications Conference. 1EEE,
2014, pp. 12-17.

OFcom, “Measuring mobile broadband performance in the uk: 4g
and 3g network performance,” 2014. [Online]. Available: https:
/Iwww.ofcom.org.uk/__data/assets/pdf_file/0014/32054/mbb-nov 14.pdf
R. Gennaro, C. Gentry, and B. Parno, “Non-interactive verifiable com-
puting: Outsourcing computation to untrusted workers,” in Advances in
CryptologyCRYPTO 2010. Springer, 2010, pp. 465-482.

X. Chen, X. Huang, J. Li, J. Ma, W. Lou, and D. Wong, “Rocking drones
with intentional sound noise on gyroscopic sensors,” Transactions on
Information Forensics and Security, vol. 10, no. 1, pp. 69-78, 2015.

https://www.ofcom.org.uk/__data/assets/pdf_file/0014/32054/mbb-nov14.pdf
https://www.ofcom.org.uk/__data/assets/pdf_file/0014/32054/mbb-nov14.pdf

	Introduction
	Related work
	Cyber-physical intrusion detection using deep learning
	Experimental methodology
	Testbed: Robotic Vehicle
	Features
	Attacks used in training the model
	Experimental deep learning results
	Performance against previously seen types of attacks
	Evaluating the deep learning IDS on an unseen type of attack

	Offloading intrusion detection
	Testbed: Cloud-based IDS
	The networking configuration of offloading
	Evaluating the practicality of offloading detection

	Conclusion
	References

